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Abstract: Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing
positively charged groups and provide widespread biological functions. Most of these aspects are well
known and covered by quite a number of excellent surveys. Here, the present review includes novel
aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs.
(2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following
loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs
in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while
concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and
complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA
precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production
when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It
summarizes novel data on PA transport in brain glial cells explaining why these cells but not
neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA
interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products.
Altogether, this review can serve as an updated contribution to understanding the PA mystery.

Keywords: polyamines; CNS; astrocytes; neurons; glial cells; spermidine; spermine; agmatine;
nutrition; transport

1. Introduction

The term polyamines (PAs) comprises small molecular compounds with two or
more nitrogen-containing, positively charged groups, such as ammonium or guanidinium
residues (Table 1). PAs may be derived from natural or artificial sources. PAs and their
metabolites may be encountered throughout all kingdoms of life [1]. The important PAs
in mammalian cells are putrescine (PUT), spermidine (SPD), and spermine (SPM), which
also are present in all eukaryotic cells. Some prokaryotes may lack the ability to synthesize
SPM [2], but thermophiles [3], especially, show a wide variety of other PAs (Table 1).

Biological functions are widespread, including simply buffering acidic compart-
ments [4,5], stabilizing or condensing nucleic acids [6,7], promoting homology-directed
DNA repair [8], protecting from oxidative damage [9,10], and increasing longevity [11–13],
and are covered in a separate article of this special issue.
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Table 1. Designations, structures, and biological or pharmacological functions of important polyamines.

Source Substance Sum Formula Mass/g·mol−1 Structure Function/Purpose/Usage References

plants/protozoa Diaminopropane C3H10N2 74,13 NH2(CH2)3NH2 proliferative agent (1)
ubiquitous Putrescine C4H12N2 88,15 NH2(CH2)4NH2 precursor to spermidine (2)

prokaryotes/E.coli Cadaverine C5H14N2 102,18 NH2(CH2)5NH2 decarboxylation product of L-Lysine (3)
eukaryotes Norspermidine C6H17N3 131,22 NH2(CH2)3NH(CH2)3NH2 catabolic metabolite (4)
ubiquitous Spermidine C7H19N3 145,25 NH2(CH2)3NH(CH2)4NH2 growth regulator in eukaryotic cells (5)
ubiquitous N1-Acetylspermidine C9H21N3O 187,28 CH3CONH(CH2)3NH(CH2)4NH2 catabolic metabolite (6)

prokaryotes/E.coli Aminopropylcadaverine C8H21N3 159,27 NH2(CH2)5NH(CH2)3NH2
compensatory metabolite/

growth regulator (7)

plants/prokaryotes/algae Homospermidine C8H21N3 159,27 NH2(CH2)4NH(CH2)4NH2
essential precursor to

pyrrolizidine alkaloids (8)

plants/prokaryotes/algae Norspermine C9H24N4 188,31 NH2(CH2)3NH(CH2)3NH(CH2)3NH2 antiproliferative agent (9)
plants/prokaryotes/algae Thermospermine C10H26N4 202,34 NH2(CH2)3NH(CH2)3NH(CH2)4NH2 growth regulator in plants (10)
eukaryotes/prokaryotes Spermine C10H26N4 202,34 NH2(CH2)3NH(CH2)4NH(CH2)3NH2 growth regulator in eukaryotic cells (5)

eukaryotes N1-Acetylspermine C12H28N4O 244,38 CH3CONH(CH2)3NH(CH2)4NH(CH2)3NH2 catabolic metabolite (6)

prokaryotes/E.coli Bisaminopropylcadaverine C11H28N4 216,37 NH2(CH2)3NH(CH2)5NH(CH2)3NH2
compensatory metabolite/

growth regulator (7)

plants/fungi Canavalmine C11H28N4 216,37 NH2(CH2)4NH(CH2)3NH(CH2)4NH2
growth inhibitor in murine

leukemia cells (11)

prokaryotes/E.coli Homospermine C12H30N4 230,39 NH2(CH2)4NH(CH2)4NH(CH2)4NH2
growth regulator in root

nodule bacteria (12)

thermophiles Caldopentamine C12H31N5 245,41 NH2(CH2)3NH(CH2)3NH(CH2)3N(CH2)3NH2 survival at extreme temperature (13)

prokaryotes/E.coli Aminopropylcanavalmine C14H35N5 273,46 NH2(CH2)3NH(CH2)4NH(CH2)3N(CH2)4NH2
compensatory metabolite/

growth regulator (7)

plants Homopentamine C16H39N5 301,51 NH2(CH2)4NH(CH2)4NH(CH2)4N(CH2)4NH2 growth/differentiation (14)
thermophiles Caldohexamine C15H38N6 302,5 NH2(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2 inhibition of PA-uptake (9)
thermophiles Homocaldohexamine C16H40N6 316,53 NH2(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH(CH2)4NH2 antiviral agent in plants (15)
prokaryotes Thermohexamine C16H40N6 316,53 NH2(CH2)3NH(CH2)3NH(CH2)4NH(CH2)3NH(CH2)3NH2 inhibition of PA-uptake (9)

plants/mammals Agmatine C5H14N4 130,19 [(NH2)CNH]NH(CH2)4NH2
neurotransmitter/precursor

to putrescine (16)

plants N6-Methylagmatine C6H16N4 144,22 [(NH2)CN(CH3)]NH(CH2)4NH2 nutrient (17)

PA-analogue Methylglyoxalbisguanylhydrazone
(MGBG) C5H12N8 184,2 (NH2)(NH)CNHNCHC(CH3)NNHC(NH)(NH2) antileucamic agent (18)

PA-analogue MDL 27695 C27H44N4 424,7 C6H5CH2NH2(CH2)3NH(CH2)7NH(CH2)3NH2CH2C6H5 antimalaria agent (19)
PA-analogue N1,N11-Bisethylnorspermine C13H32N4 244,42 C2H5NH2(CH2)3NH(CH2)3NH(CH2)3NH2C2H5 antiproliferative agent (20)
PA-analogue BE 4-4-4-4 C20H47N5 357,6 NH2(CH2)4NH(CH2)4NH(CH2)4N(CH2)4NH2 antiproliferative agent (21)
PA-analogue trimer 44NMe C33H69N9 592 [1,3,4][(CH2)NH(CH2)4NH(CH2)4NH2]3(C6H6) antiproliferative agent (22)

Streptomyces spp. Kanamycin A C18H40N4O11 488,5
6-O-(3-Amino-3-desoxy-α-D-glucopyranosyl)-4-O-
(6-amino-6-desoxy-α-D-glucopyranosyl)-2-desoxy-

D-streptamin
aminoglycoside antibiotic agent (23)

Streptomyces spp. Neomycin B C23H46N6O13 614,6
4-O-2,6-Diamino-2,6-didesoxy-α-D-glucopyranosyl-5-O-

[3-O-2,6-diamino-2,6-dideoxy-β-L-idopyranosyl-
β-D-ribofuranosyl]-2-deosxy-D-streptamin

aminoglycoside antibiotic agent (23)
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Historically, PAs had been discovered during the seventeenth century, when crystals
appeared in samples of human semen left to cool [14]. A century later, these crystals were
identified as an organic phosphate [15]. After another 100 years, the organic base was
identified [16] and subsequently called “spermine” [16,17]. Later, PA biosynthesis, inter-
conversions, and basic biological functions were established by E. Agostinelli, U. Bachrach,
R. Casero, T. Eisenberg, G. Gilad, K. Igarashi, J. Jänne, F. Madeo, G. Park, M. Pegg, C. W.
Porter, M. Rosenheim, H. Tabor, C. W. Tabor, H. Wallace, and other scientists (alphabetical
order; for reviews see [18–21]). The interest in PAs has grown steadily, with 1 paper pub-
lished on PA-research from 1951 to 1960, 2259 papers from 1981 to 1990, and 4113 papers
from 2011 to 2020.

The existing literature on PAs is abundant but sometimes vague. The present review
focuses on chemistry, nutritional uptake, and metabolism of PAs in the mammalian cen-
tral nervous system (CNS) and may serve as a framework for an increased molecular
understanding of PA homeostasis.

2. Chemistry of Polyamines

Most PAs consist of at least two amino or guanidinium groups that are positively
charged and separated by a carbon backbone of varying length. In contrast to other cations,
such as Mg2+ or Ca2+, PAs feature at least two charged groups connected by a flexible
carbon chain. This adds hydrophobic effects [22,23] to the electrostatic interactions of the
amino or guanidine groups. SPM and SPD are the most abundant PAs in mammals. PUT
is the common precursor but is usually only present in low concentrations [3] or is even
absent in some parasitic organisms [24]. Chemically, agmatine (AGM) also belongs to the
PA family. This biogenic amine, however, exerts largely separate functions in mammalian
tissues as compared to the other PAs [25,26], but may serve as a precursor for PUT [27–29].

3. Intake of Polyamines from Nutrition

Polyamines (PAs) may be derived from alimentary sources or by biosynthesis. In
the mammalian gut lumen, the predominant share of PAs stems from food intake [30],
whereas a variable quantity may be produced by large intestine microbiota [31]. The
intestinal flora in most mammals synthesizes mainly PUT, whereas its amount depends
on the composition of the diet [31]. Food sources with relevant PA content include cheese,
nuts, mushrooms, tea, fruit, vegetables, mollusks, and other meat products [32–35]. With
respect to PA synthesis by gut microbiota, an arginine rich diet is favorable [31]. PAs in
the gut lumen are absorbed predominantly by the duodenal and jejunal mucosa [36,37]
and subsequently transferred [31] into the bloodstream (Figure 1). The estimated average
of alimentary intake of PAs into the gut varies between 250 to 550 µmol/d, depending
on the geographical region and associated food patterns [32]. In detail, PUT contributes
197 µmol/d, SPD with 74 µmol/d, and SPM with 46 µmol/d [34] to the daily PA intake.

PAs in the gut lumen may reach almost millimolar concentrations after a meal and
disappear rapid and completely [37], whereby the luminal PA content returns to the fasting
level in about 120 min [30]. PUT is metabolized almost completely inside the enterocytes.
Plasma levels of SPD and SPM show only mild (up to 20 µM) increases after a meal [30].
Most likely, PA uptake in peripheral tissues keeps the plasma concentrations low (Table 2).
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ulated biosynthesis of PAs in the central nervous system. Inside the neuron, PA concentrations are 
tightly controlled by at least six proteins, represented as boxes in the bottom row: antizyme inhibi-
tor, ornithine decarboxylase, S-adenosylmethionine decarboxylase, Spd/Spm-synthase, antizyme, 
and Spm/Spd-N1-acetyltransferase. Arrows or blocked arrows indicate which target proteins (green: 
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Figure 1. Schematic representation of nutritional intake and regulated biosynthesis to maintain
polyamine homeostasis in the body. Nutritional intake into the blood stream includes arginine
and orhithine in addition to the polyamines (PAs) putrescine, spermidine, and spermine. PAs are
taken up mostly in the small intestine and delivered to the blood stream, but they cannot pass the
blood–brain barrier. However, arginine and ornithine can and will represent starting materials of the
regulated biosynthesis of PAs in the central nervous system. Inside the neuron, PA concentrations are
tightly controlled by at least six proteins, represented as boxes in the bottom row: antizyme inhibitor,
ornithine decarboxylase, S-adenosylmethionine decarboxylase, Spd/Spm-synthase, antizyme, and
Spm/Spd-N1-acetyltransferase. Arrows or blocked arrows indicate which target proteins (green:
increase PAs; red: decrease PAs) are modulated by a given PA. The colour of the (x) indicates which
PA is involved.

Loss of PAs from the body may be due to micturition and defecation. Concentrations
in urine are very low (Table 2) and PA loss via diuresis is negligible. Estimated concentra-
tions in feces are about 800 µM for PUT, about 40 µM for SPD, and 20 µM for SPM [36].
Considering fecal density of 1.09 kg/L and 155 g as an average daily amount of stool, loss
of PAs in feces amounts to about 123 µmoles PUT, 5.9 µmoles SPD, and 2.9 µmoles SPM per
day. Altogether, there is roughly a nutritional daily net intake into the body of 74 µmoles
PUT, 68 µmoles SPD and 43 µmoles SPM. Actually, the uptake of PUT may be much higher,
as gut microbiota can produce considerable amounts of PUT from arginine [31].

The brain apparently is excluded from taking up PAs from the plasma (Figure 1), as
the blood–brain barrier (BBB) seems to be completely impermeable to PAs [38,39] (this
special issue). Consequently, the brain depends on different sources to obtain the essential
PAs. Most likely, arginine (Figure 1), which crosses the blood–brain-barrier via the CAT1
transporter [40], provides the necessary material for PA biosynthesis in brain.
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Table 2. Polyamine concentrations in brain and body fluids.

Arg PUT NAc-PUT ref. SPD NAc-SPD ref. SPM NAc-SPM Reference

serum 80 µM 100 nM (4) 130 nM (4) 40 nM (4)
130 nM (3) 400 nM (3) 50 nM (3)

320 nM (1) 35 nM (5)
60 nM 2.5 nM (8) 4.0 nM (8) 43 nM (8)

cerebrospinal fluid 180 nM (2) 150 nM (2) 90 nM (2)
230 nM (6) 120 nM (6) 140 nM (6)

brain extracellular space 750 nM (5) 420 nM (5) 480 nM (5)

cytoplasm (fibroblasts) 29 µM (4) 159 µM (4) 635 µM (4)
cytoplasm (ascites cells) 43 µM (4) 430 µM (4) 602 µM (4)

hepatocytes 1150 µM (9) 880 µM (9)

brain (Müller cells) 800 µM (7)

urine 60.2 nM 2.5 nM (8) 4.0 1.7 nM (8) 43.1 nM 1.3 nM (8)
daily loss 90.3 nmoles 3.7 nmoles (8) 6.0 nmoles 2.5 nmoles (8) 64.6 nmoles 1.9 nmoles (8)

References
(1) Marton, L.J.; Russell, D.H.; Levy, C.C. Clin. Chem. 1973, 9, 923–926
(2) Marton, L.J.; Heby, O.; Levin, V.A.; Lubich, W.P.; Crafts, D.C.; Wilson, C.B. Cancer Res. 1976, 36, 973–977
(3) Bartos, F.; Bartos, D.; Grettie, D.P.; Campbell, R.A. Biochem. Biophys. Res. Commun. 1977, 75, 4

Seiler, N.; Atanassov, C.L. Progr. Drug Res. 1994, 43, 87–141
(4) Morgan, D.M.L. Biochem. Soc. Trans. 1990, 18, 1080–1084
(5) Dot, J.; Lluch, M.; Blanco, I.; Rodríguez-Alvarez, J. J. Neurochem. 2000, 75, 1917–1926

Dot, J.; Danchev, N.; Blanco, I.; Rodríguez-Alvarez, J. Neuroreport 2002, 13, 1083–108
(6) Ekegrena, T.; Gomes-Trolin, C. Anal. Biochem. 2005, 338, 179–185

(7) Kucheryavykh, Y.V.; Shuba, Y.M.; Antonov, S.M.; Inyushin, M.Y.; Cubano, L.; Pearson, W.L.; Kurata, H.; Reichenbach, A.; Veh, R.W.; Nichols, C.G.;
Eaton, M.J.; Skatchkov, S.N. Glia 2008, 56, 775–790

(8) Liu, R.; Li, Q.; Ma, R.; Lin, X.; Xu, H.; Bi, K. Anal. Chim. Acta 2013, 791, 36–45
(9) Igarashi, K.; Kashiwagi, K. Int. J. Biochem. Cell Biol. 2019, 107, 104–115

4. Biosynthesis of Polyamines

When the brain is excluded from nutritional PA sources, homeostasis (Figure 1) de-
pends on metabolism. With respect to the biological importance of PAs, it is plausible
that their intracellular concentration is tightly controlled at several levels. This task is
fulfilled by regulating biosynthesis (Figure 2) as well as degradation (Figure 3). The amino
acids L-arginine, L-ornithine, glycine, L-proline, L-glutamate, and L-methionine [41–43]
are effective sources. Biosynthesis predominantly follows two different pathways, both
producing PUT as starting material for the following reactions (Figure 2).
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begins with the action of arginase on arginine, forming ornithine, and its subsequent decarboxylation
provides putrescine (PUT). PUT may also be obtained from arginine via decarboxylation to agmatine
and subsequent action of agmatinase (left column). In addition, ornithine may be obtained from argi-
nine and glycine via arginine-glycine-amidinotransferase. Glutamate and proline provide additional
sources (middle columns). The additional carbon chains of spermidine and spermine are derived
from methionine (right column).
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Figure 3. Schematic representation of polyamine catabolism and conversions. In the first step,
the classical degradation pathway for spermine and spermidine involves N-acetylation via the
corresponding N-acetyl transferase. N-acetylated PAs are oxidized by peroxisomal polyamine
oxidase, yielding spermidine or putrescine, respectively. Alternately, spermine may be directly
oxidized by spermine oxidase to N8-3-propyl-spermidine (upper left side), which spontaneously
splits off acrolein and thus is converted to spermidine. This molecule, instead of N-acetylation, may
be oxidized by diamine oxidase to N1-3-propyl-putrescine (lower left side), which again under loss
of acrolein forms putrescine. There are two side pathways. Spermidine may be attached to a lysine
side chain of a nascent protein, which subsequently is hydroxylated to the functional elF5A-hypusine
transcription factor (right side). In a separate pathway, N1-3-propyl-putrescine, the product of the
oxidation of N-acetyl-spermidine by diamine oxidase, is reduced to putreanine.

4.1. The Ornithine Decarboxylase Pathway

In the “classical” ornithine decarboxylase (ODC) pathway (Figure 2), arginine is
split by arginase, yielding ornithine and urea [42,44]. Alternately [42,45], ornithine may
be obtained from arginine via a reaction with glycine, from glutamate, or from proline
(Figure 2).

PUT, the starting product for the biosynthesis of SPD and SPM, is generated from
ornithine via decarboxylation by ODC. This is the rate-limiting step and, consequently,
mammalian PA synthesis is predominantly controlled here (Figure 1). The amount of ODC
enzyme is increased by low levels, while its degradation is enhanced by high levels of PAs.
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ODC function is further subjected to regulation by ODC antizyme and, in addition, by an
antizyme inhibitor protein [46–48]; for review see [3]), highlighting the intricate control
mechanisms that guarantee intracellular PA homeostasis.

In the next biosynthesis step (Figure 2), spermidine synthase, an aminopropyl trans-
ferase, adds an aminopropyl group derived from decarboxylated S-adenosylmethionine
(dcAdoMet) to PUT, thereby forming SPD. Subsequently, SPD is elongated the same way
by another aminopropyl group, now via spermine synthase, to form SPM. Both amino-
propyl transferases are subject to negative feedback control (Figure 1) via their reaction
product S-methyladenosine [49]. Since a steady supply of dcAdoMet is crucial for de
novo synthesis of SPD and SPM, its formation also represents a rate-limiting step in PA
biosynthesis [3,44,46]. Consequently, the corresponding enzyme, S-adenosylmethionine
decarboxylase (AdoMetDC), also is tightly regulated at several levels (Figure 1; [1,47]; for
review see [3]).

4.2. The Agmatine Pathway

The second pathway starts with enzymatic cleavage of arginine (Figure 2) by arginine
decarboxylase into agmatine (AGM). Subsequently, AGM is split into PUT and urea by
agmatinase [50–53]. It still remains somewhat unclear whether the pathway for the biosyn-
thesis of AGM, an important neurotransmitter, plays a major role for the production of
PUT and other PAs.

The fact is that mouse knockouts of ODC, which are completely devoid of PA biosyn-
thesis via the ODC pathway, do not survive early stages of embryonic development [54].
Blocking PA biosynthesis via difluoromethylornithine, an ODC inhibitor, stops glial cell
proliferation [53] and causes developmental arrest of the embryo in mouse [55], rat [56,57],
rabbit [58], hamster [59], and mink [60]. These data suggest that at least in early stages of
embryonic development, the AGM pathway is not sufficient to overcome the absence of
ODC for PA biosynthesis.

When, however, biosynthesis of PUT is blocked via antisense oligonucleotides against
ODC, the AGM pathway may be sufficient to rescue PA biosynthesis [51]. In addition,
the fact that the AGM pathway is widely distributed also in peripheral tissues supports a
general role of AGM in PA biosynthesis [29,61]. Both apparently contradictory facts could
be explained by assuming that the AGM pathway is fully developed only later in life.

5. Concentrations and Transport of Polyamines within the Brain

Tissue concentrations strongly differ among individual PAs (Table 2). When focusing
on SPM, it appears rather surprising that the intracellular concentration is very high (about
1 mm), whereas it is very low in plasma/serum (50 nM or below) and in cerebrospinal fluid
(CSF; about 100 nm). Such a steep gradient of PA concentrations between blood plasma and
CSF, extracellular brain space, cytoplasm, and total PA content in cells requires explanation.
Most likely, the systems use different transporters [62].

The fact that PAs in the brain cannot be acquired from the blood stream [38,39] (this
special issue) and consequently must be synthesized in the CNS itself (Figure 1) leads to
the question of where this biosynthesis takes place, in neurons or in glial cells.

Very likely arginine, which crosses the blood–brain-barrier via the CAT1 transporter [40],
represents the starting material. Arginine may be converted to ornithine by arginase and
subsequently to PUT by ODC. Alternately, PUT may be derived from AGM via agmatinase.
Arginase, ODC, and agmatinase are found in neurons [63–65]. The presence of any protein
inside a cell, however, contains no information on its activity. Thus, ODC in the adult
human brain is predominantly associated with its antizyme protein [64], resulting in low
or absent enzymatic activity.

SPD/SPM immunoreactivity (Figure 4) is much more prominent in astrocytes as
compared to neurons [66], which is surprising, because the synthesizing enzyme, ODC,
appears to be restricted to neurons [64,67]. The data suggest that in the brain PAs may be
primarily synthesized in neurons. This idea is strongly supported by the massive expression
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of SPD-synthase immunoreactivity exclusively in neurons [68]. PA degradation may occur
in neurons and astrocytes, as SSAT [69], N-acetylspermine, and acrolein (Figure 5; from [70]
this special issue and Figure S1) are localized in both cell types. PAs directly after N-
acetylation can leave the cell [71] and are taken up by astrocytes. The capacity of this
uptake system is enormous, allowing astrocytes to reach above 1 mM internal SPM after
one hour (recalculation based on the data of [72]). Not all neurons, however, release all their
intracellular Pas, as conspicuous neuronal SPD/SPM-like immunoreactivity is distributed
in a regional- specific manner throughout the brain [73]. The biological meaning of separate
synthesis and storage appears unclear at present. Novel data, however, suggest that there
is an intense exchange of PAs during astrocytes and neurons. Thus, in the retina during
daytime, PA-immunoreactivity is strongly enhanced in photoreceptor terminals, while at
night, reactivity in Müller cells was predominant [74]. This indicates that the exchange of
PAs between neurons and astrocytes may depend on respective activities.
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Figure 4. Spermidine/spermine immunoreactivity is predominantly localized in astrocytes, not in
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dine and spermine. Thus, these two polyamines cannot be visualized separately. (A) Spd/spm-
immunoreactivity in the CA1 region of the hippocampus is largely restricted to astrocytes. Some of
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their processes extend to capillaries (left arrow), forming endfeet there. Note the strong staining
of the capillary walls (right arrow). Whether this staining is due to labeled astrocyte endfeet or
to an immunopositive endothelium cannot be decided here. (B) In the dentate gyrus spd/spm-
immunoreactivity of astrocytes displays a very different appearance. Many cell bodies are found at
the lower border of the granule cell layer (arrows), with rather straight processes extending to the
molecular layer. Other astrocytes with a similar morphology are found in more superficial regions of
the dentate gyrus. In contrast, the bottom of the photograph presents the hilar area, where astrocytes
show their usual appearance. (C) Among immunoreactive astrocytes, the corpus callosum also
displays spd/spm-positive oligodendrocytes (white arrow). Taken from Höhlig et al., this special
issue. Bar in (A) indicates 50 µm in (A–C).
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Figure 5. Immunocytochemical visualization of some components of polyamine metabolism. Coronal
sections of rat cortex (A,C,E) and hippocampus (B,D,F) after immunocytochemical visualization
of (1) N-acetylspermine, (2) acrolein, and (3) ornithine display staining predominantly in neurons.
Antibodies had been raised in the author’s laboratory (1, 3) as described earlier [66] or were obtained
from commercial sources (2, rabbit anti-acrolein; LS-C63521, MoBiTec, Göttingen, Germany). All
control sections were negative. Surprisingly, immunoreactivity is more pronounced in interneurons
(single arrows in all images) as compared to adjacent neurons in all sections. This indicates that
there may be considerable differences between separate classes of neurons. Note the strong acrolein-
immunoreactivity in capillary walls ((D), double arrow). Bar in (F) indicates 50 µm in all images.
Taken from Höhlig et al., this special issue.
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The total concentration of intracellular SPM in different cells (Table 2) is estimated
(presumably to high, see Table 2) to about 3–10 mM [4,75] and most is bound to negatively
charged molecules, such as DNA, RNA, phospholipids, acidic proteins, and others. In
contrast, the concentration of free SPM as deduced from functional and biochemical tests
is much smaller [74,76–78]. Unfortunately, this fact often is misunderstood. When SPM
is largely bound to a number of macromolecules, this does not mean that it is unavail-
able for interactions with others. Binding between molecules always is an equilibrium
process. Thus, availability of SPM does not depend on the amount, which is bound to
other molecules, but only on the affinity of these interactions. When these are low (as they
are) and affinities to ion channels or receptors are high (as they are), SPM moves very fast
(below milliseconds) to such other binding sites. Therefore, the amount of free as compared
to total PAs inside a cell is rather unimportant.

Transport of PAs in CNS uses neuronal and glial processes (Figure 6) showing multiple
and bidirectional PA-fluxes. There is a high-affinity uptake of PAs in rodent cortex [79].
The authors, however, bathed slices of brain tissue in respective solutions and consequently
could measure only the uptake from artificial CSF but not from the blood compartment.
In living brains, PAs (Figure 4) are accumulated preferentially in glial cells [66,80] but not
in neurons [66,73,81–84]. Unfortunately, the PA transport pathways from neurons to glia,
from glia to neurons, and in the astrocytic network are still unknown.
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Figure 6. Distinct mechanisms promote circulation of polyamines and acetylated polyamines in the
brain. (A) Suggested interaction between astrocytes (violet), neuronal dendrites (yellow), synapses
(yellow), lymphocytes (green), and blood vessels (black) based on bi-directional polyamine (PA)
fluxes (red arrows). PAs and aPAs are taken up and released from glia to neurons as well as
propagated distantly through the syncytium. (B) Suggested PA and acetylated PAs (aPAs) pathways
(uptake and release) in glia via (i) connexin 43 (Cx43) hemichannels (green) or gap-junctions (green),
(ii) transporters such as organic cation transporters (OCTs) SLC22A1-3 (orange), and (iii) vesicular
PA transporter (vPAT) SLC18B1 with subsequent vesicular uptake/release (brown). Minor pathways
(iv) are present in some channels (Kir4.1, NMDAR, AMPAR, TRPV1, P2X7). The scheme represents
data from Laube and Veh, 1997; Masuko et al., 2003; Cui et al., 2009; Benedikt et al., 2012; Sala-Rabanal
et al., 2013; Merali et al., 2014; Skatchkov et al., 2014; 2015; 2016; Kucheryavykh et al., 2017; Malpica-
Nieves et al., 2020; 2021. (C) Astrocytes extend their endfeet to small vessels, as shown here after
staining of rat hippocampus for spermine-like immunoreactivity.

PA transport in the brain has been identified as uptake/release via (i) organic cation
transporters (OCT; [72,85–89], (ii) glial gap junctions [90], (iii) connexin-43 hemichannels
(Cx43 HCs; [91]), and (iv) minor pathways through PA-permeable receptors and chan-
nels [92,93]. PA-transport through ion channels or receptors, however, is negligible when
compared to the other fluxes.
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5.1. Uptake of PAs in Astrocytes via Organic Cation Transporters

Adult astrocytes lack SPD synthesis [68] and use uptake to store PAs, to some degree
even in vesicles [94]. Glial cells show several types of PA-uptake [53,72,84–86,91]. Recent
experimental data [91] make the organic cation transporter 3 (OCT3, SLC22A3) a likely
candidate to allow PA uptake in astrocytes. This hypothesis is supported by several lines of
evidence. (i) It is present in astrocytes [86,91,95]. (ii) There is a high affinity uptake system in
astrocytes with Km-values for SPD/SPM of about 2 µm [85]. As SPD/SPM concentrations
in the extracellular space range about 0.5 µm (Table 2), uptake seems possible. Another, so
far unidentified, high-affinity uptake system with a Km-value of about 0.5 µm had been
described earlier [79] and also would allow PA uptake into astrocytes. (iii) PA uptake into
astrocytes is inhibited by trimer 44 NMe, an inhibitor of organic cation transporters [91].
Only OCT3 is expressed in astrocytes in relevant amounts [96]. (iv) OCT3 is rather un-
specific and transports quite a number of different compounds [97,98]. This is in good
agreement with the fact that in addition to Pas, monoamines, the anesthetic ketamine [98],
the anti-Parkinson drug L-Dopa [99], and the anti-diabetic drug metformin [100], as well as
SPD can also be transported by a PA transporter into astrocytes [53,72,85,86,91,94,98,99].
PAs can interact with psychoactive substances during transport by OCT3 [98]. The data
support a potential role for OCT3 in the mechanism by which astrocytes take up PAs. In
strong contrast, however, is the fact that the K0.5-value for the uptake of SPM is about
1.0 mM for OCT heterologously expressed in Xenopus oocytes ([88]; see Table 1). At extra-
cellular SPD/SPM concentration of about 0.5 µm (Table 2), which is about 2000-fold lower
than the K0.5-value, OCT3 cannot provide a relevant contribution to the uptake of PAs by
astrocytes. Consequently, the uptake mechanism(s) remain mysterious.

5.2. Distribution of PAs via Gap Junctions in the Astroglial Syncytium

Even conceding that the the astroglial network represents no real syncytium, electrical
as well as molecular communication between individual astrocytes via gap junctions
is intense (Figure 6). Gap junctions, also called electrical synapses, consist of arrays of
connexons and macrochannels, which themselves are formed by members of the connexin
family proteins. Most connexons are not permeable to PAs, except those formed from
connexins Cx38 and Cx43 [20,101,102]. In astrocytes, gap junctions are composed mostly of
connexin 43 (Cx43), but lower amounts of Cx26 and Cx30 also are present [103].

Exchange of information in the glial syncytium through these macrochannels is tightly
regulated by a variety of extracellular and intracellular factors, including protein kinase
C, calcium, and ATP [104]. PAs also belong to these regulators, and SPM at physiological
intracellular concentrations (about 1 mM; [105]) efficiently keeps Cx43-containing gap
channels open [90] by removing calcium and blocking hydrogen from Cx43 GJs [106,107].
Consequently, PAs may be distributed this way through the astrocytic network.

5.3. Release of PAs via Large Pore Connexin-43 (Cx43) Hemichannels

Gap junctions are formed when connexons of one cell dock with another connexon
from a neighboring cell [103]. In contrast, when communication with the extracellular
matrix is necessary, the cell may use hemi gap junctions (hemichannels, HCs) to exchange
molecules with its intercellular environment (Figure 6).

At a resting state, external and internal calcium concentrations ([Ca+2]e: 1.2 to 1.8 mM;
[Ca+2]i: <100 nM), Cx43 HCs are blocked [108–113]. Either strong decrease of ([Ca+2]e to
about 0.2 mM [110] or mild increase of [Ca+2]i to below 500 nm) [113,114], however, relieves
this block [115]. On the other hand, PA release may still occur via Cx43 HCs in high [Ca+2]e
conditions [91] when intracellular calcium is still low or mildly increased.

In case of very strong neuronal activation, Cx43 HCs may be opened because extra-
cellular calcium levels can drop dramatically [116]. During 5 s of spreading depression
or 2 min of ischemia, [Ca+2]e may decrease to about 0.06 mM [116]. Because this value is
below the K50 for opening, which is about 0.05–0.2 mM [109,110], Cx43 HCs will be opened.
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However, neither spreading depression nor ischemia represents physiological situations
and need to be considered separately.

In conclusion, opening of HCs with the help of PAs provide pathways for the transfer
of small ions, metabolites, and signaling molecules between the cytosol and the extracellular
space around astrocytes. Release of PAs through HCs may modulate receptors in neurons
such as NMDA and AMPA receptors via the delivery of these PA “gliotransmitters” from
their astrocytic store to neurons.

6. Catabolism and Interconversion

The catabolism of PAs (Figure 3) in principle follows two pathways. One starts with
the acetylation of SPM by cytosolic SPM/SPD-N1-acetyltransferase (SSAT), whereas in the
second, SPM is directly oxidized via SPM oxidase (SMOX).

6.1. The Cetylation Pathway

Apparently, the most important pathway for catabolism and interconversion of PAs
(Figure 3) starts with the acetylation of SPM by cytosolic SPM/SPD-N1-acetyltransferase
(SSAT). N1-acetyl-SPM is converted into SPD via peroxisomal N1-PA oxidase (PAOX),
which is highly specific for acetylated PAs as substrates [69,117,118]. Subsequently, SSAT
also acetylates SPD, and the resulting N1-acetyl-SPD again is oxidized by PAOX, yielding
PUT (Figure 3). SSAT may also further acetylate N1-acetyl-SPM to form N1,N12-diacetyl-
SPM [119]. Peroxisomal PAOX then oxidizes N1,N12-diacetyl-SPM to N1-acetyl-SPD, which
is converted to PUT, as stated above (Figure 3).

SSAT is the rate-limiting enzyme for the complete pathway [69,120,121]. Consequently,
its activity is again intensely controlled to maintain PA homeostasis (Figure 1). This
regulation comprises an increased expression of the SAT1 gene and an effective conversion
to mRNA at high intracellular PA levels as well as an increased degradation of mRNA
and SSAT protein at low intracellular PA levels (for details see [3]). Thus, intracellular
PA-homeostasis is obtained by the combined regulation of biosynthetic and degradation
pathways (Figure 1).

6.2. The Direct Oxidation Pathway

The second catabolic pathway starts with the direct oxidation of SPM via SPM oxidase
(SMOX). The emerging aldehyde (N8-3-propanal-spermidine, Figure 3) either undergoes a
beta-elimination step, yielding SPD and acrolein, or is further oxidized by aldehyde dehy-
drogenase to the corresponding acid, N8-2-carboxyethyl-spermidine [117,122]. SPD then is
oxidized by the cytosolic diamine oxidase (DAOX) [117,123] to N1-3-propanal-putrescine
(Figure 3), which subsequently may be either oxidized to putreanine by aldehyde dehydro-
genase or undergo spontaneous beta-elimination to PUT and acrolein [117]. Finally, PUT
may be oxidized further via diamine oxidase to form 4-aminobutanal, which is converted
to GABA by the cytosolic aldehyde dehydrogenase [117,123]. This alternate pathway for
GABA biosynthesis (Figure 3) is known to occur in midbrain dopamine neurons [124] and
may be of special importance for the release of GABA by astrocytes [125,126].

Together with biosynthesis, the PA catabolism forms an effective interconversion cycle,
enabling mammalian cells to quickly adapt their PA content to the actual demand [117,127].
It must be mentioned, however, that some catabolic reactions produce potentially cytotoxic
metabolites like hydrogen peroxide, which might result in DNA damage [69,118]. The
intracellular concentration of SPM can reach millimolar levels (Table 2), and thus the
degradation of SPM via direct SMOX has been suspected to cause damage to the cell via
cytotoxic metabolites [128,129]. Furthermore, a number of authors argue that products of
PA oxidation might be involved in neurodegeneration based on the fact that overexpression
of enzymes such as PAOX, SMOX and DAOX degrading PAs can result in severe damage
of nervous tissue.

With respect to adult, healthy animals, these ideas, however, must be criticized. Most
of the reports, which emphasize a high toxicity of PA degradation products, are based
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on experiments far away from physiological situations. Mostly they depend on the use
of tissue culture, where peroxide or aldehydes often are added in grotesque amounts.
Actually, experimental evidence for any damage produced by the degradation of PAs
under physiological conditions is missing [130]. In addition, PAOX is located in peroxi-
somes [118,119,131], which allows the oxidation of N1-SPM/SPD in a closed environment.
The resulting H2O2 on its own is neither toxic nor able to damage nucleic acids. In the pres-
ence of transition metals like copper, however, it may generate toxic hydroxyl radicals in a
Fenton-like reaction [132,133]. But peroxisomes actually are free of nucleic acid-associated
transition metals like copper. Consequently, the H2O2 generated within peroxisomes is not
toxic and will be disposed of via catalase.

In animal models of injury, however, the situation may be different [134–136]. In a very
precise report, it was shown that during ischemia, intracerebral levels of 3-aminopropanal
are increased, preceding ischemic lesions [136]. Even considering that 3-aminopropanal
is a very unstable compound, which spontaneously decays to acrolein and ammonium
ions (Figure 3), it may not really be important whether ischemic damage is produced
by 3-aminopropanal itself or by acrolein, its decomposition product. So, in pathological
situations, PA catabolism actually may contribute to toxic effects in the animal brain.

Catabolism via oxidation may lead to the loss of cellular PAs, since the results of
aldehyde dehydrogenase activity (Figure 3), N8-2-carboxyethyl-spermidine, putreanine,
or GABA are end products of the PA system. The biological advantage of the cytosolic
oxidation of SPM via SMOX for the interconversion cycle remains unclear. The two separate
pathways, direct versus acetylation-dependent oxidation, may serve different purposes. By
speculation, the SSAT pathway may interconvert PAs depending on the cellular demand.
This idea is supported by its regulation via PA content (Figure 1). In contrast, the SMOX
and the cytosolic pathway may be important to reduce the net PA content inside the cell,
independent of fluxes of unmodified or acetylated PAs.

6.3. Additional Interconversion Products

In addition to the pathways described above, SPD serves as substrate for deoxyhy-
pusine synthase (Figure 3). The transfer of an aminobutyl group of SPD onto a specific
lysine residue is the first step of the posttranslational modification of the factor elF5A. The
deoxyhypusine residue is subsequently converted to hypusine by a specific hydroxylase.
The translation factor elF5A is essential for early embryonic development [137] and for
the activation of the autophagy pathway, and the hypusine modification is crucial for its
proper activity [44,138].

Putreanine (Figure 3) is yet another product of PA catabolism [122,139,140]. Initially,
putreanine was thought to be a unique metabolite of mammalian central nervous PA
catabolism [139] but was later also detected in rat liver and kidney [122]. At present, there
is no known biological function for putreanine other than being the terminal product of
cytoplasmatic SPD oxidation. Putreanine, however, accumulates in excretory organs, and
one may speculate that it simply serves as a carrier for the extracorporal disposal of waste
nitrogen. Certainly, to understand the biological role of putreanine more deeply, further
investigation is needed.

7. Conclusions

In summary, we highlight discrepancies in the literature and add new data on the
circulation of PAs in the brain and body, including important sources of PAs in gut lu-
men, blood plasma, and cerebrospinal fluid. We emphasize a large gap in concentrations
between these compartments, resulting in surprisingly high accumulation of PAs in glial
cytoplasm. We provide a novel and complete scheme for the biosynthesis/degradation
of PAs, including glycine, glutamate, proline and others as PA precursors. We suggest
a solution for the apparent contradiction in the literature, suggesting that when ODC
knockout seems to be lethal, the AGM pathway is probably rescuing PUT production. We
point to PA transport in glial cells, explaining how without synthesis these cells (but not
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neurons) preferentially accumulate PAs. We introduce a novel and complete scheme for PA
interconversion, including hypusine, putreanine, and the unique gliotransmitter (GABA)
as end-products. In addition, we highlight that S-adenosylmethionine decarboxylase pro-
motes decreased PUT and increased SPM levels. This review can serve as an updated
contribution to understanding the PA mystery in the CNS and its body.
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