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UNIONS OF LEBESGUE SPACES AND A1 MAJORANTS

GREG KNESE, JOHN E. MCCARTHY AND KABE MOEN

We study two questions. When does a function belong to the union of

Lebesgue spaces, and when does a function have an A1 majorant? We

provide a systematic study of these questions and show that they are fun-

damentally related. We show that the union of L
p
w(Rn) spaces with w ∈ Ap

is equal to the union of all Banach function spaces for which the Hardy–

Littlewood maximal function is bounded on the space itself and its associate

space.

1. Introduction and statement of the main results

While the L p spaces are considered fundamental spaces of interest in analysis,

the weighted L p spaces and the related study of Ap weights are perhaps part of

a more specialized area of analysis. It is the goal of this article to show that the

L p spaces considered in aggregate are intimately linked to these latter topics and

to the notion of an A1 majorant. By recent developments our results indicate that

weighted Lebesgue spaces with Ap weights may be good candidates for ambient

spaces for operators in harmonic analysis.

We begin with the following question.

Question 1.1. When does a function belong to the union of L p spaces?

Question 1.1 is vaguely stated on purpose. By union, we mean either the union of

L p as p varies or the union of L
p
w as w varies with p fixed. The union of L p spaces

often arises when considering a general domain to define operators in harmonic

analysis. Several such operators are bounded on L p for all 1 < p < ∞, and hence

take functions from
⋃

p>1 L p into itself.

It turns out Question 1.1 is closely related to the theory of weighted Lebesgue

spaces and the action of the Hardy–Littlewood maximal operator on these spaces.
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For our purposes, a weight is a positive locally integrable function. An A1 weight

is one that satisfies

Mw ≤ Cw a.e.

Here M denotes the Hardy–Littlewood maximal operator

M f (x) = sup
Q∋x

1

|Q|

∫

Q

| f | dx .

We exclude the weight w ≡ 0 from belonging to A1, and in this case we see that if

w ∈ A1 then w > 0 a.e. The A1 class of weights characterizes when M maps L1
w

into L1,∞
w . When 1 < p < ∞, M is bounded on L

p
w exactly when w ∈ Ap:

(

1

|Q|

∫

Q

w dx

)(

1

|Q|

∫

Q

w−1/(p−1) dx

)p−1

≤ C

for all cubes Q. At the other endpoint the A∞ class is defined to be the union of all

Ap for p ≥ 1. We now come to our second question.

Question 1.2. Given a measurable function f , when does there exist an A1 weight

w such that

(1) | f | ≤ w?

We call a weight satisfying (1) an A1 majorant of f and write MA1
for the set of

measurable functions possessing an A1 majorant. As stated, Question 1.2 does not

seem to have been considered before. As far as we can tell, the first notion of an

A1 majorant appeared in an article by Rutsky [2011]. In Rutsky’s paper, however,

a different definition of an A1 majorant is given — one which requires the function

and the weight to a priori belong to a more restrictive class of functions.

If we examine weights locally, say on the interval [0, 1], then our problem has a

remarkably simple answer which reveals a close connection between traditional L p

spaces, weighted L p spaces, and A1 majorants:

(2) MA1
([0, 1]) =

⋃

p>1

L p([0, 1]) =
⋃

w∈A2

L2
w([0, 1]).

The proof of (2) is a synthesis of known important results for Muckenhoupt weights.

This equivalence reinforces the saying attributed to Antonio Córdoba, “There are

no L p spaces, only weighted L2 spaces.”

The local theory has several extensions including an application to Hardy spaces

on the unit disk. In [McCarthy 1990], while studying the range of Toeplitz operators,

the second author showed that the Smirnov class, N+, can be realized as a union of

weighted Hardy spaces:

N+ =
⋃

w∈W

H 2
w
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where W is the Szegő class of weights (see Section 2 for relevant definitions). The

class A∞(T) is a proper subset of W (as
⋃

p>0 H p is a proper subspace of N+).

Using our techniques we are able to give a characterization of
⋃

p>0 H p in terms

of weighted H 2 spaces:

(3)
⋃

p>0

H p =
⋃

w∈A∞

H 2
w.

We refer the reader to Section 4 for more on the local case.

For functions on R
n , the theory is not as nice. In the local case the L p([0, 1])

spaces are nested in p, whereas the L p(Rn) spaces are not. We are not able to

obtain equality of
⋃

p>1 L p(Rn) and MA1
(Rn). Remarkably, even the much larger

union over weak-L p(Rn) spaces is not equal to MA1
(Rn). As a consequence of our

results, if p0 is any exponent satisfying 1 < p0 < ∞ then

(4)
⋃

p>1

L p,∞(Rn) $
⋃

w∈Ap0

L p0
w (Rn) $ MA1

(Rn).

The class MA1
(Rn) can be thought of as a generalization of L∞(Rn) — i.e., func-

tions that are majorized by constants, which are A1 weights — while
⋃

w∈A1
L1

w(Rn)

is a generalization of L1(Rn). With this in mind we obtain the following theorem.

Theorem 1.3. Suppose 1 < p < ∞. Then

⋃

w∈Ap

L p
w(Rn) = MA1

(Rn) ∩

(

⋃

w∈A1

L1
w(Rn)

)

.

Considering the basic fact

L1(Rn) ∩ L∞(Rn) ⊂
⋂

1<p<∞

L p(Rn),

Theorem 1.3 shows that if we enlarge both L∞(Rn) to MA1
(Rn) and L1(Rn) to

⋃

w∈A1
L1

w(Rn) and intersect the two, then we pick up an even bigger class of

functions, one that by (4) properly contains the union of all L p(Rn) for p > 1. As

a consequence to Theorem 1.3, we see that for all 1 < p, q < ∞,

⋃

w∈Ap

L p
w(Rn) =

⋃

u∈Aq

Lq
u(Rn).

The proof of Theorem 1.3 uses the extrapolation theory of Rubio de Francia [1984;

1987] (see also the book [Cruz-Uribe et al. 2011]).

The union
⋃

p>1 L p is a good candidate for a natural collection of functions on

which to iterate the Hardy–Littlewood maximal function. Rutsky [2014, Theorem 1]

showed that Banach function spaces X on R
n (see Section 2) for which the Hardy–

Littlewood maximal function is bounded on both the space X and the associate
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space X
′ act as a natural domain for the set of all Calderón–Zygmund operators.

We end the introduction with our main result which says a function belongs to a

function space X for which the Hardy–Littlewood maximal function is bounded on

X and X
′ if and only if f ∈ L

p
w(Rn) for some p > 1 and w ∈ Ap(R

n).

Theorem 1.4. Suppose 1 < p < ∞. Then

⋃

w∈Ap

L p
w(Rn) =

⋃

{X : M ∈ B(X) ∩ B(X′)},

where the second union is over all Banach function spaces such that the Hardy–

Littlewood maximal operator is bounded on X and X
′.

Banach function spaces for which M ∈ B(X) ∩ B(X′) are also related to the

Fefferman–Stein inequality. Define the sharp maximal function M# by

M# f (x) = sup
Q∋x

1

|Q|

∫

Q

| f − fQ | dx,

where fQ = 1
|Q|

∫

Q
f dx . Lerner [2010] proved that if M ∈ B(X), then the

Fefferman–Stein inequality

(5) ‖ f ‖X ≤ c‖M# f ‖X

holds for all nice functions in X if and only if M ∈ B(X′). In particular, Theorem 1.4

shows that if f belongs to a Banach function space for which M ∈ B(X) and the

Fefferman–Stein inequality (5) holds on X, then for any 1 < p < ∞, there exists

w ∈ Ap for which f ∈ L
p
w(Rn).

The outline of this paper is as follows. In Section 2 we state preliminary results

that are necessary for the rest of the paper. In Section 3 we study the classes of

functions with A1 and Ap majorants. In Section 4 we give a treatise of local theory

with applications to Hardy spaces on the unit disk. Section 5 is devoted to the

theory on R
n , in particular the proofs of Theorems 1.3 and 1.4. We finish the article

with some open questions in Section 6.

2. Preliminaries

In this section, � denotes either R
n or a cube Q with sides parallel to the coordinate

planes in R
n . For 0 < p < ∞, L p(�) is the set of measurable functions such that

‖ f ‖
p

L p =

∫

�

| f |p dx < ∞.

Given p with 1 ≤ p ≤ ∞, we use p′ to denote the dual exponent defined by the

equation 1/p + 1/p′ = 1. A weight defined on a cube Q is a positive function
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in L1(Q). A weight on R
n is a positive function in L1

loc(R
n). Given a weight, w,

define L
p
w(�) to be the collection of functions satisfying

‖ f ‖
p

L
p
w

=

∫

�

| f |pw dx < ∞.

We define L∞
w (�) to be the space of functions for which f/w ∈ L∞(�). This space

is normed by

‖ f ‖L∞
w

= ‖ f/w‖∞ = ess sup
x∈�

| f (x)|

w(x)
.

If T is the unit circle in the complex plane, then L p(T) and L
p
w(T) are identified

as the space of 2π periodic functions that belong to L p([0, 2π ]) and L
p
w([0, 2π ]),

respectively.

We also examine the “complex analyst’s Hardy space”, as opposed to the real

analyst’s Hardy space defined in terms of maximal functions. Let D denote the unit

disk in the plane with boundary T. Given p with 0 < p < ∞, let H p = H p(D) be

the space of analytic functions “normed” by

‖ f ‖H p = sup
0<r<1

(∫ 2π

0

| f (reiθ )|p dθ

2π

)1/p

.

“Norm” is in quotes since this is not a norm for 0 < p < 1, but we use norm notation

‖ · ‖ nonetheless. The Nevanlinna class, denoted N , is the collection of analytic

functions on D such that

‖ f ‖N = sup
0<r<1

∫ 2π

0

log+ | f (reiθ )|
dθ

2π
< ∞.

Functions in N have nontangential limits almost everywhere on the boundary, so

we may treat them as functions on the disk or the circle. The Smirnov class N+

consists of functions f ∈ N such that

lim
r→1

∫ 2π

0

log+ | f (reiθ )|
dθ

2π
=

∫ 2π

0

log+ | f (eiθ )|
dθ

2π
.

It is well known that
⋃

p>0

H p $ N+ $ N

(see, e.g., the books by Duren [1970] or Rudin [1964]). The Smirnov class is often

considered a natural limit of H p as p → 0.

The weighted Hardy space H
p
w = H

p
w(D) is the closure of analytic polynomials

in L
p
w(T). While there are real variable definitions of weighted Hardy spaces, this

classical definition has an intuitive appeal.
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Let M� be the Hardy–Littlewood maximal operator restricted to �, i.e.,

M� f (x) = sup
Q⊂�
x∈Q

1

|Q|

∫

Q

| f | dy.

When � = R
n we write MRn f = M f .

We define A1(�) to be the class of all weights on � such that M�w(x) ≤ Cw(x)

a.e. x ∈ �. For p > 1, Ap(�) is the class of all weights on � such that

sup
Q⊂�

(

1

|Q|

∫

Q

w dx

)(

1

|Q|

∫

Q

w1−p′

dx

)p−1

< ∞.

Given an Ap weight w we refer to the weight σ = w1−p′

as the dual weight. For

the endpoint, p = ∞, we use the definition

A∞(�) =
⋃

p≥1

Ap(�).

There are several other definitions of A∞, e.g., weights satisfying a reverse Jensen

inequality, a reverse Hölder inequality, or a fairness condition with respect to

Lebesgue measure [Duoandikoetxea 2001; Grafakos 2008].

A weight on the torus is a positive function in L1(T). The classes A1(T), Ap(T),

and A∞(T) are defined analogously on T. The Szegő class of weights, denoted W,

are weights on T satisfying
∫

T

log w dθ > −∞.

We notice that if w ∈ A∞(T), then we have
(∫

T

w
dθ

2π

)

exp

(

−

∫

T

log w
dθ

2π

)

< ∞.

In particular, A∞(T) ⊂ W.

Example 2.1. Let x0 ∈ �, 1 ≤ p ≤ ∞, and wx0
(x) = |x − x0|

α . Then wx0
∈ Ap(�)

if and only if −n < α < n(p − 1).

We will need some elementary properties of Ap weights, most of which follow

from the definition (see [Duoandikoetxea 2001, Proposition 7.2]).

Theorem 2.2. The following hold:

(i) A1 ⊂ Ap ⊂ Aq ⊂ A∞ if 1 < p < q < ∞.

(ii) For 1 < p < ∞, w ∈ Ap if and only if σ = w1−p′

∈ Ap′ .

(iii) If 0 < s ≤ 1 and w ∈ Ap, then ws ∈ Ap.

(iv) If u, v ∈ A1, then uv1−p ∈ Ap.



UNIONS OF LEBESGUE SPACES AND A1 MAJORANTS 417

It is interesting to note that the converse of (iv) also holds, but the proof is

much more intricate. This was shown by Jones [1980] and later by Rubio de

Francia [1982]. We emphasize that we do not need this converse statement, only

the statement (iv).

We also need the following deeper property of A∞ weights known as the reverse

Hölder inequality. See [Hytönen et al. 2012] for a simple proof with nice constants.

Theorem 2.3. If w ∈ A∞(�), then there exists s > 1 such that for every cube

Q ⊂ �,

1

|Q|

∫

Q

ws dx ≤

(

2

|Q|

∫

Q

w dx

)s

.

As a corollary to Theorem 2.3 we have the following openness properties of Ap

classes.

Theorem 2.4. Let 1 ≤ p ≤ ∞. The following hold:

(i) If p > 1 then Ap(�) =
⋃

1≤q<p Aq(�).

(ii) If w ∈ Ap(�) then ws ∈ Ap(�) for some s > 1.

For the results on R
n we need the notion of a Banach function space. We refer

the reader to the book by Bennett and Sharpley [1988, Chapter 1] for an excellent

reference on the subject. A mapping ρ, defined on the set of nonnegative R
n-

measurable functions and taking values in [0, ∞], is said to be a Banach function

norm if it satisfies the following properties:

(i) ρ( f ) = 0 ⇔ f = 0 a.e., ρ(a f ) = aρ( f ) for a > 0, ρ( f + g) ≤ ρ( f ) + ρ(g);

(ii) if 0 ≤ f ≤ g a.e., then ρ(g) ≤ ρ( f );

(iii) if fn ↑ f a.e., then ρ( fn) ↑ ρ( f );

(iv) if B ⊂ R
n is bounded, then ρ(χB) < ∞;

(v) if B ⊂ R
n is bounded, then

∫

B

f dx ≤ CBρ( f )

for some constant CB with 0 < CB < ∞.

We note that our definition of a Banach function space is slightly different from

that found in [Bennett and Sharpley 1988]. In particular, in the axioms (iv) and (v)

we assume that the set B is a bounded set, whereas it is sometimes assumed that B

merely satisfy |B| < ∞. We do this so that the spaces L
p
w(Rn) with w ∈ Ap satisfy

items (iv) and (v). (See also the discussion at the beginning of Chapter 1 on page 2

of [Bennett and Sharpley 1988].)
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Given Banach function norm ρ, X = X(Rn, ρ) is the collection of measurable

functions such that ρ(| f |) < ∞. In this case we may equip X with the norm

‖ f ‖X = ρ(| f |).

The associate space X
′ is the set of all measurable functions g such that f g ∈ L1(Rn)

for all f ∈ X. This space is normed by

(6) ‖g‖X′ = sup

{∫

Rn

| f g| dx : ‖ f ‖X ≤ 1

}

.

Equipped with this norm X
′ is also a Banach function space and
∫

Rn

| f g| dx ≤ ‖ f ‖X‖g‖X′ .

Typical examples of Banach function spaces are L p(Rn) for 1 ≤ p ≤ ∞, whose

associate spaces are L p′

(Rn). Other Banach spaces include weak type spaces

L p,∞(Rn), the Lorentz space L p,q(Rn), and Orlicz spaces L8(Rn) defined for a

Young function 8 (see [Bennett and Sharpley 1988; Cruz-Uribe et al. 2011]). When

w ∈ Ap(R
n) and 1 ≤ p ≤ ∞, the spaces L

p
w(Rn) are also Banach function spaces

with respect to Lebesgue measure. To see this, it suffices to check property (v).

Suppose f ≥ 0, 1 < p < ∞, and B is bounded. Then B ⊂ Q for some cube Q so

σ(B) < ∞, and Hölder’s inequality implies

∫

B

f dx =

∫

B

f w1/pw−1/p dx ≤ σ(B)1/p′

(∫

B

f pw dx

)1/p

≤ σ(B)1/p′

‖ f ‖L
p
w
.

To see that L1
w(Rn) is a Banach function space when w ∈ A1(R

n), note that

(7)

∫

B

f dx =

∫

B

f ww−1 dx ≤ (inf
B

w)−1‖ f ‖L1
w
.

Finally, if f ∈ L∞
w , then

∫

B

f dx =

∫

B

( f/w)w dx ≤ w(B)‖ f ‖L∞
w
,

showing L∞
w is a Banach function space.

When 1 < p < ∞ and w ∈ Ap, the associate space of L
p
w(Rn) defined by the

pairing in (6) is given not by L
p′

w (Rn) but by L
p′

σ (Rn) for σ = w1−p′

. When p = 1

and w ∈ A1, the associate space of L1
w is given by L∞

w (Rn). We are particularly

interested in Banach function spaces X for which

‖M f ‖X ≤ C‖ f ‖X,

in which case we write M ∈ B(X).
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We end this section with the classical result of Coifman and Rochberg [1980]

(see also [García-Cuerva and Rubio de Francia 1985, Theorem 3.4, p. 158]). This

result requires a definition.

Definition 2.5. We say that a function f (x) belongs to MF (�) if

M� f (x) < ∞ for a.e. x ∈ �.

If f belongs to a Banach function space for which M ∈ B(X), then f ∈ MF .

Theorem 2.6. If f ∈ MF (�) and 0 < δ < 1, then (M� f )δ ∈ A1(�).

We leave the reader with a table of the notation used throughout the article.

� Domain of interest, either R
n or a cube Q ⊂ R;

M� Hardy–Littlewood maximal operator restricted to �;

Ap(�) class of Ap weights on �;

M
r
Ap

(�) functions on � with | f |r majorized by an Ap weight;

MF (�) functions on � such that M� f < ∞ a.e.;

AF
p (�) Ap(�) ∩ MF (�);

MAF
p
(�) functions majorized by AF

p (�) weights.

3. The classes M
r
A p

Let us now define a general class of functions majorized by Ap weights and establish

some properties of such classes. We remind the reader that a domain � will denote

throughout either all of R
n or a cube Q in R

n .

Definition 3.1. Let r and p satisfy 0 < r < ∞ and 1 ≤ p ≤ ∞. Define M
r
Ap

(�) to

be the collection of all measurable functions f on � such that

| f (x)|r ≤ w(x) for a.e. x ∈ �

for some w ∈ Ap(�). When r = 1 we simply write MAp
(�).

Theorem 2.4 implies the following general facts about the M
r
Ap

classes.

Theorem 3.2. Suppose r and p satisfy 0 < r < ∞ and 1 ≤ p ≤ ∞. Then

(8) M
r
Ap

(�) =
⋃

s>r

M
s
Ap

(�)

and if p > 1,

(9) M
r
Ap

(�) =
⋃

1≤q<p

M
r
Aq

(�).
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Proof. We first prove (8). It is clear from (iii) of Theorem 2.2 that the union
⋃

r<s M
s
Ap

(�) ⊂ M
r
Ap

(�). On the other hand, if f ∈ M
r
Ap

(�) then | f |r ≤ w ∈ Ap.

By (ii) of Theorem 2.4, there exists t > 1 such that wt ∈ Ap(�). But then, taking

s = r t > r and u = wt , we have | f |s ≤ u ∈ Ap, so f ∈
⋃

r<s M
s
Ap

(�). The proof

of equality (9) follows directly from (i) of Theorem 2.4. �

Our next theorem shows that for a function to have an A1 majorant it is equivalent

for its maximal function to have an A1 majorant.

Theorem 3.3. We have f ∈ MA1
(�) if and only if M� f ∈ MA1

(�).

Proof. If f ∈ MA1
(�), then M� f ≤ M�w ≤ Cw since w ∈ A1(�), which is to say

M� f ∈ MA1
(�). The converse statement follows from the fact that | f | ≤ M� f . �

Using the exact same reasoning it is easy to prove that f ∈ M
r
A1

(�) if and only

if M�(| f |r ) ∈ MA1
(�). However, there is a better result when r ≥ 1.

Theorem 3.4. If r ≥ 1 then the following are equivalent:

(i) f ∈ M
r
A1

(�).

(ii) M�(| f |r ) ∈ MA1
(�).

(iii) M� f ∈ M
r
A1

(�).

Proof. The equivalence (i) ⇔ (ii) follows from Theorem 3.3. We will prove (ii) ⇒

(iii) and (iii) ⇒ (i).

Suppose that w ∈ A1(�) and M�(| f |r ) ≤ w. Since r ≥ 1, we know that

(M� f )r ≤ M�(| f |r ) ≤ w, which is to say that M� f ∈ M
r
A1

.

On the other hand if (M� f )r ≤ w ∈ A1(�), then M� f < ∞ a.e., and hence f

is locally integrable on �. By the Lebesgue differentiation theorem we have

| f |r ≤ (M� f )r ≤ w. �

In the case 0<r <1, we still have f ∈M
r
A1

(�) if and only if M�(| f |r )∈MA1
(�).

However, it is not true that this is equivalent to (M� f )r ∈ MA1
(�). Consider the

following simple example.

Example 3.5. Let f (x) = |x |−n on Q = [−1, 1]n . If 0 < r < 1, then f ∈ Mr
A1

(Q)

but MQ f ≡ ∞.

Of course, if 0 < r < 1 and M� f < ∞ a.e., then (M� f )r ∈ A1(�) (and hence

M� f ∈ M
r
A1

(�)) automatically by Theorem 2.6.

We now study the class MAp
. Since the Ap classes are nested, we have

MA1
⊂ MAp

⊂ MAq
⊂ MA∞

for 1 ≤ p ≤ q ≤ ∞. In the local case we have the following characterization.
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Theorem 3.6. If Q is a cube in R
n then

MA1
(Q) = MA∞

(Q).

Proof. It suffices to show MA∞
(Q) ⊂ MA1

(Q). Suppose that f ∈ MA∞
(Q), so that

there exists w ∈ A∞(Q) with

| f | ≤ w.

Since w ∈ A∞(Q), the reverse Hölder inequality implies that there exists s > 1

such that

(MQws)1/s ≤ 2MQw ≤ 2(MQws)1/s .

Moreover, since w ∈ L1(Q), we have MQw < ∞ a.e. By Theorem 2.6, MQw is

bounded above and below by an A1(Q) weight, and hence is in A1(Q) itself. �

In the global case we have MA1
(Rn) ( MAp

(Rn) for any p > 1, as the following

example indicates.

Example 3.7. Let p > 1 and 0 < α < n(p − 1). Now consider the function

f (x) = |x |α. Then f ∈ Ap(R
n) ⊂ MAp

(Rn), but f /∈ MF (Rn) so in particular,

f /∈ MA1
(Rn). To see this, notice that for every x ∈ R

n and r > |x |,

M f (x) ≥
c

rn

∫

|x |≤r

|x |α dx ≃ rα

so M f ≡ ∞.

To obtain positive results on R
n for the classes MAp

(Rn) and MA∞
(Rn) similar

to Theorem 3.6, we must restrict to Ap majorants whose maximal function is finite.

Given w ∈ A∞, a simple way to create a weight in AF
∞ is to take a truncation: let

wλ = min(w, λ) for λ > 0. Then wλ ∈ A∞ ∩ L∞ ⊂ AF
∞. We end our study of the

class MA1
with the following characterizations.

Theorem 3.8. MA1
(Rn) = MAF

∞
(Rn).

Proof. Since A1(R
n) ⊂ A∞(Rn) and A1(R

n) ⊂ MF (Rn), we have the inclusion

MA1
(Rn) ⊂ MAF

∞
(Rn). On the other hand, if f is dominated by a weight w in

AF
∞(Rn) = A∞(Rn) ∩ MF (Rn), then by Theorem 2.3 we have

M(ws)1/s ≤ 2Mw < ∞ a.e.

for some s > 1. So in particular, | f | ≤ M(| f |s)1/s ≤ M(ws)1/s ∈ A1(R
n). �

Theorem 3.9. A function f belongs to MA1
(Rn) if and only if there is an s > 1 such

that | f |s ∈ MF (Rn).
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Remark 3.10. Given r > 0, if one defines M
r
F (Rn) to be the class of functions

such that M(| f |r ) < ∞ a.e. (equivalently | f |r ∈ MF (Rn)), then Theorem 3.9 can

be stated as

MA1
(Rn) =

⋃

r>1

M
r
F (Rn).

Proof of Theorem 3.9. Let w be an A1(R
n) majorant of f . Since w ∈ A1(R

n),

ws ∈ A1(R
n) for some s > 1, which implies | f |s ∈ MA1

(Rn). By Theorem 3.4

we have M(| f |s) ∈ MA1
(Rn) ⊂ L1

loc(R
n). On the other hand, if there exists s > 1

such that M(| f |s) < ∞ a.e., then M(| f |s)1/s ∈ A1(R
n) by Theorem 2.6, and

| f | ≤ M(| f |s)1/s . �

4. The local case

For this section Q will be a fixed cube in R
n . We begin with the following extension

of the equivalences in (2).

Theorem 4.1. Let Q be a cube in R
n and r, p0 satisfy 0 < r < p0 < ∞. Then

M
r
A1

(Q) =
⋃

p>r

L p(Q) =
⋃

w∈Ap0/r

L p0
w (Q).

Proof. We will prove the chain of containments

⋃

w∈Ap0/r

L p0
w (Q) ⊂

⋃

p>r

L p(Q) ⊂ M
r
A1

(Q) ⊂
⋃

w∈Ap0/r

L p0
w (Q).

•
(
⋃

w∈Ap0/r
L

p0
w (Q) ⊂

⋃

p>r L p(Q)
)

: Suppose we have f ∈ L
p0
w (Q) for some

w ∈ Ap0/r (Q). Set q0 = p0/r . By (ii) of Theorem 2.2, σ = w1−q ′
0 ∈ Aq ′

0
(Q).

By Theorem 2.3, σ satisfies a reverse Hölder inequality:

(

1

|Q′|

∫

Q′

σ s dx

)1/s

≤
2

|Q′|

∫

Q′

σ dx

for some s > 1 and all Q′ ⊆ Q. This implies that σ ∈ Ls(Q). Define
1
q

= 1
q0

+ 1
sq ′

0
so that q > 1, and let p = rq > r . Then

(∫

Q

| f |p dx

)1/p

=

(∫

Q

| f |rqwq/q0w−q/q0 dx

)1/p

≤

(∫

Q

| f |p0w dx

)1/p0
(∫

Q

σ s dx

)1/(sq ′
0)

.

•
(
⋃

p>r L p(Q) ⊂ M
r
A1

(Q)
)

: If f ∈ L p(Q) for some p > r , then Theorem 2.6

implies | f |r ≤ MQ(| f |p)r/p ∈ A1(�).
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•
(

M
r
A1

(Q) ⊂
⋃

w∈Ap0/r
L

p0
w (Q)

)

: Set q0 = p0/r > 1 and suppose we have

g = | f |r ≤ w ∈ A1(Q). Then w1−q0 ∈ Aq0
(Q) by (iv) of Theorem 2.2 and

∫

Q

| f |p0w1−q0 dx =

∫

Q

gq0w1−q0 dx ≤

∫

Q

w dx < ∞. �

Next, we extend Theorem 4.1 to A∞ weights.

Theorem 4.2. Let Q be a cube in R
n and p0 be an exponent with 0 < p0 < ∞.

Then
⋃

r>0

M
r
A1

(Q) =
⋃

p>0

L p(Q) =
⋃

w∈A∞

L p0
w (Q).

Proof. We first prove
⋃

r>0

M
r
A1

(Q) =
⋃

p>0

L p(Q).

• (⊂): If f ∈ M
r
A1

(Q) for some r > 0, and w ∈ A1(Q) is such that | f |r ≤ w,

then f ∈ Lr (Q) ⊂
⋃

p>0 L p(Q).

• (⊃): If f ∈ L p(Q) for some p > 0, let r be such that 0 < r < p. Then

| f |r ≤ MQ(| f |p)r/p ∈ A1(Q).

Next we show
⋃

p>0

L p(Q) =
⋃

w∈A∞

L p0
w (Q).

• (⊂): Suppose f ∈ L p(Q) for some 0 < p < ∞. Then if r < min(p, p0) we

have

f ∈ L p(Q) ⊂
⋃

r<p

L p(Q) =
⋃

w∈Ap0/r

L p0
w (Q) ⊂

⋃

w∈A∞

L p0
w (Q).

• (⊃): Suppose f ∈ L
p0
w (Q) for some w ∈ A∞. Then w ∈ Aq for some q > 1.

Set p = p0/q and notice that p < p0. Then

∫

Q

| f |p dx =

∫

Q

| f |pw1/qw−1/q dx ≤

(∫

Q

| f |p0w dx

)1/q(∫

Q

w1−q ′

dx

)1/q ′

. �

Example 4.3. The function

(10) f (x) = x−1(log x)−2χ(0,1/2)(x)

does not belong to MA1
([0, 1]). This follows from Theorem 4.1 since it can be

readily checked that

f ∈ L1([0, 1])\

(

⋃

p>1

L p([0, 1])

)

.

However, f ∈ MF ([0, 1]) since f ∈ L1([0, 1]).
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Remark 4.4. Suppose 0 < p < ∞. Then

L p(Q) =
⋃

w∈A1

L p
w(Q).

The proof of the equality in Remark 4.4 follows from the fact that 1 ∈ A1 and

from inequality (7) with B = Q.

We define HA1
(T) as the set of functions in N+ whose boundary function is

majorized by an A1(T) weight. Since we may identify the torus T with Q = [0, 2π ],

it is obvious that Theorems 4.1 and 4.2 hold for L p(T) and L
p
w(T) spaces. We have

the following analogs for Hardy spaces.

Theorem 4.5. If p0 is an exponent satisfying 1 < p0 < ∞, then

HA1
(T) =

⋃

p>1

H p =
⋃

w∈Ap0

H p0
w .

Theorem 4.6. If p0 is an exponent satisfying 0 < p0 < ∞, then

⋃

p>0

H p =
⋃

w∈A∞

H p0
w .

Proof of Theorems 4.5 and 4.6. Since N+ ∩ L p(T) = H p for p > 0 [Duren 1970,

Theorem 2.11], we see that

HA1
(T) = N+ ∩ MA1

(T) = N+ ∩
⋃

p>1

L p(T) =
⋃

p>1

H p.

This is the first part of Theorem 4.5.

To go from equality of the analogous L p spaces to the Hardy spaces is a matter

of using two facts for 0 < p0 < ∞:

(a)
∫

T
log w dθ > −∞ and w ∈ L1(T) implies that w = |h|p0 for some outer

function h ∈ H p0 .

(b) If h ∈ H p0 is outer, then the set hC[z] = ∨{z j h : j ≥ 0} is dense in H p0 .

Item (a) comes from the standard construction of an outer function [Duren 1970,

Section 2.5]. As for item (b), when 1 ≤ p0 < ∞ this is a standard generalization of

Beurling’s theorem [Duren 1970, Theorem 7.4]. When 0 < p0 < 1, this is a less

well known result that can be found in Gamelin [1966, Theorem 4].

For Theorem 4.5 we must show for 1 < p0 < ∞ that

⋃

p>1

H p =
⋃

w∈Ap0

H p0
w .

Now, for f ∈ H p ⊂ L p, we know there exists w ∈ Ap0
(T) such that f ∈ L

p0
w (T)

by (2). Factor w = |h|p0 with outer h ∈ H p0 . Then, f h ∈ N+ ∩ L p0(T) = H p0
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while hC[z] is dense in H p0 so that there exist polynomials Qn satisfying
∫

| f h − Qnh|p0 dθ =

∫

| f − Qn|
p0w dθ → 0

as n → ∞. This shows f ∈ H
p0
w (since it is initially defined as the closure of the

analytic polynomials in L
p0
w (T)).

Conversely, we have seen that if f ∈ H
p0
w , then f ∈ L p(T) for some p > 1. Factor

w = |h|p0 as before. Then, f h ∈ H p0 and 1/h is outer, so that f = f h(1/h) ∈ N+.

Since f ∈ L p(T), we can then conclude that f ∈ H p.

The proof of Theorem 4.6, which claims for 0 < p0 < ∞ that
⋃

p>0

H p =
⋃

w∈A∞

H p0
w ,

is similar once we know the corresponding fact for L p(T) spaces. Indeed, take

f ∈ H p for some p > 0. There exists w ∈ A∞ such that f ∈ L
p0
w (T) by Theorem 4.2.

Factor w = |h|p0 with outer h ∈ H p0 . Then, f ∈ H
p0
w as above using Gamelin’s

result. The converse is similar to the previous proof. �

5. The global case

In this section we address the case when our functions are defined on all of R
n . Let

us first prove Theorem 1.3, which states that for any 1 < p < ∞,
⋃

w∈Ap

L p
w(Rn) = MA1

(Rn) ∩
⋃

w∈A1

L1
w(Rn).

Proof of Theorem 1.3. First we show

MA1
(Rn) ∩

⋃

w∈A1

L1
w(Rn) ⊂

⋃

w∈Ap

L p
w(Rn).

Suppose w is an A1 majorant of f and f ∈ L1
u(R

n) for some u ∈ A1(R
n). By

Theorem 2.2, uw1−p ∈ Ap(R
n) and

∫

Rn

| f |pw1−pu dx ≤

∫

Rn

| f |u dx .

To see the reverse containment suppose that f 6≡ 0 belongs to L
p
w(Rn) for some

w ∈ Ap(R
n). We will use the fact that w ∈ Ap(R

n) implies M ∈ B(L
p
w) to apply

the Rubio de Francia algorithm:

R f =

∞
∑

k=0

Mk f

2k‖M‖k

B(L
p
w)

.

Then R f is an A1 majorant of f so f ∈ MA1
(Rn). Also let g be any function in

L
p′

σ (Rn) where σ = w1−p′

satisfying ‖g‖
L

p′

σ (Rn)
= 1. Again, since σ ∈ Ap′(Rn), we
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apply the Rubio de Francia algorithm

Rg =

∞
∑

k=0

Mk g

2k‖M‖k

B(L
p′

σ )

,

so that Rg is in A1(R
n) and ‖Rg‖

L
p′

σ (Rn)
≤ 2. Hence

∫

Rn

| f |Rg dx =

∫

Rn

| f |w1/p Rgw−1/p dx ≤ ‖ f ‖L
p
w(Rn)‖Rg‖

L
p′

σ (Rn)
≤ 2‖ f ‖L

p
w(Rn),

showing that f ∈
⋃

w∈A1
L1

w(Rn) as well. �

Before moving on, we remark that the intersection of MA1
(Rn) and

⋃

w∈A1
L1

w(Rn)

is necessary for the result on R
n . We did not encounter this phenomenon in the

local case since for a fixed cube, MA1
(Q) ⊂ L1(Q). To see that the intersection

is necessary, notice that the function in Example 4.3 viewed as a function on R

belongs to L1(R) ⊂
⋃

w∈A1
L1

w(R), but does not belong to L
p
w(R) for any p > 1

and w ∈ Ap(R) since it is not in L
p

loc(R) for any p > 1. Theorem 1.3 shows that

for 1 < p < ∞,
⋃

w∈Ap

L p
w(Rn) ⊂ MA1

(Rn).

Below we will show this containment is proper (see Example 5.2).

We now prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.3 it suffices to show

(11)
⋃

w∈Ap

L p
w(Rn) ⊂

⋃

{X : M ∈ B(X) ∩ B(X′)}

and

(12)
⋃

{X : M ∈ B(X) ∩ B(X′)} ⊂ MA1
(Rn) ∩

⋃

w∈A1

L1
w(Rn).

However, the containment (11) is immediate, since

M ∈ B(L p
w(Rn)) ⇔ w ∈ Ap(R

n) ⇔ σ ∈ Ap′(Rn) ⇔ M ∈ B(L p′

σ (Rn)).

On the other hand, for containment (12), if f 6≡ 0, then f ∈ X for some Banach

function space X such that M ∈ B(X) ∩ B(X′). Then we may use the Rubio de

Francia algorithm to construct an A1(R
n) majorant:

R f =

∞
∑

k=0

Mk f

2k‖M‖k
B(X)

.
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Then R f ∈ A1 and | f | ≤ R f , so f ∈ MA1
(Rn). Given g ∈ X

′ let

Rg =

∞
∑

k=0

Mk g

2k‖M‖k
B(X′)

,

so that Rg ∈ A1(R
n) ∩ X

′ and ‖Rg‖X′ ≤ 2‖g‖X′ . Then
∫

Rn

| f |Rg dx ≤ ‖ f ‖X‖Rg‖X′ ≤ 2‖ f ‖X‖g‖X′,

which yields f ∈
⋃

w∈A1
L1

w(Rn). �

When p > 1, L p,∞(Rn) is a Banach function space on which M is bounded (see

[Grafakos 2008]), and likewise, its associate (L p,∞(Rn))′ = L p′,1(Rn), the Lorentz

space with exponents p′ and 1, is also a Banach function space on which M is

bounded (see [Ariño and Muckenhoupt 1990]).

Corollary 5.1. Suppose 1 < p0 < ∞. Then
⋃

p>1

L p,∞(Rn) ⊂
⋃

w∈Ap0

L p0
w (Rn).

From Corollary 5.1 we see that the analogous version of the equivalences in (2)

are not true on R
n . This follows since

⋃

p>1

L p(Rn) $
⋃

p>1

L p,∞(Rn).

For example, f (x) = |x |−n/2 ∈ L2,∞(Rn) but f /∈
⋃

p>0 L p(Rn).

We also remark that the techniques required for R
n are completely different than

the local case. For example, to prove the containment
⋃

p>1

L p,∞(Rn) ⊂ MA1
(Rn)

it is not enough to simply dominate | f | by M(| f |p)1/p. However, for f ∈ L p,∞(Rn),

M(| f |p) may not be finite (take f (x) = |x |−n/p, in which case M(| f |p) ≡ ∞).

Instead we must refine our construction of an A1 majorant using the techniques of

Rubio de Francia [1984].

We now provide examples to show that the inclusions in (4) are proper. We first

show that the second inclusion is proper, i.e.,
⋃

w∈Ap

L p
w(Rn) $ MA1

(Rn).

Since
⋃

w∈Ap

L p
w(Rn) = MA1

(Rn) ∩
⋃

w∈A1

L1
w(Rn),

it suffices to find a function in MA1
(Rn) \

(
⋃

w∈A1
L1

w(Rn)
)

.
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Example 5.2. The function f (x) = 1 belongs to MA1
(Rn) \

⋃

w∈A1
L1

w(Rn). To

prove this we need the fact that if w ∈ A∞ then w /∈ L1(Rn). One way to see this

(pointed out by the referee) is to notice that A∞ weights are doubling, and doubling

measures have infinite total mass. We can also give an ad hoc argument using the

reverse Hölder inequality. If w satisfies
(

1

|Q|

∫

Q

ws dx

)1/s

≤
2

|Q|

∫

Q

w dx

for some s > 1 and all cubes Q, then by taking QN = [−N , N ]n , we have
(

1

|QN |

∫

Q1

ws dx

)1/s

≤

(

1

|QN |

∫

QN

ws dx

)1/s

≤
2

|QN |

∫

QN

w dx ≤
2

|QN |
‖w‖L1(Rn).

Letting N → ∞ we arrive at a contradiction. Finally, to see 1 /∈
⋃

w∈A1
L1

w(Rn),

notice that 1 ∈ L1
w(Rn) if and only if w ∈ L1(Rn).

Next we show that
⋃

p>1

L p,∞(Rn) $
⋃

w∈Ap

L p
w(Rn).

For this example we need the following lemma.

Lemma 5.3. Suppose u, v ∈ A1(R
n). Then

max(u, v) ∈ A1(R
n) and min(u, v) ∈ A1(R

n).

Proof. To see that max(u, v) is in A1(R
n) note that max(u, v)≤u+v ≤2 max(u, v),

and hence

M(max(u, v)) ≤ Mu + Mv ≤ C(u + v) ≤ 2C max(u, v).

To prove min(u, v) ∈ A1(R
n) we use the equivalent definition of A1(R

n):

w ∈ A1(R
n) ⇔

1

|Q|

∫

Q

w dx ≤ C inf
Q

w ∀Q ⊂ R
n

where the infimum is the essential infimum of w over the cube Q. Set w =min(u, v)

and let Q be a cube. Notice that infQ u > infQ v implies infQ w = infQ v and hence

1

|Q|

∫

Q

w dx ≤
1

|Q|

∫

Q

v dx ≤ C inf
Q

v = C inf
Q

w.

On the other hand, if infQ u ≤ infQ v then infQ w = infQ u and so

1

|Q|

∫

Q

w dx ≤
1

|Q|

∫

Q

u dx ≤ C inf
Q

u = C inf
Q

w.

So w ∈ A1(R
n). �
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Example 5.4. Consider f (x) = max(|x |−αn, |x |−βn). If 0 < α < β < 1 then

f /∈
⋃

p>0 L p,∞(Rn). However,

| f (x)| ≤ w(x)

where w(x) = max(|x |−βn, 1), and f ∈ L1
u(R

n) where u(x) = min(|x |−γ n, 1) when

1 − α < γ < 1. By Lemma 5.3, both u and w belong to A1(R
n). Thus

f ∈ MA1
(Rn) ∩

⋃

w∈A1

L1
w(Rn) =

⋃

w∈Ap

L p
w(Rn).

Finally, we end with brief descriptions of
⋃

w∈A1
L1

w(Rn) and MA1
(Rn) in terms

of Banach function spaces.

Theorem 5.5.
⋃

w∈A1

L1
w(Rn) =

⋃

{X : M ∈ B(X′)} =
⋃

{X : X
′ ∩ A1(R

n) 6= ∅}.

Proof. It is clear that
⋃

w∈A1

L1
w(Rn) ⊂

⋃

{X : M ∈ B(X′)},

since the associate space of L1
w(Rn) is

L∞
w (Rn) = { f : f/w ∈ L∞}

with norm ‖ f ‖L∞
w

= ‖ f/w‖L∞ . For any cube Q,

1

|Q|

∫

Q

| f | dx ≤ ‖ f/w‖L∞
1

|Q|

∫

Q

w dx .

Hence if w ∈ A1, then

M f ≤ ‖ f ‖L∞
w

Mw ≤ C‖ f ‖L∞
w
w,

and dividing through by w we obtain M ∈ B(L∞
w ).

The associate space is always a closed subspace of the dual space [Bennett and

Sharpley 1988; Rubio de Francia 1987]. Suppose X is such that M ∈ B(X′). Given

g ∈ X
′ with g 6≡ 0 (notice Banach function spaces always contain nonzero functions

by property (iv) of Banach function norms), let

w =

∞
∑

k=1

Mk g

2k‖M‖k
B(X′)

so that w ∈ A1(R
n) and ‖w‖X′ ≤ ‖g‖X′ . Thus w ∈ X

′ ∩ A1(R
n), showing that

M ∈ B(X′) ⇒ X ∩ A1(R
n) 6= ∅.
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Finally, suppose f ∈ X for some X such that X
′ contains an A1 weight. Let

w ∈ X
′ ∩ A1(R

n). Then
∫

Rn

| f |w dx ≤ ‖ f ‖X‖w‖X′,

so that f ∈ L1
w(Rn). �

Finally we refer to a result of Chu [2013] which gives the final characterization

of MA1
(Rn).

Theorem 5.6 [Chu 2013]. MA1
(Rn) =

⋃

{X : M ∈ B(X)}.

6. Questions

We leave the reader with some open questions.

1. Let A∗
p =

⋂

q>p Aq . Is there a characterization of the union

⋃

w∈A∗
p

L p
w?

In general Ap $ A∗
p. For example w(x) = max((log |x |−1)−1, 1) belongs to

A∗
1 but not A1. Moreover,

{w : w, 1/w ∈ A∗
1} = closBMOL∞

(see [García-Cuerva and Rubio de Francia 1985; Johnson and Neugebauer

1987]). In the local case we have
⋃

w∈A∗
p

L p
w(Q) ⊂

⋂

s<p

⋃

r>s

Lr (Q) = lim sup
r→p−

Lr (Q).

Are these two sets equal?

2. It is well known that

L1 ∩ L∞ ⊂
⋂

1<p<∞

L p ⊂
⋃

1<p<∞

L p ⊂ L1 + L∞.

When can we write a function as the sum of a function in MA1
and

⋃

w∈A1
L1

w?

That is, what conditions on a function guarantee it belongs to MA1
+

⋃

w∈A1
L1

w?

3. What can one say about
⋃

w∈Ap

L p,∞
w ?

If w ∈ A1 and p > 1 then M ∈ B(L
p,∞
w ), so for p > 1,

⋃

w∈A1

L p,∞
w ⊂ MA1

.
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4. Do these results transfer to more general domains? It is possible to consider

a general open set � as our domain of interest. We may define the Ap(�)

classes, MA1
(�), and the Hardy–Littlewood maximal operator M� exactly as

before. However, the openness results, Theorems 2.3 and 2.4, may not hold for

�, even if it is bounded [Cruz-Uribe et al. 2011]. In the local case we assume

that weights belong to L1(�). What happens if we only assume L1
loc(�)?
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