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1 Introduction

The question of isoperimetry What is the largest amount of volume that can

be enclosed by a given amount of area? can be traced back to antiquity.1 The
first mathematically rigorous results are as recent as the nineteenth century.
The question of isoperimetry and its close relative, the analysis of minimal
surfaces, are two of the model problems of the geometric calculus of varia-
tions.

The list of geometries where an explicit answer to the question of
isoperimetry is available is short. We provide an overview of available re-
sults in Appendix H. In this paper and [22], we extend this list by a class of
Riemannian manifolds (M,g) for which we describe all large isoperimetric
regions completely.

We refer the reader to Sect. 2 for the precise definitions of all terms in the
statement of our first main theorem:

1We refer the reader to [14] for a beautiful collection of materials on the history of the isoperi-
metric problem.
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Theorem 1.1 Let (M,g) be an n-dimensional initial data set with n ≥ 3 that

is C 0-asymptotic to Schwarzschild of mass m > 0. There exists V0 > 0 such

that for every V ≥ V0 the infimum in

inf
{

H
n−1
g (∂Ω) : Ω ⊂ M is a smooth region with L

n
g(Ω) = V

}

(1)

is achieved by a smooth isoperimetric region ΩV ⊂ M . The boundary of ΩV

is close to a centered coordinate sphere Sr where r is such that Ln
g(Br) =

V = Ln
g(ΩV ). If (M,g) is C 2-asymptotic to Schwarzschild of mass m > 0,

then V0 > 0 can be chosen such that for every V ≥ V0, ΩV is the unique

minimizer of (1), and such that the hypersurfaces {∂ΩV }V ≥V0 foliate M \Ω0
smoothly. If (M,g) is also asymptotically even, then the centers of mass of

the boundaries ∂ΩV converge to the center of mass of (M,g) as V → ∞.

Theorem 1.1 follows from Theorems 5.12 and 6.1. The class of Rieman-
nian manifolds (M,g) to which Theorem 1.1 applies appears naturally in
mathematical relativity as initial data for the Einstein equations. It also ap-
pears naturally in conformal geometry: If (M̄, ḡ) is a closed Riemannian man-
ifold of positive Yamabe type and if either 3 ≤ n ≤ 5 or if (M̄, ḡ) is locally

conformally flat, then (M̄ \ {p},G
4

n−2 ḡ) lies in this class. Here, p ∈ M̄ and G

is the Green’s function with pole at p of the conformal Laplace operator of g,
cf. Theorem V.3.6 in [63] and Propositions 3.3 and 4.4 in [61].

The critical points for the isoperimetric problem are exactly the constant
mean curvature surfaces. Stable critical points are volume preserving stable
constant mean curvature surfaces. The study of such surfaces also has a rich
(if relatively recent) history. We mention in particular Alexandrov’s theorem
which shows that closed constant mean curvature surfaces in Euclidean space
are round spheres. In their seminal paper [32], G. Huisken and S.-T. Yau
proved that the complement of a bounded set of a three dimensional initial
data set (M,g) that is C 4-asymptotic to Schwarzschild of mass m > 0 is fo-
liated by strictly volume preserving stable constant mean curvature spheres.
Moreover, the leaves of this foliation are the unique volume preserving stable
constant mean curvature spheres of their mean curvature within a large class
of surfaces, including all nearby ones. This uniqueness has been extended
to a larger class of surfaces in important work by J. Qing and G. Tian [49].
G. Huisken and S.-T. Yau have also shown in [32] that the centers of mass
of their surfaces have a limit, the “Huisken-Yau geometric center of mass”.
H. Bray conjectured in [7] that the surfaces found in [32] are in fact isoperi-
metric. We have confirmed this conjecture in [22] by establishing an effec-
tive volume comparison result for initial data sets that are C 0-asymptotic to
Schwarzschild of mass m > 0, building on H. Bray’s characterization [7] of
the isoperimetric regions in the exact spatial Schwarzschild geometry. We re-
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fer the reader to the introductions of [21, 22] for a more extensive discussion
including the physical significance of these results and further references.

Theorem 1.1 here extends these results in several ways:

(i) Our result holds in all dimensions. The existence of a foliation by volume
preserving stable constant mean curvature surfaces when (M,g) is C 4-
asymptotic to Schwarzschild of mass m �= 0 has been shown by R. Ye
in [71] in all dimensions. The proofs of the uniqueness results for large
volume preserving stable constant mean curvature surfaces in [32, 49]
depend delicately on some tools that are special to three dimensional
initial data sets.

(ii) The uniqueness of the leaves in the class of isoperimetric surfaces in
our result is global. The uniqueness results of [32, 49] apply only to sur-
faces that lie far in the asymptotic regime of the initial data set (M,g)

where the geometry is close to that of the exact spatial Schwarzschild
geometry. An important ingredient in our proof is the recent character-
ization of closed constant mean curvature surfaces in the exact spatial
Schwarzschild geometry by S. Brendle [8].

(iii) Unlike [32], we only require that (M,g) is C 2-asymptotic to Schwarz-
schild of mass m > 0. To accomplish this, we rely on strong a priori po-
sition estimates for large isoperimetric regions in initial data sets that are
C 0-asymptotic to Schwarzschild of mass m > 0. These estimates come
from our effective volume comparison result, see Theorems 3.5 and 4.1.
In the case n = 3, we also rely on an idea from [38] which in turn de-
pends on the effective version of Schur’s lemma of C. De Lellis and
S. Müller in [17].

(iv) When n = 3 and (M,g) is C 4-asymptotic to Schwarzschild of mass
m > 0, the convergence of the centers of mass of the leaves of the fo-
liation was established in [32]. L.-H. Huang showed in [28, 29] that the
Huisken-Yau geometric center of mass coincides with the usual center of
mass [4, 50]. Our proof here, which works in all dimensions, uses ideas
from [28, 29], but it is both shorter and more elementary. In particular,
we do not rely on the delicate density theorem of [29].

One key ingredient in our proof of Theorem 1.1 is an all-dimensional ana-
logue of the effective volume comparison theorem for 3-dimensional initial
data sets (M,g) that are C 0-asymptotic to Schwarzschild of mass m > 0 that
was obtained by the authors in [22]. This result is established in Sect. 3.

In [53], M. Ritoré has shown that in a complete Riemannian surface with
non-negative curvature, isoperimetric regions ΩV exist in M for every vol-
ume V > 0. Our second main result is the existence of large isoperimetric
regions in arbitrary 3-dimensional initial data sets with non-negative scalar
curvature:
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Theorem 1.2 Assume that (M,g) is a three dimensional initial data set that

has non-negative scalar curvature. There exists a sequence of isoperimetric

regions Ωi ⊂ M with L3
g(Ωi) → ∞.

The proof of Theorem 1.2, which is given in Sect. 7, is indirect and uses
recent deep insights of G. Huisken’s on the isoperimetric mass of initial data
sets. Note that our theorem implies in particular that (M,g) contains large
volume preserving stable constant mean curvature surfaces. Using arguments
as for example in [21] it follows that appropriate homothetic rescalings of
these large isoperimetric regions to a fixed volume are close to coordinate
balls. The existence of such surfaces in this generality seems to lie deep and
out of reach of e.g. implicit-function type arguments.

2 Definitions and notation

Definition 2.1 Let n ≥ 3. An initial data set (M,g) is a connected complete
boundaryless n-dimensional Riemannian manifold such that there exists a
bounded open set U ⊂ M so that M \ U ∼=x R

n \ B 1
2
(0), and such that in the

coordinates induced by x = (x1, . . . , xn) we have that

r|gij − δij | + r2|∂kgij | + r3
∣

∣∂2
klgij

∣

∣ ≤ C for all r ≥ 1,

where r :=
√

∑n
i=1 x2

i .
Given m > 0, γ ∈ (0,1], and an integer k ≥ 0, we say that an initial data

set is Ck-asymptotic to Schwarzschild of mass m > 0 at rate γ if

k
∑

l=0

rn−2+γ+l
∣

∣∂ l(g − gm)ij
∣

∣ ≤ C for all r ≥ 1,

where (gm)ij = (1 + m

2|x|n−2 )
4

n−2 δij .

We say that an initial data set (M,g) that is C 2-asymptotic to Schwarzschild
of mass m > 0 at rate γ is asymptotically even, if

rn+1+γ
∣

∣R(x) − R(−x)
∣

∣ ≤ C for all x with |x| = r ≥ 1

2
.

Here, R is the scalar curvature of g.

We extend r as a smooth regular function to the entire initial data set (M,g)

such that r(U) ⊂ [0,1). We use Sr , Br to denote the surface {x ∈ M : |x| = r}
and the region {x ∈ M : |x| ≤ r} in M respectively. We will not distinguish
between the end M \ U of M and its image R

n \ B 1
2
(0) under x.
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If Ω ⊂ M is Borel and has locally finite perimeter, then its reduced bound-
ary in (M,g) is denoted by ∂∗Ω .

Definition 2.2 The isoperimetric area function Ag : [0,∞) → [0,∞) is de-
fined by

Ag(V ) := inf
{

H
n−1
g

(

∂∗Ω
)

: Ω ⊂ M is Borel, has finite perimeter,

and L
n
g(Ω) = V

}

. (2)

A Borel set Ω ⊂ M with finite perimeter such that Ln
g(Ω) = V and Ag(V ) =

Hn−1
g (∂∗Ω) is called an isoperimetric region of (M,g) of volume V .

3 A refinement of Bray’s isoperimetric comparison theorem for

Schwarzschild in all dimensions

Throughout this section we will use the notation for the spatial Schwarzschild
manifold of mass m > 0,

(

R
n \ {0}, gm :=

(

1 + m

2|x|n−2

)
4

n−2
n

∑

i=1

dx2
i

)

,

set forth in Appendix D.
In his thesis [7], H. Bray has proven that the centered coordinate spheres

in the three-dimensional Schwarzschild manifold of mass m > 0 are isoperi-
metric. His argument also applies to compact perturbations of Schwarzschild
provided the coordinate spheres are sufficiently large. The following propo-
sition follows from straightforward modifications of H. Bray’s original, three
dimensional arguments in [7], see also [22, Sect. 3]. The proof uses the ana-
logue of the Hawking mass for rotationally symmetric Riemannian manifolds
in higher dimensions, which we review in Appendix B. See also [1, 6, 15] for
other extensions of the results in H. Bray’s thesis.

Proposition 3.1 (Bray’s volume preserving charts in higher dimension) Let

m > 0 and r > rh be given. There exist α ∈ (0,1), c > 0, s0 ∈ [0, c), uc ∈
C 1,1((0,∞)), and wc ∈ C 1,1((s0,∞)) with the following properties:

(a) The sphere {c} × S
n−1 in the metric cone ((0,∞) × S

n−1, α−2ds2 +
α

2
n−1 s2gSn−1) has the same area and the same (positive) mean curvature

as Sr = Sr(0) ⊂ R
n with respect to gm.

(b) uc(s) = α for s ≤ c. uc is a smooth non-decreasing function on (c,∞)

and lims→∞ uc(s) = 1. The derivative of uc at s = c exists and equals 0.
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(c) wc ≥ 1, wc(s) ≡ 1 for s ≥ c, the derivative of wc at s = c exists and is 0,
limsցs0 wc(s) = ∞, and wc is smooth on (s0, c).

(d) Define the metric gc
m := u−2

c ds2 + u
2

n−1
c s2gSn−1 on (s0,∞) × S

n−1. Then

((s0,∞) × S
n−1,w

4
n−2
c gc

m) is isometric to (Rn \ {0}, gm) under a rota-

tionally invariant map that sends {c} × S
n−1 to Sr(0).

(e) As quadratic forms, we have that α2gc
m ≤ ds2 + s2gSn−1 ≤ u

− 2
n−1

c gc
m on

(s0,∞) × S
n−1.

The additional observations about α, c, and uc in the following proposi-
tion, in particular (e), are the key to making H. Bray’s characterization of
isoperimetric regions in Schwarzschild into an effective volume comparison
theorem. We omit the proofs, which are simple adaptations of the arguments
in [22].

Proposition 3.2 (Cf. [22, Sect. 3]) We have that

(a) cn = rn(1 + 2n−2
n−2

m

rn−2 + O( 1
r2n−4 ))

(b) α = 1 − n−1
n

m

rn−2 + O( 1
r2n−4 )

(c) The scalar curvature of the conical metric ((0,∞) × S
n−1, α−2ds2 +

α
2

n−1 s2gSn−1) equals (n − 1)(n − 2)s−2(α− 2
n−1 − α2).

(d) The Schwarzschild volume between Sr and the horizon Srh is greater

than the volume of (0, c] × S
n−1 with respect to the metric α−2ds2 +

α
2

n−1 s2gSn−1 . The difference is

V0 = ωn−1r
n

n

n − 2

2

m

rn−2
+ O

(

1

rn−4

)

= ωn−1c
n

n

n − 2

2

m

cn−2
+ O

(

1

cn−4

)

.

(e) Fix τ0 > 1 and let τ ≥ τ0. Then

uc(τc) − uc(c) = uc(τc) − α

= (n − 1)m

2ncn−2τn

(

2τn − nτ 2 + (n − 2)
)

+ O

(

1

c2n−4

)

≥ δ
m

cn−2

(

1 − 1

τ

)2

provided that c is sufficiently large (depending only on m and τ0), and

where δ > 0 is a constant depending only on n.
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With these preparations, it is a simple matter to carry over the derivation
of the effective volume comparison result [22, Proposition 3.3] to arbitrary
dimensions. The result is based on the concept introduced in the following
definition:

Definition 3.3 (Cf. [22, Definition 3.2]) Let (M,g) be an initial data set that
is C 0-asymptotic to Schwarzschild of mass m > 0. Let Ω be a bounded Borel
set with finite perimeter in (M,g). Given parameters τ > 1 and η ∈ (0,1) we
say that such a set Ω is (τ, η)-off-center if

(i) Ln
g(Ω) is so large that there exists a coordinate sphere Sr = ∂Br with

Ln
g(Ω) = Ln

g(Br) and r ≥ 1, and if

(ii) Hn−1
g (∂∗Ω \ Bτr) ≥ ηHn−1

g (Sr).

There are several measures of asymmetry in the literature that lead to effec-
tive versions of the classical isoperimetric inequality in Euclidean space, cf.
Appendix H.8. The following effective version of Bray’s characterization of
the isoperimetric regions in Schwarzschild is not a consequence of an effec-
tive isoperimetric inequality in Euclidean space; it depends on the positivity
of the mass in a crucial way.

Proposition 3.4 (Effective Volume Comparison in Schwarzschild, cf. [22,
Proposition 3.3]) Given m > 0 and (τ, η) ∈ (1,∞) × (0,1) there exists

V0 > 0 so that the following holds: Let V ≥ V0 and let r ≥ rh be such that

V = Ln
gm

(Br \Brh) and let Ω ⊂ R
n be a bounded Borel set with finite perime-

ter such that Brh ⊂ Ω and Ln
gm

(Ω \ Brh) = V . If Ω is (τ, η)-off-center, i.e. if

Hn−1
gm

(∂∗Ω \ Bτr) ≥ ηHgm(Sr), then

H
n−1
gm

(

∂∗Ω
)

≥ H
n−1
gm

(Sr) + cηm

(

1 − 1

τ

)2

r. (3)

Here, c > 0 is a constant that only depends on n.

The proof of the main theorem in this section below is literally the same
as in [22], except for adapting various exponents throughout the proof. Since
the modifications are delicate, we include the full argument.

Theorem 3.5 (Cf. [22, Theorem 3.4]) Let (M,g) be an initial data set

that is C 0-asymptotic to Schwarzschild of mass m > 0. For every tuple

(τ, η) ∈ (1,∞) × (0,1) and every constant Θ > 0 there exists a constant

V0 > 0 such that the following holds: Given a bounded Borel set Ω with fi-

nite perimeter in (M,g) and with Ln
g(Ω) ≥ V0 that is (τ, η)-off-center with
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Hn−1
g (∂∗Ω)

1
n−1 Ln

g(Ω)−
1
n ≤ Θ and such that Hn−1

g (∂∗Ω ∩ Bσ ) ≤ Θσ n−1

holds for all σ ≥ 1, one has

H
n−1
g

(

∂∗Ω
)

≥ H
n−1
g (Sr) + cηm

(

1 − 1

τ

)2

r

where r ≥ 1 is such that Ln
g(Br) = Ln

g(Ω), and where c > 0 is a constant that

only depends on n.

Proof For ease of exposition we only consider smooth regions Ω . The result
for sets with finite perimeter follows from this by approximation. We will use
here that Hn−1

g (∂Ω) → ∞ as Ln
g(Ω) → ∞, which follows from the isoperi-

metric inequality in Lemma E.4. Note also that Ln
g(Ω) = ωn−1r

n

n
+ O(rn−1).

We break into several steps:

(a) Let Ω̃ := Ω ∪ B1 ⊂ M . Let Ω̃m := (x(Ω \ B1) ∪ B1(0)) \ Brh(0) be the
corresponding region in Schwarzschild.

(b) Note that Ln
g(Ω̃) = Ln

g(Ω)+O(1) and Hn−1
g (∂Ω̃) = Hn−1

g (∂Ω)+O(1).

Moreover, Ω̃ satisfies Hn−1
g (∂Ω̃ ∩ Bσ ) ≤ Θ̃σ n−1 for all σ ≥ 1 where Θ̃

depends only on Θ and (M,g).
(c) By Corollary A.2 with β = γ

2 ,

H
n−1
gm

(∂Ω̃m) ≤ H
n−1
g (∂Ω̃) + O

(

H
n−1
g (∂Ω̃)

2−γ
2(n−1)

)

≤ H
n−1
g (∂Ω) + O

(

H
n−1
g (∂Ω)

2−γ
2(n−1)

)

.

(d) By Lemma A.3 with α = 2+γ
2 , Ln

gm
(Ω̃m) = Ln

g(Ω) + O(Ln
g(Ω)

4−γ
2n ).

(e) By Lemma A.3 with α = 2+γ
2 and choice of r , Ln

gm
(Br \ Brh) =

Ln
gm

(Br \ B1) + O(1) = Ln
g(Br \ B1) + O(Ln

g(Br \ B1)
4−γ
2n ) = Ln

g(Ω) +
O(Ln

g(Ω)
4−γ
2n ).

(f) By (d) and (e) and choice of r we have that Ln
gm

(Ω̃m) = Ln
gm

(Br \ Brh) +
O(r

4−γ
2 ). Let r̃ be such that Ln

gm
(Ω̃m) = Ln

gm
(Br̃ \ Brh). Then r̃ = r +

O(r−n+ 6−γ
2 ).

(g) The Schwarzschild region Ω̃m is (1+τ
2 ,

η
2 )-off-center provided that

Ln
g(Ω) is sufficiently large. Hence Hn−1

gm
(Sr̃) + cηm(1 − 1

τ
)2r̃ ≤

Hn−1
gm

(∂Ω̃m) by (3).

(h) H2
gm

(Sr) = Hn−1
gm

(Sr) ≤ Hn−1
gm

(Sr̃) + O(Ln
g(Ω)

2−γ
2n ) where the inequal-

ity follows by explicit computation from Ln
gm

(Br \ Brh) = Ln
g(Ω) +

O(Ln
g(Ω)

4−γ
2n ).
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(i) Hn−1
g (Sr) ≤ Hn−1

gm
(Sr) + O(1). This is obvious.

(j) Hn−1
g (Sr) ≤ Hn−1

g (∂Ω) − c
2ηm(1 − 1

τ
)2r + O(Ln

g(Ω)
2−γ
2n ) +

O(Hn−1
g (∂Ω)

2−γ
2(n−1) ).

The conclusion follows from this since Hn−1
g (∂Ω)

1
n−1 Ln

g(Ω)−
1
n ≤ Θ and

since 2−γ
2 < 1. �

4 Large isoperimetric regions center

The results in this section follow from the effective volume comparison result
in Theorem 3.5 and the results in Appendix E essentially as in [22].

Theorem 4.1 (Cf. [22, Theorem 5.1]) Let (M,g) be an initial data set that

is C 0-asymptotic to Schwarzschild of mass m > 0. There exists a constant

V0 > 0 so that if Ω is an isoperimetric region with Ln
g(Ω) = V ≥ V0, then

Ω is smooth and ∂Ω is a connected smooth hypersurface that is close to the

coordinate sphere Sr , where r is such that Ln
g(Ω) = Ln

g(Br) = V . The scale

invariant C 2,α norms of functions that describe such ∂Ω as normal graphs

above the corresponding coordinate spheres Sr tend to zero as V → ∞.

Proof It follows exactly as in the proof of Theorem 5.1 in [22] that the re-
duced boundary of Ω outside of B r

2
is a smooth connected closed hypersur-

face with the properties asserted for the boundary of Ω in the statement of the
theorem. Assume that Br/2 ∩ supp(∂∗Ω) �= ∅ and let ρ0 := sup{ρ ∈ [1, r/2] :
Sρ ∩ supp(∂∗Ω) �= ∅}. The half-space theorem [67, Corollary 37.6] shows
that Sρ0 ∩ supp(∂∗Ω) �= ∅ consists of regular points. If Sρ0 is mean convex,
this contradicts the maximum principle. Since all sufficiently large coordinate
spheres are mean convex, we conclude that Ln

g(B r
2
\ Ω) is bounded indepen-

dently of V . If it were non-zero, we could consider the smooth region Ω ∪B r
2

and move its mean convex outer boundary inwards to adjust the (relatively
small) increase in volume back to V . The resulting region has less boundary
area than Ω , a contradiction. �

Theorem 4.2 (Cf. [22, Theorem 5.2]) Let (M,g) be an initial data set that

is C 0-asymptotic to Schwarzschild of mass m > 0. There exists V0 > 0 so that

for every volume V ≥ V0 there exists a smooth isoperimetric region Ω with

Ln
g(Ω) = V .

Remark 4.3 It follows from the argument in [7, Lemma 5] that a closed
isoperimetric surface in a Riemannian manifold with non-negative Ricci-
curvature is either connected or totally geodesic. It is tempting to impose a
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curvature condition and transplant Bray’s argument to minimizing sequences
(as in Proposition E.3) to prevent them from splitting up into a part that stays
behind and a part that diverges to infinity. Such arguments are investigated
for various kinds of asymptotic geometries in recent work of A. Mondino and
S. Nardulli. Note that the Ricci-tensor of the Schwarzschild manifold has a
negative eigenvalue. Moreover, every complete one-ended asymptotically flat
manifold that has non-negative Ricci-curvature is flat. (This follows from the
Bishop-Gromov comparison theorem.)

5 Uniqueness of large isoperimetric regions and the existence

of an isoperimetric foliation

Let τ ∈ (0, 1
2) and R,C > 1. We consider the Banach space BR,τ,C of tuples

(u, g), where u ∈ C 2,α(SR(0)) is such that

sup
Sr (0)

R−1|u| + |Du| + R
∣

∣D2u
∣

∣ + R1+α
[

D2u
]

α
≤ τ,

where the derivatives and norms are those of Sr(0), and where gij is a C 2

metric on on B2R(0) \ BR
2
(0) such that for some γ ∈ (0,1],

∣

∣(g − gm)ij
∣

∣ + R
∣

∣∂k(g − gm)ij
∣

∣ + R2
∣

∣∂2
kl(g − gm)ij

∣

∣ ≤ CR2−n−γ

on B2R(0) \ BR
2
(0) for all i, j, k, l ∈ {1, . . . , n}. (4)

Here, (gm)ij = (1 + m

2rn−2 )
4

n−2 δij are the coefficients of the Schwarzschild
metric of mass m > 0. Given (u, g) ∈ BR,τ,C , we will consider the surface
graph(u) := {(1 + R−1u(x))x : x ∈ SR(0)} ⊂ B2R(0) \ BR

2
(0) and compute

associated geometric quantities with respect to g.
The classes BR,τ,C and how we use them are closely related to the classes

Bσ in the work of G. Huisken and S.-T. Yau [32, p. 286], cf. the proof of
Theorem 5.1 and the remarks in the last paragraph on p. 311 in their paper.

5.1 Curvature estimates for surfaces in BR,τ,C

Proposition 5.1 Given C > 0, there exist R0 > 0 and τ0 ∈ (0, 1
2) such that

for all R > R0 and τ ∈ (0, τ0), we have the following estimates for geometric

quantities of Σ = graph(u) with respect to g for all (u, g) ∈ BR,τ,C :

|h̊| ≤ c
(

τR−1 + R1−n−γ
)

,

(n − 1)

2
≤ |HR| ≤ 2(n − 1),
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|Rm | ≤ cR−n, (5)
∣

∣

∣

∣

Rc(ν, ν) + (n − 1)(n − 2)m

Rn

∣

∣

∣

∣

≤ c
(

τR−n + R−n−γ
)

, and

∣

∣ι∗Σ (Rm⌊ν)
∣

∣ ≤ c
(

τR−n + R−n−γ
)

.

Here, Rm and Rc denote the Riemann and the Ricci curvature tensors of g,
ν the unit normal of Σ with respect to g, h̊ the trace free part of the second

fundamental form of Σ , H the mean curvature, ιΣ the embedding of Σ into

R
n, ∇ the covariant derivative with respect to the induced metric on Σ , and

c > 0 is a constant that only depends on n and C. Contractions are taken with

respect to the first index. Our sign conventions are reviewed in Appendix C.

Lemma 5.2 (J. Simons’ identity) Let Σ be a hypersurface of a Riemannian

manifold (M,g) with induced metric gij , second fundamental form hij , and

mean curvature H = ḡijhij . Then

�hij = ∇2
ijH + Hhk

i hkj − |h|2hij + hk
i

(

ι∗Σ Rm
)l

j lk
+ hkl

(

ι∗Σ Rm
)

kij l

+ ∇j

(

ι∗Σ (Rc⌊ν)i
)

+ ∇k(
ι∗Σ (Rm⌊ν)ijk

)

.

The corollary below follows from separating h into its trace free and pure
trace part, hij = h̊ij + 1

n−1Hgij .

Corollary 5.3 Assumptions as in Lemma 5.2. Then

�h̊ij =
(

∇2
H − �H

n − 1
ḡ

)

ij

+ H

(

h̊k
i h̊kj − 1

n − 1

∣

∣h̊
∣

∣

2
gij

)

+ 1

n − 1
H 2h̊ij

− |h̊|2h̊ij + h̊k
i

(

ι∗Σ Rm
)

lj lk
+ h̊kl

(

ι∗Σ Rm
)

kij l

+ ∇j

(

ι∗Σ (Rc⌊ν)i
)

+ ∇k(
ι∗Σ (Rm⌊ν)ijk

)

and

1

2
�|h̊|2 =

〈

h̊,∇2
H

〉

+ |∇h̊|2 + H tr h̊3 + 1

n − 1
H 2|h̊|2 − |h̊|4

+ h̊ij h̊ik

(

ι∗Σ Rm
)

lj lk
+ h̊ij h̊kl

(

ι∗Σ Rm
)

kij l

+ h̊ij∇j

(

ι∗Σ (Rc⌊ν)i
)

+ h̊ij∇k(
ι∗Σ (Rm⌊ν)ijk

)

. (6)

Here, 〈·, ·〉 denotes the inner product with respect to ḡ.
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Lemma 5.4 Given C > 0, there exist R0 > 0 and τ0 ∈ (0, 1
2) such that for

all R > R0 and τ ∈ (0, τ0) the following holds: If (u, g) ∈ BR,τ,C is such that

Σ = graph(u) has constant mean curvature H with respect to g, and if v is a

non-negative Lipschitz function on Σ , then

∫

Σ

1

2

〈

∇v,∇|h̊|2
〉

+ 1

2(n − 1)
vH 2|h̊|2dH

n−1
g

≤ c

∫

Σ

|∇v||h̊|
∣

∣ι∗Σ (Rm⌊ν)
∣

∣ + v
∣

∣ι∗Σ (Rm⌊ν)
∣

∣

2
dH

n−1
g .

Here, c > 0 denotes a constant which only depends on n and C.

Proof Using Proposition 5.1 we can estimate

∣

∣H tr h̊3
∣

∣ + |h̊|4 +
∣

∣h̊ij h̊ik

(

ι∗Σ Rm
)

lj lk

∣

∣ +
∣

∣h̊ij h̊kl
(

ι∗Σ Rm
)

kij l

∣

∣

≤ 1

2(n − 1)
H 2|h̊|2

provided that τ0 ∈ (0, 1
2) is small enough and R0 > 0 is large enough. In

conjunction with (6) we obtain the differential inequality

−1

2
�|h̊|2 + 1

2(n − 1)
H 2|h̊|2 + |∇h̊|2

≤ −h̊ij∇j

(

ι∗Σ
(

Rc⌊ν
)

i

)

− h̊ij∇k(
ι∗Σ

(

Rm⌊ν
)

ijk

)

.

We multiply this inequality with v and integrate over Σ . Upon an integration
by parts of the first term on the left and the two terms on the right, we obtain

∫

Σ

1

2

〈

∇v,∇|h̊|2
〉

+ 1

2(n − 1)
vH 2|h̊|2 + v|∇h̊|2dH

n−1
g

≤
∫

Σ

∇v ∗ h̊ ∗ ι∗Σ (Rm⌊ν) + v ∗ ∇h̊ ∗ ι∗Σ (Rm⌊ν)dH
n−1
g

≤
∫

Σ

∇v ∗ h̊ ∗ ι∗Σ (Rm⌊ν) + 1

2
v|∇h̊|2 + cv

∣

∣ι∗Σ (Rm⌊ν)
∣

∣

2
dH

n−1
g .

�

The result below corresponds to [32, Lemma 5.6], where a variant of the
iteration technique of [60] for volume preserving stable constant mean curva-
ture surfaces is applied to obtain curvature estimates. Here, we use only that
the surfaces have constant mean curvature, along with J. Simons’ identity and
a standard Stampacchia iteration. Another ingredient in our proof is an insight
from [38] related to an integration by parts on certain covariant derivatives of
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curvature that appear contracted with the tracefree part of the second funda-
mental form in J. Simons’ identity. This is applied to the effect that we get
by assuming that (M,g) is C 2-asymptotic to Schwarzschild of mass m > 0,
rather than C 4-asymptotic as in [32].

Proposition 5.5 Given C > 0, there exist R0 > 0 and τ0 ∈ (0, 1
2) such that

for all R > R0 and τ ∈ (0, τ0) the following holds: If (u, g) ∈ BR,τ,C is such

that Σ = graph(u) has constant mean curvature H with respect to g, then

|h̊| ≤ c
(

τR1−n + R1−n−γ
)

,

where c is a constant that only depends on C and n.

Proof We let u := |h̊|2 and s := supΣ u. Let uk := (u − k)+, where k ≥ 0
is a constant. Then Ωk := suppuk satisfies Ωk ⊂ {u ≥ k}. On Ωk we have
that ∇uk = ∇u, on its complement we have ∇uk = 0 almost everywhere. Let
A(k) := Hn−1

g (Ωk).
Using v = uk as a test function in Lemma 5.4, we obtain that

∫

Ωk

1

2
|∇u|2 + 1

2(n − 1)
H 2|h̊|2ukdH

n−1
g

≤ c

∫

Ωk

|∇u||h̊|
∣

∣ι∗Σ (Rm⌊ν)
∣

∣ + uk

∣

∣ι∗Σ (Rm⌊ν)
∣

∣

2
dH

n−1
g .

Using that uk ≤ u ≤ s we see that the right hand side can be estimated by

1

4

∫

Ωk

|∇u|2dH
n−1
g + cA(k)s

(

τ 2R−2n + R−2n−2γ
)

so that
∫

Ωk

|∇u|2 + H 2u2
kdH

n−1
g ≤ cA(k)s

(

τ 2R−2n + R−2n−2γ
)

. (7)

In dimensions n > 3 we continue the estimate as follows. We combine
the Hölder inequality and the Michael-Simon-Sobolev inequality [39, The-
orem 2.1] to find that

∫

Ωk

u2
kdH

n−1
g ≤ A(k)2/(n−1)

(∫

Ωk

u
2(n−1)/(n−3)

k dH
n−1
g

)(n−3)/(n−1)

≤ cA(k)2/(n−1)

∫

Ωk

|∇u|2 + H 2u2
kdH

n−1
g .
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In dimension n = 3 we estimate

∫

Ωk

u2
kdH

2
g ≤

(∫

Ωk

|∇u| + H |uk|dH
2
g

)2

≤ cA(k)

∫

Ωk

|∇u|2 + H 2|uk|2dH
2
g.

In conjunction with (7) we obtain, in both cases, that is for all n ≥ 3, that

∫

Ωk

u2
kdH

n−1
g ≤ cA(k)(n+1)/(n−1)s

(

τ 2R−2n + R−2n−2γ
)

.

Let h > k. Then

(h − k)2A(h) ≤
∫

Ωh

u2
kdH

n−1
g ≤

∫

Ωk

u2
kdH

n−1
g

≤ cA(k)(n+1)/(n−1)s
(

τ 2R−2n + R−2n−2γ
)

.

Thus the function A satisfies the iteration inequality from [33, Lemma B.1]
with α = 2, β = n+1

n−1 , and C = cs(τ 2R−2n + R−2n−2γ ). This lemma yields
that A(d) = 0 with

d2 = cs
(

τ 2R−2n + R−2n−2γ
)

A(0)2/(n−1).

Note that A(0)2/(n−1) = Hn−1
g (Σ)2/(n−1) ≤ cR2. Hence

sup |h̊|2 = s ≤ d ≤ cs1/2(τR1−n + R1−n−γ
)

. �

5.2 Eigenvalue estimates

In this subsection we use the curvature estimate in Proposition 5.5 to de-
rive precise estimates for the spectrum of the Jacobi operator on constant
mean curvature spheres in BR,τ,C . The strategy is that of [32, Sect. 4] adapted
to arbitrary dimensions. Because the details of this adaption are delicate we
present the full argument here.

Lemma 5.6 (Lichnerowicz, e.g. [62, Sect. III.4]) Assume that Σ is a closed

(n − 1)-dimensional manifold with Riemannian metric g and Ricci curvature

Rc ≥ κg, where κ ≥ 0. Then the first non-zero eigenvalue μ0 of −� satisfies

μ0 ≥ n − 1

n − 2
κ.
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Proposition 5.7 Cf. [32, Lemma 3.13] Given C > 0, there exist R0 > 0 and

τ0 ∈ (0, 1
2) such that for all R > R0 and τ ∈ (0, τ0), if (u, g) ∈ BR,τ,C and if

Σ = graph(u) has constant mean curvature H with respect to g, then the first

eigenvalue μ0 of −� on Σ satisfies the estimate

μ0 ≥ H 2

n − 1
+ 2(n − 1)m

Rn
− O

(

τR−n + R−n−γ
)

.

Proof The Ricci curvature of the induced metric ḡ on Σ is

Rcij = Rcij −Rmνijν +Hhjk − hikhj l

= Rcij −Rmνijν + n − 2

(n − 1)2
H 2gij + n − 3

n − 1
Hh̊ij − h̊ikh̊jk. (8)

Note that since gm is scalar flat and conformally flat, the scalar and Weyl
curvature of g are of order O(R−n−γ ). In particular,

Rmνijν = 1

n − 1
Rc(ν, ν)gij + O

(

R−n−γ
)

.

Using Proposition 5.1, we find that

Rcij −Rmνijν = − 2

n − 1
Rc(∂r , ∂r)gij + O

(

τR−n + R−n−γ
)

= 2(n − 2)m

Rn
gij + O

(

τR−n + R−n−γ
)

.

In view of Proposition 5.5, the last two terms in (8) are of order O(τR−n +
R−n−γ ). The proposition follows from Lemma 5.6 with κ ≥ 2(n−2)m

Rn +
n−2

(n−1)2 H
2 − O(τR−n + R−n−γ ). �

Corollary 5.8 (Cf. [32, Theorem 4.1]) Assumptions as in Proposition 5.7.
Then the lowest eigenvalue of the Jacobi operator

Lu = −�u −
(

|h|2 + Rc(ν, ν)
)

u

on functions with zero mean, that is

λ1 := inf

{∫

Σ

f Lf dH
n−1
g

∣

∣

∣

∣

∫

Σ

f 2dH
n−1
g = 1 and

∫

Σ

f dH
n−1
g = 0

}

,

satisfies

λ1 ≥ n(n − 1)m

Rn
− O

(

τR−n + R−n−γ
)

.
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Proof Given f with
∫

Σ
f 2dHn−1

g = 1 and
∫

Σ
f dHn−1

g = 0, we use Proposi-
tions 5.7 and 5.5 and (5) to obtain that

∫

Σ

f Lf dH
n−1
g

=
∫

Σ

|∇f |2 − f 2(|h|2 + Rc(ν, ν)
)

dH
n−1
g

≥
∫

Σ

f 2
(

1

n − 1
H 2 + 2(n − 1)m

Rn
− |h|2 − Rc(ν, ν)

− O
(

τR−n + R−n−γ
)

)

dH
n−1
g

≥
(

n(n − 1)m

Rn
− O

(

τR−n + R−n−γ
)

)∫

Σ

f 2dH
n−1
g .

�

Proposition 5.9 (Cf. [32, Theorem 4.1]) Assumptions as in Proposition 5.7.
Then the Jacobi operator L on Σ is invertible with the explicit bound μ1 ≥
n(n−1)m

Rn − O(τR−n + R−n−γ ) for the eigenvalue of least absolute value.

Proof Let μ0 be the smallest eigenvalue of L, that is

μ0 := inf

{∫

Σ

f Lf dH
n−1
g

∣

∣

∣

∣

∫

Σ

f 2dH
n−1
g = 1

}

.

Choosing f to be the constant function f = Hn−1
g (Σ)−1/2, we find that

μ0 ≤ − H 2

n − 1
+ (n − 1)(n − 2)m

Rn
+ O

(

τR−n + R−n−γ
)

, (9)

where we use the estimates from Proposition 5.5 and (5). On the other hand,
by dropping the Dirichlet energy term and using (5), we find that
∫

Σ

f Lf dH
n−1
g

≥ −
∫

Σ

(

|h|2 + Rc(ν, ν)
)

f 2dH
n−1
g

≥
(

− H 2

n − 1
+ (n − 1)(n − 2)m

Rn
− O

(

τR−n + R−n−γ
)

)∫

Σ

f 2dH
n−1
g .

In conjunction with (9), this gives
∣

∣

∣

∣

μ0 + H 2

n − 1
− (n − 1)(n − 2)m

Rn

∣

∣

∣

∣

≤ O
(

τR−n + R−n−γ
)

.
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Let h0 be the corresponding eigenfunction, so that Lh0 = μ0h0. Denote by h̄0
its mean value. Multiply the eigenvalue equation by (h0 − h̄0) and integrate
to obtain

∫

Σ

(h0 − h̄0)L(h0 − h̄0)dH
n−1
g − μ0

∫

Σ

(h0 − h̄0)
2dH

n−1
g

= h̄0

∫

Σ

(h0 − h̄0)
(

|h|2 + Rc(ν, ν)
)

dH
n−1
g . (10)

By Corollary 5.8, the first term on the left is non-negative, so we drop it.
The second term on the left has the factor −μ0 which we can estimate from
below −μ0 ≥ 1

2(n−1)
H 2. On the right we use that the function (h0 − h̄0) is

L2-orthogonal to constant functions in combination with the fact that H 2 is
constant and (5) to infer that

∫

Σ

(h0 − h̄0)
(

|h|2 + Rc(ν, ν)
)

dH
n−1
g

=
∫

Σ

(h0 − h̄0)
(

|h̊|2 + O
(

τR−n + R−n−γ
))

dH
n−1
g .

In view of (10), we obtain that

H 2

2(n − 1)

∫

Σ

(h0 − h̄0)
2dH

n−1
g

≤ H 2

4(n − 1)

∫

Σ

(h0 − h̄0)
2dH

n−1
g

+ c|h̄0|2H−2
∫

Σ

(

|h̊|4 + O
(

τ 2R−2n + R−2n−2γ
))

dH
n−1
g .

This implies the estimate
∫

Σ

(h0 − h̄0)
2dH

n−1
g ≤ O

(

τ 2R3−n + R3−n−2γ
)

|h̄0|2. (11)

Let μ1 be the next eigenvalue of L with corresponding eigenfunction h1. We
show that its mean value h̄1 is small. To this end, observe that h1 is L2-
orthogonal to h0 and therefore

0 =
∫

Σ

h0h1dH
n−1
g =

∫

Σ

(h1 − h̄1)(h0 − h̄0)dH
n−1
g + h̄0

∫

Σ

h1dH
n−1
g .

Hence we get from (11) that
∣

∣

∣

∣

∫

Σ

h1dH
n−1
g

∣

∣

∣

∣

≤ O
(

τR
3−n

2 + R
3−n

2 −γ
)

(∫

Σ

|h1 − h̄1|2dH
n−1
g

)1/2

,
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or equivalently

|h̄1| ≤ O
(

τR
5−3n

2 + R
5−3n

2 −γ
)

(∫

Σ

|h1 − h̄1|dH
n−1
g

)1/2

. (12)

Multiply the equation Lh1 = μ1h1 by (h1 − h̄1) and integrate. This yields
∫

Σ

(h1 − h̄1)L(h1 − h̄1)dH
n−1
g

= μ1

∫

Σ

(h1 − h̄1)
2 + h̄1

∫

Σ

(h1 − h̄1)
(

|h|2 + Rc(ν, ν)
)

dH
n−1
g .

The term on the left can be estimated below using Corollary 5.8 by (
n(n−1)m

Rn −
O(τR−n +R−n−γ ))

∫

Σ
(h1 − h̄1)

2dHn−1
g . Exploiting as before that (h1 − h̄1)

is L2-orthogonal to constant functions to estimate the second term on the
right, we arrive at
(

n(n − 1)m

Rn
− O

(

τR−n + R−n−γ
)

)∫

Σ

(h1 − h̄1)
2dH

n−1
g

≤ μ1

∫

Σ

(h1 − h̄1)
2dH

n−1
g + O

(

τR−n + R−n−γ
)

|h̄1|
∫

Σ

|h1 − h̄1|dH
n−1
g

≤ μ1

∫

Σ

(h1 − h̄1)
2dH

n−1
g + O

(

τ 2R2−2n + R2−2n−2γ
)

×
∫

Σ

(h1 − h̄1)
2dH

n−1
g .

Here, the second inequality follows from combining (12) with Cauchy-
Schwarz to estimate the L1-norm in terms of the L2-norm. In conclusion,
we arrive at the estimate

μ1 ≥ n(n − 1)m

Rn
− O

(

τR−n + R−n−γ
)

.

Since μ1 is positive, all other eigenvalues of L are also positive. Moreover,
since |μ0| > |μ1|, the eigenvalue μ1 is the one with the least absolute value. �

5.3 The uniqueness argument

Here we adapt an idea from [38, Sect. 6] to derive uniqueness of constant
mean curvature surfaces of a given mean curvature in the class BR,τ,C . The
advantage of this approach over the method in [32, Sect. 4] is that we need
only require the metric to be C 2-asymptotic to Schwarzschild of mass m > 0,
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instead of C 4-asymptotic. Also, volume preserving stability is not a hypothe-
sis in our approach, but part of the conclusion, cf. Corollary 5.8.

Proposition 5.10 Given C > 0 there exists τ0 > 0 such that for every τ ∈
(0, τ0) there exists R0 > 0 so that for all R > R0 the following holds: Let

(u, g) ∈ BR,τ/2,C be such that Σ = graphu has constant mean curvature H

with respect to g. There exists a differentiable 1-parameter family of functions

ut ∈ C 2,α(SR(0)) such that u0 = u, such that each Σt = graph(ut ) for t ∈
[0,1] has constant mean curvature H with respect to the metric gt := tgm +
(1 − t)g, and such that (ut , gt) ∈ BR,τ,C .

Proof Clearly, gt satisfies (4) with the same constant C as g. We choose
τ0 > 0 and R0 > 0 as in Propositions 5.5 and 5.9. In particular, the Jacobi
operator L on graph(u) with respect to g is invertible for all (u, g) ∈ BR,τ,C ,
provided that R > R0 and τ ∈ (0, τ0).

Consider the set I ⊂ (0,1] of all t ∈ (0,1] such that there exists a differen-
tiable curve

[0, t) → C
2,α

(

SR(0)
)

: s �→ us

with 0 �→ u, and such that (us, gs) ∈ BR,τ,C and graphus has constant mean
curvature H with respect to gs for all s ∈ [0, t).

Consider the operator

H : C
2,α

(

SR(0)
)

× [0, t] → C
0,α

(

SR(0)
)

which maps a pair (v, s) to the mean curvature of graphv with respect to
the metric gs . The derivative of H with respect to the first variable is given
by the Jacobi operator L(v,s) of graphv with respect to the metric gs . By
assumption, graph(u) has constant mean curvature H with respect to g. By
Proposition 5.9, the operator L(u,0) is invertible. It follows that I contains a
neighborhood of 0.

Let t ∈ I and s �→ us be the corresponding curve for s ∈ [0, t). Standard
compactness theory for solutions of the parametric constant mean curvature
equation shows that there exists a limit ut ∈ BR,τ,C of us as s ր t such that
graph(ut ) has constant mean curvature H with respect to gt . Applying Propo-
sition 5.9 and the implicit function theorem as in the preceding paragraph, we
see that the curve s → us can be continued differentiably beyond t . It remains
to show that this extended part remains in BR,τ,C so long as t ≤ 1.

We show that our assumptions imply that in fact (ut , gt) ∈ BR,3τ/4,C , so
that by continuity the extension above remains in BR,τ,C . Differentiating the
equation H(us, gs) = H with respect to s for s ∈ [0, t] we get

L(us ,s)

(

∂us

∂s
〈∂r , νs〉

)

= −D2H(us, gs),
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where D2H(us, gs) denotes the variation of H with respect to s and νs

denotes the normal to graph(us) with respect to gs . We calculate that
D2H(us, gs) = O(R1−n−γ ). From Proposition 5.9 we know that the norm of
the inverse of L(us ,s) is bounded by 2Rnm

n(n−1)
. It follows that ∂us

∂s
= O2,α(R1−γ )

and hence that

sup
SR(0)

R−1|ut − u| +
∣

∣D(ut − u)
∣

∣ + R
∣

∣D2(ut − u)
∣

∣ + R1+α
[

D2(ut − u)
]

α

≤ C′R−γ .

Choosing R0 even larger, if necessary, we can ensure that the right hand side
is less than τ/4, so that indeed ut ∈ B

R, 3τ
4 ,C

. �

The proof of the following is now the same as that of [38, Theorem 6.5]:

Theorem 5.11 Given C > 0, there exists τ ∈ (0, 1
2), R0 > 0, and C′ > 0 so

that for all R ≥ R0 there exists exactly one (u, g) ∈ BR,τ,C such that Σ =
graph(u) has the same constant mean curvature with respect to g as SR(0)

with respect to gm. Moreover, we have that (u, g) ∈ BR,C′R−γ ,C , i.e.

sup
SR(0)

R−1|u| + |Du| + R
∣

∣D2u
∣

∣ + R1+α
[

D2u
]

α
≤ C′R−γ .

Proof We choose the constants τ0 > 0 and R0 > 0 as in Proposition 5.10.
Assume that there are two such surfaces Σ i = graph(ui) for i = 1,2. Propo-
sition 5.10 implies that we can deform both surfaces Σ i along differentiable
paths ui

t to surfaces of constant mean curvature H in the Schwarzschild met-
ric gm. By the Alexandrov theorem in Schwarzschild proven by S. Brendle
in [8] and the fact that R is large, we find that u1

1 = u2
1 = 0. Since the im-

plicit function theorem gives local uniqueness, this implies that u1
t = u2

t for
all t ∈ [0,1], in particular for t = 0. That (u, g) ∈ BR,C′R−γ ,C now follows
from the estimates at the end of the proof of Proposition 5.10. Reading the
argument backwards gives the existence of u. �

5.4 Existence of an isoperimetric foliation

Theorem 5.11 and the invertibility of the Jacobi operator proven in Proposi-
tion 5.9 show that the asymptotic regime of an initial data set (M,g) that is
C 2-asymptotic to Schwarzschild of mass m > 0 is foliated by strictly volume
preserving stable constant mean curvature surfaces. The existence of such a
foliation was proven for dimension n = 3 in [38] and, earlier, in [32, 71] un-
der stronger asymptotic conditions. Theorem 4.1 shows that in such an initial
data set, large isoperimetric regions exist for every sufficiently large volume,
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and that their boundaries are constant mean curvature surfaces to which the
uniqueness assertion in Theorem 5.11 applies. In summary, we obtain the
following result:

Theorem 5.12 Let (M,g) be an initial data set that is C 2-asymptotic to

Schwarzschild of mass m > 0 at rate γ ∈ (0,1]. There exist V0,C
′ > 0 with

the following properties: For every V ≥ V0 there exists a unique isoperi-

metric region ΩV ⊂ M of volume V . The boundary of ΩV is a connected

smooth embedded closed strictly volume preserving stable constant mean

curvature surface ΣV of mean curvature HV . We have that U ⊂ ΩV and

hence that ΣV ⊂ M \ U ∼=x R
n \ B 1

2
(0). Let R > 0 large be chosen such

that SR(0) has constant mean curvature HV with respect to gm. There exists

uV ∈ C 2,α(SR(0)) with

sup
SR(0)

R−1|u| + |Du| + R
∣

∣D2u
∣

∣ + R1+α
[

D2u
]

α
≤ C′R−γ

and such that ΣV = graph(uV ). The isoperimetric surfaces {ΣV }V ≥V0 form

a smooth foliation of the region M \ ΩV0 . Here, U ⊂ M and C > 0 are as in

Definition 2.1.

6 The center of mass

In this section we let (M,g) be C 2-asymptotic to Schwarzschild of mass
m > 0, and we assume that (M,g) is asymptotically even. Under these con-
ditions2 the limits

Cl = 1

2m(n − 1)ωn−1
lim

r→∞
1

r

∫

Sr

n
∑

i,j=1

xl(gij,i − gii,j )xj

−
n

∑

i=1

(gilxi − giixl)dH
n−1
δ

exist for every l ∈ {1, . . . , n}. C = (C1, . . . , Cn) is called the center of mass
of (M,g). See [4, 50] for the origin of the concept of the center of mass for
three dimensional initial data sets, and to the recent papers [16, 28, 29] for
the relationship of this definition with other, partially equivalent geometric
notions.

The main result of this section is that under the given assumptions the
centers of mass of the surfaces ΣH with H ∈ (0,H0) converge to C as H ց 0.

2The condition that R(x)−R(−x) = O(|x|−n−1−γ ) ensures that this limit exists. Cf. with the
proof of Lemma F.1.
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The convergence of the centers of mass of the surfaces has been established
in dimension n = 3 for metrics that are C 4-asymptotic to Schwarzschild with
mass m > 0 by G. Huisken and S.-T. Yau [32, Theorem 4.2]. L.-H. Huang
showed in dimension n = 3 that this limit equals the center of mass of (M,g)

if the latter exists [28, Theorem 2]. In the following we generalize this result
to arbitrary dimension. Even when n = 3, our proof here is different from the
one in [28], cf. Remark 6.2.

Theorem 6.1 Let (M,g) be an initial data set that is C 2-asymptotic to

Schwarzschild of mass m > 0, and assume that (M,g) is asymptotically

even. Let {ΣV }V ≥V0 be the isoperimetric surfaces of Theorem 5.12. For

l ∈ {1, . . . , n}, define

a(V )l := H
n−1
δ (ΣV )−1

∫

ΣV

xldH
n−1
δ .

Then a(V )l → Cl as V → ∞, where C = (C1, . . . , Cn) denotes the center of

mass of (M,g).

Proof In this proof, c is a constant depending only on (M,g) that may
vary from line to line. We may parametrize the surfaces {ΣV }V ≥V0 by
their constant mean curvatures H = H(V ), or, equivalently, by R = R(V ),
where R is such that SR(0) has constant mean curvature H with respect to
gm. From Theorem 5.12 and Proposition 5.5 (with τ = C′R−γ ) we know

that limV →∞ H( nV
ωn−1

)
1
n = n − 1 = limV →∞ HR, and that |h̊|g ≤ cR1−n−γ ,

where h̊g is the traceless part of the second fundamental form of ΣR . It
follows that supΣ |h̊δ|δ + supΣ |Hδ − H | ≤ cR1−n. By Lemma G.1, there
exists a coordinate sphere SH := SrH (pH ) and vH ∈ C 2(SH ) such that
ΣH = {FH (y) : y ∈ SH }, where FH : SH → R

n is given by FH (y) :=
y + vH (y)

y−pH

rH
, and such that3

sup
SH

r−1
H |vH | + |DvH | + rH

∣

∣D2vH

∣

∣ ≤ cR2−n. (13)

It follows that | rH
R

− 1| ≤ cR2−n, that |pH |/rH ≤ cR−γ , and that

∣

∣a(H) − pH

∣

∣ ≤ cR3−n.

3If (M,g) is C 3-asymptotic to Schwarzschild of mass m > 0, we can derive the estimate

|∇g h̊|g ≤ cR−n−γ using a maximum principle argument (the Bernstein trick, differentiating
J. Simons’ identity), and argue as in the proof of [32, Proposition 2.1] to improve the right
hand side of this estimate to R2−n−γ . This would improve the subsequent estimates and we
could treat the cases n = 3 and n ≥ 4 in one step.
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By Lemma F.1,
∣

∣

∣

∣

m(n − 1)ωn−1(pH − C)l −
∫

SH

(x − pH )l

(

H SH − n − 1

rH

)

dH
n−1
δ

∣

∣

∣

∣

≤ c
(

R1−2γ + R−γ
)

. (14)

We now analyze the integral on the left hand side to show that it tends to zero
as H → 0. The same argument as in [32, Theorem 5.1] shows that for a given
vector b ∈ R

n, we have that

0 =
∫

ΣH

(

HΣH − H
ΣH

δ

)

δ
(

b, ν
ΣH

δ

)

dH
n−1
δ . (15)

Here, we use the subscript δ to indicate that a geometric quantity is computed
with respect to the Euclidean metric. We claim that

∣

∣

∣

∣

∫

SH

(

H SH − H
SH

δ

)

δ
(

b, ν
SH

δ

)

dH
n−1
δ

∣

∣

∣

∣

≤ cR2−n. (16)

To see this, we use the diffeomorphism FH : SH → ΣH to pull back the inte-
gral (15) to SH . Using (13), we obtain that

∣

∣δ
(

ν
SH

δ (y), b
)

− δ
(

ν
ΣH

δ

(

FH (y)
)

, b
)∣

∣ ≤ cR2−n,
∣

∣F ∗
H

(

H
n−1
δ ⌊Σ

)

− H
n−1
δ ⌊SH

∣

∣ ≤ cR2−n, and
∣

∣

(

HΣH − H
ΣH

δ

)

−
(

H SH − H
SH

δ

)∣

∣ ≤ cR3−2n.

(17)

In conjunction with (15), this gives (16).
Note that H

SH

δ = n−1
rH

and ν
SH

δ (x) = r−1
H (x − p) for x ∈ SH . If we let

b = el be a coordinate vector, it follows from (16) and (14) that
∣

∣(pH − C)l
∣

∣ ≤ c
(

R1−2γ + R−γ + R3−n
)

. (18)

The second error term tends to zero as H → ∞. We will assume for the
moment that n ≥ 4, so that the third error term tends to zero as H → ∞. If
also γ > 1

2 , then we are done. If this is not the case then (18) still gives that
for H ∈ (0,H0) sufficiently small we have that

|pH | ≤ cR1−2γ .

We are now in the position to apply Lemma F.1 with γ1 = 2γ to improve (18)
to

∣

∣(pH − C)l
∣

∣ ≤ c
(

R1−3γ + R−γ + R3−n
)

.
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Repeating this argument a finite number of times, we find that

∣

∣(pH − C)l
∣

∣ ≤ c
(

R−γ + R3−n
)

.

This concludes the proof in the case n ≥ 4.
We will use a different method to approximate ΣH by a sphere when n = 3,

following [38, Proposition 4.3], to improve our estimates in this dimension.
First, note that the curvature estimate |h̊g| ≤ cR−2−γ implies that |h̊gm |gm ≤
cR−2−γ . Using conformal invariance, we see that

∫

ΣH

∣

∣h̊δ

∣

∣

2
δ
dH

2
δ ≤ cR−2−2γ .

Results of C. De Lellis and S. Müller [17, 18] imply that there exists a

sphere SH = SrH (pH ) ⊂ R
3 with rH =

√

H2
δ(Σ)/4π and a conformal map

ψH : SH → ΣH ⊂ R
3 with conformal factor wH such that ψ∗

H δ = w2
H δ|SH

.
Moreover, we have that

∥

∥

∥

∥

H
ΣH

δ − 2

rH

∥

∥

∥

∥

L2(ΣH )

≤ cR−1−γ ,

sup
SH

|ψH − id | ≤ cR−γ ,

∥

∥ν
ΣH

δ ◦ ψ − ν
SH

δ

∥

∥

L2(SH )
≤ cR−γ , and

‖wH − 1‖L2(SH ) ≤ cR−γ .

The first three of these estimates are immediate from [17, Theorem 1.1], us-
ing Sobolev embedding and rescaling. The last estimate follows from [18,
Theorem 1.1]. Using these estimates in place of (17) in the above argument,
we obtain that

∣

∣

∣

∣

∫

SH

(

H SH − H
SH

δ

)

δ
(

b, ν
SH

δ

)

dH
2
δ

∣

∣

∣

∣

≤ cR−1−γ and

∣

∣a(H) − pH

∣

∣ ≤ cR−γ .

The rest of the argument proceeds exactly as in the case n ≥ 4. �

Remark 6.2 We give a brief outline of L.-H. Huang’s proof of Theorem 6.1
in dimension n = 3. First, the foliation through volume preserving stable con-
stant mean curvature spheres that is constructed in [32] using volume preserv-
ing mean curvature flow coincides with the foliation found in [71]. R. Ye’s
construction of the leaves in [71] proceeds by perturbing large coordinate
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spheres in Euclidean space to constant mean curvature surfaces with respect
to the asymptotically flat metric. The obstruction to accomplishing this stems
from the translational symmetries of Euclidean space, which account for the
co-kernel of the linearized mean curvature operator on volume preserving
deformations. The integral in (14) measures the part of the “error” that lies
in the co-kernel. This obstruction vanishes on Euclidean coordinate sphere
whose center is (close) to the center of mass of the initial data set. The size
of the required perturbations is then so small that the centers of gravity of
the constant mean curvature surfaces approach the centers of the Euclidean
spheres they are constructed from, as their diameter tends to infinity.

7 The isoperimetric mass

Throughout this section, we let (M,g) be a three dimensional initial data set
as in Definition 2.1, except that we allow M to have a non-empty compact
boundary. If ∂M �= ∅, we assume that ∂M is a minimal surface, and that there
are no other compact minimal surfaces in M . We modify the definition of the
isoperimetric profile function Ag : [0,∞) → R as follows:

Ag(V ) := inf
{

H
2
g

(

∂∗Ω ∩ M
)

: Ω ⊂ M̂ is a Borel set with finite perimeter

containing M̂ \ M, and L
3
g(Ω ∩ M) = V

}

.

Here, M̂ is an extension of M across its boundary, if ∂M �= ∅, and M̂ = M

otherwise. Note that Ag(V ) is independent of the choice of M̂ . The classical
regularity theory for this minimization problem with volume constraint and
obstacle is discussed with precise references to the literature in [22, Sect. 4].
For V > 0 the minimizers have a smooth boundary that is disjoint from ∂M .
As before, minimizers will be called isoperimetric regions.

Definition 7.1 (G. Huisken [30, 31]) We say that a sequence of smooth
bounded regions {Ωi}∞i=1 is an exhaustion of (M,g), if Ωi ⊂ Ωi+1 for each
i = 1,2, . . . and if

⋃∞
i=1 Ωi = M . The isoperimetric mass of (M,g) is defined

as

miso(M,g) := sup

{

lim sup
i→∞

2

H2
g(∂Ωi)

(

L
3
g(Ωi) − 1

6
√

π
H

2
g(∂Ωi)

3
2

)

:

{Ωi}∞i=1 is an exhaustion of (M,g)

}

. (19)

Theorem 7.2 (G. Huisken [30], see also [31]) Let (M,g) be a three di-

mensional initial data set. Assume that the scalar curvature of (M,g) is
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non-negative. Then miso(M,g) ≥ 0. Equality holds if, and only if, (M,g) =
(R3,

∑3
i=1 dx2

i ).

Subsequent to the work of G. Huisken, it was observed by X.-Q. Fan,
P. Miao, Y. Shi, and L.-T. Tam in [23] that the “lim sup” in G. Huisken’s
definition (19) recovers the ADM-mass of the initial data set when evaluated
along exhaustions by concentric coordinate balls in an asymptotic coordinate
system. In particular, miso(M,g) ≥ mADM(M,g) and the conclusion of The-
orem 7.2 is seen to be a consequence of the positive mass theorem.

Definition 7.3 We define the modified isoperimetric mass of (M,g) as

m̃iso(M,g) := lim sup
V →∞

2

Ag(V )

(

V − 1

6
√

π
Ag(V )

3
2

)

.

It is easy to see that m̃iso(M,g) ≥ miso(M,g). In particular, Theorem 7.2
holds with miso(M,g) replaced by m̃iso(M,g).

Proof of Theorem 1.2 In view of Theorem 7.2, we may assume that
m̃iso(M,g) > 0. Let V > 0. By Proposition E.3, there exists an isoperimet-
ric region Ω ⊂ M (it may be empty) and a sequence of coordinate balls
B(pi, ri) with pi → ∞ and 0 ≤ ri → r ∈ [0,∞) as i → ∞ such that
L3

g(Ω) + L3
g(B(pi, ri)) = V and such that H2

g(∂Ω) + H2
g(∂B(pi, ri)) →

Ag(V ). Our goal is to show that by choosing V sufficiently large we can ar-
range for L3

g(Ω) to be greater than any given threshold. Let V > 0 large be
such that

2

Ag(V )

(

V − 1

6
√

π
Ag(V )

3
2

)

>
m̃iso(M,g)

2
.

Combining this with the lower bound Ag(V ) ≥ 4πr2 we obtain the estimate

L
3
g(Ω) ≥ m̃iso(M,g)

4
Ag(V ).

That Ag(V ) → ∞ as V → ∞ follows from Lemma E.4. �
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Appendix A: Integral decay estimates

Our computations in this appendix take place in the part of an initial data set
(M,g) that is diffeomorphic to R

n \ B1(0) and where

r|gij − δij | ≤ C for all r ≥ 1.

For Corollary A.3 we require in addition that for some γ ∈ (0,1],

rn−2+γ

∣

∣

∣

∣

gij −
(

1 + m

2rn−2

)
4

n−2

δij

∣

∣

∣

∣

≤ C for all r ≥ 1, (20)

i.e. that (M,g) is C 0-asymptotic to Schwarzschild of mass m > 0. The proofs
of the statements in this appendix are straightforward extensions of those in
[22, Appendix A] to higher dimensions, and we omit them.

Lemma A.1 Let (M,g) be an initial data set. Let ρ ≥ 1 and let Σ ⊂ M be

a closed hypersurface such that Hn−1
g (Σ ∩ Br \ Bρ) ≤ Θrn−1 for all r ≥ ρ.

Then the estimate

∫

Σ\Bρ

r−pdH
n−1
g ≤ p

p − (n − 1)
Θρ(n−1)−p

holds for every p > (n − 1).

Proof The proof uses the co-area formula as in [64, p. 52]. �

Corollary A.2 Let (M,g) be an initial data set. For all ρ ≥ 1 and γ ∈ (0,1]
and every closed hypersurface Σ ⊂ M with Hn−1

g (Σ ∩Br \Bρ) ≤ Θrn−1 for

all r ≥ ρ one has

∫

Σ\Bρ

r−(n−2+γ )dH
n−1
g

≤ ρ−β
H

n−1
g (Σ \ Bρ)

1−γ+β
n−1

(

(n − 2 + γ )Θ

β

)
n−2+γ−β

n−1

for every β ∈ (0, n − 2 + γ ).

Lemma A.3 Let (M,g) be an initial data set for which the decay assump-

tions (20) hold. There is a constant C′ ≥ 1 depending only on C such that for

every ρ ≥ 1 and every bounded measurable subset Ω ⊂ M one has
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∣

∣L
n
g(Ω \ Bρ) − L

n
gm

(Ω \ Bρ)
∣

∣

≤ C′
(

n − 1 + γ − α

α − 1

)
n−1+γ−α

n

L
n
g(Ω \ Bρ)

1−γ+α
n ρ1−α

for every α ∈ (1, n − 1 + γ ).

Proof The volume elements differ by terms O(r2−n−γ ). �

Appendix B: Hawking-mass

Let g be a rotationally symmetric metric on (a, b) × S
n−1. Given r ∈ (a, b),

let A = A(r) := Hn−1
g ({r} × S

n−1) denote the area of the coordinate sphere

{r} × S
n−1, and H = H(r) its (scalar) mean curvature, computed as the tan-

gential divergence of the normal vector field in direction ∂r . Define the func-
tion

m(r) :=
(

A

ωn−1

)(n−2)/(n−1)(

1 − A2/(n−1)H 2

ω
2/(n−1)

n−1 (n − 1)2

)

.

This expression appears in different but equivalent form in [35, (13)]. It is
constructed so as to evaluate to the mass on the centered spheres in the
Schwarzschild metric. In particular, it restricts to the usual Hawking mass
in dimension n = 3.

Lemma B.1 (Cf. [35, Sect. 2]) Assume that the scalar curvature of g is

non-negative, and that r → A(r) is non-decreasing. Then m(r) is a non-

decreasing function. If m = m(c) = m(d) for some c, d ∈ (a, b) with c < d ,
then ([c, d] × S

n−1, g) is isometric through a rotationally invariant map to

({x ∈ R
n : c′ ≤ |x| ≤ d ′}, (1 + m

2|x|n−2 )
4

n−2 δij ) for some 0 < c′ < d ′ such that

1 + m

2(c′)n−2 > 0.

Appendix C: Standard formulae

We collect several basic facts from Riemannian geometry, for ease of refer-
ence and to set forth the sign conventions that are used throughout the paper.

We begin with our conventions for the Riemann curvature tensor. Let
X,Y,Z,W be vector fields on a Riemannian manifold (M,g). Let ∇ de-
note the Levi-Civita connection associated with g. Then Rm(X,Y,Z,W) =
g(∇X(∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z,W). The Ricci curvature is given by
Rc(X,Y ) := traceg Rm(·,X,Y, ·). The scalar curvature is given by R :=
traceg Rc(·, ·).
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Lemma C.1 (Kulkarni–Nomizu product) Let aij , bij be two symmetric (0,2)

tensors. Then the (0,4) tensor cijkl := (a⊙b)ijkl = ajkbil +ailbjk −aikbj l −
aj lbik has the symmetries of the Riemann curvature tensor, i.e. cijkl = −cjikl

and cijkl = cklij . If (M,g) be a Riemannian manifold and if Rm is its Rie-

mann curvature tensor, then Rm =
◦

Rc⊙g
n−2 + Rg⊙g

2n(n−1)
+W , where

◦
Rc := Rc−R

n
g

is the trace free part of the Ricci tensor, and where W is the Weyl curvature.

Lemma C.2 (Codazzi and Gauss equations) Let Σ be a hypersurface in a

Riemannian manifold (M,g), let p ∈ Σ , and let {e1, . . . , en−1, ν} be a local

orthonormal frame of T M near p such that ν restricts to a unit normal vector

field along Σ . We denote by ḡij = g(ei, ej ) the induced metric on Σ , and by

hij := g(∇ei
ν, ej ) the components of the second fundamental form of Σ with

respect to ν. Let ḡijhij = H be the scalar mean curvature of Σ . Then ∇khij −
∇ ihkj = Rmkiνj , where ∇ denotes covariant differentiation with respect to g.
We have that Rmijkl = Rmijkl +hilhjk − hikhj l .

Appendix D: The geometry of the spatial Schwarzschild metric

Consider the n-dimensional spatial Schwarzschild Riemannian manifold of
mass m > 0,

(

R
n \ {0}, gm :=

(

1 + m

2rn−2

)
4

n−2
n

∑

i=1

dx2
i

)

,

where r = |x|. Given r > 0, we will denote the centered coordinate sphere
{x ∈ R

n : |x| = r} in this coordinate system by Sr . The sphere Srh with rh =
(m

2 )1/(n−2) is called the horizon. We record the following properties of this
geometry; our sign conventions here are those of Appendix C.

(a) The inversion x → r2
h

x

|x|2 induces a reflection symmetry of gm across the
horizon.

(b) The gm-area of Sr is φ
2(n−1)
n−2

m rn−1ωn−1.
(c) The gm-mean curvature with respect to the unit normal in direction of

∂r of Sr equals φ
−n/(n−2)
m (1 − m

2rn−2 )n−1
r

. The horizon Srh is a minimal
surface, and the mean curvature of the spheres Sr for r > rh is positive.

(d) The conformal factor φm := 1 + m

2rn−2 is harmonic with respect to the

Euclidean metric
∑n

i=1 dx2
i . The scalar and the Weyl curvature of gm

vanish.
(e)

Rcgm = (n − 2)m

rnφ
2n/(n−2)
m

(

gm − nφ
4/(n−2)
m dr ⊗ dr

)

.
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(f)

Rmgm = m

rnφ
2n/(n−2)
m

(

gm ⊙ gm − nφ
4/(n−2)
m (dr ⊗ dr) ⊙ gm

)

.

Appendix E: Regularity of isoperimetric regions and the behavior

of minimizing sequences

The regularity of isoperimetric regions in complete Riemannian manifolds
is that of area minimizing boundaries (see [40, 58, 59] and the references
therein):

Proposition E.1 Let Ω be an isoperimetric region in (M,g). Its reduced

boundary ∂∗Ω is a smooth hypersurface away from a singular set of Haus-

dorff dimension ≤ n − 8.

The following technical lemma, which is needed to check the hypotheses
of Theorem 3.5, follows from explicit comparison:

Lemma E.2 (Cf. [22, Lemma 4.3]) Let (M,g) be an initial data set. There

exists a constant Θ > 0 so that for every isoperimetric region Ω with

Ln
g(Ω) ≥ 1 one has that Hn−1

g (∂Ω ∩ Br) ≤ Θrn−1 for all r ≥ 1, and that

Hn−1
g (∂Ω)

1
n−1 Ln

g(Ω)−
1
n ≤ Θ .

The following proposition characterizes the behavior of minimizing se-
quences for the isoperimetric problem (2) in initial data sets. It is a slight
refinement of [58, Theorem 2.1]:

Proposition E.3 (Cf. [22, Proposition 4.2)] Given V > 0 there exists an

isoperimetric region Ω ⊂ M—which may be empty—and a sequence of

coordinate balls B(pi, ri) with pi → ∞ and 0 ≤ ri → r ∈ [0,∞) as

i → ∞ such that Ln
g(Ω) + Ln

g(B(pi, ri)) = V and such that Hn−1
g (∂Ω) +

Hn−1
g (∂B(pi, ri)) → Ag(V ). If r > 0 and Ln

g(Ω) > 0, then the mean curva-

ture of ∂Ω equals n−1
r

.

The following lemma is standard, cf. [22, Lemma 2.4].

Lemma E.4 Let (M,g) be an initial data set. There exists a constant C > 0
depending only on (M,g) such that

(∫

M

|f |
n

n−1 dL
n
g

)
n−1
n

≤ C

∫

M

|df |gdL
n
g for all f ∈ C

1
c (M).
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For any bounded Borel set Ω ⊂ M with finite perimeter one has that

L
n
g(Ω)

n−1
n ≤ CH

n−1
g

(

∂∗Ω
)

.

Appendix F: An alternative expression for the center of mass

The following lemma is an extension of [29, Lemma 2.1]. Rather than ap-
plying a density theorem as in [29], our proof below relies on an elementary
integration by parts, cf. the papers [36, 37] by S. Ma.

Lemma F.1 (Cf. [29, Lemma 2.1]) Let gij be a metric on R
n that is C 2-

asymptotic to Schwarzschild of mass m > 0 and asymptotically even at rate

γ ∈ (0,1]. Then for all c > 0 and γ1 ∈ (0,1] there exists c′ > 0 such that for

all p ∈ R
n with |p| ≤ cr1−γ1 and r ≥ 1 we have that

∣

∣

∣

∣

∫

Sr (p)

(xl − pl)

(

H Sr (p) − n − 1

r

)

dH
n−1
δ − m(n − 1)ωn−1(pl − Cl)

∣

∣

∣

∣

≤ c′(r1−γ−γ1 + r−min{γ,γ1}).

Here, H Sr (p) denotes the mean curvature of Sr(p) with respect to g.

Proof Throughout the proof we will sum over repeated indices. Let hij :=
gij − δij and let ρ = x−p

|x−p| . Then

H Sr (p) − n − 1

r
= 1

2
hij,kρiρjρk + 1

2
hii,jρj − hij,iρj + n + 1

2

hij

r
ρiρj

− hii

r
+ E (21)

where E is an error term with |E(x)| ≤ c′|x − p|3−2n, uniformly for p such
that 2|p| ≤ r when r is large. This follows from a calculation exactly as in
the case n = 3, cf. [29, Lemma 2.1]. Moreover, we have that

∣

∣E(x) − E(2p − x)
∣

∣ ≤ c′|x − p|3−2n−min{γ,γ1}

for all |p| ≤ c|x|1−γ1 and |x − p| ≥ 1. (22)

We claim that for each l ∈ {1, . . . , n},
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1

2

∫

Sr (p)

(xl − pl)hij,kρiρjρkdH
n−1
δ

= 1

2

∫

Sr (p)

hilρi + (xl − pl)

(

hii

r
− (n + 1)

hij

r
ρiρj + hij,jρi

)

dH
n−1
δ .

(23)

To see this, define the vector field X(l) := (xl − pl)hijρi∂j and note that

∫

Sr (p)

divSr (p)
δ X(l)dH

n−1
δ =

∫

Sr (p)

H
Sr (p)
δ δ(X,ρ)dH

n−1
δ .

Using that H
Sr (p)
δ = n−1

r
and that

divSr (p)
δ X(l) = (δjk − ρjρk)∂kX

j

(l)

= hilρi + (xl − pl)

(

hii

r
− 2

hij

r
ρiρj + hij,jρi − hij,kρiρjρk

)

we obtain (23). Multiply (21) by (xl − pl) and integrate over Sr(p). Us-
ing (23) we arrive at

∫

Sr (p)

(xl − pl)

(

H Sr (p) − n − 1

r

)

dH
n−1
δ

= 1

2

∫

Sr (p)

(xl − pl)(hii,j − hij,i)ρj + (hilρi − hiiρl)dH
n−1
δ

+
∫

Sr (p)

(xl − pl)EdH
n−1
δ . (24)

Using (22) we see that the last term has order O(r3−n−min{γ,γ1}). To analyze
the first term, let

Y(l) :=
(

xl(gij,i − gii,j ) − (gj l − giiδlj )
)

∂j

so that

Cl = 1

2m(n − 1)ωn−1
lim

R→∞

∫

SR(0)

Y
j

(l)

xj

R
dH

n−1
δ .

Note that divδ Y(l) = xl(Rg + ∂g ∗ ∂g). It follows that |divδ Y(l)| ≤ cr1−n−γ

and |divδ Y(l)(x) + divδ Y(l)(−x)| ≤ cr−n−γ .
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Let R > r + |p|. Then

∫

BR(0)\Br (p)

divδ Y(l)dL
n
δ −

∫

Br (p)\Br (−p)

divδ Y(l)dL
n
δ

=
∫

BR(0)\(Br (p)∩Br (−p))

divδ Y(l)dL
n
δ

= 1

2

∫

BR(0)\(Br (p)∩Br (−p))

divδ Y(l)(x) + divδ Y(l)(−x)dL
n
δ (x). (25)

Hence
∣

∣

∣

∣

∫

BR(0)\Br (p)

divδ Y(l)dL
n
δ

∣

∣

∣

∣

≤ c′
∫

BR(0)\B r
2
(0)

r−n−γ dL
n
δ +

∣

∣

∣

∣

∫

Br (p)\Br (−p)

divδ Y(l)dL
n
δ

∣

∣

∣

∣

≤ c′(r−γ + r1−γ−γ1
)

(26)

where we have used the estimate for the odd part of divδ Y(l) in the first in-
equality, and the estimate for divδ Y(l) and that L

n
δ (Br(p)\Br(−p)) ≤ c′rn−γ1

in the second inequality. We emphasize that the right hand side is independent
of R. Using the divergence theorem, we have that

∫

BR(0)\Br (p)

divδ Y(l)dL
n
δ

=
∫

SR(0)

Y
j

(l)

xj

R
dH

n−1
δ

−
∫

Sr (p)

xl(hij,i − hii,j )ρj + (hiiρl − hilρi)dH
n−1
δ . (27)

Letting R → ∞ in (27) we obtain

∣

∣

∣

∣

∫

Sr (p)

xl(hij,i − hii,j )ρj + (hiiρl − hilρi)dH
n−1
δ − 2m(n − 1)ωn−1Cl

∣

∣

∣

∣

≤ c′(r1−γ−γ1 + r−γ
)

. (28)

We claim that
∣

∣

∣

∣

∫

Sr (p)

pl(hij,i − hii,j )ρjdH
n−1
δ − 2m(n − 1)ωn−1pl

∣

∣

∣

∣

≤ Cc′r1−γ−γ1 . (29)
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To see this, define the vector field Y := (hij,i − hii,j )∂j , note that divδ Y =
Rg + ∂g ∗ ∂g = O(r−n−γ ), and that
∣

∣

∣

∣

∫

Sr (p)

(hij,i − hii,j )ρjdH
n−1
δ − 2m(n − 1)ωn−1

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Rn\Br (p)

divδ YdL
n
δ

∣

∣

∣

∣

≤ c′r−γ .

The lemma follows combining (24), (28) and (29). �

Appendix G: Appoximation by spheres

Lemma G.1 (Cf. [29, Lemma 4.8] and [32, Proposition 2.1]) There ex-

ist δ, c > 0 depending only on n so that the following holds: Let Σ ⊂
R

n be a closed hypersurface. If for some constant H̄ > 0 one has that

supΣ |h̊| + supΣ |H − H̄ | ≤ δH̄ , then Σ is strictly convex, and there ex-

ist r ∈ (1
2

n−1
H̄

,2n−1
H̄

), p ∈ R
n, and a function v ∈ C 2(Sr(p)) such that Σ =

{x + v(x)
x−p
|x−p| : x ∈ Sr(p)} and

sup
Sr (p)

r−1|v| + |Dv| + r
∣

∣D2v
∣

∣ ≤ cr
(

sup
Σ

|h̊| + sup
Σ

|H − H̄ |
)

.

Appendix H: Overview of results on isoperimetric regions

Our intention in this section is three-fold: First, to give a complete account
of all closed Riemannian manifolds whose isoperimetric regions are fully or
largely characterized; second, to describe briefly all techniques and develop-
ments in the theory of isoperimetry that appear to us relevant in the context
of this paper; and third, to provide the reader with an introduction to the rich
literature on this subject.

H.1 Monographs and surveys

R. Osserman’s article [44] surveys the classical literature on the isoperimetric
problem. We point out in particular the discussion in Sect. 2, which highlights
the difference between characterizing critical and stable critical surfaces for
the isoperimetric problem and establishing a sharp isoperimetric inequality,
as well as the discussion in Sect. 4 on results and conjectures related to the
validity of the planar Euclidean isoperimetric inequality L2 − 4πA ≥ 0 on
Riemannian surfaces with non-positive curvature. R. Osserman’s article [45]
gives several effective (“Bonnesen-style”) isoperimetric inequalities on Rie-
mannian surfaces. The proofs depend on the Gauss-Bonnet theorem and F. Fi-
ala’s method of “interior parallels”, cf. the historical discussion in Sect. II.
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Section III.C contains some some extensions to higher dimension. The ex-
tensive monograph [10] by Y.D. Burago and V.A. Zalgaller emphasizes the
rich connection with convex and integral geometry and contains many inter-
esting historical references. The more recent survey articles [59] by A. Ros
and [55] by M. Ritoré contain a wealth of additional material and up-to-date
references.

H.2 Classical isoperimetric inequality

The sharp isoperimetric inequality in the simply connected constant curva-
ture spaces R

n,S
n, and H

n have been established rigorously in all dimen-
sions in a series of papers by E. Schmidt in the 1940’s, cf. the Historical
Remarks 10.4 as well as Sects. 8–10 in [10]. The isoperimetric regions are
exactly the geodesic balls.

H.3 The case of surfaces

The isoperimetric regions of certain rotationally symmetric surfaces have
been completely characterized, using curve shortening flow [5, 68], paral-
lel surfaces techniques [24, 46, 69], and by analysis of curves of constant
geodesic curvature [11, 12, 41, 52]. The introduction of the recent article [12]
by A. Cañete and M. Ritoré contains a thorough overview of these results.

M. Ritoré [53] has shown that solutions of the isoperimetric problem exist
for every volume in complete Riemannian planes with non-negative curva-
ture. Conversely, in [52], M. Ritoré gives examples of complete rotationally
symmetric planes in which no optimizers for the isoperimetric problem exist
for any volume.

H.4 Symmetrization techniques

We refer the reader to Sects. 1.3 and 3.2 in [59] and to Sect. 1.3 [55]
for brief descriptions of the symmetrization techniques by J. Steiner and
H. Schwarz [66] as well as W.-T. Hsiang and W.-Y. Hsiang [27].

In [27], W.-T. Hsiang and W.-Y. Hsiang apply their symmetrization tech-
nique to reduce the study of isoperimetric regions in R

n×H
m and in H

m×H
n

to an ODE analysis of curves in the plane. In R × H
2, the solutions are com-

pletely characterized.
R. Pedrosa and M. Ritoré [48] have characterized the isoperimetric do-

mains of S
1 ×S

2 and S
1 ×H

2 as well as of S
1 ×R

n−1 when 3 ≤ n ≤ 8, using
symmetrization as in [27] and ODE and stability analysis.

R. Pedrosa [47] has used spherical symmetrization as in [27] to show that
the isoperimetric regions in R × S

n−1 are connected and smooth, and either
topological balls or cylindrical of the form (a, b)×S

n−1. In R×S
2, the author

has obtained an explicit description of the isoperimetric regions.
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H.5 Small isoperimetric regions in Riemannian manifolds

D. Johnson and F. Morgan [42] have shown that isoperimetric regions of small
volume in closed Riemannian manifolds are perturbations of small geodesic
balls. An alternative argument that applies in dimension n = 3 is given in
Theorem 18 of [59]. For the relationship between small isoperimetric re-
gions and scalar curvature we refer to the work of R. Ye [70], P. Pansu [46],
O. Druet [19, 20], and S. Nardulli [43].

H.6 Classifying stable constant mean curvature surfaces

Using a particular choice of test function in the stability inequality, J.L. Bar-
bosa, M. DoCarmo [2], and J.L. Barbosa, M. DoCarmo, and J. Eschenburg [3]
have shown that in the simply connected space forms, every closed volume
preserving stable constant mean curvature hypersurface is a geodesic sphere.

M. Ritoré and A. Ros [56] have characterized the isoperimetric regions
in RP

3 and R
3/Sθ , where Sθ is a subgroup of O(3) generated by a trans-

lation or a screw motion, using the stability inequality in several different
ways. In [57], the same authors characterize the isoperimetric regions of most
products T

2 × R where T
2 is a flat 2-torus. (“Most” means all those from a

compact subset in the non-compact moduli space of such manifolds.) A full
characterization of the isoperimetric regions of T 2 ×R, where T is a flat torus
with injectivity radius 1 and area greater than a certain ǫ > 0, has been given
by M. Ritoré in [51].

H.7 Isoperimetric comparison

We point out the Levy-Gromov comparison theorem for the isoperimetric pro-
file for closed Riemannian manifolds whose Ricci curvature is bounded below
by that of the sphere, cf. Theorem 19 in [59]. B. Kleiner [34] has proven a
sharp isoperimetric comparison result for three dimensional Hadamard man-
ifolds. Alternative proofs of B. Kleiner’s result have been given by M. Ri-
toré [54] and by F. Schulze [65]; these proofs are surveyed in [55, Sects. 3.2
and 3.3].

H. Bray [7] has characterized the isoperimetric regions homologous to the
horizon in the spatial Schwarzschild manifold. His method has been extended
by H. Bray and F. Morgan [6] to general spherically symmetric manifolds sat-
isfying certain conditions. J. Corvino, A. Gerek, M. Greenberg, and B. Krum-
mel [15] have applied the methods of [6, 7] to characterize the isoperimetric
regions in the spatial Reissner–Nordstrom and Schwarzschild anti de Sitter
manifolds. In [9], S. Brendle and the first author use the results in [8, 22] to
characterize the isoperimetric regions in the “doubled” Schwarzschild mani-
fold, complementing the results of H. Bray in [7].
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H.8 Effective isoperimetric inequalities

In [26], N. Fusco, F. Maggi, and A. Pratelli have given an effective isoperi-
metric inequality (“Bonnesen-style” as coined by R. Osserman [45]) for sets
in R

n. Their result is sharp in a sense that the authors make precise. Their
proof is based on Schwarz-Steiner symmetrization. See also the paper [25]
by A. Figalli, F. Maggi, and A. Pratelli and the paper [13] by M. Cicalese and
P. Leonardi for alternative proofs based respectively on optimal transport and
explicit minimization.
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