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Let (X,Y) solve the martingale problem for a given generator A. This
paper studies the problem of uniquely characterizing the conditional distribu-
tion of X(#) given observations {Y(s)|0 <s < t}. We define a filtered
martingale problem for A and we show, given appropriate hypotheses on A,
that the conditional distribution is the unique solution to the filtered
martingale problem for A. Using these results, we then prove that the
solutions to the Kushner-Stratonovich and Zakai equations for filtering
Markov processes in additive white noise are unique under fairly general
circumstances.

1. Introduction. A filtering model, in its most general form, is a pair of
stochastic processes (X, Y) = {(X(¢),Y(¢))|t = 0}, in which X represents a signal
which cannot be observed directly and Y an observation process related to X.
Thus, at time ¢, the o-algebra %Y := o{Y(s)|0 < s < ¢} provides all the available
information about X(#), and the conditional distribution of X(¢) given %, is
the most detailed description of our knowledge of X(t). A central goal of filtering
theory is to characterize this conditional distribution effectively.

In this paper, we study how to characterize the conditional distribution
uniquely for filtering models in which (X, Y) solves a martingale problem in the
sense of Stroock and Varadhan (1979). This includes the commonly studied cases
of partially observed Markov processes and, more particularly, of Markov
processes observed in additive white noise. We approach the issue by defining a
“filtered martingale problem,” a martingale-type problem involving a probabil-
ity—measure-valued process and the generator for the martingale problem for
(X, Y). This definition is motivated by the simple fact that (=, Y), where =, is
the conditional distribution of X(¢) given &}, solves this filtered martingale
problem. This observation is by itself not essentially new; rather, it is a useful
formalization of a standard technique, namely martingale representation, used to
obtain filtering equations. Our main contribution—summarized in Theorems 3.2
and 3.3—is to give fairly mild conditions on the original martingale problem
solved by (X,Y) that insure that the conditional distribution is, in fact, the
unique solution to the filtered martingale problem. On the strength of these
results, we are then able to obtain new uniqueness theorems for the
Kushner—Stratonovich and Zakai equations for the conditional distribution of a
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Markov process X, observed via Y(¢) = [{h(X(s))ds + W(t), where W is an
independent Brownian motion. Previously, Szpirglas (1978) established unique-
ness of solutions to the Kushner—Stratonovich and Zakai equations for bounded
h. Also, Pardoux (1982) and Baras, Blankenship and Hopkins (1983) treated
Zakai’s equation for special cases of unbounded 4 when X is a diffusion process.
By using techniques from p.d.e. theory, they established existence and unique-
ness of solutions in various specific function classes after imposing technical
conditions relating the growth of & to that of the diffusion coefficients. Baras,
Blankenship and Hopkins (1983) did not prove their solutions were the actual
unnormalized conditional densities, but this fact is a corollary of the results in
this paper. Finally, Kallianpur and Karandikar (1984) obtained more general
results for unbounded 4 by combining their finitely additive approach to
nonlinear filtering with p.d.e. theory. They showed that if X is a nondegenerate
diffusion and & is locally Holder continuous, Zakai’s equation has a unique
solution in an exponential growth class and this solution is the unnormalized
conditional density.

In this paper, we study the additive white noise model for signals X solving a
martingale problem for a generator A,. The hypotheses that we need to prove
uniqueness are mild and do not necessarily require that h be bounded or
continuous or that X be a diffusion. Basically, in the independent signal-
observation noise case, the martingale problem for A, must be well posed,
E[F|h(x(5))|* ds < o0, and if h is continuous, D(A,), the domain of A, must be
sufficiently “dense” (see Theorems 4.1 and 4.2) or if A is not continuous,
R(MA — A,), the range of A — A,, must be sufficiently “dense” for A > 0 (see
Theorems 4.6 and 4.7). With these assumptions, we obtain uniqueness for both
the Kushner—Stratonovich and Zakai equations in the class of measure-valued
solutions. Finally, we also prove uniqueness for diffusions observed in correlated
noise (see Theorem 4.5). Some of the results of this paper were previously
announced in Kurtz and Ocone (1985).

The paper is organized as follows. Section 2 presents the martingale problem
theory on which the work is based. Section 3 defines the filtered martingale
problem and establishes the main abstract results concerning uniqueness of the
filtered martingale problem. Section 4 contains the applications to the
Kushner—Stratonovich and Zakai equations for Markov processes observed in
additive white noise.

In the remainder of this section, we define the notation to be used throughout
the paper and state a lemma on the existence and regularity of the conditional
distribution process. To begin, (2, %, P) will denote a complete probability
space on which all random variables will be defined. E, E, and E, will denote
complete separable metric spaces, B(E) the bounded Borel functions on E,
P(E) the set of probability measures on the Borel sets of E and Dg[0, c0) the
space of cadlag (right continuous with left limit) E-valued paths. As usual, #(E)
carries the topology of weak convergence and Dg[0, co) the Skorohod topology.
[Note that #(E) is metrizable.] Given p € #(E) and a Borel measurable
p-integrable f on E, we write pf == [ f(x)p(dx).
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Let (X,Y) be an E; X E,-valued measurable process defined on (2, #, P)
and set

FEr=0{X(s)0<s<t)vH,
FY¥=0{Y(s)0<s <t} VLA,

where A" is the collection of P-null sets of (@, % ). Given a process Z, E{Z(¢)|#,Y}
will always mean the { %, }-optional projection of Z.

LeEMMA 1.1. (a) There is a P(E,)-valued { %, }-optional process m(w, dx)
such that

(1) m.f = E[ {(X()WF]
for all f € B(E,) and equality in (1.1) means that the two processes are
indistinguishable.

(b) If the sample paths of X are in Dy, [0, ), then =, has a version with paths
in Dy g [0, 00) and for all but countably many t,

(1.2) m(f) = E[{(X())FY] a.s.
for all f € B(E)).

REMARKS. (i) For technical reasons, namely, right continuity of {#,Y}, we
choose to work with E[ f(X(¢))|#,Y] rather than E[ f(X(t))|%,Y].

(ii) For the processes that we shall work with later, one may always assume
that X is cadlag and, hence, that =, is also. We always work with this cadlag
version.

(iii) In the applications of Section 4 to Markov processes observed in white
noise, #,Y =%, so n(f) = E[ f(X(t))|%,Y] for all .

ProoF oF LEMMA 1.1. Part (a) and the conclusion that #, has a cadlag
version if X is cadlag are proved by Yor (1977). To prove (1.2), observe that if Z
is a process with sample paths in Dg[0, 00), where S is some metric space, then

I,={t>0|P(Z,+ Z,_) > 0}
is countable. Now #(E,) with the weak topology is metrizable. Thus, if
7(w, *) € Dy g ([0, 00)) for all w,

I={¢t>0|P(m,+ m,_) >0}
is countable. Choose some ¢ & I. Then

7, = m,_= limm,
sTt

a.s. and, hence, since %, includes the P-null sets by definition, =, is .%,Y-mea-
surable. This concludes the proof. O

We shall also have need for the following notational convention. Let f(x, ¢, w)
be a bounded function on E,; X [0, 0) X 2, measurable with respect to the
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product o-algebra. Then
T (st w0) = [ f(x, 8, 0)7 (0, dx).
E,

It is easily seen that =, ,f(-, , w) is a measurable process; certainly this is true
for indicators 1,(x)15(¢)1o(w) and their linear combinations, and it follows for
bounded measurable f by a Dynkin class-type argument. Further, by a similar
argument, if f(x, t, ) is E, X %, -measurable for every ¢,

'”t,wf('a L, "") = E[f(X(t)’ L w)l%z](w)

For f(x,Y(t, w)), where f is in B(E, X E,)—the case most commonly encoun-
tered —we write

Wt,wf('aY(t’w)) = '”tf("Y(t))

and we have
7f(-, ¥(2)) = E[ f(X(2), Y(t)FY].

2. Martingale problems. Let A c B(E) X B(E). We think of A as a
(perhaps multivalued) operator. The domain of A is defined by 2(A) = {f:
(f, 8) € A} and the range of A is defined by #Z(A) = {g: (f, &) € A}. Multival-
ued operators will arise only in certain technical parts of the proofs and, since in
most situations A will be single-valued, we will write Af instead of g for
(f,8) €A

A measurable stochastic process Z is a solution of the martingale problem for
A if there exists a filtration {%,} such that

(2.1) 1(2() - [‘Af(2(s) ds

is an {%,}-martingale for each f € 2(A). If A is multivalued, this requirement
should be interpreted to mean that

(22) 1(2(2)) - [8(2(s)) ds

is a martingale for each g such that (f, g) € A. For v € #(E), Z is a solution of
the martingale problem for (4, ») if Z is a solution of the martingale problem for
A and Z(0) has distribution ». We say that uniqueness holds for the martingale
problem for (A, ») if any two solutions have the same finite-dimensional distri-
butions. The martingale problem for A is well posed if for each v € #(E), a
solution of the martingale problem for (A, ») exists and uniqueness holds. In
almost all situations of interest, a solution of the martingale problem for A has a
modification with sample paths in Dg[0, o0). [See Ethier and Kurtz (1986) for a
detailed discussion.] Consequently, we will assume that all solutions considered
here have that property, that is, are solutions of the Dg[0, c0) martingale
problem. We remark that uniqueness may hold for the Dg[0, c0) martingale
problem while failing to hold for the more general martingale problem, but this
is rare.
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Let », denote the distribution of Z(¢). Then the fact that (2.1) is a martingale
implies

(2.3) wf=wf+ [vAfds, fea(A).
0

We will need conditions under which, given »,, (2.3) determines », for ¢ > 0. We
give conditions of two types. The first condition is essentially that the closure of
A generates a semigroup. We say that M C B(E) is separating [for 2(E)] if
v,u€ P(E)and vf = puf for all f € M implies v = p.

PROPOSITION 2.1. Suppose Z(A — A) is separating for each A\ > 0. If {»,}
and {p.,} satisfy (2.3), are weakly right continuous and v, = p, then v, = p, for
allt > 0.

Proor. By (2.3),
00 At _ 0 e ft
}\fo e vy, fdt v0f+A£) e fovsAfdsdt

2.4 —vof + A [T [Te M dev Afds
(24) wf + A [ e denaf
= vof + [ e v, Afds.
4]

Consequently,

(2.5) [Te (- Af)dt=wyf, e a(A).
4]

Since Z(A — A) is separating, (2.5) implies that », uniquely determines the
measure [e v, dt. Since this holds for each A > 0, if {»} is weakly right
continuous, the uniqueness of the Laplace transform implies », determines »,,
t>0.0

The second set of conditions is taken from Echeverria (1982). He treated the
particular case » Af = 0, for which uniqueness gives », = »,, t > 0, i.e., 7, is a
stationary distribution. [In the following statement and throughout the paper if
E is locally compact, C(E) denotes the continuous functions which vanish at
infinity.]

ProposITION 2.2. Let E be locally compact and separable. Suppose that
A c C(E) x C(E), that 2(A) is an algebra and dense in C(E) and that the
Dg[0, o) martingale problem for A is well posed. If {v,} satisfies (2.3) and Z is a
solution of the martingale problem for (A, v,), then for all t >0, v, is the
distribution of Z(t).

Proor. See Ethier and Kurtz [(1986), Chapter 4, Proposition 9.19].

3. The filtered martingale problem. Let E = E; X E, and A C B(E) X
B(E).If Z = (X,7) is a solution of the D;[0, co) martingale problem for A and
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m, is the conditional distribution of X(¢) given %Y, then
t
(3.1) m (- ¥(28) - [mAf(-, Y(s)) ds

is an {#,Y}-martingale for each f € 9(A). We think of (7, Y) as a process with
sample paths in Dy g )5 £ [0, 0) and we want to use this martingale property to
characterize the distribution of (7, Y) and, hence, to characterize = as a func-
tional of Y. Simply requiring (3.1) to be a martingale with respect to an arbitrary
filtration is clearly not sufficient to characterize #. For example, (84, Y) would
satisfy this requirement. Consequently, we introduce the notion of a filtered
martingale problem. A process (¢, U) with sample paths in Dy5 ) ,[0, 0) is a
solution of the filtered martingale problem for A if p is {#,Y}-adapted and

(3.2) wd (5 U() = f WoAF (-, U(s)) ds

is an {#,Y}-martingale for each f € 2(A).

Note that the assumption that (g, U) is {%#,{}-adapted implies that for each ¢
there exists a Borel measurable function H,: Dy [0, c0) » #(E,) such that
(3.3) p,=H,(U)=H(U(-As)) as.
for every s > t. Since p has sample paths in Dy g [0, o0), for all but countably

many ¢, u, = p,_ as. and, hence, p, is %-measurable. For such ¢, it follows

that there exists a Borel measurable G,: Dy [0, c0) - #(E,) such that

(3.4) G(U)=G(U(-At))=H,((U) as.
To connect (p, U) with the original process, we require
(3.5) E[pof(-,U(0)] = E[f(X(0), Y(0))]

for all f € B(E). Then U(0) and Y(0) have the same distribution. Furthermore,
if uniqueness holds for solutions of the filtered martingale problem satisfying
(3.5), then (7, Y) must have the same distribution as (g, U) and, hence, 7, =
H,(Y) as. Consequently, the filtered martingale problem gives a method of
characterizing nonlinear filters.

Let (X,Y) be a solution of the Dg[0, co) martingale problem for A and let
(1, U) be a solution of the filtered martingale problem for A satisfying (3.5). Let
v, € P(E) satisty v,f = E[p,f(-,U(t))). Then {»,} satisfies (2.3) and under the
conditions of either Proposition 2.1 or 2.2, we have

(36)  E[p (-, U®))] =E[{(X(2),Y(2))], t=0,[ec®(E).

It follows from (3.6) that for each ¢ > 0, U(¢) and Y(¢) have the same distribu-
tion. This, of course, is not enough for our purposes, but it does indicate how we
will proceed. Let V(f) =t and for i=1,...,m, let g, & C(E X [0, 00)) be
nonnegative and define

t t
Vi(t) = [&(U(s),5) ds = [g(U(s), Vis)) ds.
0 . 0
Define W, in the same way as V,, but with U replaced by Y. Observe that
(37) FY = o{Y(t), [&(¥(s),5)ds: g & C(E x [0,00)), g = o} VA
0
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If for each m and each choice of g, ..., g,,, we can show that
E[p f(-,U(8), Vy(2), .., V()]

= E[1(X(2), Y(8), Wy(2),..., Wy(2))]
for each £ >0 and each f in a collection of functions that is separating in
B(E, X E, X [0, 0)™""), then (U, V, ..., V,,) and (Y, W, ..., W,,) have the same
one-dimensional distributions and, hence, using (3.4), for all but countably
many £,

(3.8)

E[{(X(2), Y(t), W(t),..., Wy(t))]
(3.9) = E[GY)f(-, Y(2), Wy(t),..., W, (1))]
= E[G,(Y(- A ) (-, Y(2), Wy(2), ..., W, (£))].

Since G(Y(: A t)) is %, -measurable, it follows that G(Y) = =, a.s. for ¢ for
which 7, = 7,_ a.s., that is, for all but countably many ¢. Consequently, by (3.4),
for all but countably many ¢ (i.e., for all ¢ such that both m, = ,_ and p, = p,_),

(3.10) m,=H/(Y) as.

The right continuity of = and p implies (3.10) holds for all £ The significance of
the preceding analysis is that if, given the observed process Y, an algorithm (e.g.,
solving the Kushner-Stratonovich equation) produces a functional H, such that
(H(Y),Y) is a solution of the filtered martingale problem for A with
E[H(Y)f(-, Y(0))] = E[ f(X(0), Y(0))], then uniqueness of the filtered
martingale problem implies m, = H,(Y). Turning now to the problem of proving
uniqueness, note that (3.8) is of the same form as (3.6) with U replaced by
U, V,,..., V,). Consequently we can use Propositions 2.1 and 2.2 to give condi-
tions for (3.8) to hold and, hence, conditions for uniqueness.

Let CY([0, 00)) denote the collection of functions such that f, i’ € €0, ).
Let g, =1 and let g,,..., &,, be as in (3.8). For f € 9(A) and f, € CY([0, o0)),

i =0,..., m (recall, we are assuming g; > 0), define

m
(3.11) Fs Dot eev) = £, ) [T ()
and

Bf(x, y,wy, ..., w,)
= Af(x, y)gfi(wi) +f(x, y) Eogi(yy wO)fil(wi)jI;.[ifj(wj)'

Let Ey= E X [0,00)"*'. Extend B linearly and note that if E is locally
compact and separable and Z(A) is an algebra that is dense in C(E), then 2(B)
is an algebra that is dense in C(E,). Furthermore, we claim that if the Dg[0, c0)
martingale problem for A is well posed, then the Dy, [0, 00) martingale problem
for B is well posed and, consequently, if A satisfies the conditions of Proposition
2.2, then B does also. Existence of solutions for B follows from existence for A
by the preceding definition of Z;,. To see that uniqueness for A implies unique-

(3.12)



CHARACTERIZING CONDITIONAL DISTRIBUTIONS 87

ness for B, note that if (X,Y,W,,...,W,) is a solution of the martingale
problem for B, then (X,Y) is a solution for A. Uniqueness for B is then a
consequence of Lemma 3.1. The proof is left to the reader.

LemMaA 3.1. Let {#,} be a filtration and let U and V be right-continuous
processes adapted to {#,}. If

(3.13) F(U() - [V(s)f(U(s)) ds
is an {#,}-martingale for each f € é’(lR), then

(3.14) U(t) = U(0) + /0°°V(s)ds.

We now give the main uniqueness theorems.

THEOREM 3.2. Let E, and E, be complete separable metric spaces and let
E=E, X E,. Let Ac B(E) X B(E). Suppose the Dg[0, o) maitingale prob-
lem for A is well posed and R(\ — A) is bounded-pointwise dense in B(E) for
each A\ > 0 (i.e., B(E) is the smallest collection of bounded Borel measurable
functions containing Z(\ — A) that is closed under bounded-pointwise conver-
gence of sequences). Let B be defined as in (3.11) and (3.12). Then (a) B satisfies
the conditions of Proposition 2.1; (b) if (X,Y) is a solution of the Dg[0, o)
martingale problem for A and (p,U) is a solution of the filtered martingale
problem for A with sample paths in Dy g g [0, ) and satisfying (3.5), then
there exist functions H, satisfying (3.3) and (3.10) and (u,U) has the same
distribution as (w,Y) (i.e., uniqueness holds for the filtered martingale problem
for A).

REMARK. The range condition implies uniqueness holds for the Dg[0, o)
martingale problem. [See Ethier and Kurtz (1986), Chapter 4, Section 4.] Note
also that if (X,Y) is a solution of the martingale problem for A, then it is a
solution for the linear span of A, so without loss of generality we may assume A
is linear. For linear A, existence of solutions of the martingale problem for (A4, »)
for all » € #(E) implies A is dissipative, that is, |Af — Af| = A|[f] for all
A >0, and (A — A)~! exists and satisfies |[(A — A) Y| < A~% (|| - || denotes the
Sup norm.)

PROOF OF THEOREM 3.2. Let B denote the bounded-pointwise closure of the
linear span of B. We must show that #(A — B) is separating. This will be true if
and only if Z(A — B) is separating.

As noted earlier, without loss of generality, we can assume A is linear. Let Z,
denote a solution of the martingale problem for (A4, 8,). Then for 2 € Z(A — A),
there is an ( f, g) € A such that

(3.15) f(2) = (A — A) "h(2) = E[/Owe-Mh(zz(s)) ds).
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Let A denote the bounded-pointwise closure of A in B(E) X B(E). Then any
solution of the martingale problem for A is a solution for A and, similarly, for
the filtered martingale problem. Since 9?(}\ A) is bounded-pointwise dense in

B(E), it follows from (3.15) that Z(A — A) = B(E) [bounded-pointwise conver-
gence of a sequence {A,} C Z(A — A) to a function A implies convergence of the
corresponding sequence {f,} to a function f and (f,Af—h) € A). We may,
therefore, assume that A = A and, hence, that Z(A — A) = B(E).

Let A, be the bounded-pointwise closure of the linear span of

{(F(x, 2 fowo), folwo)Af(x, ¥) + f(x, ¥) fg' (wp)): f € 2(4),

fo € CY([0,00))}.
We claim that 2(A — A;) = B(E X [0, 00)). To see this, let @ > 0 and f(w,) =
e®*_Then for h € B(E), thereis an f € 9(A) such that
A(x, ¥) folwo) — folwy)Af(s, ) — f(x, ) o' (wp)
(3.17) =e (N + a)f(x, y) — Af(x, ¥))
= e "“h(x, y).

Linear combinations of functions of the form e~ **oh(x, y) form an algebra and
B(E X [0, 00)) [the Borel subsets of E X [0, o0)] is the smallest o-algebra with
respect to which all such functions are measurable. It follows that this collection
of functions is bounded-pointwise dense in B(E X [0, o0)) [see Ethier and Kurtz

(1986), Appendix, Corollary 4.4].
If f,€ 2(A,) and @a,,..., a,, > 0, then

(3.18) flx, y,wys ..o, wy,) = folx, ¥, w,) _]:[le‘“t"" € 9(B)

(3.16)

and

A(x, y,wp,-..,w,) — Bf(x, y, Wy --ns W)

(3.19) = He_“'w‘ Moz, y,wy) — Af(x, y, w,)

m
+f(x, v, wo) Z aigi(y, wo) .
i=1

Let V(y, w,) = 2a,8,(y, w,). We claim that for 2 € B(E X [0, «0)), there exists
fo € 2(A,) such that

(3.20) Ao— Aol + Vi, = h.

To see this, let ¢ =|V| and note that since V>0, ¢>|V — ¢|. Define
Kfy=((A+¢)—Ay) " (V--0c)f,- Then K is a bounded linear operator on
B(E X [0, 00)) with | K|| < ¢/(A + ¢) < 1 and {, satisfies (3.20) if and only if
(3.21) fo+ Kfy= (A +¢) — 4,) 'h.

Existence of a solution of (3.21) follows from the fact that ||K|| < 1. It now
follows that Z(A — B) = B(E X [0, co)™*1).
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If (X,Y) is a solution of the Dg[0, co) martingale problem for A, (u,U) is a
solution of the filtered martingale problem for A satisfying (3.5) and W, ..., W,

and V|,...,V,, are as previously deﬁped, then (A, U, V,,..., V) is a solution of
the filtered martingale problem for B satisfying

E [P‘of(' ’ U(O)’ VO(O)r [ERS) Vm(O))]
= E[ {(X(0), Y(0), Wy(0),..., W,,(0))].

Proposition 2.1 implies (3.8) by the same argument that gave (3.6) and part (b)
follows. O

THEOREM 3.3. Let E, and E, be locally compact separable metric spaces
andletE = E, X E,. Let A C C(E) x C(E) and suppose A satisfies the condi-
tions of Proposition 2.2. Let B be defined as in (3.11) and (3.12). Then (a) B
satisfies the conditions of Proposition 2.2; (b) if (X,Y) is a solution of the
Dg|0, o) martingale problem for A and (p,U) is a solution of the filtered
martingale problem for A with sample paths in Dy g g, [0, ) and satisfying
(3.5), then there exist functions H, satisfying (3.3) and (3.10) and (p, U) has the
same distribution as (w,Y) (i.e., uniqueness holds for the filtered martingale
problem for A).

ProOF. We have already noted that if A satisfies the conditions of Proposi-
tion 2.2, then B does also. Part (b) follows as in the proof of Theorem 3.2. O

COROLLARY 3.4. Under the conditions of either Theorem 3.2 or 3.3, suppose
2(A) c C(E) and let (X,Y) be a solution of the Dg[0, o) martingale problem
for A and (p,U) be a process with sample paths in Dy . g,[0, ) satisfying
(3.5). Suppose that p is {#}-adapted, that 7 is an {F,/}-stopping time and
that for each f € 9(A)

(3.22) pen fCLU(E A T)) = OtMMsAf(-,U(S))ds

is an {#,V}-martingale. Then for each t > 0,
(3.23) PeXit<ay = Ht(U)X(t<T) a.s.,
where H, is as in (3.10).

PRrOOF. A process (ji, U) can be constructed on an enlarged sample space
such that (fi, .., U(t A 7)) = (g, 1., Ut A 7)), t > 0, and (i, U) is a solution of
the filtered martingale problem for A [see Ethier and Kurtz (1986), Chapter 4,
Lemma 5.16]. Then (3.23) follows by Theorem 3.2 or 3.3.0

4. Uniqueness for the equations of nonlinear filtering. In this section,
we apply the filtered martingale problem characterization of =, to derive unique-
ness theorems for the Kushner-Stratonovich and Zakai equations for the follow-
ing filtering problem. The signal X is taken to be an E-valued cadlag solution of
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the martingale problem for (A, m,); here, E is a locally compact complete
separable metric space, A, C B(E) X B(E) and m, € #(E). Let h: E > R be
a Borel function. The additive white noise observation model is then

(4.1) ¥(t) = [B(X(s)) ds + W(2),
0
where
(4.2) W is a Brownian motion independent of X.

We will be interested in studying the filtering problem on the time interval [0, T']
for some given T > 0 and we assume, in addition, that

(4.3) EfOT|h(X(s))|2ds < 0.

[All random processes are defined on (2, %, P) as before.] Later, we also study
an example in which X and W are correlated.

This filtering model is stated in a time independent form—neither % nor A,
depends explicitly on ¢. However, there is no loss of generality because the time
dependent case can always be recast into the autonomous form by the standard
trick of including time as a component of X. Hence, all results that follow may
be interpreted for the time dependent case.

The assumptions (4.2) and (4.3) imply that the formula

dP,

— = exp[—f:h(x(s)) dW(s) — %foTlh(X(S))FdS]

defines a new probability measure P, which is mutually absolutely continuous
with respect to P and with respect to which Y is a Brownian motion indepen-
dent of X. From this observation, it follows easily that #,¥ = %Y forall¢t < T
and, hence, that «,f = E[ f(X(¢))|#,Y] for all ¢t < T. We shall use this right
continuity of {%,Y} without further comment.

Finally, it will be convenient to define the innovations process

1(t) = Y(¢) - fot'rrshds.

It is a standard result from filtering theory [see, e.g., Liptser and Shiryayev
(1977)] that I is an {%,Y}-Wiener process on (2, %, P). [Here and in what
follows, 7 h is the vector (7 h,,..., 7.h,).]

By explicitly representing the martingale

il ~ At ) ds

as a stochastic integral with respect to I, one obtains the Kushner—-Stratonovich
equation

mf = mof + [ Aof ) ds + ['[m(hf) = m(R)m(f)] dl(s)

forall f € 2(A,).
Note that the condition “for all f € 2(A,)” is included as part of (4.4). This is

(4.4)
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important: (4.4) is essentially a stochastic differential equation for =, written in
weak form, that is, for 7, applied to a domain of test functions f, and it is
necessary to specify this domain precisely. The point of applying martingale
problem techniques is to find a set of test functions small enough to handle
easily, but large enough to insure uniqueness.

Let #*(E) denote the set of positive bounded Borel measures on E. Define
the .#*(E)-valued process

0, = exp[ftfrshdY(s) - %fﬁwshf ds]'n't.
0 0
The assumption (4.3) guarantees that
EfT|7rsh|2 ds < oo
0

and, hence, that o, is a well defined almost surely nonzero process for ¢ < T. It
can be shown that o,f is the numerator in the Kallianpur—Striebel formula for
7, f, that is,

o f =

dP
By | £(X(8) 5 |77
0

and 7,f = o,f/0,1, where E, denotes expectation with respect to F,. By Itd’s
rule, o, satisfies the Duncan-Mortensen-Zakai equation

o,f = myf + fo‘as(Aof ) ds + fotos(hf ) dY(s)

for every f in 2(A4,).

Equation (4.5) has the advantage of being linear in o and of being driven by Y
rather than the innovations process. Equations (4.4) and (4.5) extend to more
general situations than the filtering model defined here. Standard references
giving derivations and extensions are Fujisaki, Kallianpur and Kunita (1972) and
Liptser and Shiryayev (1977).

Application of the filtered martingale problem characterization of #, in
Theorem 3.3 leads to the following uniqueness theorems for (4.4) and (4.5).

(4.5)

THEOREM 4.1. Assume in addition to (4.2) that

(a) A, satisfies the conditions of Proposition 2.2, ie, A, C C(E) x C(E),
2(A,) is a dense algebra of C(E) and the martingale problem for A, is well
posed;

(b) f(x)h(x) € C(E) forallf e Q(AO) l<i<p.

Let {1} be an {Z,*}-adapted cadlag P(E)-valued process such that
pf =mof + [ulAof)ds + [{nhi) = w(R)m(1)] dI'(s)

foreveryf € 2(A,), t< T,
where I"(t) = Y(t) — [{u,hds. Then p,=m, forallt < T a.s.

(4.6)
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THEOREM 4.2. Make the same assumptions as in Theorem 4.1. Let {p,} be
an {%,"}-adapted cadlag #*(E )-valued process satisfying

pof = mof + /Otps(Aof)dH fo’ps(hf)dY(s)
forallf € 9(A,), t < T,

(4.7)

and

t
(4.8) p,1=1+ fops(h)dY(s).
Then p,= o, forallt < T a.s.

REMARK 1. Since 2 may be unbounded, p A& does not automatically make
sense. Therefore, we regard as implicit in the assumption that p, satisfy (4.6) the
conditions that A be a.s. pintegrable for all £ < T and

f|uth|2 dt <o as.
0
so that all stochastic integrals are well defined. Similar remarks hold for p,A.

REMARK 2. (4.7) and (4.8) may be rephrased as saying that (4.7) holds for all
fe 204,V {1,0))).

REMARK 3. The assumption (4.3), that E IFIR(X(s))|2 ds < o is standard in
derivations of the Kushner-Stratonovich and Zakai equations. A careful ex-
amination of the proofs to follow show that we really only use

E fjh(X(s))lds < oo,

which guarantees existence of 7 () and is needed in Lemma 4.4, and

le'rrs(h)|2ds <o0 as.,
0

which is needed to make the stopping time arguments and to assure the
existence and positivity of o,1. Thus, our results prove that if solutions to the
filtering equations exist under these slightly less restrictive assumptions, they
must coincide with the actual conditional distributions.

REMARK 4. In Theorem 4.1, hypotheses (a) and (b) are implied by the
alternative hypotheses:

(@) A, c C(E) X é(E), where C(E) denotes the set of continuous functions
with compact support, 2(A,) is a dense subalgebra of C(E) and the martingale
problem for A, is well posed.

®)h(x)e C(E)forl <i<p.

These conditions have the advantage that (b’) involves only 4,,..., h, and not
2(A,). We shall use (a’) and (b’) in the first example (which follows the proof of
Theorem 4.2).
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REMARK 5. Since {0,} is the solution of a stochastic p.d.e., one can view {¢,}
as a diffusion in M*(E) and can try to formulate a corresponding martingale
problem. That is, one can seek an operator &/ C B(A#*(E)) X B(M™(E)) such
that the martingale problem for .« is well posed and {s,} is a solution for this
martingale problem. This has been done by Hijab (1986). As the domain of 27, he
takes those functions on #*(E) of the form

F(p) = o(pfrs-.., 1fy),

where n is arbitrary, ¢ € C*(R") and f,,..., f, € 2(A,). The appropriate
definition of & on 2(&/) is found by using Itd’s rule on F(o,) for F€ 2().
This leads to

LF(p) = Y, 9,9(pf1,..., pf)PAof;
i=1

+ Z ai2j<p(pf17"‘7 pfn)<h: f1><h7 fj>

i, j=1
Hijab shows that the martingale problem for &7 is well posed if k; € 2(A4,),
l1<ix<p.

The strategy of the proof of Theorem 4.1 is to use the stochastic integral
representation of p,f — [{u (A, ) ds, given by (4.6), to verify that p, provides a
solution to the filtered martingale problem. However, for this we need an
operator A which specifies a martingale problem for the joint process (X, Y),
while the filtering equations (4.6) and (4.7) involve only A, the generator of X.
This problem is easily amended by observing that if ¢ is a function in C*(R ?),
the infinitely differentiable functions with compact support, and if (f, g) € 4,,
1td’s rule implies

FR()H(X(®) = [Ta(X(s)9(X(s)
C H(X() 3 89(Y(s)) + R(X(s)) vi(Y(s))]] ds
is an {#* V #,Y}-martingale. It follows that (X,Y) solves the martingale
problem for (A, m, X &,), where
A = span{( f(x)¥(¥), g(x)¥(y) + F(x)[3A4(y) + h(x) ¥ ()]
(f,8) €Ay, ¥ € CP(RP)}

(span here means linear span). We need to show that A satisfies the hypotheses
of Theorem 3.3 if A, satisfies the assumptions of Theorem 4.1. The following
“obvious,” but not so easy to prove, fact will be needed [for a proof see Ethier
and Kurtz (1986), Chapter 4, Theorem 10.1].

LEMMA 4.3. Let A, C B(E;) X B(E,), i = 1,2, where E, and E, are com-
plete separable metric spaces and where (1,0) € A; for i =1 and i = 2. Define

‘ Bc B(E, X E,) X B(E, X E,),
B={(fify, & fa+ &1, &) €A (fy, &) €A,}.
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Then if uniqueness holds for the martingale problems for A, and A,, it holds for
the martingale problem for B, also.

The operator B corresponds to the process (X, X;), where X; solves the
martingale problem for A, i =1,2, and X, and X, are independent, given
independent initial measures.

LEMMA 4.4. Assume that A, and h satisfy the conditions of Theorem 4.1.
Then A satisfies the conditions of Proposition 2.2. In particular, the martingale
problem for A is well posed.

ProoF. Assumption (b) of Theorem 4.1, f(x)h;(x) € C(E),1<i<p, im-
plies that A ¢ C(E X R?) X C(E X R?). 9(A) is clearly an algebra and, by
applying the Stone-Weierstrass theorem to the one-point compactification of
E X R?, P(A) is dense in C(E X R?). One may also easily check that A
satisfies the positive maximum principle. It remains to show that the D r+[0, o)
martingale problem for A is well posed. Existence of solutions follows by explicit
construction: If B is a Brownian motion independent of X and Y and (X, Y)
has the distribution », then

(X(t), Y(t) =Y, + fth(X(s))ds + B(t))

0 £20

solves the martingale problem for (A4, »). To show uniqueness, let
A, = {(¢,1A¢)y € CZ(RP) + constants}.

It is well known [Stroock and Varadhan (1979)] that the martingale problem for
A, is well posed and its solution is merely R P-valued Brownian motion. Since the
martingale problem for A, is well posed, that for A, = A, U {(1,0)} is also and,
therefore, by Lemma 4.3, uniqueness holds for the martingale problem for

B = {(f(x)¥(y), 8(x)¥(y) + [(x)3 M4(8))I(f, 8) € Ay, ¥ € CZ(RP))

U {(1,0)}.

We shall show that if (X, Y) solves the martingale problem for A, then (X,Y),
where '

20 =Y() - [ ‘n(X(s)) ds,

solves the martingale problem for (B, 7, X ;). This will complete the proof since
then Z will be a Brownian motion independent of X, which is a uniquely
determined solution for the martingale problem for A,,.

Set ¢, = #,%X v %Y. Our task is to show that if ¢, < ¢,,

E[ H(X(£))¥(2(t:))1%, ]
= f(X(tl))‘l’(Z(tl)) +E

["BLAX(s)9(2(s))] b1, |.
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The following identities will be crucial. First, for any n € R? and s < ¢,
E[H(X(£)y(Y(¢) + n)¥,]

= HX()#(¥(s) + ) + E| [A41(X()9(Y(w) + 1) duig, |,
since (X, Y) solves the martingale problem for A. The terms f(x)y(y + ) and

Af(x)y(y + m) are continuous in n and bounded and, hence, one can conclude
that for any %,-measurable random variable (with values in R ?),

E[f(X())9(Y(¢) + H)9,]
(4.10) =ﬂxu»www+ﬂ)+EMQNMﬁ»Mﬂw+HMM%}
Now observe that

E[ {(X(£:))9(2(t:))9,]
- E|1(X(e))(¥(e) — [*h(x(w)) ]

(4.9)

xv¢(y(t2) - j:h(X(u))du)h(X(s)) dsl?,l].

The next step is to apply (4.8) with H replaced by [$h(X(uw))du to
f(X(t))VY(Y(2L,) — [§h(X(uw)) du) in the second term of the right-hand side of
(4.11). Here we shall write

Z(t,s) = ¥(t) - f:h(X(u»ds;

4.11 .
(#4.11) - B[ f(X(t)9(¥(w) - [*1(X(s,)

note that Z(s, s) = Z(s). The result is
B[ [*10X(6)) 99(2(ts, )H(X(s)) 19,
= [*H(X(0)) v9(2(t, $))h(X(s)) ds

(4.12) ;

+E| 1) TR () di|

+E fo‘2ft‘2vsAf(X(u))v¢(Z(u,s))h(X(s)) duds|?tl].
Now
) Lﬂxw»vuﬂa»»mxw»w

= f(X(tl))[‘P(Y(tl)) - \b(z(tl))]



96 T. G. KURTZ AND D. L. OCONE

and

ftth Af(X(u))pr(Z(u, S))h(X(s)) duds

Lvs

= [*TANX(@)¥(¥(x)) — AF(X(u))¥(2(w))] du.
Substitution of (4.13) and (4.14) into (4.12) and then (4.11) yields

E[ {(X(£,))¥(2(:))1%, ]

- F(EDHE(E) + E| [* = 1K) TR 0)

(4.14)

+Af(X(s))xb(Z(s))dsl%l]
+E[ f(X(£:))0(Y(:))9, | — F(X(2)¥(Y(2))
—E[ [ Af(X(S))xP(Y(S))dSI?,l]

- FX(E)9(20)) + E| [“B(X(s))y(2(s)) ds, | .

ProoF oF THEOREM 4.1. If y € C¥(RP) and f € 9(A,), an application of
1td’s rule shows that

p FCIBEN] = (o1 )9(0) + [k, ALF()9(¥(s))] ds
(4.15) + [T T3 (X)) +9(¥(s)
X [n(hf) = wohusf 1] dI*(s).
Let &(s) = p(h) — m(h) and set
w="TA inf{t‘foﬁs(s)ﬁ ds > N} A inf{t’foﬁushﬁ ds > N}.
Define a new measure QN on (2, #) by
O = exp| ["es) as) - 3 [e(s)P .

where I is the innovations process. Girsanov’s theorem implies that @, is a
probability measure and that

1) = ["™(s) ds

is an {%,Y}-Brownian motion on (2, #, Q). However, I*(¢ A 7y) = I(t A 1) —
J&~"NE(s) ds and, thus,

A N o vo(Y(s)) + w(Y ()[R — pohp,f ] dI*(s)

is an {%,"}-martingale on (2, #,Qy), since for f € D(A,) the integrand is
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bounded on {0, 7y ]. It follows from (4.15) that
~ AT, ~
(4'16) p‘t/\‘rN(f("Y(t/\ TN))) - ‘/(.) Np'sAf(.’Y(SA TN))dS

is an {%,Y}-martingale for all f & 2(A) on (R, #,Qy). Since A satisfies the
conditions of Proposition 2.2 (Lemma 4.3), Theorem 3.3 and Corollary 3.4 imply
that

PeX(t<eyy = t(Y)X{t< ™}

4.17
( ) = 77'tX{t< ™} a.s. QN7

where H, is the #(E,)-valued functional defined in Section 3. Since @y <« P,
(4.17) holds a.s. with respect to P also. Finally, a.s. P, there exists N(w) such
that n > N(w) implies 7,(w) = T. Taking N — oo in (4.17), therefore, implies
p,=mfort<Tas PO

PrOOF OF THEOREM 4.2. We shall work on the probability space (2, %, P,)
on which Y(-) is a Brownian motion; since P, ~ P, all almost sure statements are
valid with respect to either P, or P. First, observe that, because do,1 = 0,hdY,
0,1 is a nonnegative continuous local {%,Y}-martingale on (2, %, P,). Further-
more, o7l > 0 a.s. and it follows that min, 70,1 > 0 a.s., because a nonnegative
continuous local martingale will stay at 0 after it hits 0.

Let p, be a solution of the Zakai equation (4.7). Our strategy will be to show
that u, = p,/p,1 satisfies the Kushner-Stratonovich equation, so that p,/p,1 = 7,
and then to argue that p,1 = ¢,1. However, in forming g, = p,/p,1, one must take
care of the possibility that p,1 = 0. To this end, define for ¢ > 0,

7(e) = inf{¢|p,_1 <&} A T.

It suffices to prove that X <.}p; = X(1<-)0 ¢ < T as. Indeed, if this is the
case,

7(¢) > inf{tjlo,l <e} AT

and since inf{#|,1 < ¢} A T = T for ¢ less than some ¢y(w) almost surely, p, = o,
for ¢t < T almost surely. Thus, to complete the proof, let u, be a cadlag
{#,Y}-adapted process such that p, . (&) = Pen e/ Pen r(eyl- By 1t0’s rule,

bennef = mf + [ u (o) s+ [ u(B) — p (R £)] d¥(s)

for all f € 2(A,). By the proof of Theorem 4.1,

tAT(e)

Xit<reyte = Xg<n(e)T a.8.
Next consider the process 7, = p,1/0,1—recall that infj, 10,1 > 0 a.s. It0’s rule
implies

r=1+ fo To,h/0 — rah]dI(s).
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But for s < 7(e), p,h/0,l = r(p,h/pl) = ram h. Thus, X, <.y 7: =1 and
Xt <ne)Pt = (X{t< f(e)}Ptl)’”z
= (X{t<r(e)}°tl)'”t
= X< o

ExaMPLE. Let m(x): R® > R” and g(x): R” > R”® R be globally
Lipschitz and take

Aof = 3tr[gg™(x) D*f(x)] + m(x)vf(x)

with 2(A,) = C*(R"), where C*(R"™) is the class of infinitely differentiable
functions with compact support. According to Stroock and Varadhan (1979), the
martingale problem for A, is well posed: Solutions are given by solutions of the
stochastic differential equation

dX =m(X)dt+ g(X)dB,
where B is a d-dimensional Brownian motion independent of the initial condi-
tion x(0). If A(x) is continuous and satisfies E[J|h(x(s))|*> ds < oo, then the
Kushner—Stratonovich and Zakai equations have unique solutions given by the

normalized and unnormalized conditional distributions of the filtering problem
associated to Y(¢) = [fh(X(s))ds + W(t), where W is independent of X.

The strategy used to obtain uniqueness in Theorems 4.1 and 4.2 extends also
to cases involving correlation between signal and observation noise. Here, one
must be more specific about the signal process than in Theorems 4.1 and 4.2 in
order to handle the correlation effectively. We shall analyze the following
example:

dX(t) = m(X)dt + g(X) dB,,
(4.18) dY = h(X)dt + G, dB, + G, dB,,
X(0)=x,  Y(0)=0.

In (4.18), B, is a d-dimensional Brownian motion and B, is a p-dimensional
Brownian motion independent of B,. Both B, and B, are independent of the
initial condition x,, which has distribution 7,. We assume:
(@) m(x): R* > R” and g(x): R”—> R"*? are globally
Lipschitz.
(i) A(x): R® > R? is continuous and

(4.19) E[ TR(X(s))? ds < oo.
0
(ili) G, and G, are constant p X d and p X p matrices,

respectively, and G,GT + G,GT = I.
(iv) G,GT > 0.

Assumption (iii) is made only to give the filtering equations a nice form. If G,
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and G, did not satisfy this condition, by (iv) one could choose a symmetric
matrix p X p such that R - R = G,GT + G,GT and replace Y by

Y(¢) = RY(¢) = fo ‘R-h(X(s)) ds + R™'G,B,(¢) + R"'G,By(t).

G,=R'G, and G, = R™'G, now satisfy assumption (iii). Hence, (iii) repre-
sents no loss of generality.

Given the assumptions in (4.19), X is a solution of the well posed martingale
problem associated to the operator A, with domain 2(A;) = C(R™) given by

Aof = 3tr(gg"(x)D*(x)] + vf(x)m(x)

[see Stroock and Varadhan (1979)].
Equation (4.20) in the following theorem is the Kushner—Stratonovich equa-
tion for this filtering problem [Fujisaki, Kallianpur and Kunita (1972)].

THEOREM 4.5. Let p, be a right-continuous P(R™)-valued %,Y-adapted pro-
cess such that

wlF) =mo 1)+ [(Aof)ds
(4.20) ,
+ b ) = p (W) + w(V18GT)] dI(s)

for all f € 2(A,). Then, given assumptions (4.19) ()—(iv), p,=m, forallt <T
a.s.

PROOF. As in the proof of Theorem 4.1, we must first construct a generator
A for (X, Y). For the domain of A, we take the linear span of the set

{f@)W(2)f € C2(R™), ¥ € C2(RP)}.
Clearly, A must have the form
Af(x)¥(y) = ¥(2)Aof(x) + f(x)[3 Vi (y) + RT(x) V()]
+vf(x)g(x)GT v ().

Suppose that the martingale problem for A is well posed; it certainly satisfies
the other “Echeverria conditions” of Theorem 3.3. By It6’s rule,

wFC)H(X()
= 7o(1)9(0) + [u(Af(, Y(s))) ds
+ [T () + 1gGT)H(X(5)) + no( 1) TH(X(5))

—9(Y(s)n,(h)p( f)] dI*(s).

Arguing exactly as in Theorem 4.1, we may then conclude that g, =7, for t < T
a.s. Therefore, it remains to show that the martingale problem for A is well
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posed in order to complete the proof. To do this, let B be the operator

Bf(x)¥(y) = ¥()Asf(x) + {(x)[3 v¥ ()] + Vi(x)g(x)GT v (),
defined on

2(B) = span{ f(x)¥(y)If € C2(R"), ¥ € C2(R?)}.

By the results of Stroock and Varadhan (1979), the martingale problem for B is
well posed and its solutions are given by solutions to the stochastic differential
equations

dX = m(X)dt + g(X)dB,,
dZ = G, dB, + G, dB,.

By arguing exactly as in Lemma 4.4, one may then conclude that if (X, Y) solves
the martingale problem for A, then (X,Y), where Z(¢) = Y(¢) — [{h(X(s)) ds,
solves the martingale problem for B. Since the martingale problems for A, and
B are well posed, it follows that the martingale problem for A is well posed, also.

O

The uniqueness theorems obtained so far effectively require the observation
function A(x) to be continuous because their proofs rely upon Theorem 3.3
which includes the condition A c C(E) X C(E). We can relax the continuity
assumption if we replace the hypotheses on A, by an assumption on Z(A — A,)
and invoke Theorem 3.2. For the case of independent observation noise and
signal, we obtain Theorem 4.6: As in Theorems 4.1 and 4.2, the signal X is a
cadlag solution to the martingale problem for (A,, ), Y(t) = [{h(X(s))ds +
W(t) €« R?, where W is a Brownian motion independent of X and
E[J|h(X(s))|? ds < 0. In addition, we shall use X, to denote the solution to the
martingale problem for (A,, §,).

THEOREM 4.6. Assume that:

(i) The Dy ([0, 0)) martingale problem for A, is well posed and R(\ — A,) is
bounded-pointwise dense in B(E) for all A > 0.

(ii) EfT|h(Xx(s))| ds < oo foreachx in E.
0

Let {u,} be a {#,”}-adapted process with paths in Dy [0, T') such that
(4.21) fTu§(|h|)ds <w as.
0

and {p,} satisfies the Kushner-Stratonovich equation (4.6) for all f in 9(A,).
Then p,=m, forallt < T a.s.

THEOREM 4.7. Let the assumptions of Theorem 4.6 hold. Let {p,} be a
(#,Y}-adapted process with sample paths in D 4+ ()0, T), such that
J&o%(|h)) ds < o and {p,} satisfies (4.7) and (4.8).

Then p, =0, t < T a.s.
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REMARK. Condition (4.21) insures that the term [Jp (Af)dI*(s) in the
Kushner—Stratonovich equation is well defined. It is also necessary for limit
arguments in the proof.

Proors. Theorem 4.7 is proved from Theorem 4.6 exactly in the manner of
proving Theorem 4.2 from Theorem 4.1.
We shall carry out the proof of Theorem 4.6 for the case T' = oo, that is,

(4.22) [Tw0hl)ds < o as.
0
and
(4.23) Efwlh(Xx(s))| ds < oo foreach x in E.

This incurs no loss of generality. If T < co, set X = {(X(t), t)} and Y(¢) =
fo‘h( X(s)) ds + W(t), where A(x, s) = h(x)l(s =Ty For this filtering problem, X
solves the martingale problem for A,, where A is the linear span of

{(F(x) Fo(2), Fo(8)Aof(x) + f(x) f5 (EIf € D(Ay), fo € CH[0,00)}

and if p, satisfies the original Kushner—Stratonovich equation (4.6) involving A,,
i, =, X 8, solves it for A,

BF) = m(F(,0)) + [(5,(AoF) ds

+ [1aRF) = i (R ()] dI*(s)

for € 9(A,) and t < T. Clearly, (4.22) and (4.23) are satisfied for A; turther-
more, from the proof of Theorem 3.2, A, is well posed and Z(\ — A4,) is
bounded-pointwise dense in B(E X R ). ThlS rephrases the 7' < o case as a
T = oo case.

As before, the main problem is to construct a generator A for (X, Y) such that
for each ¢(x, y) € 9(A),

(28) 1, (o(-, Y1) = m(6(-,0) + [n(A0(-, Y(e))) s + ['9,I(s)

for some process 7,. This time, however, we want A to satisfy the assumptions of
Theorem 3.2—the Dy, p»[0, c0) martingale problem for A must be well posed
and R(A — A) must be bounded-pointwise dense in B(E X RP) for all A > 0.
The rest of the proof will be devoted to constructing A and proving these
properties. Once this is done, the reader will see from the form of 7, in (4.24)
that the proof used to complete Theorem 4.1, using Theorem 3.2 in place of
Theorem 3.3, also completes the proof of Theorem 4.6, except for one technical
detail. Corollary 3.4 used in the proof of Theorem 4.1 no longer applies because
2(A) is not contained in C(E). However, this condition can be dropped if the
random time 7 in Corollary 3.4 is discrete; the proof is exactly the same using
Lemma 5.16 of Chapter 4 of Ethier and Kurtz (1986). We shall fix the proof of
Theorem 4.6 by showing that the stopping times 7y, N > 0, defined in the proof
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of Theorem 4.1, can be replaced by discrete stopping times. First observe that we
can construct a probability space (2,9, Q) on which a process (g, U) and

- stopping times 7y are defined so that (4., , ,U(- A 7y)) has the same distribu-
tion as it does under Q. (@, is also defined in the proof of Theorem 4.1.) One
way to do this is to apply Tulcea’s theorem to the sequence of conditional
distributions for (u.,,,  ,U(: A 7y,,)) given (p., ., U(- A 7y)). Next select ey
so that @(7y + ey = Ty, 1) < 27 V. By the Borel-Cantelli lemma 7y + ¢ > 7y,
only for finitely many values of N a.s. On the event {7y < key < 7y + &5},
define yy = key. Now define M = min{N > Ny|yy < 7y} for some N,. Then
Y = v, is a discrete stopping time and

ponyd (5 UEA ) = [ A, UGs)) ds

is an {#Y} martingale on (2, @) for each f in 2(A). Because vy is discrete we
can now apply Corollary 3.4 to Theorem 4.6 to prove that

p,=H(Y) ==,
Qy as.on {t < vy}, and therefore on {t < 75}. As N » o0, 7y = T,and sop, = m,
for t < T. ‘

The construction of A given in Theorem 4.1 no longer works here because the
term f(x)h(x)Vy(y), appearing there in Af(x)y(y), is no longer necessarily
bounded. However, we do know what the resolvent of A should be. If X solves
the martingale problem for (A4, 8,), let Y(¢) = y + [(h(X(s)) ds + W\(t), where
W, is a Brownian motion independent of X,. Then we should have

F(z,y) = (A= 4)'G(x, 5) = E[ e ™MG(X,(t), V,(t)) at
0
and, in this case, we would get AF(x, y) = AF(x, ¥) — G(x, y). We shall use

this to define A by considering the special case G(x, y) = a(x)exp(i{8, y)) in
which a(x) isin B(E) and 6 € RP. For this, note that using

E |exp i(0, Y,())l7 %] = exp(i(6, y))exp(~ %I0I2t)exp[i< 0, [ (X(s) ds>]
we obtain the formula

(425) B[ ea(X(0))exp[i(8, V(1))] dt = f(x)expli(F, 7)),

where

(4.26) f(x) = Ejowexp[—(x + §|0|2)t]a(Xx(t))exp[i<0,/()th(Xx(s)) ds>] dt.
Therefore, define

A = span{( f(x)exp(i(8, ¥)), [AMf(x) — a(x)]exp(i(8, ¥)))|
€ RP,A>0,a(x) € B(E) and f is given by (4.26)}.

We next must show that A has all the right properties. Clearly, Z(A — A) D
span{a(x)exp(i(f, y))|la(x) € B(E), 6§ € RP}, which is bounded-pointwise
dense in B(E X R”). To show that (X,Y) solves the martingale problem for
(A, my X 8,) and that A is well posed and satisfies (4.24), we need the Lemma
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4.8, which we shall prove later. In this lemma, A denotes the bounded- pointwise
closure of A,. Recall from Theorem 3.2 that 9?(}\ Ao) = B(E) for A > 0.

LEMMA 4.8. Let a(x) € B(E) and define f(x) by (4.26). Then there are a
sequence { f,}5_, C D(A,) and constants M, K such that:

() f(x) = b.p-lim, , , fi(%).
(i) A ofu(x) <M + K|h(x)| forall x € E.
(iii) hmk_,ooA fi(x) + fo([— 1162 + i{h(x), 8] = A f(x) — a(x) for each
xe E.

A is well posed. 1t is enough to show that (X,,Y,) solves the martingale
problem for (A, §, X §,) for each (x, y) € E X RP. For » € #(E X RY), a solu-
tion to the martlngale problem for (A, ») is then [P, , dv(x, y), where P,
the measure on D, g~[0, o) induced by (X s Y). [P A B) is measurable for
each B € #(Dy,gr[0, ) because R(A — A) is dense in B(E X RF).] Unique-
ness also is a consequence of the bounded-pointwise denseness of Z(A — A) (see
the remark after Theorem 3.2).

For the next argument, we need the following fact: If ¢ € @(AO), then

V(t) = c( X.(t))exp|i(0, Y,(2))]
~ [TAse(X(6)) + e( X)) [~ 410" + iCh(X(5)), )]

X exp[i(8,Y,(s))] ds

is a %X Vv #Y-martingale. Indeed, if the martingale M(¢) = (X (¢)) —
f(onc(X (s)) ds is right continuous, It6’s rule gives

V(t) - V(0) = foexp[i<0,Yy(s)>] dM(s)

+fotic(Xx(s))exp[Ko’Yy(s»]odW(s)'

Using (4.23) and the independence of X and W, one can prove that V(¢) is a
martingale even if M(#) is just a measurable process [see Ethier and Kurtz
(1986), Chapter 2, Problem 22].

To show that (X,, Y,) solves the martingale problem for (4, §, X §,), we must
show that given any ¢, > t, and U € 6{X(s),Y(s): s < t}, a m B(E) and f
related to a by (4.26),

0= E[xu[f(xx(tl))exp[iw, Y(8))] — F(X.(2:))exp[i(8, V,(2,))]
(4.27) )
- [TIORG) - o) emslico, (o] as] |

Let f, be as in Lemma 4.7. Then (4.27 ) certamly holds if f is replaced by f,
and Af(x) — a(x) byA fi(x) + fu()[— 110)% + i(h(x), 8)]. Now take & — oo,
using dominated convergence, based on (4. 23) and Lemma 4.8(ii), to get (4.27).
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A satisfies (4.24). Let f(x) be related to a(x) as in (4.26) and let f,(x) — f(x)
as k — oo as in Lemma 4.8. By Itd’s rule

me( £i(-Jexpi(0, Y(2))])
= m(£u() + [w(Aofi()) + ([~ 4161 + iCh(-), 0))])
x expli(6, ¥(s))] ds + ['n"(s) dI*(s),

1*(s) = [1( ()i + p(Afe) — p (AR f2)]exp(i(8, Y(s))).
Using (4.22) and Lemma 4.8, it is again valid to pass to the limit. One thereby
obtains (4.24) for ¢(x, ¥) = f(x)exp(i{f, y)) and

My = [1s(£)i0 + pn(hf ) — p(B)u,( f )] exp(i(8, ¥)).

Proor oF LEMMA 4.8. Let

f(x) = B[ om0t/ x, (t))exp[ (0. ['n(x45) ds)] de.

Let hy(x) = R(X)X (nx) < 1) We claim that

(=) =E[ °°e—<“'“'2/2>‘a(Xx(t))exp[i<0, [ (X)) ds>] dt

satisfies (i)—(iii) of Lemma 4.8. Statement (i) is immediate by dominated conver-
gence. To prove the other statements it suffices to show

(4.28) (A +1612/2 = Ay) " Ta + f4i(hy, 0)1(x) = fi(=).

Indeed, given (4.28), f, € D(Ay) and Ay f, = (X +|012/2)f, — a — if (b, 0).
Statements (ii) and (iii) then follow easily. To prove (4.28) observe that

E[1(X(8))(hu( X (1)), 0)]
- E[ (hi( X(1)), 0>E[ [ e (X (s))
Xexp[i<0, fthk(Xy(r)) dr>] ds|y = Xx(t)”
=E [(hk(Xx(t)),0>e‘“""2/2"f e~ M/ Dsg( X (s))

Xexp[< [ (E) dr>]

It follows upon interchanging orders of integration that
E [ [T e (X (8)iChy(X,(0)), 6) dt]
0
= fk(x) — E[fwe—(k+|0lz/2)sa(Xx(s)) ds].
0
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Thus
(A +1012/2 — Ay) " 'La + foi(hy, 6)]

- E[fowe—mwﬁ/zn[a(Xx(t)) + f(X(2)ihy( X, (2)), )] ds

= fy(x). O

In applying Theorem 4.6 or 4.7, it is useful to note that one really needs only
to check that Z(A — A,) is bounded-pointwise dense in B(E) only for all A > A,
for some A, > 0 rather than for all A > 0. To see this, we show that the
condition “A > 0” in Proposition 2.1 can be replaced by “A > A, for some
Ao > 0.” Then, since Theorem 3.2 and, hence, Theorems 4.6 and 4.7, depend
ultimately on Proposition 2.1, we can make the same replacement in these
theorems also. But Proposition 2.1 relies on the identification of the Laplace
transforms

® At _ (%, -t
(4.29) /(;e vtdt—/(; e My, dt,

for all A > 0, to conclude that u, = », for all £, and it is easy to check that y, = »,
for all ¢ even if (4.29) is shown to hold only for all A > A,, where 0 < A, < co.
This remark is important in the next example, which gives a class of A, and 2
satisfying the hypotheses of Theorem 4.6.

EXAMPLE. As in the previous example, we consider the filtering model
dX =m(X)dt+ g(X)dB,
X(0) has distribution ),
dY = h(X) dt + dW,
Y(0) = 0.

Here m: R” - R”, g: R® - R™"*% h: R® > R? and B and W are independent
Brownian motion processes independent of X(0). Assume that:

(4.30)

(1) m(x) and g(x) are bounded twice continuously differen-
tiable with bounded first and second derivatives.
(i) |h(x)] < KA + |x|?) for some integer 8 > 2.
(iii) E)X(0)|%# < 0.

(4.31)

Let
Aof(x) = §tr[g8"(x)D?*f(x)] + (Vf(x), m(x))
be defined on the domain
P(A,) = {f € C*(R")|f and its derivatives up to second order are bounded } .
We claim that A, and & satisfy the conditions of Theorem 4.6. Indeed,
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assumptions (ii) and (iii) of (4.31) easily imply
E ["1(X(s))? ds < oo and E [ [A(X,(5))*ds < o0
0 0

for all x and any T < oo. It remains to show that for some Ay, 0 < A < oo,
Z(A — A,) is bounded-pointwise dense in Z(R"). For this, let U, be the set of
a(x) € C(R™) such that if f(x) = E[Pe Ma(X(t)) dt, f, € D(A,). Then given
a € U,

= Aofo(x).

h=0

d
d_tha(Xx(h))
At the same time,
Ef(X,(h)) = eME [~ e Na(X,(¢)) dt
R

and, hence,

d
T EL(X(B) = M(x) - alx).

Thus, for a € U,, (A — Ay)f(x) = a(x), so that U, c Z(A — A,), and to show
R(A — A,y) is bounded-pointwise dense in B(R™), it suffices to show U, is
bounded-pointwise dense. We claim that, in fact, there is a A, > 0, such that for
all A > A,, CAR") = {a € CAR")|a and its first and second derivatives are
bounded} c U,. Since CXR") is bounded-pointwise dense in B(R"), this will
complete the proof.

Thus, to finish, observe that assumption (i) implies that dX}*(¢)/dx; and
3°X}(t)/dx; dx; exist, where X} denotes the kth component of X and, that, if
a € CAR™), u(x, t) = Ea(X(t)) € C? for each ¢t with

du axk
=F d
axi (x’ t) {%axk(Xx(t)) 8xi (t)}’
3%u Xk 9x!
axi axj(x’ y) = E{ glaxkxl(Xx(t)) axl (9xj (t)

+ Day(X(0) o X (t)}

dx; dx;

[see, for example, Friedman (1975)]. Moreover, one can show that there is a
K < oo such that if {(¢) represents any first or second derivative of X (¢) or
difference approximation thereof,

E|§(t)* < Ke®
for « = 1,2. For A > A, = K, it follows that

f(x) = E["e™a(X,(1)) dt € CER") = D(4,).
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