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Abstract 
Journaling techniques are widely used in modern file 
systems as they provide high reliability and fast recov-
ery from system failures. However, it reduces the per-
formance benefit of buffer caching as journaling ac-
counts for a bulk of the storage writes in real system 
environments. In this paper, we present a novel buffer 
cache architecture that subsumes the functionality of 
caching and journaling by making use of non-volatile 
memory such as PCM or STT-MRAM. Specifically, our 
buffer cache supports what we call the in-place commit 
scheme. This scheme avoids logging, but still provides 
the same journaling effect by simply altering the state of 
the cached block to frozen. As a frozen block still per-
forms the function of caching, we show that in-place 
commit does not degrade cache performance. We im-
plement our scheme on Linux 2.6.38 and measure the 
throughput and execution time of the scheme with vari-
ous file I/O benchmarks. The results show that our 
scheme improves I/O performance by 76% on average 
and up to 240% compared to the existing Linux buffer 
cache with ext4 without any loss of reliability. 

1. Introduction 
Non-volatile memory such as PCM (phase-change 

memory) and STT-MRAM (spin torque transfer mag-
netic RAM) is being considered as a replacement for 
DRAM memory [1-8]. Though currently unfit for com-
plete replacement due to cost, non-volatile memory has 
become a viable component that may be added to cur-
rent systems to enhance performance [9]. Temporary 
non-volatile memory solutions in the form of superca-
pacitor-supported DRAM are also finding its place in 
the server market [10]. As non-volatile memory is ex-
pected to provide performance competitive to DRAM 
while retaining non-volatile characteristics, studies on 
exploiting these dual characteristics have recently been 
catching interest [1-8]. This paper also exploits the non-
volatile characteristic of these new memory technolo-
gies through marriage of the buffer cache and journaling 
layers. We believe, to the best of our knowledge, that 
our work is the first to propose such a union.  

In traditional systems, as main memory is volatile, the 
file system may enter an inconsistent and/or out-of-date 

state upon sudden system crashes [11]. To relieve this 
problem, journaling, which is a technique that logs the 
updates to non-volatile storage within a short time pe-
riod for high reliability and fast system recovery, is 
widely adopted in modern file systems [12]. However, 
journaling is a serious impediment to high performance 
due to its frequent storage accesses. For example, a re-
cent study has shown that synchronous writes due to 
journaling dominates storage traffic in mobile handheld 
devices leading to severe slowdown of flash storage 
[13]. In cloud storage systems, even though there is a 
consensus that journaling is necessary, it is not dep-
loyed due to the high cost of network accesses involved 
in journaling [14]. In this study, we present a novel buf-
fer cache architecture that removes almost all storage 
accesses due to journaling without any loss of reliability 
by intelligently adopting non-volatile memory as the 
buffer cache. 

At first glance, simply adopting a non-volatile buffer 
cache may seem to be enough to provide a highly relia-
ble file system. However, this is not the case as there 
are two requirements that are needed to support reliabil-
ity in file systems: durability and consistency. A non-
volatile buffer cache, simply as is, ensures durability as 
it maintains data even after a power failure. However, 
consistency cannot be guaranteed upon system crashes 
just by providing non-volatility to the buffer cache. 
Take, for example, a typical situation where a write 
operation requires both data and metadata updates but 
the system crashes after updating only metadata. Then, 
the data in the buffer cache loses consistency, eventual-
ly leading to an inconsistent file system state.  

We propose a new buffer cache architecture, called 
UBJ (Union of Buffer cache and Journaling), that re-
solves this problem by providing the functionality of 
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Fig. 1. Commit process of our buffer cache compared to the orig-
inal buffer cache with journaling.  
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journaling without frequent storage accesses. Specifical-
ly, we propose In-place Commit, which changes the 
state of updated cache blocks to frozen (i.e., write pro-
tected) and manages them as a transaction right at where 
it is currently located. This scheme does not perform 
additional logging but simply reaps the same effect just 
by changing a state. Furthermore, as the block in the 
frozen state can still be used as a cache block, the effec-
tiveness of the buffer cache is not deteriorated. Figure 1 
shows the commit process of our buffer cache compared 
to that of the existing buffer cache in conjunction with 
journaling.  

Previous work most closely related to this study also 
attempts to relieve journaling overhead by adopting 
non-volatile memory for file system and database man-
agement [15, 16, 17]. They improve performance by 
adding non-volatile memory as a separate journal area 
or as a write buffer of log files. However, in these 
schemes, the non-volatile memory cannot function as a 
cache and is kept separately from the buffer cache. Our 
scheme is different in that we intelligently union the 
journaling functionality into the buffer cache architec-
ture, thereby minimizing additional memory copy and 
space overhead. 

We have implemented a prototype of our buffer 
cache with in-place commit in Linux 2.6.38. Measure-
ment results with various storage benchmarks show that 
our scheme improves file system performance by 76% 
on average and up to 240% compared to the existing 
Linux buffer cache with ext4 set to the journal mode.  

The remainder of this paper is organized as follows. 
Section 2 investigates the effect of journaling on the 
write traffic of storage. Section 3 describes our buffer 
caching architecture and algorithm in detail. In Section 
4, we discuss cache performance issues inherent in our 
scheme. Section 5 presents a brief description of the 
implementation and discusses the experimental results 
of the implementation. Section 6 concludes this paper. 

2. Analysis of Storage Write Traffic 
Figure 2 shows the amount of write traffic from the 

buffer cache to storage when journaling is employed 
relative to when it is not for various workloads. As Fig-
ure 2 shows, write traffic increases dramatically when 
journaling is used; on average the data stored with jour-
naling is 2.7 times more than that without journaling. 
When we do not use journaling, storage writes occur 
only when dirty blocks are evicted from the cache or 
when there is an explicit sync operation. However, 
with journaling, there are two more cases that cause 
storage writes. The first case is when a commit to the 
journal area occurs. The second case is when check-
pointing, which writes the updated data to permanent 

file system locations, occurs. Checkpointing is triggered 
periodically and is also activated when the amount of 
free space in the journal area drops below a certain 
threshold. 

As we can see, journaling accounts for a considerable 
portion of storage writes for all workloads, and thus, is 
a potential source of performance degradation. As Fig-
ure 2 shows, however, our UBJ scheme performs jour-
naling but eliminates most of its storage writes.  

3. Buffer Cache with In-place Commit 
In UBJ, the buffer cache and the journal area share 

the same allocated space. Every block in this space 
functions either as a cache block, a log block, or a cache 
and log block at the same time when the block has dual-
purpose. We can represent the state of each block as a 
combination of three state indicators: frozen/normal 
state, dirty/clean state, and up-to-date/out-of-date state 
(Refer to Figure 3). The frozen/normal state distin-
guishes whether the block is a (normal) cache block or a 
(frozen) log block. The dirty/clean state indicates 
whether the block has been modified since it entered the 
cache. The up-to-date/out-of-date state indicates wheth-
er the block is the most recent version or not. This last 
distinction is necessary as multiple blocks for the same 
data may exist in the buffer/journal space.  

In the following, we use these states and the transi-
tions between these states to describe the workings of 
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Fig. 2. Write traffic with journaling and our proposed scheme 
(UBJ) relative to when journaling is not used (denoted no-
journal) for various workloads. 
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UBJ. The scheme is described as three distinct opera-
tions: the read/write operations, the commit operation, 
and the checkpointing operation.  

A. Read/Write Operations 
Reaction to a write request depends on the state of 

the block. If the block is normal, it is simply updated. 
Otherwise, that is, if it is frozen (a log block), a copy is 
made to a new location and the updated data is written 
to the copy. The copy then becomes up-to-date, while 
the original becomes out-of-date. This allows logged 
data to remain safe against system failures.  

Read requests, on the other hand, are serviced irres-
pective of block state and do not alter the states of the 
block. This is because reading data does not affect the 
consistency of blocks.  

B. Commit Operations  
As part of transaction management, UBJ periodically 

commits data by changing the state of normal dirty 
blocks to frozen dirty blocks. This is done by keeping 
and manipulating transactions maintained as lists. There 
are three types of transaction as shown in Figure 4. The 
first is a running transaction that maintains a list of 
normal dirty blocks that became dirty after the previous 
commit operation. When a commit operation is issued, 
this running transaction is converted to a commit trans-
action. At this point, the blocks on the commit transac-
tion, which are in normal state, are committed in-place 
(hence, the name In-place Commit) simply by convert-
ing their state to frozen. New block writes arriving dur-
ing this conversion process is simply added to a new 
running transaction created for the next commit period. 
During the state conversion process, UBJ also checks if 
the same data block had been committed before, and if 
so, keeps track of the previous block as an old-commit 
block. For efficient space management, these old-
commit blocks may be released immediately at this 
point. When all dirty data blocks in the commit transac-
tion become frozen, we change the state of the transac-
tion to a checkpoint transaction. The checkpoint trans-
actions are maintained in the buffer cache until they are 
reflected onto the file system via checkpointing. Should 
a system crash occur, they are the ones used to recover 
the file system into a consistent and up-to-date state. 

C. Checkpoint Operations  
The checkpoint operation updates the file system 

with committed data. UBJ scans the checkpoint transac-
tion lists and reflects them on to their permanent loca-
tions in the file system. When a single data block has 
been committed multiple times, only the last commit 
block is checkpointed in order to reduce checkpointing 
overhead. After a transaction checkpoint is completed, 

cache space occupied by frozen blocks is reclaimed. 
During this process, if the block is up-to-date, we reuse 
it as a buffer cache block by changing its state to normal 
and clean, and updating its associated metadata. On the 
other hand, if the block is out-of-date, the space is rec-
laimed as a free block.  

While the commit operation is performed frequently 
to reduce the vulnerability window of reliability, check-
pointing may be done less frequently as it does not di-
rectly affect system reliability. Nevertheless, excessive 
delay in checkpointing may have negative effects. As 
the interval between checkpointing grows, more and 
more cache space will be occupied by frozen blocks 
effectively reducing the buffer cache, potentially lead-
ing to degradation of buffer cache performance. To pre-
vent this situation, our scheme triggers checkpointing 
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Fig. 4 Data structures for UBJ. 
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when the number of frozen blocks becomes larger than 
a certain threshold as is done with conventional journal-
ing. Checkpointing is also triggered by the page recla-
mation daemon when it evicts dirty blocks from the 
cache.  

D. Example 
Figure 5 shows the workings of UBJ in contrast to a 

typical buffer cache scheme. In this example, the com-
mit and checkpointing periods are set to 30 and 90 
seconds, respectively. The initial content of block A is 
D0. At time 10, a write request modifies the content of 
block A to D1, converting it into a dirty block. 20 
seconds later, a commit occurs. To service the commit, 
UBJ simply changes the state of block A to frozen, 
whereas a typical buffer cache would incur a write to 
storage.   

Suppose another write to block A occurs at time 40. 
UBJ at this point copies block A into another location 
A’, and then writes the new data to location A’. Block A, 
then becomes out-of-date, while block A’ is now up-to-
date. (We quantify the effect of having multiple copies 
of the same data block later.) Subsequent writes (write 
at time 50, in this example) are performed on block A’ 
until it is committed and hence, frozen (at time 60). 
When checkpointing occurs at time 90, UBJ reflects 
only the latest version of block A’, that is D3, into the 
file system eliminating unnecessary writes (D1 and D2). 
After checkpointing, space occupied by block A is rec-
laimed, while the up-to-date version of block A’ is 
reused as normal buffer cache data.   

In this example, we see that UBJ writes to storage on-
ly once when checkpointing, while a typical buffer 
cache scheme generates storage writes every time it 
commits or checkpoints. This results in writes of blocks 
that are eventually overwritten and did not need to be 
saved. In practice, as commits are much more frequent 
than checkpoints, the reduction in the number of storage 
writes can become substantial. 

E. System Recovery 
System crashes incur inconsistency problems as data 

may remain partially updated in the buffer cache, the 

Table 1. Summary of workload characteristics 

workload 
avg. 
file 
size 

# of 
files 

avg. 
op. 
size 

# of 
ops. 

r:w 
ratio 

      

Varmail 16KB 1,000 4KB  6,638K 1:1 

Proxy 16KB 10,000 5KB 6,723K 5:1 

Webserver 16KB 1,000 14KB 6,432K 10:1 

Fileserver  128KB 1,000 72KB 6,843K 1:2 
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Fig. 6 Cache miss ratio as a function of the cache size. 
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journal area, and the file system. Hence, upon reboot 
from an abnormal termination, UBJ goes through the 
following steps for recovery.  

First, the running transaction list is checked. This list 
holds blocks that are residing in the buffer cache and 
may have been partially updated. However, since these 
are uncommitted data and thus, not reflected on the file 
system, we simply invalidate these blocks.  

Next, we consider the commit transaction list. When 
a crash occurs in the middle of committing a transaction, 
the commit transaction list may be in a partially com-
mitted state containing a mixture of committed and still-
uncommitted blocks. In this case, as the commit opera-
tion did not complete properly, UBJ simply invalidates 
the data in the same way as it did with the running 
transaction list.  

Finally, the system state is made consistent by mak-
ing use of the checkpointing transactions. Even though 
the file system may be corrupted if a crash occurs while 
executing checkpoint operations, the system can be res-
tored to a consistent state simply by redoing the opera-
tion as all the checkpoint transactions still reside in the 
buffer cache.  

4. Cache Performance 
As our scheme holds log blocks in the buffer cache, a 

single data block may occupy multiple cache blocks, 
degrading the space efficiency of the buffer cache. To 
investigate this effect, we compare the buffer cache 
miss ratio of the original buffer cache that is used only 
for caching and with no log blocks (BF-no) and UBJ, 
where cache and journal space is in union. In addition, 
for comparison purposes, we also observe the miss ratio 
of a hypothetical scheme that uses half of its allocated 
memory space as a dedicated buffer cache and the other 
half as a dedicated journal area. We will call this 
scheme buffer caching with in-memory journaling (BF-
Jm). This scheme works just like conventional journal-

ing, except for the fact that the journal area is not in 
storage but in memory, possibly non-volatile memory.  

Figure 6 plots the cache miss ratio of the three buffer 
cache schemes for the Filebench benchmark, which is a 
representative file system benchmark. Table 1 summa-
rizes the characteristics of the Filebench workloads used 
in this paper. 

We vary the cache size from 0.1 (10%) to 2.0 (200%) 
relative to the I/O footprint. Generally, the cache size of 
1.0 is identical to infinite cache capacity since the cache 
will simultaneously accommodate all block references 
of the trace. However, as UBJ and BF-Jm use a certain 
portion of the buffer cache space for the journal area, 
cache size of 1.0 may be insufficient to accommodate 
all the requests. For BF-Jm, which dedicates half of the 
total space to the buffer cache and the other half to the 
journal area, a cache size of 2.0 is equivalent to infinite 
cache capacity. Moreover, to monitor the worst case 
performance degradation of UBJ, we delay checkpoint-
ing of frozen log blocks until they are selected as vic-
tims by the cache replacement policy.  

The results shown in Figure 6 reveals that the cache 
performance of UBJ exhibits only marginal degradation 
compared to that of BF-no, while performance of BF-
Jm degrades significantly. To understand this more 
clearly, we also plot in Figure 7 the portion of the buf-
fer/journal space occupied by frozen blocks when the 
cache size is 0.7 (70%) of the workload footprint, which 
is where the performance gap between UBJ and BF-Jm 
is largest. 

We observe that UBJ uses a substantial portion of the 
buffer/journal space for the journal area for all work-
loads. This results in read requests being serviced by 
these frozen blocks. As Figure 8 shows, roughly 16% to 
48% of all hits occur in the journal area for UBJ. In 
contrast, schemes like BF-Jm that simply dedicate (non-
volatile) journal space cannot take advantage of the data 
that resides there. Figure 9 plots the ratio of journal 
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space for the fileserver workload as time progresses. 
The figure shows that the journal space of UBJ dynami-
cally changes according to workload evolution. (Results 
for other workloads that are not shown show similar 
dynamic behavior.)  

5. Performance Evaluation 

A. Implementation 
We implemented a UBJ prototype on Linux 2.6.38. 

We compare our scheme with ext4 that runs on the orig-
inal Linux (BF-ext4). We set the journaling option of 
ext4 to journal-mode, which logs both data and metada-
ta, to provide the same consistency semantics as UBJ. 
According to conventional configurations, the commit 
period is set to five seconds for both schemes; check-
pointing is triggered when a fourth of the journal area is 
filled or five minutes have elapsed since the last check-
pointing time. For better space efficiency, we adopt the 
early reclamation policy that releases old versions of 
frozen log blocks, that is, old-commit blocks, imme-
diately when a recent commit version of the same data 
block is generated.  

Our experimental platform consists of the Intel Core 
i3-2100 CPU running at 3.1GHz and 4GB of DDR2-
800 memory. Though our design assumes non-volatile 
main memory like PCM or STT-MRAM, as it is not yet 
commercially available, we simply use a portion of the 
DRAM as buffer/journal space. We measure the per-

formance with three representative storage benchmarks: 
Filebench [18], IOzone [19], and Postmark [20]. 

B. Experimental Results  
Figure 10 shows the execution time and the through-

put of UBJ compared to BF-ext4 for the Filebench 
workloads. As shown in the figure, UBJ performs better 
than BF-ext4 for all workloads. The execution time and 
throughput of UBJ is better than BF-ext4 by 30.7% and 
59.8% on average. Specifically, the performance im-
provement of varmail is the largest among the four 
workloads, which is 60% and 240%, respectively, in 
execution time and throughput. The reason behind such 
large improvements is that varmail contains a large 
number of write requests, thus incurring frequent com-
mits (though checkpointing is not performed frequently 
due to its small memory footprint). Moreover, varmail 
issues read and write requests concurrently. Though our 
scheme does not have an explicit policy to improve read 
performance, eliminating frequent storage writes re-
lieves the contention to hardware resources like the 
memory bus and DMAs, leading to improvements in 
I/O performance in general. Even for read-intensive 
workloads like webserver and proxy, UBJ improves 
performance by 23% and 11%, respectively, due to this 
reason. For fileserver, which is write-intensive, the im-
provement of our scheme is relatively small compared 
to varmail. This is because most write requests in file-
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         Fig. 10. Throughput and execution time 
of the Filebench workloads.  

Fig. 11. Throughput of IOzone as the fi-
leset size is varied. 

Fig. 12. Throughput of Postmark as the 
number of transactions is varied. 
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server are large and sequential writes, which leads to 
frequent checkpointing.  

Figure 11 shows the throughput of UBJ and BF-ext4 
for the IOzone benchmark. IOzone measures file I/O 
performance by generating particular types of opera-
tions in batches. It creates a single large file and per-
forms a series of operations on that file. We measure the 
performance with two IOzone scenarios, random write 
and sequential write, varying the total fileset sizes rang-
ing from 100MB to 300MB. 

As the figure shows, UBJ outperforms BF-ext4 in all 
configurations. Specifically, the performance improve-
ment is 2.1 times on average. The source of this en-
hancement is the large reduction in storage writes 
achieved by in-place commit. Note also that UBJ per-
forms better relative to BF-ext4 as the fileset size is 
reduced. This is because with smaller fileset size check-
pointing is done less frequently leading to reduced sto-
rage accesses. Unlike UBJ, BF-ext4 is less sensitive to 
the fileset size. This is because the performance of BF-
ext4 is dominated by the number of commits, which is 
independent of the fileset size. 

Another observation that can be made with IOzone is 
that UBJ is more sensitive to the fileset size for random 
writes. This is because random writes are largely af-
fected by seek times as checkpointing for random ac-
cesses incur large seek overhead to move the disk head 
to the requested location.  

Figure 12 shows the throughput for the Postmark 
benchmark. Postmark emulates an email server that 
concurrently performs read and write operations. The 
benchmark reports separate performance numbers for 
read and write operations. We vary the number of 
Postmark transactions from 2,000 to 10,000 on 1,000 
files, whose average size is 500KB. As shown in the 
figure, UBJ exhibits 109% better throughput than BF-
ext4 on average. Note that read operation throughput 
also improves due to the reduced storage writes. We 
also observe that the performance improvement of UBJ 
decreases as the number of transactions increases. Simi-
larly to IOzone, this is because with a larger number of 
transactions UBJ increases checkpointing, while keep-
ing other factors constant. Hence, the relative perfor-
mance gap between UBJ and BF-ext4 is reduced.  

Finally, we see how the performance of UBJ is af-
fected as the commit period changes. Figure 13 shows 
the latency per operation for the varmail workload. As 
we can see, the latency of BF-ext4 becomes small as the 
commit period changes from 1 to 5 seconds. This is 
because storage writes become less frequent. This, of 
course, increases the window of vulnerability for BF-
ext4. In contrast, the latency of UBJ is not sensitive to 
the commit period as the overhead of commit is very  

small in UBJ. This result indicates that UBJ can shorten 
the window of vulnerability without sacrificing perfor-
mance.  

6. Conclusion 
In this paper, we presented a novel buffer cache ar-

chitecture that subsumes the function of caching and 
journaling in a unified non-volatile memory space. Spe-
cifically, blocks in the buffer cache are converted to 
journal logs through what we call In-place Commit. In-
place Commit simply changes the state of cached block 
from a normal state to a frozen state. By so doing, it 
reaps the same effect as journaling. Furthermore as the 
block in frozen state can still be used as a cache block 
the effectiveness of the buffer cache is not deteriorated. 
Based on In-place Commit, we implement UBJ (Union 
of Buffer cache and Journaling) on Linux 2.6.38. Mea-
surement studies showed that UBJ significantly im-
proves file I/O performance compared to the existing 
Linux ext4 journaling scheme without any loss of relia-
bility. The effectiveness of UBJ will increase in envi-
ronments such as cloud storage and networked storage 
systems where storage access cost are higher. We are 
planning to extend our scheme to this area in the near 
future.  
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