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Abstract— Typical tasks of future service robots involve
grasping and manipulating a large variety of objects differing
in size and shape. Generating stable grasps on 3D objects is
considered to be a hard problem, since many parameters such
as hand kinematics, object geometry, material properties and
forces have to be taken into account. This results in a high-
dimensional space of possible grasps that cannot be searched
exhaustively. We believe that the key to find stable grasps in an
efficient manner is to use a special representation of the object
geometry that can be easily analyzed. In this paper, we present
a novel grasp planning method that evaluates local symmetry
properties of objects to generate only candidate grasps that
are likely to be of good quality. We achieve this by computing
the medial axis which represents a 3D object as a union of
balls. We analyze the symmetry information contained in the
medial axis and use a set of heuristics to generate geometrically
and kinematically reasonable candidate grasps. These candidate
grasps are tested for force-closure. We present the algorithm
and show experimental results on various object models using
an anthropomorphic hand of a humanoid robot in simulation.

I. INTRODUCTION AND RELATED WORK

The increasingly aging society will benefit from intelligent

domestic robots that are able to assist human beings in

their homes. The ability to grasp objects is crucial to many

supporting activities a service robot might perform, such as

serving a drink, tidying up or giving water to the flowers, for

example. Human beings perform grasps intuitively on almost

any kind of object. In contrast, grasping is a challenging

problem for robots. Knowledge of hand kinematics, object

geometry, physical and material properties is necessary to

find a good grasp, making the space of possible candidate

grasps intractibly large to search in a brute-force manner.

This is especially the case for modern dexterous robot hands

with an increasing number of degrees of freedom.

A. Grasp Planning

Many approaches for grasp planning have been developed

in the past. Grasp synthesis on the contact level concen-

trates primarily on finding a predefined number of contact

points without considering hand geometry [1]. Some work

on automatic grasp synthesis focusses especially on object

manipulation tasks ([2],[3]). Shimoga [2] presents a survey

on measures for dexterity, equilibrium, stability, dynamic

behavior and algorithms to synthesize grasps with these

properties. Li et al. [4] recorded grasps for basic objects

using motion capturing and used this information to perform

shape matching between the inner surface of the hand and

This work was supported by EU through the project GRASP.
All authors are with the Institute for Anthropomatics, Karlsruhe In-

stitute of Technology, Karlsruhe, Germany {markus.przybylski,
asfour, dillmann}@kit.edu

novel objects. The resulting candidate grasps were clustered

and pruned depending on the task.

Since simulators such as GraspIt! [5], OpenRAVE [6]

and Simox [7] have become available it is possible to

simulate candidate grasps with robot hand models on object

models, where hand kinematics, hand and object geometries

as well as physical and material properties and environmental

obstacles can be taken into account. In the recent past, many

researchers developed grasp planning methods based on

these simulation environments. Berenson et al. (see [8],[9])

developed a grasp scoring function that considers not only

grasp stability but takes also environmental obstacles and

kinematic reachability into account. In [10] an integrated

grasp and motion planning algorithm is presented where

the task of finding a suitable grasping pose is combined

with searching collision free grasping motions. Ciocarlie

et al. [11] introduced the concept of eigengrasps which

allows for grasp planning in a low-dimensional subspace

of the actual hand configuration space. Goldfeder et al.

[12] used the eigengrasp planner to build a grasp database

containing several hands, a multitude of objects and the

associated grasps. They used Zernike descriptors to exploit

shape similarity between object models to synthesize grasps

for objects by searching for geometrically similar objects in

their database. They extended this approach to novel objects

[13], where partial 3D data of an object are matched and

aligned to known objects in the database to find suitable

grasps.

A number of simulator-based approaches to grasp planning

rely on shape approximation of 3D object models. The basic

idea underlying these approaches is that many objects can be

decomposed into component parts that can be represented by

simplified geometric shapes. Then rules are defined to gene-

rate candidate grasps on these components which allows for

pruning of the search space of possible hand configurations.

This concept is also known as grasping by parts. The first

method in this context was presented by Miller et al. [14]

who used boxes, spheres, cylinders and cones to approximate

the shape of the object. However, the user has to perform the

decomposition of the object into these primitives manually.

Goldfeder et al. [15] presented a method that automatically

approximates an object’s geometry by a tree of superquadrics

and generates candidate grasps on those. Huebner et al. [16]

developed an algorithm that decomposes objects into a set of

minimum volume bounding boxes. While these approaches

significantly reduce the complexity of grasp planning, this

comes at a price. Many grasps a human would intuitive-

ly use might not be found due to poor object geometry

approximation. Especially box decomposition yields only a
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Fig. 1: Our test objects and their medial axes

relatively small number of candidate grasps for an object.

This might be too restrictive for a real robot, as obstacles

in the environment or kinematic constraints of the robot

might turn many grasps infeasible. We believe for these

reasons that it is desirable to carefully evaluate geometric

information of the object to produce only high-potential

candidate grasps, so costly validation of candidate grasps

by collision-checking and testing for force-closure can be

reduced to a minimum and therefore a large number of

good grasps can be efficiently generated. We achieve this

goal by representing the object’s shape by the medial axis,

which allows for efficient generation of geometrically and

kinematically reasonable candidate grasps that have a high

likelihood to be stable.

B. Medial Axis

Three-dimensional shapes can be approximated by ins-

cribing balls of maximal diameter, i.e. balls that touch the

shape boundary at least at two different points. The union of

these balls’ centers is called the medial axis. Together with

the radii of these maximally inscribed balls it is referred

to as the medial axis transform. The medial axis transform

is a complete shape descriptor, i.e. it contains all necessary

information to reconstruct the original object’s shape. The

medial axis was originally introduced by Blum [17] as a

means for biological shape recognition and its computation

and applications have been a fruitful area of research [18]. As

it provides a compact representation of shapes, their features

and connectivity it has been applied in numerous domains

including CAD model simplification [19], tool-path creation

in CAM [20], routing in sensor networks [21] and feature

extraction in geometric design [22]. Yet we are not aware of

any previous attempt to use the medial axis in grasp planning.

In this paper, we show that the medial axis contains high-

level symmetry information of an object that can be easily

exploited to produce big numbers of candidate grasps that are

very likely to be stable. This makes it possible to significantly

reduce costly validation of candidate grasps. Fig. 1 shows

the objects we use for our experiments and their respective

medial axes.

The rest of the paper is organized as follows. In section II,

we explain our grasp planning algorithm in detail. In section

III, we present experimental results using a robot hand model

and various object models in the OpenRAVE [6] simulation

environment. In section IV, we draw conclusions and present

ideas for future research.

II. MEDIAL AXIS GRASP PLANNING

In this section, we describe our grasp planning method in

detail. In the first step, we sample the object’s surface. This

results in a 3D point cloud we use to compute the medial axis

of the object in the second step. Then we analyze the medial

axis by searching for familiar structures in the third step. In

the fourth step, we use the extracted information to generate

candidate grasps which are then tested for force-closure.

A. Sampling the object surface

Before we are able to compute the medial axis, we need

to sample points on the object surface. We adopt and modify

the method from [8] for this purpose. We calculate an axis-

aligned bounding box for the object, sample this bounding

box uniformly and calculate vectors from the sampling points

on the bounding box perpendicular to the surfaces of the

bounding box. We then use these vectors to perform ray

collision on the object. The points where the rays intersect

with the object are a good sampling of the object surface

(Fig. 2a). For objects with openings like cups we additionally

generate rays perpendicular to an imaginary cylinder surface

inside the object to obtain sampling points on the inner

surface of the object. We are aware that more sophisticated

sampling techniques might be necessary for more complex

objects, but as the focus of this paper is not on sampling, we
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Fig. 2: Steps of our algorithm. Sampling of the objects’ surface (a), computation of its medial axis (b), analysis of slices

of the medial axis (c), minimum spanning tree of a slice (d), an object as a collection of minimum spanning trees (e),

computation of approach directions (f), example of a resulting grasp (g). Figures best viewed in colour.

leave the evaluation of more advanced sampling methods to

future work.

B. Computing the medial axis

In this step, we compute the medial axis of the object

based on the surface sampling points we generated. The

robust computation of the medial axis is quite difficult

and still subject to research [18]. Therefore, we use the

Tight Cocone software [23] for this purpose. Tight Cocone

computes an approximation of the medial axis as a set of

points together with a triangulation. Fig. 2b shows an object

with its medial axis inscribed. In the following we refer to

the set of points that approximates the medial axis as M .

C. Analysis of the medial axis

In this step, we analyze the object’s medial axis representa-

tion we generated in the previous step in order to find familiar

structures which can be exploited for generating candidate

grasps. Before we continue with the details of our algorithm,

we introduce the following terminology which will be used

in the remainder of this paper:

• p denotes a plane that contains a projection of a subset

of the medial axis points.

• M(p) denotes the medial axis points projected into a

plane p.

• The medial axis points in a plane p may be grouped

into clusters ci. M(c) denotes the medial axis points

associated to a cluster c. For planes pi that contain only

one cluster, M(c) and M(p) may be used as synonyms.

• Hconv(X) denotes the convex hull of a set of points X .

• B(Hconv(X)) ⊂ X denotes the subset of points xi ∈ X

that lie at the boundary of Hconv(X).
• vol(Hconv(X)) denotes the volume of Hconv(X).
• dmin(X, CoG(X)) denotes the minimum distance of

all points xi ∈ X to the center of gravity (CoG) of a

cluster c.

In the proposed method we will also use methods from graph

theory. In this context we will use the following terms:

• deg(v) is the degree of a vertex v ∈ V of a graph

G = (V,E,w) with a set of vertices V , a set of edges

E and a weight function w.

• A branching vertex is a vertex v ∈ V with deg(v) ≥ 3.

• MST (G) is the minimum spanning tree of a graph G.

MST (c) denotes the minimum spanning tree of the

induced subgraph G′ = (V ′, E′, w′) of G where V ′

contains all medial axis points of the cluster c.

1) Subdividing the medial axis point cloud: As a complete

medial axis is rather difficult to interpret, we subdivide it into

slices and analyze each slice of the medial axis individually.

Therefore, we define a set of equidistant planes pi that are

parallel to a virtual supporting surface beneath the object

and obtain slices M(pi) of M by projecting each point xi ∈
M into its nearest neighbor plane p. A projection plane pi

and the corresponding slice M(pi) of the medial axis are

illustrated in Fig. 2c and Fig. 3a.

(a) (b)

(c)

Fig. 3: Processing a slice of the medial axis: Points of a single

slice (a), MST connecting all points with their respective

nearest neighbours (b), two clusters obtained by pruning an

edge with a distance weight w > dcut from the MST (c).

We interpret the medial axis data in a projection plane p

as a weighted complete graph G = (V,E, w), where the set

of vertices V is given by the medial axis points M(p) and

the weight function w is defined by the pairwise euclidean

distances of the points of the medial axis in the projection

plane p. In order to determine each point’s nearest neighbors

we compute the minimum spanning tree GMST = MST (G)
of this graph and obtain a tree structure of the medial axis

data in each projection plane (see Fig. 3b). If the medial axis



of the object branches projection planes pi exist where the

points of the medial axis form clusters ci. We detect these

clusters by pruning all edges of the minimum spanning tree

that have a distance weight w exceeding a certain cutoff

threshold dcut (see Fig. 3c). Then each cluster c has its own

MST (c) which is further analyzed.

Fig. 4: Two clusters in a slice of the medial axis with their

MSTs and several features highlighted in colour. Ocher:

Convex hull Hconv(c) of a cluster c. Green: Vertices at

boundary of the convex hull B(Hconv(c)). Red: Branching

vertices of the MST. Blue: Cluster’s center of gravity (CoG).

Figure best viewed in colour.

2) Extracting structural information from the medial axis:

For each cluster c we identify the structure of its medial

axis points M(c) by evaluating its minimum spanning tree

MST (c) and the measures defined above (for an illustration

see Fig. 4). We introduce the following structures:

• Circle: We classify the structure of a cluster c as a circle

if dmin(M(c), CoG(c)) exceeds a threshold dthresh and

there are more than k1 points at the boundary of its

convex hull, i.e. if |B(Hconv(M(c)))| > k1 holds true,

where k1 is a constant (see Fig. 5a).

• Star with ring: In contrast, we classify the structure as

a star with ring if dmin(M(c), CoG(c)) > dthresh but

|B(Hconv(M(c)))| < k2, where k2 is a constant (see

Fig. 5c and Fig. 5d).

• Tree: We distinguish two types of trees. If MST (c)
contains exactly one branching vertex we call c a cluster

with a star (see Fig. 5e and Fig. 5f). If MST (c)
contains exactly two branching vertices we call c a

cluster with a preference direction (see Fig. 5b).

• Symmetry axis element: If |B(Hconv(M(c)))| < k2

and the volume of the convex hull is very small, i.e.

vol(Hconv(M(c))) < k3, we classify the structure as a

symmetry axis element (see Fig. 5g).

We give a short motivation and some example values for

the constants introduced above. In this paper we choose

k1 = 40, k2 = 10, k3 = 0.0001, dthresh = dcut = 5ρ,

where ρ is the sampling resolution for sampling the object’s

surface in the first step of our algorithm. dthresh and dcut

depend on ρ because the density of the medial axis points

roughly equals the surface sampling resolution ρ. The choice

of k2 is motivated by the idea that the structures with plane

symmetries we want to exploit for grasp planning typically

have a limited number of vertices at the boundary of their

convex hull. Structures with more than 10 such vertices

rather indicate the lack of such plane symmetries but instead

suggest the presence of a symmetry axis. Or differently put:

If you keep adding vertices to a convex polygon you will

eventually end up with a circle. The reason for introducing

k3 is noise and discretization errors in the medial axis

approximation. In theory, the presence of a symmetry axis

should be indicated by the presence of single isolated medial

axis points in a slice. In practice however, there will be a set

of medial axis points clustered in a very small area.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5: Structures in slices of the medial axis: Ring (a);

Preference direction (b); Stars with ring (c),(d); Stars (e),(f);

Symmetry axis element (g). Figures best viewed in colour.

Fig. 2d and Fig. 5b show minimum spanning trees

MST (c) with a preference direction. Fig. 2e depicts an

object as a collection of MST (ci) with highlighted bran-

ching and end vertices. Using the structural information

we extracted from the medial axis we are able to generate

promising candidate grasps in the next step.

D. Generating candidate grasps

In this section we present a set of heuristics describing

how promising candidate grasps can be generated based on

the structural information extracted from the medial axis in

the previous step. Before we describe these heuristics, we

explain which parameters we use to describe a candidate

grasp. In [8], Berenson et al. defined a set of parameters

describing a candidate grasp:



• An approach direction Pd of the hand

• A 3D target point Pt on the surface of the object the

hand is approaching

• A roll angle Pr of the hand about the approach direction

• A vector of joint values Pp defining the preshape of the

hand

For generating candidate grasps, the method described in [8]

samples the object’s surface by casting rays from a bounding

box of the object. Each point where a ray intersects with the

object is used as a target point Pt and the surface normal

at Pt is used as an approach direction Pd. The palm normal

of the hand is orientated towards Pd and moves toward the

object until collision occurs. Then the hand is closed in order

to wrap the fingers around the object. For each approach

direction, a set of different roll angles Pr and preshapes Pp

is tested. We adopt the grasp parameters from [8] but we use

a different policy to generate them. Instead of sampling the

object’s surface, we carefully choose approach directions Pd

and target points Pt based on the structural information we

extracted from the medial axis. In addition to that, we are

able to choose such roll angles Pr and preshapes Pp that

have a high probability to result in a stable grasp when the

hand collides with the object and the fingers wrap around it.

In this context we would like to emphasize the importance

of the hand’s roll angle and preshape. One of the most

basic classes of grasps for human hands are grasps where

the thumb as the first virtual finger opposes the other

fingers which form a second virtual finger. In our opinion

it is therefore a promising strategy to preferably generate

geometrically meaningful candidate grasps where these two

virtual fingers are likely to contact the object at opposing

sides. Accordingly, if not stated otherwise, we suggest to

use a parallel preshape for most of the candidate grasps

we generate in the following and adjust the roll angle of

the hand with respect to the symmetry information from the

medial axis. We would like to state that favoring candidate

grasps with two opposing virtual fingers does not impose

any restriction on the kinematics of the robotic hand to be

used. To the extent of our knowledge, all currently available

robotic hands are capable of moving the thumb to a position

opposed to the other fingers.

In the following we present various heuristics to generate

candidate grasps depending on the structures we detected in

slices and clusters of the medial axis. The general approach

is always to look at several adjacent planes pi and to derive

promising approach directions and roll angles for the hand

from the information in these pi.

1) Clusters with a preference direction: If in a plane p we

have a cluster c with a preference direction, there are exactly

two branching vertices v1, v2. The vectors a1 = v2 − v1 and

a2 = v1 − v2 are very promising approach directions Pd.

For a1 we use v1 and for a2 we use v2 as the target point.

If there are neighbor planes to p that contain also clusters

with preference direction we can use the coordinates of

their branching vertices to calculate tilted approach directions

a1,tilted and a2,tilted to make our hand better conform to

the surface of the object (see Fig. 2f, 2g). We also use this

information to chose roll angles Pr that make it probable

that the fingers will be able to wrap around the object.

2) Clusters with a star structure: If a cluster contains a

star structure, we proceed in a similar way but we generate

an approach direction Pd from every spike of the star to its

branching vertex. There are two exceptions to this rule. For

stars with three spikes we check if the star is symmetric with

regard to one of its spikes. In this case, we treat the star as a

structure with a preference direction. The second exception

is for stars with four spikes. If every two opposing spikes

in such a star define an axis of symmetry the profile of the

object in this plane or cluster is likely to be a square for

which we use the angle bisecting vectors of the spikes as

approach directions.

3) Clusters with a symmetry axis element: Clusters with

a symmetry axis element structure indicate that the profile of

the object in this cluster is circular. If we find a cluster of

this type we search in adjacent planes for more clusters with

a symmetry axis element structure and use this information

to generate approach directions perpendicular to the axis

defined by the symmetry axis element structures.

4) Clusters with a circle structure: For clusters with a

circle structure, we search for clusters with a circle structure

in adjacent planes and generate approach directions perpen-

dicular to the symmetry axis defined by the mean coordinates

of the M(ci) in these planes.

5) Treating two clusters together: In general, candidate

grasps can be individually generated for each cluster of a

plane. Yet if there are exactly two clusters that are located

close to each other the process of generating individual

candidate grasps for each cluster will probably produce

many unsuccessful candidate grasps. Therefore, we treat both

clusters together. If both clusters are small in terms of the

volume of their convex hull vol(Hconv(M(ci))) we use

the clusters’ centers of gravity (COG) as target points and

the vectors b1 and −b1 connecting the COGs as approach

directions. If one cluster is significantly smaller than the

other we treat the bigger cluster independently and generate

for the smaller cluster only an approach direction that is

directed from the COG of the smaller cluster towards the

COG of the bigger cluster.

6) Candidate grasps at the top and the bottom of objects:

In order to generate candidate grasps for the top and the

bottom of an object, we distinguish a number of different

cases that take into account the structure of the medial axis

in planes near the top and the bottom of the object. If

there are planes with a star with ring structure, followed

by planes with star, as for the prismatic chocolates box, or

preference direction structure, as for the bread box object, we

generate candidate grasps with roll angles Pr aligned with

the preference direction or the spikes of the star. If there

are circles or symmetry axis element structures, we generate

candidate grasps in such a way that the approach direction

coincides with the symmetry axis and use various different

roll angles. For these candidate grasps it also makes sense

to use a spherical hand preshape if this is supported by the

hand model. If circle structures are present we also check by



TABLE I: Candidate grasps tested and percentage of force-

closure (FC) grasps found

Our method Method from [8]
Objects Candidates FC Candidates FC

Bread box 632 86.2% 13440 15.5%

Prismatic box 1344 90.7% 8512 36.0%

Salt can 2144 96.9% 7904 45.7%

Detergent 1996 65.9% 12672 26.2%

Spray 1304 55.1% 11200 21.2%

Cup 1428 59.5% 6688 37.0%

Pitcher 1124 47.0% 15504 25.9%

Salad bowl 504 68.5% 13648 4.5%

ray collision if the object has an opening. For open objects

we generate candidate grasps at the rim of the object with

roll angles of the hand that make it probable that at the final

position of the hand the rim is between the thumb and the

other fingers.

7) Size of the object: In our attempt to minimize costly

testing of candidate grasps we also consider the size of the

object with respect to the hand. We use ray collision to

roughly estimate the width of the object geometry perpen-

dicular to our approach direction and compare this value to

the diameter of the biggest ball our hand can stably grasp.

If the structure is too wide for the hand we do not have to

generate a candidate grasp as it will fail.

III. EXPERIMENTS

In this section, we present some experiments for our grasp

planning method. We perform experiments on the set of

typical household objects depicted in Fig. 1. Except for

the spray (Fig. 1e) and the detergent (Fig. 1d) and the cup

(Fig. 1f), where the object model was generated using a 3D

laser scanner ([24],[25]) all object models are handmodelled.

We use the hand model of our humanoid robot ARMAR-III

[26] to evaluate our algorithm in OpenRAVE. Each candidate

grasp is evaluated by moving the hand with its palm facing

the object along the approach direction until collision is

detected. Then the fingers of the hand close until all fingers

have contact with the object or the joint limits are reached

and no finger link can move any more. Then we evaluate

grasp quality by computing the commonly used worst-case

epsilon measure for force-closure, as described by Canny

and Ferrari [27]. For the force-closure computations we use

a friction coefficient of 0.5. For each candidate grasp we

test two different alternatives. The first alternative is the one

described above. For the second alternative we move the

hand after contact with the object a small distance dback away

from the object along the approach direction, before we close

the fingers. This way, we are able to test candidate grasps

where only the finger links have contact with the object.

We choose dback = 2.5cm for all objects. In the special

case of the pitcher’s handle, we choose dback,1 = 7cm and

dback,2 = 8cm to evaluate candidate grasps at the handle.

Some representative force-closure grasps produced by our

algorithm are depicted in Fig. 6. We note that in our opinion

the grasps produced by our method look quite intuitive for

a human being.

Fig. 7 shows a visualization of the force-closure quality

of all candidate grasps generated by our method. The rays

indicate the approach directions of the hand towards the

object. Each sphere indicates the final wrist position of

a candidate grasp. Each blue sphere represents a force-

closure grasp. For these grasps the diameter of the sphere

is proportional to the force-closure score of the respective

grasp, i.e. the biggest spheres represent the grasps with the

highest force-closure rating. Red spheres represent grasps

that do not fulfill the force-closure criterion.

To demonstrate the advantages of our method, we also

compare it to Berenson’s grasp planning algorithm [8] that

uses only minimal knowledge of the object’s geometry. As

described above, Berenson’s algorithm uniformly samples

the object surface and uses the surface normals at the

sampled surface points directly as approach directions for

the hand. For Berenson’s method as wells as for our own,

we choose a surface sampling resolution ρ1 of one ray

per centimeter. In case of the bowl, we choose a sampling

resolution ρ2 of one ray per two centimeters, as the object is

very big. Above that, we evaluate grasps with eight different

roll angles of the hand around the approach direction, i.e.

with roll angles αi where

αi = 0.125πk, k ∈ [0, 7]. (1)

We also test dback,1 = 0cm and dback,2 = 2.5cm for all

candidate grasps as also described above for our proposed

method. The results of the comparison are given in Table I.

We note that while Berenson’s method produces far more

candidate grasps, our algorithm has a significantly higher

likelihood that the generated grasps are force-closure. The

differences in efficiency are especially striking for objects

like the bread box (Fig. 1a) and the salad bowl (Fig. 1h)

which are too big to be grasped from arbitrary directions or

with arbitrary roll angles of the hand. For most other objects

in our experiments the proposed method still outperforms

Berenson’s method by a factor of two or more in terms of

the fraction of force-closure grasps among the generated can-

didate grasps. This is especially interesting because it shows

that our method significantly reduces the computation time

overhead for collision detection and force-closure testing.

IV. DISCUSSION AND CONCLUSION

In this paper we presented a novel grasp planning algo-

rithm based on the medial axis of 3D objects. The only

requirement of this algorithm to be met by a robotic hand

is the capability to oppose the thumb to the other fingers

which is fulfilled by all hand models we know. We performed

experiments on a set of household objects that show that

our method effectively reduces the computational overhead

for costly collision detection and force-closure testing by

generating and evaluating only candidate grasps that - from

a geometric point of view - have a high probability to be

stable. In contrast to related work that uses boxes or su-

perquadrics to approximate an object’s geometry, the medial



Fig. 6: Some representative force-closure grasps generated by our algorithm

axis representation of an object does not sacrifice potentially

promising candidate grasps to poor geometry approximation.

Instead, we showed that the medial axis provides valuable

structural and symmetry information that can be easily used

to generate big quantitities of force-closure grasps in an

efficient manner. As we derived the heuristics for candidate

grasp generation directly from geometric object properties

our method produces many grasps that, in our opinion,

seem quite intuitive to a human. We also emphasize that we

consider the method presented in this paper as an extendable

framework. If necessary, additional heuristics for candidate

grasp generation can be easily defined.

In our current implementation of the presented method, we

assume that the objects stand on a virtual surface and we use

planes parallel to this virtual surface to subdivide the object’s

medial axis into slices. Yet this is no real limitation to the

approach of medial axis-based grasp planning. Arbitrarily

oriented planes may be used to subdivide the medial axis data

and it might be interesting to investigate the benefits of such

a strategy. A point where further improvement is possible

are the criteria we currently use to classify structures of the

medial axis in the planes. More sophisticated classification

techniques might reduce the number of necessary parameters.

During the experiments we also noticed that it is quite

difficult to find force-closure grasps on structures that are

small compared to the hand like the lid of a bottle. Extracting

further information from the medial axis to calculate promi-

sing distances between palm and target point on the object as

well as a more active consideration of hand kinematics might

solve this issue and further increase the efficiency of our

method. We also plan to combine the proposed approach with

other methods and to evaluate this work on our humanoid

robot ARMAR-III.
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