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Abstract
Clinical exome sequencing (CES) is increasingly being utilized; however, a large proportion of patients remain undiagnosed,
creating a need for a systematic approach to increase the diagnostic yield. We have reanalyzed CES data for a clinically
heterogeneous cohort of 102 probands with likely Mendelian conditions, including 74 negative cases and 28 cases with
candidate variants, but reanalysis requested by clinicians. Reanalysis was performed by an interdisciplinary team using a
validated custom-built pipeline, “Variant Explorer Pipeline” (VExP). This reanalysis approach and results were compared
with existing literature. Reanalysis of candidate variants from CES in 28 cases revealed 1 interpretation that needed to be
reclassified. A confirmed or potential genetic diagnosis was identified in 24 of 75 CES-negative/reclassified cases (32.0%),
including variants in known disease-causing genes (n= 6) or candidate genes (n= 18). This yield was higher compared with
similar studies demonstrating the utility of this approach. In summary, reanalysis of negative CES in a research setting
enhances diagnostic yield by about a third. This study suggests the need for comprehensive, continued reanalysis of exome
data when molecular diagnosis is elusive.

Introduction

Whole-exome sequencing (WES) is becoming increas-
ingly important in enabling tailored interventions in
“personalized” or “precision” medicine. Recent studies

suggest that in patients with suspected genetic disorders,
clinical WES (CES) should be applied as a first-tier
molecular test, in parallel with standard diagnostic care, to
improve the cost-effectiveness of the diagnostic process
[1, 2]. However, limitations of the current analytical
methods [3], genetic and phenotypic heterogeneity [4],
knowledge gaps in the gene–disease association [5], and
interpretation/reporting differences [6] often hinder the
identification of disease-causing variants. Ultimately, only
25–30% of families receive a diagnosis after CES [7, 8],
leaving the genetic basis of the remaining families’ dis-
eases unknown.

Recent studies indicate that periodic reanalysis of nega-
tive CES data using improved bioinformatic tools [9] and
up-to-date gene–disease databases [5] can identify addi-
tional candidate variants, further enhanced by com-
plementary methods including copy number variation
(CNV) analysis [10], whole genome sequencing (WGS),
and other targeted methods [11]. Despite the use of these
approaches, many cases remain negative after reanalysis.
Thus, there is a need to develop a comprehensive strategy
for reanalyzing negative CES that will improve the
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analytical process, thereby providing better options for
those who do not initially receive a molecular diagnosis.

In this study, using a CES cohort enrolled in the Manton
Center for Orphan Disease Research at Boston Children’s
Hospital, we present our strategy for retrospective reanalysis
of negative CES studies. We describe a unique approach
featuring a custom-built pipeline (“Variant Explorer Pipeline,”
VExP), in conjunction with updated phenotypic information,
literature, and databases, and in collaboration with an inter-
disciplinary team to enhance diagnostic yield while mini-
mizing cost. As no methodological consensus guidelines for
CES reanalysis currently exist, we have drawn from methods
described in the literature [10–12], as well as our own rea-
nalysis experience, to develop a standard strategy for negative
CES reanalysis. This proposed strategy addresses each pos-
sible outcome after negative CES reanalysis, including cases
that remain negative. Supported by the current literature, we
have incorporated a novel bioinformatic strategy into an
interdisciplinary research setting to introduce an innovative
approach that addresses the need for comprehensive reana-
lysis of exome data.

Materials and methods

Recruitment of CES cohort

The Gene Discovery Core of the Manton Center for Orphan
Disease Research (Manton GDC) utilizes an Institutional
Review Board-approved research protocol at our institution
established to enroll and study patients and families with a
wide range of rare and undiagnosed disorders. The Manton
GDC often obtains raw CES data from enrolled participants
who have undergone prior clinical testing and information
about the CES cohort can be found in Supplementary
Table S1. These data can be negative, having demonstrated
no candidate variant, or contain a candidate variant and are
submitted by a referring physician to confirm the existing
candidate or identify additional variants. The CES datasets
utilized in this study were all performed by external Clinical
Laboratory Improvement Amendments-certified genetic
testing laboratories. Two hundred and seventy-five
sequencing files (162 fastq, 63 bam, and 50 cram files)
were included in our study. The clinical labs performed
exome capture using different exome capture kits (e.g.,
Agilent SureSelectXT Human All Exon Kit V4 and V5) and
sequenced captured libraries using Illumina HiSeq at
varying levels of lab-specific coverage (>50 ×).

Exome data analysis/reanalysis of negative CES

Our exome-sequencing reanalysis approach uses an inno-
vative, validated, custom-built pipeline VExP [13, 14] to

narrow down potential candidate variants. VExP is a com-
prehensive system that integrates existing methods, genetic
information, and probabilistic models into an automated
pipeline for the identification of disease genes (Supple-
mentary Fig. S1). VExP features include enhanced calling
methodologies, novel variant detection algorithms, updated
variant annotations, and validated filtering strategies. Inde-
pendent families (102 total: 5 quads, 79 trios, 18 singletons)
were processed using the VExP (v2018May), using the
following four steps:

Step 1 (fastq to vcf): VExP starts with fastq raw data to
avoid processing errors or reference mismatch data. When
only bam files were available, PICARD (v2.9.2) was used
to revert to fastq files. Raw data were processed to obtain
vcf files using the human reference assembly 19, BWA
(alignment, v0.7.15), PICARD (mark/delete duplicates),
SAMTOOLS (variant calling, v1.4.1), and GATK (multi-
sample variant calling, v3.7). Further, ANNOVAR
(2018Apr18) and custom VExP scripts were used to add
annotations from 53 relevant genetic databases (Supple-
mentary Table S2) into the output of the system.

Step 2 (Variant filtering): We observed, on average, a
total of 201,929 variants per individual (31,837 in coding/
splicing sites). These uniform vcf files were next subjected
to pedigree/relationship tests of each family to eliminate or
correct discordant samples. Variant analysis was performed
in each family using different inheritance models (assuming
full penetrance) based on three filtering criteria: first,
include variants predicted by ANNOVAR to have a
potential functional coding consequence, including stop
gain or loss, splice site disruption, indel, and nonsynon-
ymous. Second, variants are filtered based on allele fre-
quency in control populations (gnomAD, ExAC, EVS,
1000GP, and internal data from 2114 unaffected individuals
from BCH). Heterozygous/hemizygous variants for domi-
nant, de novo, and X-linked models were included if minor
allele frequency (MAF) was <0.0005 (0.05%) in any data-
base. In comparison, homozygous variants were included
only if MAF was ≤0.00005 (0.005%) and for compound
heterozygous models the MAF cutoff was ≤0.01 (1%) with
no homozygous variant reported in any database. Phasing
was performed if parents were available. The variants were
further prioritized to include those with read depth ≥10 ×,
alternative depth ≥5 ×, allele balance ≥0.20, and deleterious
prediction (2 or more of 23 softwares, including PolyPhen,
SIFT, FATHMM, and CADD; Supplementary Table S2).
Third, an inheritance filter was also applied to identify any
variants that may be incompletely penetrant or mosaic in the
parent and these were analyzed and evaluated outside this
workflow. These filters were calibrated and validated using
data from 150 independent families with genetic diagnoses
from Boston Children’s Hospital and the Broad Institute
(Supplementary Data and Table S3).
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Step 3 (Candidate genes): On average, 14 variants per
quad, 16 per trio, and 131 per singleton family (Supple-
mentary Fig. S2) were identified following this common
filtering strategy (Steps 1 and 2). To target the analysis
toward making a primary diagnosis, we subdivided our
candidate genes into three categories: (a) likely pathogenic
(LP) and pathogenic (P) variants in known disease-
associated genes, (b) variants of uncertain significance
(VUS) in known disease-associated genes, and (c) variants
in novel genes. For (a) and (b), VExP uses the Human
Phenotype Ontology (HPO) terms that define the phenotype
of the patient to filter for variants that lie within an appro-
priate candidate gene list, built from 12 different medical
databases (Online Mendelian Inheritance in Man, ClinVar,
Mouse Genome Informatics, Human Gene Mutation Data-
base (HGMD), Genetic Association Database, and HPO;
see Table S2) to identify variants potentially correlated to
the phenotype. For c) we selected variants predicted to be
deleterious in candidate genes that were not confirmed
previously to be implicated in human disease. Our database
is integrated with 1,579 independent families (3,776 inde-
pendent samples) with 178 different phenotypes that were
processed using the same pipeline (VExP). We utilized the
database to identify novel genes using a unique approach
wherein we were able to exclude 40% of additional candi-
date genes (Supplementary Material and Supplementary
Fig. S3).

Step 4 (Diagnostic): Candidate gene variants were further
evaluated by our clinical review team that consists of
genetic counselors and both internal and referring clinicians.
The genomic and phenotypic data were combined with
additional information including gene expression, protein
domains, functional studies, animal models, interactomes,
gene families, and literature [10, 12]. Potentially diagnostic
candidate variants were deposited into data sharing plat-
forms such as “Matchmaker Exchange” [15] and “Gene-
Matcher” [16] to corroborate findings and/or to find future
collaborators for functional analysis. Variants in disease-
associated genes were interpreted using the American
College of Medical Genetics and Genomics (ACMG) and
the Association for Molecular Pathology (AMP) guidelines
for variant classification [17]. Likely diagnostic variants
selected by our clinical review team were subsequently
confirmed using Sanger sequencing in our laboratory at
BCH and these confirmed variants were submitted to
ClinVar (#SUB5116581). When available, other family
members were used for segregation testing.

Results

These 102 CES cases were sequenced over a period of 5
years from 2013 to 2018 (2013: 5 cases; 2014: 7 cases;

2015: 14 cases; 2016: 27 cases; 2017: 37 cases; and 2018:
12 cases). The average and median times between original
analysis and reanalysis in this study were 1.9 ± 1.4 years
and 2 years, respectively. Data from these cases were rea-
nalyzed and classified into one of the five following groups:
(a) variants in known genes (that match phenotype) iden-
tified by CES and confirmed by reanalysis; (b) variants in
candidate (novel and phenotypic expansion) genes identi-
fied by CES and confirmed by reanalysis; (c) variants in
known genes missed by CES and identified by reanalysis;
(d) variants in candidate genes missed by CES and identi-
fied by reanalysis; and (e) no likely diagnostic variant
identified by CES or reanalysis (Fig. 1).

Of the 102 reanalyzed cases, 28 had previously identified
variants in known (n= 12) and candidate genes (n= 15),
and one needed to be reclassified. Reanalysis of those 28
cases was requested by the referring physicians in order to
confirm existing findings and/or potentially identify addi-
tional disease-causing variants. Meanwhile, of the 74
negative and 1 reclassified case (n= 75), our reanalysis
determined six instances of missed diagnoses. In addition,
we identified 18 probands with variants in candidate genes.
The remaining 51 cases stayed unsolved despite our
reanalysis.

The known disease-causing genes and candidate genes in
which variants were identified or confirmed by reanalysis
are listed in Table 1. The majority of the variants were de
novo (29/51), followed by recessive (22/51), which inclu-
ded compound heterozygous (9/51), homozygous (7/51),
and hemizygous (6/51).

Phenotypic details associated with known disease-
causing genes identified by reanalysis are listed in
Table 2. These variants were either recently published, such
as CAMK2B (NM_001220.4:c.416C > T, p.(Pro139Leu))
[18], CLTC (NM_004859.3:c.2669C > T, p.(Pro890Leu))
[19], MAP1B (NM_005909.4:c.5368C > T, p.(Arg1790*))
[20], or high impact variants (nonsense, frameshift, hotspot
mutation or mutation in functional domains with high
conservation) found in disease-causing genes with a clinical
presentation that fit the reported patient phenotype, includ-
ing PPM1D (NM_003620.3:c.1258dupA, p.(Lys420fs)),
FBXO11 (NM_025133.4:c.2145G > C, p.(Lys715Asn)), and
PRKAR1A (NM_001278433.1: c.620A >G, p.(Tyr207Cys)).

Overall, the diagnostic yield for reanalyzed negative plus
one reclassified CES cases was 32.0% (24/75). The diag-
nostic rate was slightly higher (no significant difference) in
trios than in singletons (32.8% and 28.6%, respectively;
Supplementary Table S4). Reanalysis of older CES cases
had a higher chance to be diagnostic, although not statisti-
cally significant (38.1% for 2013–15 vs. 29.6% for 2016–
18, P-value > 0.05). Diagnosis rate for each year is depicted
in Supplementary Fig. S4. Variant assessments, literature
searches, and collaboration with other laboratories
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contributed to the validation of candidate genes in these
patients. Using the reanalysis workflow described, we have
achieved a confirmed or likely genetic diagnosis for 24
probands in the 75 negative or reclassified rare disease
families after reanalysis, improving the diagnostic yield.

Discussion

Here we describe a comprehensive and collaborative
approach for reanalyzing negative CES cases with hetero-
geneous phenotypes that maximizes diagnostic yield. Our
computational approach employs an innovative and vali-
dated custom-built pipeline (VExP) [13, 14] that integrates
enhanced calling, variant detection and annotations, filtering
strategies, and probabilistic models using 53 different
databases. Out of 75 negative/reclassified cases, the con-
firmed and proposed genetic diagnosis account for 8.0%
and 24%, respectively, resulting in an overall diagnostic
yield of 32.0%. This is an improvement from prior studies
that report diagnostic yields ranging from 7.7% to 27.2% [5,
9, 12, 21, 22], supporting our comprehensive approach.

Further, compared with our study, higher diagnostic yields
have been reported, in studies of consanguineous families
[23, 24], or with utilization of additional methods such as
CNV analysis [10], WGS, and others [11]. Overall, the
yield of all reported studies including ours is 21% (472/
2250), 14.9% for known and 6.1% for candidate genes
(Table 3). It should be noted that the comparison in Table 3
is limited in precision by variable confounding factors
including family type (trios, singletons, etc.), ethnicity,
phenotypic variability, and methodology.

The continued accumulation of genetic knowledge dur-
ing the time that elapsed between the CES and reanalysis
may have affected our diagnostic yield [5, 21]. Every year,
hundreds of new genes and thousands of new variants are
linked to various phenotypes, making it necessary to rea-
nalyze the genomic data [10, 11, 25]. Indeed, of the six
cases where reanalysis identified diagnostic variants in
established genes, five of these were in genes whose disease
associations were published after the initial testing, the rest
one (absent in the original VCF file) was detected by variant
calling improvement. In addition, for 18 families we have a
candidate gene (missing in the original analysis) and

Table 1 List of known and candidate disease-causing genes in which variants were identified or confirmed by reanalysis

Inheritance Known genes Candidate genes (novel/phenotypic expansion)

De novo PPM1D, FBXO11, CAMK2B, PRKAR1A, *CLTC,
*MAP1B, ATP1A3, ADCY5, CBL, SLC6A1, PTCH1,
UBE3A, FAR1

EIF2AK2, GABRB2, MORC2, EZH1, TMEM104, *PTBP1,
*NBEA, HNRNPU, HNRNPDL, *RIN3, KDM4B, SEMA6B,
TFE3, CELF2, WDR37, MPP5

Hemizygous BCORL1, L1CAM, PGK1, *PIR, TSPAN6, TAF1

Homozygous ASNS, EXOSC9 CIT, SLC25A26, *EEFSEC, *TMX2, WSB2

Compound
heterozygous

*PAH, *RBFOX1, ECHS1 WDFY4, LDB3, KIF14, HCN1, KAT14, HIBCH

*Singleton

Fig. 1 Flowchart of CES reanalysis and outcomes. All 102 CES cases with fastq data were reanalyzed by VExP and classified into one of the five
following groups: (a) confirmed variants in known disease-causing genes previously identified by CES; (b) confirmed variants in candidate genes
previously identified by CES; (c) variants in known disease-causing genes identified on reanalysis; (d) variants in candidate genes identified on
reanalysis; and (e) no candidate variant identified on reanalysis. CES, clinical exome sequencing; VExP, Variant Explorer Pipeline

Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes 1401
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additional workup is ongoing. The diagnostic rate for early
years (2013–15) was higher (although not statistically sig-
nificant) compared with later years (2016–18); therefore, it
is important to reanalyze the negative CES data periodi-
cally, preferably annually, with new methodologies, upda-
ted genomic datasets, improved pipelines/variants callings,
and clinical experts. In addition, the families that do not
receive a genetic diagnosis should have access to resources
including research studies and patient registries to benefit
from new disease discoveries over time.

Proposed strategy for negative CES reanalysis

Negative CES reanalysis is governed by an intricate
process with many collaborative components that is con-
stantly subject to change based on the latest developments
[11, 26]. Lack of standardization of this process leads to
high variability in diagnostic yield, as well as improper
care for patients who do not receive a diagnosis after
reanalysis. In order to improve the outcomes for these
patients, we proposed a comprehensive strategy for rea-
nalyzing negative exomes as illustrated in Fig. 2. This
strategy encompasses the range of methods described in
the current literature and integrates novel technological
advancements and information from our own database. In
addition to updating initial reanalysis, our proposed
strategy addresses each possible outcome after negative
CES reanalysis. These outcomes can be divided into three
classes: (1) variant(s) in known disease-causing gene; (2)

variant(s) in novel candidate gene; and (3) no candidate
variant identified.

Outcomes categorized as class 1 in Fig. 2 may include
one or more VUS that can only partially explain patients’
phenotypes at the time of diagnosis. In addition, multiple
variants in two or more genes can be responsible for rare
diseases, leading to a mixed phenotype without a clear
diagnosis [27]. Once class 1 variants are categorized as P or
LP variants according to the ACMG/AMP guidelines and
clinically confirmed by the referring physicians, they should
be deposited into databases including ClinVar, HGMD, and
LOVD (Leiden Open Variation Database).

Outcomes categorized as class 2 should first be evaluated
for damaging effects using in-silico predictions tools and
variants predicted to be deleterious should be subjected to
further functional studies in vitro and in vivo, in order to
assess the pathogenicity of the candidate variants. Novel
potential disease genes of interest or undergoing functional
evaluation should be uploaded onto online data sharing
platforms (e.g., GeneMatcher [16], Matchmaker Exchange)
[15], in order to facilitate the collection of pathogenic evi-
dence through collaborative efforts. Confirmed or published
novel gene discoveries can then be added to the gene–
disease databases to improve the power of the analytical
pipeline. Class 2 outcomes should also be reanalyzed reg-
ularly to account for updates in analytical methods and
database information.

Class 3 consists of outcomes in which no potentially
diagnostic variant was identified by reanalysis. Possible

Fig. 2 Proposed strategy for reanalyzing negative exomes. Colla-
borations between multidisciplinary clinical and research teams facil-
itate reanalysis of negative CES to reach a diagnosis. These negative
CES cases can be divided into three classes after reanalysis: (1) can-
didate variants linked to the phenotype but of limited pathogenic

evidence; (2) candidate variants in new genes not linked to the phe-
notype; (3) no candidate variants detected by CES after reanalysis.
CES, clinical exome sequencing; CNV, copy number variation; VExP,
Variant Explorer Pipeline

Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes 1403



factors contributing to this result include disease-causing
variants with allele balance <20%, which are prone to
misclassification as false-negative due to sequencing and
mapping errors from CES [28]. These variants are often
missed in cases of somatic mosaicism (e.g., GNAQ in
Sturge–Weber syndrome: allele balance= 1–18%) [29].
Trinucleotide repeat diseases such as Fragile X syndrome,
Huntington’s disease, and myotonic dystrophy are also
frequently missed by CES [30]. Additional target testing
can be used to improve the detection rate of trinucleotide
repeat diseases [31] and low-allele balance variants, as has
been demonstrated in cases of mosaicism [32]. Negative
outcomes may also result from variants that lie in non-
coding regions, unmappable reads arising from repeated
regions, or structural variants that CES cannot detect.
In these cases, WGS and long read sequencing can be
applied to improve the detection rate, as these methods
allow additional detection of both structural and non-exonic
variants, and insertion of mobile elements such as trans-
posons [33].

RNA-sequencing and mitochondrial genome sequencing
can aid in the diagnosis when CES fails. By detecting both
coding and non-coding variants at gene expression levels
and alternative splicing, transcriptome sequencing holds
considerable diagnostic potential for rare disorders [34].
Further, although CES data are increasingly being
employed for CNV analysis, technical limitations due to
inherent heterogeneity in exome capture may result in false
negatives [35]. In such cases, CNV analysis techniques such
as microarray-based CNV profiling or reanalyzing data
from WGS for CNVs can be employed [36].

In conclusion, we report our cumulative experience from
reanalysis of a CES cohort enrolled in our institution using a
custom-built comprehensive variant detection and analysis
pipeline in conjunction with updated phenotypic informa-
tion, literature, and databases in collaboration with an
interdisciplinary team. These advances allowed us to reach
a confirmed or potential diagnosis for up to a third of pre-
viously negative CES cases, demonstrating a meaningful
improvement in diagnostic yield. We also compare our
findings with other studies, review literature, and propose
an overall strategy for reanalyzing negative exome data that
will standardize the analytical process and provide appro-
priate medical care for patients with no diagnosis by CES.
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