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ABSTRACT
In this work we introduce the class of weakly c-contractive mappings. We establish that
these mappings necessarily have unique fixed points in complete metric spaces. We sup-
port our result by an example. Our result also generalises an existing result in metric
spaces.
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INTRODUCTION
It is well known that Banach’s contraction mapping theorem is one of the pivotal results
of functional analysis. A mapping T : X → X where (X, d) is a metric space, is said to
be a contraction if there exists 0 < k < 1 such that for all x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y). (1.1)

If the metric space (X, d) is complete then the mapping satisfying (1.1) has a unique
fixed point. Inequality (1.1) implies continuity of T . A natural question is that whether
we can find contractive conditions which will imply existence of fixed point in a complete
metric space but will not imply continuity.

Kannan [10,11] established the following result in which the above question has been
answered in the affirmative.

If T : X → X where (X, d) is a complete metric space, satisfies the inequality

d(Tx, Ty) ≤ k [d(x, Tx) + d(y, Ty)] (1.2)
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where 0 < k < 1
2

and x, y ∈ X, then T has a unique fixed point.

The mapping T need not be continuous as has been established through examples[11].
The mappings satisfying (1.2) are called Kannan type mappings. There is a large lit-
erature dealing with Kannan type mappings and their generalization some of which are
noted in [8], [17] and [19].

A similar contractive condition has been introduced by Chatterjee [6]. We call this con-
traction a C-contraction (borrowing the name from the name of its author).
Definition 1.1 C-contraction [6].

Let T : X → X where (X, d) is a metric space is called a C-contraction if there exists
0 < k < 1

2
such that for all x, y ∈ X the following inequality holds:

d(Tx, Ty) ≤ k [d(x, Ty) + d(y, Tx)]. (1.3)

Theorem 1.1 [6] A C-contraction defined on a complete metric space has a unique
fixed point.
In establishing theorem 1.1 there is no requirement of continuity of the C-contraction.

It has been established in [15] that inequalities (1.1), (1.2) and (1.3) are independent of
one another. C-contraction and its generalizations have been discussed in a number of
works some of which are noted in [4], [8], [9] and [19].

Banach’s contraction mapping theorem has been generalized in a number of recent
papers. As for example, asymptotic contraction has been introduced by Kirk [12] and
generalized Banach contraction conjecture has been proved in [1] and [14].

Particularly a weaker contraction has been introduced in Hilbert spaces in [2]. The
following is the corresponding definition in metric space.

Definition 1.2 Weakly contractive mapping

A mapping T : X → X where (X, d) is a complete metric space is said to be weakly

contractive if d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)), (1.4)

where x, y ∈ X, ψ : [0,∞) → [0,∞) is continuous and nondecreasing,
ψ(x) = 0 if and only if x = 0 and lim

x→∞
ψ(x) = ∞.

If we take ψ(x) = kx where 0 < k < 1 then (1.4) reduces to (1.1).
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There are a number of works in which weakly contractive mappings have been considered.
Some of these works are noted in [3], [7], [13], and [16].

In the present work in the same spirit we introduce a generalization of C-contraction.

Definition 1.3 Weak C-contraction :

A mapping T : X → X, where (X, d) is a metric space is said to be weakly C-contractive
or a weak C-contraction if for all x, y ∈ X,

d(Tx, Ty) ≤ 1
2

[d(x, Ty) + d(y, Tx)]− ψ (d(x, Ty), d(y, Tx)) (1.5)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if
x = y = 0.

If we take ψ(x, y) = k (x + y) where 0 < k < 1
2

then (1.5) reduces to (1.4), that is
weak C-contractions are generalisations of C-contractions. At the end of the next section
we discuss an example which shows that weak C-contractions constitute a strictly larger
class of mappings than C-contractions.

In the next section we establish that in a complete metric space a weak C-contraction
has a unique fixed point.

MAIN RESULTS
Theorem 2.1 Let T : X → X, where (X, d) is a complete metric space be a weak C-
contraction. Then T has a unique fixed point.

Proof
Let x0 ∈ X and for all n = 1, xn+1 = Txn. (2.1)

If xn = xn+1 = Txn then xn is a fixed point of T .
So we assume xn 6= xn+1.

Putting x = xn−1 and y = xn in (1.5) we have for all n = 0, 1, 2, .......

d(xn, xn+1) = d(Txn−1, Txn)

≤ 1
2

(d(xn−1, Txn) + d(xn, Txn−1))− ψ (d(xn−1, Txn), d(xn, Txn−1))

= 1
2
d(xn−1, xn+1)− ψ (d(xn−1, xn+1), 0)

≤ 1
2

(d(xn−1, xn) + d(xn, xn+1))− ψ (d(xn−1, xn+1), 0) (2.2)
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From (2.2), for all n = 1, 2, .......

d(xn, xn+1) ≤ d (xn−1, xn) (2.3)

Thus {d(xn, xn+1)} is a monotone decreasing sequence of non-negative real numbers and
hence is convergent.

Let d(xn, xn+1) → r as n→∞. (2.4)

We next prove that r = 0.

d(xn, xn+1) = d(Txn−1, Txn)

≤ 1
2

(d(xn−1, Txn) + d (xn, Txn−1))− ψ (d(xn−1, xn+1), d(xn, xn)) (by (1.5))

≤ 1
2
d (xn−1, xn+1)

≤ 1
2

(d(xn−1, xn) + d(xn, xn+1)).

Making n→∞ we have by (2.4),

r ≤ lim
n→∞

1
2
d (xn−1, xn+1) ≤ 1

2
r + 1

2
r,

or, lim
n→∞

d (xn−1, xn+1) = 2r. (2.5)

Making n→∞ in (2.2) and using (2.4), (2.5) and the continuity of ψ we have
r ≤ r − ψ(2r, 0).

or, ψ(2r, 0) ≤ 0, which is a contradiction unless r = 0.

Thus we have established that
d(xn, xn+1) → 0 as n→∞. (2.6)

Next we show that {xn} is a cauchy sequence. If otherwise, then there exist ε > 0 and
increasing sequences of integers {m(k)} and {n(k)} such that for all integers k,

n(k) > m(k) > k, (2.7)

d(xm(k), xn(k)) ≥ ε, and (2.8)
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d(xm(k), xn(k)−1) < ε. (2.9)

Then,

ε ≤ d(xm(k), xn(k))

= d(Txm(k)−1, Txn(k)−1)

≤ 1
2

(d(xm(k)−1, Txn(k)−1) + d (xn(k)−1, Txm(k)−1))

−ψ (d(xm(k)−1, Txn(k)−1), d(xn(k)−1, Txm(k)−1)) (by(1.5))

= 1
2

(d(xm(k)−1, xn(k)) + d (xn(k)−1, xm(k)))

−ψ (d(xm(k)−1, xn(k)), d(xn(k)−1, xm(k))). (2.10)

Again,

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xn(k)−1) + d (xn(k)−1, xn(k)))

≤ ε+ d(xn(k)−1, xn(k)). (by (2.9))

Making k →∞ in the above inequality and using (2.6)we obtain

lim
k→∞

d(xm(k), xn(k)) = ε (2.11)

and lim
k→∞

d(xm(k), xn(k)−1) = ε. (2.12)

Again,

d(xm(k), xn(k)−1) ≤ d(xm(k), xm(k)−1)

+ d(xm(k)−1, xn(k))

+ d(xn(k), xn(k)−1).

Also, d(xm(k)−1, xn(k)) ≤ d(xm(k)−1, xm(k)) + d (xm(k), xn(k)).

Making k →∞ in the above two inequalities and using (2.6), (2.11) and (2.12) we get,

lim
k→∞

d(xm(k)−1, xn(k)) = ε. (2.13)
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Next making k →∞ in (2.10) and using (2.6), (2.12) and (2.13) we obtain

ε ≤ 1
2

(ε+ ε)− ψ (ε, ε).

or, ψ (ε, ε) ≤ 0, which is a contradiction since ε > 0. Hence {xn} is a cauchy sequence
and therefore is convergent in the complete metric space (X, d).

Let xn → z as n→∞. (2.14)

Then, d(z, Tz) ≤ d(z, xn+1) + d(xn+1, T z)

≤ d(z, xn+1) + d(Txn, T z)

≤ d(z, xn+1) + 1
2

(d(z, Txn) + d(xn, T z))− ψ (d(z, Txn), d(xn, T z))

= d(z, xn+1) + 1
2

(d(z, xn+1) + d(xn, T z))− ψ (d(z, xn+1), d(xn, T z))

Making n→∞, using (2.14) and continuity of ψ we obtain

d(z, Tz) ≤ 1
2
d(z, Tz)− ψ (0, d(z, Tz)) ≤ 1

2
d(z, Tz))

which is a contradiction unless d(z, Tz) = 0.
Hence z = Tz.
Next we establish that the fixed point z is unique.

If z1 and z2 are two fixed points of T , then

d(z1, z2) = d(Tz1, T z2) ≤ 1
2

(d(z1, T z2) + d(z2, T z1))− ψ (d(z1, T z2), d(z2, T z1)).

that is, d(z1, z2) ≤ d(z1, z2)− ψ (d(z1, z2), d(z1, z2)),

which by property of ψ is a contradiction unless d(z1, z2) = 0, that is z1 = z2. This
completes the proof of the uniqueness of the fixed point.

We next consider the following example.

Example 2.1: Let X = {α, β, γ} and d is a metric defined on X as follows.
d(α, β) = 1, d(β, γ) = 2, d(γ, α) = 1.5

Then (X, d) is a complete metric space. Let ψ(a, b) = 1
2

min{a, b}.
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Let T : X → X be a mapping defined as follows.

Tα = β, Tβ = β, Tγ = α.
Then T is a weak C-contraction and conditions of theorem 2.1 are satisfied. Hence T
must have a unique fixed point. Here β is the unique fixed point of T .

The mapping T in the above example is not a C-contraction. This is seen by noting
that when x = α and y = γ the inequality (1.3)will not be satisfied by T . Again as
has been noted in the discussion following definition 1.3, every C-contraction is a weak
C-contraction. Thus the class of weakly C-contractive mappings is actually a strictly
larger class of mappings than the class of C-contractions.
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