
USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  73

Unioning of the Buffer Cache and Journaling Layers
with Non-volatile Memory

Eunji Lee1, Hyokyung Bahn1, and Sam H. Noh2

1 Ewha University, {alicialee, bahn}@ewha.ac.kr
2Hongik University, http://next.hongik.ac.kr

Abstract
Journaling techniques are widely used in modern file
systems as they provide high reliability and fast recov-
ery from system failures. However, it reduces the per-
formance benefit of buffer caching as journaling ac-
counts for a bulk of the storage writes in real system
environments. In this paper, we present a novel buffer
cache architecture that subsumes the functionality of
caching and journaling by making use of non-volatile
memory such as PCM or STT-MRAM. Specifically, our
buffer cache supports what we call the in-place commit
scheme. This scheme avoids logging, but still provides
the same journaling effect by simply altering the state of
the cached block to frozen. As a frozen block still per-
forms the function of caching, we show that in-place
commit does not degrade cache performance. We im-
plement our scheme on Linux 2.6.38 and measure the
throughput and execution time of the scheme with vari-
ous file I/O benchmarks. The results show that our
scheme improves I/O performance by 76% on average
and up to 240% compared to the existing Linux buffer
cache with ext4 without any loss of reliability.

1. Introduction
Non-volatile memory such as PCM (phase-change

memory) and STT-MRAM (spin torque transfer mag-
netic RAM) is being considered as a replacement for
DRAM memory [1-8]. Though currently unfit for com-
plete replacement due to cost, non-volatile memory has
become a viable component that may be added to cur-
rent systems to enhance performance [9]. Temporary
non-volatile memory solutions in the form of superca-
pacitor-supported DRAM are also finding its place in
the server market [10]. As non-volatile memory is ex-
pected to provide performance competitive to DRAM
while retaining non-volatile characteristics, studies on
exploiting these dual characteristics have recently been
catching interest [1-8]. This paper also exploits the non-
volatile characteristic of these new memory technolo-
gies through marriage of the buffer cache and journaling
layers. We believe, to the best of our knowledge, that
our work is the first to propose such a union.

In traditional systems, as main memory is volatile, the
file system may enter an inconsistent and/or out-of-date

state upon sudden system crashes [11]. To relieve this
problem, journaling, which is a technique that logs the
updates to non-volatile storage within a short time pe-
riod for high reliability and fast system recovery, is
widely adopted in modern file systems [12]. However,
journaling is a serious impediment to high performance
due to its frequent storage accesses. For example, a re-
cent study has shown that synchronous writes due to
journaling dominates storage traffic in mobile handheld
devices leading to severe slowdown of flash storage
[13]. In cloud storage systems, even though there is a
consensus that journaling is necessary, it is not dep-
loyed due to the high cost of network accesses involved
in journaling [14]. In this study, we present a novel buf-
fer cache architecture that removes almost all storage
accesses due to journaling without any loss of reliability
by intelligently adopting non-volatile memory as the
buffer cache.

At first glance, simply adopting a non-volatile buffer
cache may seem to be enough to provide a highly relia-
ble file system. However, this is not the case as there
are two requirements that are needed to support reliabil-
ity in file systems: durability and consistency. A non-
volatile buffer cache, simply as is, ensures durability as
it maintains data even after a power failure. However,
consistency cannot be guaranteed upon system crashes
just by providing non-volatility to the buffer cache.
Take, for example, a typical situation where a write
operation requires both data and metadata updates but
the system crashes after updating only metadata. Then,
the data in the buffer cache loses consistency, eventual-
ly leading to an inconsistent file system state.

We propose a new buffer cache architecture, called
UBJ (Union of Buffer cache and Journaling), that re-
solves this problem by providing the functionality of

a' b' a b

a' b' c

Journal File system

Commit
to storage

a b

a' b' c

File system

Commit
in-place

Buffer cache (DRAM) Buffer cache (NVRAM)

Frozen

 (a) Original buffer cache (b) Proposed buffer cache

Fig. 1. Commit process of our buffer cache compared to the orig-
inal buffer cache with journaling.

74  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

journaling without frequent storage accesses. Specifical-
ly, we propose In-place Commit, which changes the
state of updated cache blocks to frozen (i.e., write pro-
tected) and manages them as a transaction right at where
it is currently located. This scheme does not perform
additional logging but simply reaps the same effect just
by changing a state. Furthermore, as the block in the
frozen state can still be used as a cache block, the effec-
tiveness of the buffer cache is not deteriorated. Figure 1
shows the commit process of our buffer cache compared
to that of the existing buffer cache in conjunction with
journaling.

Previous work most closely related to this study also
attempts to relieve journaling overhead by adopting
non-volatile memory for file system and database man-
agement [15, 16, 17]. They improve performance by
adding non-volatile memory as a separate journal area
or as a write buffer of log files. However, in these
schemes, the non-volatile memory cannot function as a
cache and is kept separately from the buffer cache. Our
scheme is different in that we intelligently union the
journaling functionality into the buffer cache architec-
ture, thereby minimizing additional memory copy and
space overhead.

We have implemented a prototype of our buffer
cache with in-place commit in Linux 2.6.38. Measure-
ment results with various storage benchmarks show that
our scheme improves file system performance by 76%
on average and up to 240% compared to the existing
Linux buffer cache with ext4 set to the journal mode.

The remainder of this paper is organized as follows.
Section 2 investigates the effect of journaling on the
write traffic of storage. Section 3 describes our buffer
caching architecture and algorithm in detail. In Section
4, we discuss cache performance issues inherent in our
scheme. Section 5 presents a brief description of the
implementation and discusses the experimental results
of the implementation. Section 6 concludes this paper.

2. Analysis of Storage Write Traffic
Figure 2 shows the amount of write traffic from the

buffer cache to storage when journaling is employed
relative to when it is not for various workloads. As Fig-
ure 2 shows, write traffic increases dramatically when
journaling is used; on average the data stored with jour-
naling is 2.7 times more than that without journaling.
When we do not use journaling, storage writes occur
only when dirty blocks are evicted from the cache or
when there is an explicit sync operation. However,
with journaling, there are two more cases that cause
storage writes. The first case is when a commit to the
journal area occurs. The second case is when check-
pointing, which writes the updated data to permanent

file system locations, occurs. Checkpointing is triggered
periodically and is also activated when the amount of
free space in the journal area drops below a certain
threshold.

As we can see, journaling accounts for a considerable
portion of storage writes for all workloads, and thus, is
a potential source of performance degradation. As Fig-
ure 2 shows, however, our UBJ scheme performs jour-
naling but eliminates most of its storage writes.

3. Buffer Cache with In-place Commit
In UBJ, the buffer cache and the journal area share

the same allocated space. Every block in this space
functions either as a cache block, a log block, or a cache
and log block at the same time when the block has dual-
purpose. We can represent the state of each block as a
combination of three state indicators: frozen/normal
state, dirty/clean state, and up-to-date/out-of-date state
(Refer to Figure 3). The frozen/normal state distin-
guishes whether the block is a (normal) cache block or a
(frozen) log block. The dirty/clean state indicates
whether the block has been modified since it entered the
cache. The up-to-date/out-of-date state indicates wheth-
er the block is the most recent version or not. This last
distinction is necessary as multiple blocks for the same
data may exist in the buffer/journal space.

In the following, we use these states and the transi-
tions between these states to describe the workings of

6.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
or

ag
e

w
rit

es
 (n

or
m

al
ize

d) no-Journal Journal UBJ

Fig. 2. Write traffic with journaling and our proposed scheme
(UBJ) relative to when journaling is not used (denoted no-
journal) for various workloads.

normal
clean

normal
dirty

write

read

commit

read /
write

frozen
dirty

write
checkpoint

checkpoint

free
block

cache
allocation

read

up-to-date up-to-date

out-of-date

frozen
dirty

up-to-date

cache block cache & log block log block
Fig. 3 State diagram of a cache block in our scheme.

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  75

UBJ. The scheme is described as three distinct opera-
tions: the read/write operations, the commit operation,
and the checkpointing operation.

A. Read/Write Operations
Reaction to a write request depends on the state of

the block. If the block is normal, it is simply updated.
Otherwise, that is, if it is frozen (a log block), a copy is
made to a new location and the updated data is written
to the copy. The copy then becomes up-to-date, while
the original becomes out-of-date. This allows logged
data to remain safe against system failures.

Read requests, on the other hand, are serviced irres-
pective of block state and do not alter the states of the
block. This is because reading data does not affect the
consistency of blocks.

B. Commit Operations
As part of transaction management, UBJ periodically

commits data by changing the state of normal dirty
blocks to frozen dirty blocks. This is done by keeping
and manipulating transactions maintained as lists. There
are three types of transaction as shown in Figure 4. The
first is a running transaction that maintains a list of
normal dirty blocks that became dirty after the previous
commit operation. When a commit operation is issued,
this running transaction is converted to a commit trans-
action. At this point, the blocks on the commit transac-
tion, which are in normal state, are committed in-place
(hence, the name In-place Commit) simply by convert-
ing their state to frozen. New block writes arriving dur-
ing this conversion process is simply added to a new
running transaction created for the next commit period.
During the state conversion process, UBJ also checks if
the same data block had been committed before, and if
so, keeps track of the previous block as an old-commit
block. For efficient space management, these old-
commit blocks may be released immediately at this
point. When all dirty data blocks in the commit transac-
tion become frozen, we change the state of the transac-
tion to a checkpoint transaction. The checkpoint trans-
actions are maintained in the buffer cache until they are
reflected onto the file system via checkpointing. Should
a system crash occur, they are the ones used to recover
the file system into a consistent and up-to-date state.

C. Checkpoint Operations
The checkpoint operation updates the file system

with committed data. UBJ scans the checkpoint transac-
tion lists and reflects them on to their permanent loca-
tions in the file system. When a single data block has
been committed multiple times, only the last commit
block is checkpointed in order to reduce checkpointing
overhead. After a transaction checkpoint is completed,

cache space occupied by frozen blocks is reclaimed.
During this process, if the block is up-to-date, we reuse
it as a buffer cache block by changing its state to normal
and clean, and updating its associated metadata. On the
other hand, if the block is out-of-date, the space is rec-
laimed as a free block.

While the commit operation is performed frequently
to reduce the vulnerability window of reliability, check-
pointing may be done less frequently as it does not di-
rectly affect system reliability. Nevertheless, excessive
delay in checkpointing may have negative effects. As
the interval between checkpointing grows, more and
more cache space will be occupied by frozen blocks
effectively reducing the buffer cache, potentially lead-
ing to degradation of buffer cache performance. To pre-
vent this situation, our scheme triggers checkpointing

Running
transaction

Commit
transaction

Journal

Checkpoint
transactions

journal
header

data
block

Fig. 4 Data structures for UBJ.

clean buffer

write commit checkpoint

dirty buffer frozen buffer

block A

Time(s)

D1 D1 D1 D2 D3 D3 D3 D3

commit
to storage

D3D0

write write write write
0 30 60 90 120

D4

commit
to storage

checkpoint
to storage

D4

(a) Original buffer cache with journaling

block A D1 D1 D1 D1 D1 D1 D1 D1

block A′ D2 D3 D3 D3 D3 D4D3

checkpoint
to storage

D0

Time(s)

free free

write write write write
0 30 60 90 120

commit
in-memory

commit
in-place

D4

free

(b) The proposed buffer cache

Fig. 5 Comparison of our UBJ scheme and the original buffer
cache with journaling

76  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

when the number of frozen blocks becomes larger than
a certain threshold as is done with conventional journal-
ing. Checkpointing is also triggered by the page recla-
mation daemon when it evicts dirty blocks from the
cache.

D. Example
Figure 5 shows the workings of UBJ in contrast to a

typical buffer cache scheme. In this example, the com-
mit and checkpointing periods are set to 30 and 90
seconds, respectively. The initial content of block A is
D0. At time 10, a write request modifies the content of
block A to D1, converting it into a dirty block. 20
seconds later, a commit occurs. To service the commit,
UBJ simply changes the state of block A to frozen,
whereas a typical buffer cache would incur a write to
storage.

Suppose another write to block A occurs at time 40.
UBJ at this point copies block A into another location
A’, and then writes the new data to location A’. Block A,
then becomes out-of-date, while block A’ is now up-to-
date. (We quantify the effect of having multiple copies
of the same data block later.) Subsequent writes (write
at time 50, in this example) are performed on block A’
until it is committed and hence, frozen (at time 60).
When checkpointing occurs at time 90, UBJ reflects
only the latest version of block A’, that is D3, into the
file system eliminating unnecessary writes (D1 and D2).
After checkpointing, space occupied by block A is rec-
laimed, while the up-to-date version of block A’ is
reused as normal buffer cache data.

In this example, we see that UBJ writes to storage on-
ly once when checkpointing, while a typical buffer
cache scheme generates storage writes every time it
commits or checkpoints. This results in writes of blocks
that are eventually overwritten and did not need to be
saved. In practice, as commits are much more frequent
than checkpoints, the reduction in the number of storage
writes can become substantial.

E. System Recovery
System crashes incur inconsistency problems as data

may remain partially updated in the buffer cache, the

Table 1. Summary of workload characteristics

workload
avg.
file
size

of
files

avg.
op.
size

of
ops.

r:w
ratio

Varmail 16KB 1,000 4KB 6,638K 1:1

Proxy 16KB 10,000 5KB 6,723K 5:1

Webserver 16KB 1,000 14KB 6,432K 10:1

Fileserver 128KB 1,000 72KB 6,843K 1:2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

M
iss

 ra
tio

cache ratio

BF-Jm
BF-no
UBJ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

M
iss

 ra
tio

cache ratio

BF-Jm
BF-no
UBJ

(a) varmail (b) proxy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

M
iss

 ra
tio

cache ratio

BF-Jm
BF-no
UBJ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

M
iss

 ra
tio

cache ratio

BF-Jm
BF-no
UBJ

 (c) fileserver (d) webserver

Fig. 6 Cache miss ratio as a function of the cache size.

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  77

journal area, and the file system. Hence, upon reboot
from an abnormal termination, UBJ goes through the
following steps for recovery.

First, the running transaction list is checked. This list
holds blocks that are residing in the buffer cache and
may have been partially updated. However, since these
are uncommitted data and thus, not reflected on the file
system, we simply invalidate these blocks.

Next, we consider the commit transaction list. When
a crash occurs in the middle of committing a transaction,
the commit transaction list may be in a partially com-
mitted state containing a mixture of committed and still-
uncommitted blocks. In this case, as the commit opera-
tion did not complete properly, UBJ simply invalidates
the data in the same way as it did with the running
transaction list.

Finally, the system state is made consistent by mak-
ing use of the checkpointing transactions. Even though
the file system may be corrupted if a crash occurs while
executing checkpoint operations, the system can be res-
tored to a consistent state simply by redoing the opera-
tion as all the checkpoint transactions still reside in the
buffer cache.

4. Cache Performance
As our scheme holds log blocks in the buffer cache, a

single data block may occupy multiple cache blocks,
degrading the space efficiency of the buffer cache. To
investigate this effect, we compare the buffer cache
miss ratio of the original buffer cache that is used only
for caching and with no log blocks (BF-no) and UBJ,
where cache and journal space is in union. In addition,
for comparison purposes, we also observe the miss ratio
of a hypothetical scheme that uses half of its allocated
memory space as a dedicated buffer cache and the other
half as a dedicated journal area. We will call this
scheme buffer caching with in-memory journaling (BF-
Jm). This scheme works just like conventional journal-

ing, except for the fact that the journal area is not in
storage but in memory, possibly non-volatile memory.

Figure 6 plots the cache miss ratio of the three buffer
cache schemes for the Filebench benchmark, which is a
representative file system benchmark. Table 1 summa-
rizes the characteristics of the Filebench workloads used
in this paper.

We vary the cache size from 0.1 (10%) to 2.0 (200%)
relative to the I/O footprint. Generally, the cache size of
1.0 is identical to infinite cache capacity since the cache
will simultaneously accommodate all block references
of the trace. However, as UBJ and BF-Jm use a certain
portion of the buffer cache space for the journal area,
cache size of 1.0 may be insufficient to accommodate
all the requests. For BF-Jm, which dedicates half of the
total space to the buffer cache and the other half to the
journal area, a cache size of 2.0 is equivalent to infinite
cache capacity. Moreover, to monitor the worst case
performance degradation of UBJ, we delay checkpoint-
ing of frozen log blocks until they are selected as vic-
tims by the cache replacement policy.

The results shown in Figure 6 reveals that the cache
performance of UBJ exhibits only marginal degradation
compared to that of BF-no, while performance of BF-
Jm degrades significantly. To understand this more
clearly, we also plot in Figure 7 the portion of the buf-
fer/journal space occupied by frozen blocks when the
cache size is 0.7 (70%) of the workload footprint, which
is where the performance gap between UBJ and BF-Jm
is largest.

We observe that UBJ uses a substantial portion of the
buffer/journal space for the journal area for all work-
loads. This results in read requests being serviced by
these frozen blocks. As Figure 8 shows, roughly 16% to
48% of all hits occur in the journal area for UBJ. In
contrast, schemes like BF-Jm that simply dedicate (non-
volatile) journal space cannot take advantage of the data
that resides there. Figure 9 plots the ratio of journal

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

varmail proxy fileserver webserver

Fr
ac

tio
n

of
 b

lo
ck

s
th

at
 a

re
 fr

oz
en BF-Jm

UBJ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

varmail proxy fileserver webserver

H
it c

ou
nt

 d
is

tri
bu

tio
n

hit_when_frozen
hit_when_normal

 Logical Time(10x)

1

0.8

0.6

0.4

0.2

0
0 5000 10000 15000 20000 25000 30000

BF-Jm
UBJ

Fr
ac

tio
n

of
 b

lo
ck

s
th

at
 a

re
 fr

oz
en

Fig. 7. Ratio of journal area for each File-
bench workload

Fig. 8. Hit counts for frozen blocks for the
Filebench workload.

Fig. 9. Change of the journal area size
as time progresses for the fileserver
workload

78  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

space for the fileserver workload as time progresses.
The figure shows that the journal space of UBJ dynami-
cally changes according to workload evolution. (Results
for other workloads that are not shown show similar
dynamic behavior.)

5. Performance Evaluation

A. Implementation
We implemented a UBJ prototype on Linux 2.6.38.

We compare our scheme with ext4 that runs on the orig-
inal Linux (BF-ext4). We set the journaling option of
ext4 to journal-mode, which logs both data and metada-
ta, to provide the same consistency semantics as UBJ.
According to conventional configurations, the commit
period is set to five seconds for both schemes; check-
pointing is triggered when a fourth of the journal area is
filled or five minutes have elapsed since the last check-
pointing time. For better space efficiency, we adopt the
early reclamation policy that releases old versions of
frozen log blocks, that is, old-commit blocks, imme-
diately when a recent commit version of the same data
block is generated.

Our experimental platform consists of the Intel Core
i3-2100 CPU running at 3.1GHz and 4GB of DDR2-
800 memory. Though our design assumes non-volatile
main memory like PCM or STT-MRAM, as it is not yet
commercially available, we simply use a portion of the
DRAM as buffer/journal space. We measure the per-

formance with three representative storage benchmarks:
Filebench [18], IOzone [19], and Postmark [20].

B. Experimental Results
Figure 10 shows the execution time and the through-

put of UBJ compared to BF-ext4 for the Filebench
workloads. As shown in the figure, UBJ performs better
than BF-ext4 for all workloads. The execution time and
throughput of UBJ is better than BF-ext4 by 30.7% and
59.8% on average. Specifically, the performance im-
provement of varmail is the largest among the four
workloads, which is 60% and 240%, respectively, in
execution time and throughput. The reason behind such
large improvements is that varmail contains a large
number of write requests, thus incurring frequent com-
mits (though checkpointing is not performed frequently
due to its small memory footprint). Moreover, varmail
issues read and write requests concurrently. Though our
scheme does not have an explicit policy to improve read
performance, eliminating frequent storage writes re-
lieves the contention to hardware resources like the
memory bus and DMAs, leading to improvements in
I/O performance in general. Even for read-intensive
workloads like webserver and proxy, UBJ improves
performance by 23% and 11%, respectively, due to this
reason. For fileserver, which is write-intensive, the im-
provement of our scheme is relatively small compared
to varmail. This is because most write requests in file-

0
200
400
600
800

1000
1200
1400
1600
1800
2000

varmail proxy fileserver webserver

Ex
ec

ut
io

n
tim

e
(s

)

Scenario

BF-ext4
UBJ

0
5

10
15
20
25
30
35
40
45
50

100 150 200 250 300

Th
ro

ug
hp

ut
(M

B/
s)

Fileset size(MB)

BF-ext4
UBJ

0

10

20

30

40

50

60

2K 4K 6K 8K 10K

Th
ro

ug
hp

ut
(M

B/
s)

Transactions

BF-ext4
UBJ

(a) execution time (a) random write (a) read

0

20

40

60

80

100

120

varmail proxy fileserver webserver

Th
ro

ug
hp

ut
(M

B/
s)

Scenario

BF-ext4
UBJ

0

20

40

60

80

100

120

140

100 150 200 250 300

Th
ro

ug
hp

ut
(M

B/
s)

Fileset size(MB)

BF-ext4
UBJ

0

10

20

30

40

50

60

70

80

2K 4K 6K 8K 10K

Th
ro

ug
hp

ut
(M

B/
s)

Transactions

BF-ext4
UBJ

(b) throughput (b) sequential write (b) write

 Fig. 10. Throughput and execution time
of the Filebench workloads.

Fig. 11. Throughput of IOzone as the fi-
leset size is varied.

Fig. 12. Throughput of Postmark as the
number of transactions is varied.

USENIX Association 	 11th USENIX Conference on File and Storage Technologies (FAST ’13)  79

server are large and sequential writes, which leads to
frequent checkpointing.

Figure 11 shows the throughput of UBJ and BF-ext4
for the IOzone benchmark. IOzone measures file I/O
performance by generating particular types of opera-
tions in batches. It creates a single large file and per-
forms a series of operations on that file. We measure the
performance with two IOzone scenarios, random write
and sequential write, varying the total fileset sizes rang-
ing from 100MB to 300MB.

As the figure shows, UBJ outperforms BF-ext4 in all
configurations. Specifically, the performance improve-
ment is 2.1 times on average. The source of this en-
hancement is the large reduction in storage writes
achieved by in-place commit. Note also that UBJ per-
forms better relative to BF-ext4 as the fileset size is
reduced. This is because with smaller fileset size check-
pointing is done less frequently leading to reduced sto-
rage accesses. Unlike UBJ, BF-ext4 is less sensitive to
the fileset size. This is because the performance of BF-
ext4 is dominated by the number of commits, which is
independent of the fileset size.

Another observation that can be made with IOzone is
that UBJ is more sensitive to the fileset size for random
writes. This is because random writes are largely af-
fected by seek times as checkpointing for random ac-
cesses incur large seek overhead to move the disk head
to the requested location.

Figure 12 shows the throughput for the Postmark
benchmark. Postmark emulates an email server that
concurrently performs read and write operations. The
benchmark reports separate performance numbers for
read and write operations. We vary the number of
Postmark transactions from 2,000 to 10,000 on 1,000
files, whose average size is 500KB. As shown in the
figure, UBJ exhibits 109% better throughput than BF-
ext4 on average. Note that read operation throughput
also improves due to the reduced storage writes. We
also observe that the performance improvement of UBJ
decreases as the number of transactions increases. Simi-
larly to IOzone, this is because with a larger number of
transactions UBJ increases checkpointing, while keep-
ing other factors constant. Hence, the relative perfor-
mance gap between UBJ and BF-ext4 is reduced.

Finally, we see how the performance of UBJ is af-
fected as the commit period changes. Figure 13 shows
the latency per operation for the varmail workload. As
we can see, the latency of BF-ext4 becomes small as the
commit period changes from 1 to 5 seconds. This is
because storage writes become less frequent. This, of
course, increases the window of vulnerability for BF-
ext4. In contrast, the latency of UBJ is not sensitive to
the commit period as the overhead of commit is very

small in UBJ. This result indicates that UBJ can shorten
the window of vulnerability without sacrificing perfor-
mance.

6. Conclusion
In this paper, we presented a novel buffer cache ar-

chitecture that subsumes the function of caching and
journaling in a unified non-volatile memory space. Spe-
cifically, blocks in the buffer cache are converted to
journal logs through what we call In-place Commit. In-
place Commit simply changes the state of cached block
from a normal state to a frozen state. By so doing, it
reaps the same effect as journaling. Furthermore as the
block in frozen state can still be used as a cache block
the effectiveness of the buffer cache is not deteriorated.
Based on In-place Commit, we implement UBJ (Union
of Buffer cache and Journaling) on Linux 2.6.38. Mea-
surement studies showed that UBJ significantly im-
proves file I/O performance compared to the existing
Linux ext4 journaling scheme without any loss of relia-
bility. The effectiveness of UBJ will increase in envi-
ronments such as cloud storage and networked storage
systems where storage access cost are higher. We are
planning to extend our scheme to this area in the near
future.

Acknowledgements
We would like to thank our shepherd Anna Povzner

and the anonymous reviewers for their insight and sug-
gestions for improvement. This work was supported by
the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MEST)
(No.2011-0028825) and (No. 2012R1A2A2A0104573
3) and by the IT R&D program MKE/KEIT
(No.10041608, Embedded System Software for New-
memory based Smart Devices.) Hyokyung Bahn is the
corresponding author of this paper.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3 4 5

La
te

nc
y

(m
s)

Commit period (s)

UBJ
BF-ext4

Fig. 13. Latency of varmail varying the commit period

80  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

References

[1] J. C. Mogul, E. Argollo, M. Shah, and P. Farabo-
schi, “Operating system support for NVM+DRAM
hybrid main memory,” In Proceedings of the 12th
USENIX Workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[2] M. K. Qureshi, V. Srinivasan, and J. A. Rivers,
“Scalable high performance main memory system
using phase-change memory technology,” In Pro-
ceedings of the 36th ACM/IEEE International
Symposium on Computer Architecture (ISCA),
2009.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,
“Phase change memory architecture and the quest
for scalability,” Communications of the ACM, Vol.
53, No. 7, pp.99-106, 2010.

[4] S. Lee, H. Bahn, and S. H. Noh, “Characterizing
memory write references for efficient management
of hybrid PCM and DRAM memory,” In Proceed-
ings of the 19th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS),
pp.168-175, 2011.

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A dur-
able and energy efficient main memory using
phase change memory technology,” In Proceed-
ings of the 36th ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA), 2009.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,
“Architecting phase change memory as a scalable
DRAM alternative,” In Proceedings of the 36th
ACM/IEEE International Symposium on Comput-
er Architecture (ISCA), 2009.

[7] E. Ipek, J. Condit, E. B. Nightingale, D. Burger,
and T. Moscibroda, “Dynamically replicated
memory: building reliable systems from nanoscale
resistive memories,” In Proceedings of the 15th
ACM International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS), 2010.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B.
Lee, D. Burger, and D. Coetzee, “Better I/O
through byte-addressable, persistent memory,” In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP), 2009.

[9] http://www.vikingtechnology.com/uploads/nv_
whitepaper.pdf

[10] http://denalimemoryreport.com/2012/08/20/44tby
te-skyera-skyhawk-ssd-employs-everspin-mram-as-
write-cache/

[11] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G.
Rajamani, and D. Lowell, “The Rio file cache:
Surviving Operating System Crashes,” In Proceed-
ings of the 7th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1996.

[12] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Analysis and evolution of jour-
naling file systems,” In Proceedings of the USE-
NIX Annual Technical Conference (ATC), 2005.

[13] H. Kim, N. Agrawal, and C. Ungureanu, “Revisit-
ing storage for smartphones,” In Proceedings of
the 10th USENIX File and Storage Technologies
(FAST), 2012.

[14] M. Rubin, “File systems in the Cloud,” Linux
Foundation Collaboration Summit, 2011

[15] D. Phillips, “Zumastor linux storage server,” In
Proceedings of the Linux Symposium, pp. 135-143,
2007.

[16] R. Fang, H. Hsiao, B. He, C. Mohan, Y. Wang,
“High performance database logging using storage
class memory,” In Proceedings of the 27th IEEE
International Conference on Data Engineering
(ICDE), pp. 11-16, 2011.

[17] Y. Kim, I. H. Doh, E. Kim, J. Choi, D. Lee, and S.
H. Noh, “Design and Implementation of Transac-
tional Write Buffer Cache with Storage Class
Memory,” Journal of Korean Institute of Informa-
tion Scientists and Engineers, Vol. 16, No. 2, pp.
247-251, 2010.

[18] W. Norcutt, IOzone Filesystem Benchmark, avail-
able at http://www.iozone.org/.

[19] J. Katcher, “Postmark: a new file system bench-
mark,” Technical report TR-3022, Network Ap-
pliances, 1997.

[20] Filebench, http://www.solarisinternals.com/wiki/

index.php/FileBench

