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Unique critical state characteristics in granular media considering
fabric anisotropy

J. ZHAO� and N. GUO�

The concept of the critical state in granular soils needs to make proper reference to the fabric
structure that develops at critical state. This study identifies a unique property associated with the
fabric structure relative to the stresses at critical state. A unique relationship between the mean
effective stress and a fabric anisotropy parameter, K, defined by the first joint invariant of the
deviatoric stress tensor and the deviatoric fabric tensor, is found at critical state, and is path-
independent. Numerical simulations using the discrete-element method under different loading condi-
tions and intermediate principal stress ratios identify a unique power law for this relationship. Based
on the findings, a new definition of critical state for granular media is proposed. In addition to the
conditions of constant stress and unique void ratio required by the conventional critical state concept,
the new definition imposes the additional constraint that K reaches a unique value at critical state. A
unique spatial critical state curve in the three-dimensional space K–e–p9 is found for a granular
medium, the projection of which onto the e–p9 plane turns out to be the conventional critical state
line. The new critical state concept provides an important reference state for a soil to reach, based on
which the key concepts in the constitutive modelling of granular media, including the choice of state
parameters, dilatancy relation and non-coaxiality, are reassessed, and future exploratory topics are
discussed.

KEYWORDS: anisotropy; discrete-element modelling; fabric/structure of soils; plasticity

INTRODUCTION
The critical state theory (CST) developed by Roscoe et al.
(1958) and Schofield & Wroth (1968) laid the foundation for
critical state soil mechanics. Fundamental to the theory is the
concept of critical state that identifies an ultimate state for a
soil to converge under sustained shear. Critical state in
granular soils refers to a state of continuous shear deforma-
tion with a constant volume under constant stress. In essence,
at critical state, a soil may reach a constant stress ratio � ¼ q/
p9 ¼M (where p9 and q are the commonly referred mean
effective stress and the deviatoric stress respectively, and M
denotes a material coefficient that may depend on the shear
mode – for example, the Lode angle or intermediate principal
stress ratio – and a unique critical void ratio ec: The classical
definition of critical state emphasises fabric isotropy (the void
ratio), but lacks a proper reference to fabric anisotropy.
Experimental and numerical studies have indicated that the
behaviour of a granular soil under shear is predominantly
anisotropic. Under sustained shear, the induced plastic flow
deformation will mobilise particles in a granular assembly to
adjust themselves by sliding and rolling to provide better
support for the external load, which naturally leads to the
formation of an anisotropic fabric structure to serve this role
optimally. The anisotropic fabric structure evolves steadily
with the loading process. Indeed, early micromechanical stud-
ies suggested that the macroscopic strength of a granular
material is strongly correlated with the degree of anisotropy
in the fabric structure during almost all stages of the loading
history (e.g. Rothenburg & Bathurst, 1989). It has been
shown that the anisotropic fabric structure sustains the major-

ity of the applied deviatoric stress, and provides the apparent
shear strength for soils (e.g. in terms of the stress ratio).
Meanwhile, experimental data have also proved that the soil
response can be highly anisotropic prior to the critical state
(Nakata et al., 1998; Yoshimine et al., 1998). Later micro-
mechanical studies further verified that the soil fabric at
critical state exhibits a clear anisotropic structure (e.g. Oda,
1972a, 1972b; Masson & Martinez, 2001; Li & Li, 2009).

The same observation was recently confirmed by the
present authors through a series of numerical tests on
granular media using the discrete-element method (DEM)
(Guo & Zhao, 2013). Granular assemblies with different
initial conditions were sheared under drained or undrained
triaxial compression conditions. With the exception of some
liquefied cases, the critical state was reached in all samples,
unambiguously accompanied by a highly anisotropic fabric
structure, irrespective of the initial conditions and loading
conditions. Fig. 1 shows an example of the critical fabric
structure found in a medium-dense sample. After the sample
was sheared to an axial strain of around 44% (marked by a
star in Fig. 1(a)), the soil reached a steady state that satisfied
all necessary conditions according to the classic definition of
a critical state. Meanwhile, a steadily flowing fabric structure
can be observed in the sample, the key characteristics of
which remain largely unchanged with further development
of shear deformation. Fig. 1(b) presents a visualisation of
the fabric structure, showing the interparticle contacts and
the formation of a contact force network. Each column in
the figure physically denotes a directional interparticle con-
tact, the thickness of which represents the relative magnitude
of the normal contact force at the contact. It is evident that
such a critical fabric structure is highly anisotropic, with the
major anisotropic orientation aligning with the loading direc-
tion (the deviatoric stress direction, shown in Fig. 1(b)).
Extraction of the statistical characteristics of the critical
fabric structure from the simulated data further confirmed
that it can only be described by an anisotropic-tensor-valued
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quantity. A scalar-valued critical void ratio ec alone cannot
adequately represent the complete picture. Indeed, when
proposing their isotropic state parameter ł (¼ e � ec), Been
& Jefferies (1985) suggested that the critical state in soil
may be (anisotropic) fabric dependent. They further empha-
sised the important effect of the soil fabric on the overall
behaviour of the granular medium (e.g. the soil dilatancy).
More recent experimental data have shown that the dilatancy
of soil is profoundly influenced by either a fixed or variable
loading direction relative to the orientation of the specimen,
in which fabric anisotropy is believed to play a pivotal role
(e.g. Verdugo & Ishihara, 1996; Yoshimine et al., 1998).
Evidently, there is a missing link in the classic concept of
critical state that prevents it from characterising the actual
behaviour of soil in a critical state in a manner that is both
physically realistic and mathematically comprehensive.
The present study was motivated by the anisotropic criti-

cal state theory (ACST) recently proposed by Li & Dafalias
(2012). The ACST is based on the classic CST with proper
inclusion of fabric anisotropy and fabric evolution. It offers
a consistent theoretical framework for the future develop-
ment of constitutive models for granular media. However,
elegant as it may be, the ACST proves to be a highly
idealised conceptual framework. The development of
the theory was based on limited observations from two-
dimensional DEM simulations (e.g. those reported by Li &
Li (2009)). A number of important underlying assumptions,
particularly those relevant to the characteristics of critical
fabric anisotropy, still need rigorous verification. Although

there has been significant progress in the development of
advanced experimental techniques for probing the grain-
scale information in granular media, such as X-ray micro-
tomography and MRI imaging (Ng et al., 1997; Mueth et
al., 2000; Hall et al., 2010; Hasan & Alshibli, 2010, 2012),
it remains a great practical challenge for experimenters to
effectively explore and accurately quantify the intricate
characteristics of the fabric structure in granular media at
the particle scale, particularly when in a critical state.
Numerical tools are the primary option for conducting such
investigations: for instance, direct simulation of the grain
system is possible using the DEM. Although not perfect, the
DEM may help to extract useful information on the grain
scale, including information relevant to the fabric structure
at critical state. In this paper, a three-dimensional DEM is
used to explore the signature properties of the critical state
in a granular material by taking the critical fabric anisotropy
into consideration.

METHODOLOGY AND APPROACH
Sample preparation and loading paths

The three-dimensional DEM code used in this study uses a
linear force–displacement contact law in conjunction with
Coulomb’s friction law, which governs the sliding friction
(Abe et al., 2004; Guo & Zhao, 2013). The normal stiffness
and tangential stiffness are set to be kn/r ¼ ks/r ¼ 100 MPa,
where r denotes the equivalent radius of two contacted
particles. The interparticle friction coefficient in Coulomb’s
law adopts the value � ¼ 0.5, which is typical for quartz sand.
Around 32 000 polydisperse spherical particles with radii
ranging from 0.2 mm to 0.6 mm are randomly generated in a
cubic container with rigid frictionless walls. The particle-size
distribution of an assembly is approximated to that of Toyoura
sand (see Guo & Zhao (2013) for a detailed description of the
approximating method). Special techniques for staged isotro-
pic consolidation have been developed to produce random
assemblies with different initial void ratios (Guo & Zhao,
2013). As all particles are randomly generated and isotropi-
cally consolidated, the influence of the initial fabric anisotro-
py on the shear response is excluded from consideration (the
significance of which will be discussed later). All obtained
samples are then monotonically sheared in two loading condi-
tions (drained and undrained), which are commonly treated in
soil mechanics. To conduct the tests in the drained condition,
the horizontal pressures on the four vertical walls of the cube
are kept constant during the shear using a servo-control tech-
nique. In the undrained tests, only dry particles are consid-
ered: hence the undrained condition is simulated in an
approximate sense by imposing a constant-volume constraint
on the sheared sample (see also Yimsiri & Soga (2010)).
During the undrained shear, the horizontal strain is continu-
ously adjusted according to the applied vertical compressive
force, while the total volume of the assembly is maintained
constant. To investigate the influence of the loading path on
the final observations, various constant-b tests (see also
Barreto & O’Sullivan (2012)) have been explored, where
b ¼ (� 2 � � 3)=(� 1 � � 3) is the intermediate principal stress
ratio. Five different cases of b were investigated: b ¼ 0, 0.25,
0.5, 0.75 and 1. Notably, b ¼ 0 and b ¼ 1 correspond to
conventional triaxial compression and triaxial extension re-
spectively. To gain more confidence in the final data, some
supplementary constant-p9 tests were also conducted.

Stress tensor and fabric tensor
The following definition of a stress tensor proposed by

Christoffersen et al. (1981) is applied to quantify the macro-
scopic response of a DEM assembly.
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Fig. 1. Typical medium-dense sand sample subjected to un-
drained shear towards critical state by DEM simulation: (a)
stress–strain relation; (b) fabric structure in terms of contact
force chain network attained at critical state
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� ij ¼ 1

V

X
c2N c

f ci d
c
j (1)

where V is the total volume of the assembly, Nc is the total
number of contacts, f c denotes the contact force at a
contact, and dc defines the branch vector joining the centres
of two contacted particles. The mean effective stress and
deviatoric stress can then be determined by p9 ¼ � ii=3 and
q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3sijsij=2
p

, where sij ¼ � ij � �ijp9 (�ij is the Kronecker
delta). As the treatment involves cubic samples confined by
rigid walls, the axial strain and the volumetric strain can be
approximately defined by the displacement of the boundary
walls.

To characterise the fabric structure, a suitable variable is
needed to quantify the fabric anisotropy. Among the various
definitions of fabric tensor (e.g. Oda, 1972a, 1982; Satake,
1982; Kanatani, 1984; Baji, 1996; Li & Li, 2009), the
contact-normal-based proposition by Satake (1982) and Oda
(1982) is chosen here.

�ij ¼
ð
¨
E(¨)ninjd¨ (2)

where n is the unit vector along the normal direction of the
contact plane; ¨ characterises the orientation of n relative
to the global coordination system; and E(¨) is the distribu-
tion probability density function (PDF). In most cases it is
sufficient to apply the second-order Fourier expansion of
E(¨) to characterise the contact normals (Ouadfel &
Rothenburg, 2001),

E(¨) ¼ 1

4�
(1þ Fijninj) (3)

where the second-order anisotropic fabric tensor Fij ¼
15=2(�ij � 1=3�ij) is deviatoric and symmetric, and can be
used to characterise the fabric anisotropy in the assembly. In
practice, �ij (and hence Fij) can be estimated from the
discrete data of a granular assembly by

�ij ¼
1

N c

X
c2Nc

nci n
c
j

where nc denotes the unit contact normal vector.

Joint invariants of the stress tensor and the fabric tensor
Owing to the deviatoric nature of Fij, its three invariants

can be defined as follows.

JF1 ¼ Fii ¼ 0

JF2 ¼ 1
2
FijFji

JF3 ¼ 1
3
FijFjkFki

(4)

According to the representation theory (Wang, 1970; Spen-
cer, 1971), any scalar-valued isotropic function of two
second-order tensors can be expressed in terms of their own
invariants together with up to four irreducible joint invariants
between them. Consider the stress tensor defined in equation
(1) and the fabric tensor Fij; a scalar-valued function f of the
two tensors can be expressed as

f ¼ f (� ij, Fij)

¼ f (I1, J2D, J3D, J
F
1 , J

F
2 , J

F
3 , K1, K2, K3, K4)

(5)

where I1, J2D, J3D are respectively the first invariant of the
stress tensor and the second and third invariants of
the deviatoric stress tensor sij: Ki (i ¼ 1, 2, 3, 4) denotes the

four joint invariants between the deviatoric stress tensor and
the fabric tensor, given by

K1 ¼ K ¼ sijFji

K2 ¼ sijFjkFki

K3 ¼ sikskjFji

K4 ¼ sikskjFjlFli

(6)

In the following, the first joint invariant K1 is replaced by K
for convenience.

RESULTS AND OBSERVATIONS
Over 80 numerical samples were sheared from different

initial states (i.e. in terms of density and initial confining
pressure) to a critical state under various monotonic loading
paths. In our numerical simulations, all samples were found
to reach a relatively steady state with constant stress and
constant volume beyond an axial strain level of around 40%,
which satisfies the classic description of a critical state. The
soil state beyond this point is regarded as a critical state.
Nevertheless, there are certain degrees of fluctuation in the
soil response after this strain level. To minimise possible
deviations caused by fluctuations, the relevant quantities
(e.g. Fc, Kc) were averaged over a sustained stage of
deformation, for example for an axial strain level ranging
between 40% and 50%. The averaging technique appeared to
be fairly effective, and led to relatively stable and consistent
quantifications of critical states.

Critical void ratio
The critical void ratio was correlated with the mean effec-

tive stress p9 for all samples under investigation, as shown
in Fig. 2. All data points were found to collapse to the
following general form (cf. Li, 1997; Li et al., 1999).

ec ¼ eˆ � ºe
p9

pa

� ��

(7)

where eˆ denotes the critical void ratio at p9 ¼ 0, ºe and �
are material constants, and pa ¼ 101 kPa is the atmospheric
pressure. Our simulated data fit the expression in equation
(7) well with eˆ ¼ 0.663, ºe ¼ 0.008 and � ¼ 1.0, which
represents a linear relation. (The data are presented in Fig. 2
in a semi-log scale rather than a natural scale to render the

ec

30101
p p�/ a

e p p

r
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2
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Fig. 2. Linear relation between critical void ratio and mean
effective stress
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data points in an even distribution over the chosen stress
range.) Notably, a similar linear relationship was previously
reported by Been et al. (1991) for Erksak sand, and by
Ishihara (1993) for Toyoura sand. Note that the loading
paths (e.g. with varying b), do not affect the above relation-
ship. Evidently, the study identifies a unique critical state
line in the e–p9 plane for sand, which appears to support the
general view taken by Been et al. (1991) and Ishihara
(1993) on the uniqueness of the CSL (see also Jefferies &
Been, 2006).

Critical fabric anisotropy
It is interesting to examine whether similar unique fea-

tures can be identified for fabric anisotropy at critical state.
The second invariant of Fc

ij

Fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Fc

ijF
c
ij=2

q
is first selected to represent the degree of critical fabric
anisotropy. The correlation between Fc and p9 at critical state
is plotted in Fig. 3. Interestingly, for each individual case of
b, a power-law dependence of Fc on the critical mean effec-
tive stress p9 is observed (cf. Guo & Zhao (2013) for the
triaxial compression cases)

Fc ¼ mF

p9

pa

� �	

(8)

where mF denotes a parameter dependent on the Lode angle
or b (e.g. mF ¼ m̂mF(b)). The numerical results indicate
	 ¼ �0.14 to �0.09 for b 2 [0, 1]. Evidently, according to
the present definition of ‘fabric tensor’, a unique critical
fabric structure independent of the loading path is not
attainable.
Although not presented here, the third invariant of Fij in a

critical state, JF3 , was also found to be non-unique. To
explore whether the invariant functions of the three invar-
iants lead to unique characterisations, the following function,
which borrows the form of Lade’s failure criterion, was also
examined (cf. Thornton, 2000; Thornton & Zhang, 2010).

�� ¼ (IF1 )
3

2IF1 I
F
2 � 3IF3

(9)

where IFi (i ¼ 1, 2, 3) are the three invariants of the original
fabric tensor �ij (not Fij). Using this newly defined ��, the
results of various constant-b cases in critical states are

replotted in Fig. 4. Although the use of an invariant function
in the form of equation (9) considerably reduces the range
of variation for all data, it still cannot unify all cases
uniquely. Several different forms of invariant function (e.g.
the Matsuoka–Nakai criterion-like invariant) were tried, and
the observations are more or less similar to ��. The
examination using the usual measures of fabric tensor, as
shown above, suggests that the critical fabric structure in a
granular material is not unique (or loading path dependent).

Joint invariants at critical state
The property of critical fabric anisotropy is not unique.

Meanwhile, it is known that the critical stress ratio (e.g. q/p9)
varies with the loading path. As shown by several past
studies, the fabric anisotropy is intimately related to the
stress state (e.g. Oda et al., 1985; Thornton & Zhang, 2010).
Hence it is inappropriate to quantify their critical state
properties separately. In this case, the joint invariants of the
two tensors may offer a more accurate characterisation of a
soil in a critical state. To verify this, in Figs 5 and 6 the
correlations are plotted between the two joint invariants K
and K2 defined in equations (6) with p9 at critical state. The
correlations between the third and the fourth joint invariants,
K3 and K4, and p9 exhibit trends similar to those of the
second and first joint invariants respectively, which are not
presented here. The correlation between K and p9 is pre-
sented comparatively in both a natural scale and a log–log
scale in Fig. 5. A striking observation is that the K value at
critical state, Kc, can be uniquely correlated with the critical
mean effective stress p9 by the following power law

Kc ¼ 0:41p90
:894 (10)

Considering the great variety of sands, a more general
power law may be postulated

Kc ¼ Æp9
 (11)

where Æ and 
 are material constants. In contrast to the case
of K, the correlation between K2 (or K3) and p9 at critical
state, as shown in Fig. 6, demonstrates a clear path-dependent
feature. Consequently, Kc appears to be a better indicator of
the compatibility of the critical stress with the fabric struc-
ture, and may be adopted to characterise the unique property
of the critical state.

Based on equation (6), a pure measure of the relative
orientation of the two tensors, A9, can be further defined:

1 10 30
p p�/ a

Fc

b 0, 0·14� � ��
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b 0·50, 0·12� � ��
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Fig. 3. Correlation between critical fabric anisotropy and mean
effective stress
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Fig. 4. Lade-failure-criterion-like scalar function of invariants of
�ij at critical state against critical mean effective stress (�� 1.8
corresponds to an isotropic state)
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that is, A9 ¼ nFijn
s
ij, where nsij denotes the deviatoric stress

direction and nFij is the fabric direction. Note that A9 is
indeed a normalised quantity of the anisotropic variable A,
as defined in Li & Dafalias (2012). The evolution of A9
during the shearing process for five samples with different b
is shown in Fig. 7. As shown, the stress and the fabric
tensor tend to become coaxial quickly upon shear, and A9
always approaches unity or a value very close to unity
shortly after the application of shear, and then stays at this

value before reaching the critical state. The observation
provides clear evidence that the coaxiality of the deviatoric
stress and the fabric anisotropy is indeed a very special
property of the critical fabric structure, which is consistent
with Li & Dafalias (2012).

State surface of Kc in the deviatoric plane
The above observation can be further verified by visualis-

ing the state surfaces for the various quantities concerned at
critical state. This is inspired by the study conducted by
Thornton & Zhang (2010). Following their approach, the
state surfaces for both the critical state stresses and the
critical fabric anisotropy are plotted in a three-dimensional
deviatoric plane, in a manner analogous to that for a failure
criterion. Fig. 8(a) shows the critical stress surface and
critical fabric surface in the deviatoric plane obtained by
different constant-b tests at a pressure level of around
1000 kPa. It is clearly observable that the critical state
stresses form a smooth triangular-shaped surface, reminis-
cent of a Lade’s criterion surface, whereas the critical fabric
anisotropies form a surface with an inverted smoothed
triangular shape, reciprocal to that of the critical state
stresses. Thornton & Zhang (2010) observed similar behav-
iour for these quantities during the loading course of a
granular assembly en route to a critical state. Yimsiri &
Soga (2010) also observed a larger final fabric anisotropy
under triaxial extension than under triaxial compression,
which is consistent with the current authors’ observation in
Fig. 8(a).

Evidently, neither the critical state stress nor the critical
fabric anisotropy has a circular state surface in the deviatoric
plane, which explains their dependence on the loading path.
Nevertheless, noting the complementary nature of the two
surfaces, it is apparent that proper combinations of the two
may lead to a circular state shape. The definition in equation
(6) for the first (or the fourth) joint invariant offers one such
combination. A further plot of Kc indeed confirms this
expectation. As shown in Fig. 8(b), Kc does display a well-
rounded circular shape in the deviatoric plane, which is
independent of the Lode angle. This feature renders it
suitable for use as a reference state for soil state character-
isation.

The changes in the size and shape of the critical state
yield surface, fabric anisotropy and Kc at six pressure levels
(80 kPa, 300 kPa, 500 kPa, 700 kPa, 1000 kPa and 2000 kPa)
are further plotted in Fig. 9. As shown in Figs 9(a) and 9(b),
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lower pressure levels lead to apparently smaller critical state
yield surfaces, whereas the corresponding state surfaces for
critical fabric anisotropy appear to be larger. Although the
shapes of the critical state yield surface and the fabric
anisotropy at each pressure level generally resemble those at
p9c � 1000 kPa, at lower pressures (e.g. p9c � 80 kPa) both
the critical state yield surface and the state surface for Fc
are more rounded than they appear to be at higher pressures.
In particular, if rM ¼Mc/Me denotes the ratio between the
critical stress ratios under triaxial compression and triaxial
extension, it is evident from Fig. 9(a) that this ratio increases
from around 1 to 1.2 when the critical pressure increases
from 80 kPa to 2000 kPa. This ratio appears to be less
sensitive to pressure in the low-pressure regime, but seems
to become more sensitive when the pressure is high. A
similarly defined ratio for Fc demonstrates a similar trend,
except that it decreases from 1 to around 0.84 as the
pressure increases (see Fig. 8(b)). In contrast, in all cases Kc

is found to be a circle similar to that in Fig. 8(b), albeit
with different radii. If a normalised measure,
�KKc ¼ Kc=p9

0:894
c , is further defined to rescale the data, all

surfaces of �KKc are found to collapse approximately to a
circle �KKc ¼ constant (around 0.41 � 0.01 from the obtained
data), as shown in Fig. 9(c), albeit with some minor devia-
tions.

Unique critical state curve in Kc–ec–p9c space
In view of the observed unique dependence of both ec and

Kc on p9c, it is evident that the three quantities are indeed
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intercorrelated in a unique manner. The unique relationship
is presented in the form of a spatial curve in Kc–ec–p9c
space, as shown in Fig. 10. The two critical lines in Figs 2
and 5 are its projections in the ec–p9c plane and Kc–p9c planes
respectively. This new critical state curve nicely unifies the
classic critical state concept with the case of fabric aniso-
tropy. Note that the critical state line in e–p9–q space
presented by Roscoe et al. (1963) (Fig. 6 therein) is indeed
a special case of our critical state line when Fc � 1 and
A9 ¼ 1.

DISCUSSION AND OUTLOOK
It is instructive to discuss the significance of these new

findings for some fundamental concepts and methodologies
in theoretical soil mechanics. Only a brief discussion is
devoted to each topic, owing to space limitations.

Critical state conditions
It is clear from the obtained findings that a complete

picture of the critical state for granular materials needs to
consider both the unique isotropic characteristics of the
critical state and the critical fabric structure relevant to the
critical stress. Following a method similar to that of Li &
Dafalias (2012), a third condition on the anisotropic variable
K is introduced into the classic critical state concept to
furnish a new definition of anisotropic critical state as

� ¼ �c ¼
qc
p9c

¼ M(b)

e ¼ ec ¼ êec(p9)

K ¼ Kc ¼ K̂Kc(p9)

(12)

Although the specific loading and fabric evolution law may
be path dependent, the critical state conditions in equation
(12) set a unique ultimate goal (or compass) for both the
fabric isotropy and fabric anisotropy to converge with the
applied shear stress, regardless of which loading paths are
followed.

Anisotropic state parameter
The isotropic state parameter defined by Been & Jefferies

(1985), ł ¼ e � ec, reflects at best an isotropic soil state,
which requires additional reference to the state of the fabric

anisotropy. Based on the unique property shown by Kc, the
following pair of state parameters is proposed to characterise
the state in sand (note that Kc . 0)

ł ¼ e� ec

� ¼ K

Kc

(13)

Evidently, the critical state values for the two state param-
eters are ł ¼ 0, � ¼ 1. To evaluate �, it is important to
recognise that the critical Kc might not necessarily be a
maximum. Equation (13) borrows the definitions of łA and
	 from Li & Dafalias (2012) (equations (12)–(15) therein).

Stress dilatancy
The experimental data indicate that the dilatancy of sand

is influenced by fabric anisotropy. With the help of the state
parameters defined in equation (13), the following state-
dependent dilatancy relationship is suggested (cf. Li &
Dafalias, 2000)

D ¼ D̂D ł, �, �, Cð Þ (14)

where C denotes a collection of intrinsic material constants.
There may be more than one way to define the specific form
of D. A specific example is demonstrated here. Assume an
additive form of the state parameters defined in equation
(13)

Ł ¼ łþ k[1� (nL : nF)�] (15)

where k is a material constant, and nL is a unit tensor
denoting the loading direction (e.g. the plastic strain rate
direction; Li & Dafalias, 2012). The following general
dilatancy relation may be proposed

D ¼ D̂D[X (Ł)� Y (�)] (16)

where X and Y are scalar-valued functions of Ł and �
respectively. A modified form of D from the expression in
Li & Dafalias (2012) may be suggested

D ¼ d(MemŁ � �) (17)

where m and d are positive material constants. The following
observations are apparent from equation (17) (cf. Li &
Dafalias, 2012).

(a) At critical state, ł ¼ 0 and � ¼ 1, Ł ¼ 0, � ¼ M: thus
D ¼ 0.

(b) During flow liquefaction, Ł approaches 0 and � ¼ M, so
that D ¼ 0. However, as ł 6¼ 0 and � 6¼ 1, it differs
essentially from the critical state.

(c) The attainability of the phase transformation state as
defined by Ishihara et al. (1975) for different sands can be
easily explained, with D jointly controlled by � and Ł as
well as by �.

(d ) When the loading direction changes so abruptly (e.g.
from nL to �nL) that both the fabric anisotropy and the
stress direction remain unchanged, K stays at its original
value. But according to equation (15) nL : nF may change
its sign (e.g. from positive to negative), resulting in a very
large value for k[1� (nL : nF)�] such that Ł . 0 and
D. 0. This may naturally lead to cyclic contraction.

Non-coaxiality
The new findings may also facilitate the modelling of

non-coaxiality between the stress and the plastic strain
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Fig. 10. Unique critical state curve plotted in Kc–ec–p9c space
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increment, as observed by Gutierrez et al. (1993), Yoshimine
et al. (1998) and others. The plastic strain increment is
defined according to the associated flow rule

d�pij ¼ dLh i @ f

@� ij

(18)

where dLh i denotes a non-negative loading multiplier. As-
sume a fabric-dependent yield function with the form

f ¼ f (� ij, Fij, H , K) (19)

where H is a hardening parameter. The use of equation (19)
in equation (18) leads to

d�pij ¼ dLh i @ f

@� ij

¼ dLh i @�ff

@� ij

þ @ f

@K

@K

@� ij

 ! (20)

where �ff denotes the terms in the yield function without the
involvement of K. The second term in the right-hand bracket
of equation (20), (@ f =@K)(@K=@� ij), may account for the
non-coaxial behaviour observed in granular materials. A
rather significant difference between the fabric orientation
and the loading direction in the early stage of loading may
induce this term to deviate substantially from the stress
direction, thus contributing to the overall non-coaxial plastic
strain increment. At a relatively large strain level, when �ij
and Fij become coaxial and compatible with each other, this
term will become more coaxial with �ij, as will the overall
plastic strain increment d�pij with respect to �ij:

Other relevant issues
There are other noteworthy issues relevant to the observa-

tions found in the study, including initial anisotropy, particle
crushing and strain localisation. All the observations pre-
sented so far have been based on consideration of initially
isotropic sand samples. The influence of initial (or inherent)
anisotropy can be investigated further using non-spherical
DEM particles. Nevertheless, it is believed that the shearing
process will totally destroy all previous memories of gran-
ular media, including initial anisotropy, such that the critical
state will not be affected by the initial state (see also Yimsiri
& Soga, 2010). Meanwhile, real experimental tests on sand
involve some level of particle crushing, which was not
considered in this study. It is expected, however, that signifi-
cant particle crushing will lead to an essentially quite differ-
ent material in the final stage from that at the beginning.
Hence it is irrelevant to discuss the uniqueness of the critical
state in this case. Regarding strain localisation, this effect
has rarely been observed in the present authors’ DEM
simulations, probably because of the use of rigid walls and
free-rolling particles. It remains arguable whether it is still
valid to discuss the critical state as being homogeneous, as
envisaged by Roscoe et al. (1958), in the presence of strain
localisation in a soil sample.

CONCLUSIONS
Motivated by the anisotropic critical state theory recently

proposed by Li & Dafalias (2012), this study explored the
characteristics of critical states in granular materials under
the influence of fabric anisotropy. Using a 3D DEM, gran-
ular assemblies with different initial void ratios and confin-
ing pressures were sheared to a critical state under both
drained and undrained loading conditions, and with different

intermediate principal stress ratios. A number of novel
observations were identified from the results.

(a) The critical state in granular media can be uniquely
characterised. Rather than referring to an isotropic state,
it is always associated with a fabric structure compatible
with the critical stress state.

(b) The critical fabric anisotropy is not unique, but depends
on the specific loading path. It is strongly related to the
critical stress state, and cannot be separated as an
individual or unique reference for the soil state.

(c) The first joint invariant of the stress tensor and the fabric
tensor, K, is uniquely related to the pressure level at
critical state, and the correlation is path-independent.

(d ) The correlations among K, e and p9 at critical state can be
visualised by a unique spatial critical state curve inK–e–p9
space. The projection of this curve onto the e–p9 plane is
the critical state line defined by classic critical state theory.
A new definition of the critical state is proposed by
incorporating the additional unique condition of Kc:

(e) The critical Kc can be further normalised to be a constant
that is independent of either the loading path or the
pressure level.

In light of the new findings, future challenges and opportu-
nities for the development of theoretical soil mechanics are
discussed above, with relevance to such topics as the choice
of state parameters, the definition of the dilatancy relation,
the modelling of non-coaxiality, and the quantification of the
critical state in the presence of strain localisation, particle
crushing and initial anisotropy.

NOTATION
A fabric anisotropic variable used by Li &

Dafalias (2012)
A9 measure of relative orientation between fabric

and stress direction
Ac critical fabric anisotropic variable used by Li

& Dafalias (2012)
b intermediate principal stress ratio
C material constant in equations (14) and (17)
D dilatancy
d material constant in equations (14) and (17)

dc, dci branch vector and its component in the ith
direction

E(¨) contact normal probability density function
e void ratio
ec critical void ratio
eˆ critical void ratio at zero pressure
F degree of fabric anisotropy
Fc critical fabric anisotropy
Fij deviatoric fabric tensor
f yield function

f c, f ci contact force vector and its component in the
ith direction

H hardening parameter in equation (19)
I1, J2D, J3D three invariants of stress tensor
IF1, I

F
2, I

F
3 three invariants of original fabric tensor �ij

JF1 , J
F
2 , J

F
3 three invariants of deviatoric fabric tensor Fij

K (K1), K2, K3, K4 four joint invariants between deviatoric stress
tensor and fabric tensor

Kc critical fabric anisotropy parameter
k material constant in equation (13)

kn, ks normal and tangential stiffness
dLh i non-negative loading multiplier

M(�c) critical stress ratio
m material constant in equations (14) and (17)
mF material parameter in equation (8)
Nc total contact number within volume

n, ni unit contact normal vector and its component
in the ith direction
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nF unit tensor denoting the fabric direction in
equation (15)

nL unit tensor denoting the loading direction in
equation (15)

nFij unit-norm deviatoric fabric tensor used by Li
& Dafalias (2012)

nsij unit-norm deviatoric stress tensor used by Li &
Dafalias (2012)

p9 mean effective stress
pa atmospheric pressure
q deviatoric stress
r2 regression coefficient of determination
sij deviatoric stress tensor
V sample volume
Æ material constant in equation (11)
� exponent in power law for fitting q–p9 at

critical state
�ij Kronecker delta
�1 accumulated axial strain

d�pij plastic strain increment
	 material parameter in equation (8)
� stress ratio

�� Lade-like scalar function of IF1, I
F
2 and IF3

Ł overall state parameter
ºe material constant in equation (7)
� material constant in equation (7)

�1, �2, �3 the three principal stresses
�ij stress tensor
� anisotropic state parameter
�ij fabric tensor
ł isotropic state parameter
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sands. Géotechnique 41, No. 3, 365–381, http://dx.doi.org/
10.1680/geot.1991.41.3.365.

Christoffersen, J., Mehrabadi, M. M. & Nemat-Nasser, S. (1981). A
micromechanical description of granular material behavior.
J. Appl. Mech. ASME 48, No. 2, 339–344.

Guo, N. & Zhao, J. (2013). Signature of anisotropy in granular
materials under shear. Comput. Geotech. 47, 1–15.

Gutierrez, M., Ishihara, K. & Towhata, I. (1993). Flow theory for
sand during rotation of principal stress direction. Soils Found.
31, No. 4, 121–132.

Hall, S. A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N.,
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media. Géotechnique 60, No. 5, 333–341, http://dx.doi.org/
10.1680/geot.2010.60.5.333.

Verdugo, R. & Ishihara, K. (1996). The steady state of sandy soils.
Soils Found. 36, No. 2, 81–92.

Wang, C.-C. (1970). A new representation theorem for isotropic
functions. Arch. Ration. Mech. Anal. 36, No. 3, 166–197.

Yimsiri, S. & Soga, K. (2010). DEM analysis of soil fabric effects
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