Unique optical properties of AlGaN alloys and related ultraviolet emitters

K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

(Received 10 February 2004; accepted 28 April 2004; published online 10 June 2004)

Deep UV photoluminescence spectroscopy has been employed to study the optical properties of Al,Ga_{1−x}N alloys (0 ≤ x ≤ 1). The emission intensity with polarization of E⊥c and the degree of polarization were found to decrease with increasing x. This is a consequence of the fact that the predominant band edge emission in GaN (AlN) is with polarization of E∥c (E⊥c). Our experimental results suggest that the decreased emission efficiency in Al,Ga_{1−x}N alloys and related UV emitters could also be related with their unique polarization property, i.e., the intensity of light emission with polarization of E⊥c decreases with x. It is thus concluded that UV emitters with AlGaN alloys as active layers have very different properties from InGaN and other semiconductor emitters. © 2004 American Institute of Physics. [DOI: 10.1063/1.1765208]

Recently, AlGaN alloys, particularly Al-rich AlGaN alloys have attracted much interest due to their applications in solid-state UV light sources for bioagent detection as well as for general lighting. However, it is well documented that the emission efficiency in Al,Ga_{1−x}N alloys decreases with increasing x.1,2 The efficiency of UV emitters using AlGaN alloys as active layers is also lower than that of blue emitters using InGaN alloys as active layers.3–5 Recently, the properties of the fundamental optical transitions in AlN have been reported.6–8 The band structure of wurzite AlN near the Γ point was found to be very different from GaN.8 The recombination between the conduction band electrons and the holes in the top valence band is polarized along the direction of E∥c (E⊥c) in AlN (GaN).8,9 The unusual valence band structure of AlN gives rise to unique optical properties of AlGaN alloys and their associated UV emitters.

In this letter, we present the results of the optical properties of Al,Ga_{1−x}N alloys (0 ≤ x ≤ 1). The 1-μm-thick undoped AlGaN epilayers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire (0001) substrates with low temperature AlN buffer layers. Trimethylgallium and trimethylaluminum were used as Ga and Al sources, respectively. The x-ray diffraction and secondary ion mass spectroscopy measurements (performed by Charles Evan & Associates) were employed to determine Al contents. The as-grown Al,Ga_{1−x}N epilayers exhibited low degree of n-type conduction for x < 0.45. For GaN (x = 0), the unintentional carrier concentration was about 6 × 10^16 cm⁻³ and mobility was about 650 cm²/V s. For x > 0.45, the conductivity of the films could not be measured. The deep UV laser spectroscopy system used for photoluminescence (PL) studies consisted of a frequency quadrupled 100 fs Ti: sapphire laser with an excitation photon energy set around 6.28 eV (with a 76 MHz repetition rate, a 3 mW average power, and vertical polarization), a monochromator (1.3 m), and a streak camera with detection capability ranging from 185 to 800 nm and time resolution of 2 ps.10 The experimental geometry was depicted in the inset of Fig. 1, where the PL emission with either E∥c or E⊥c polarization orientation can be collected using a polarizer in front of the monochromator.

Figure 1 shows the low temperature (10 K) PL spectra for Al,Ga_{1−x}N alloys (0 ≤ x ≤ 1). We attribute the dominant emission lines to the localized exciton recombination.1 The dotted (solid) lines indicate the emission spectra, collected with the polarization of E⊥c (E∥c). Several features are evident: (a) the emission peak position increases with increasing x for both polarization components and (b) the PL emission intensity, I_{PL}, decreases with increasing x for E∥c polarization component.

This work was supported by NASA (NAG3-3910) and the Department of Energy (DE–FG02–90ER45437). We acknowledge useful discussions with A. M. Evan & Associates.

Electronic mail: jiang@phys.ksu.edu

FIG. 1. Low temperature (10 K) PL spectra of Al,Ga_{1−x}N alloys of varying x, for from x = 0 to 1. The experimental geometry was depicted in the inset, where the electrical field of PL emission (E) can be selected either parallel (∥) or perpendicular (∥c) to the c axis.
the same energy position as the allowed transition, but with weaker emission intensity. Moreover, strain effect and substrate misorientation can also relax the selection rule.

The degree of polarization ($P$) is defined by $P = (I_{\perp} - I_{\parallel})/(I_{\perp} + I_{\parallel})$, where $I_{\perp}$ and $I_{\parallel}$ are the integrated PL intensities for the polarization components of $E \perp c$ and $E || c$, respectively. Figure 2 plots $P$ as a function of $x$, and $P = 0$ at $x = 0.25$. The representative band structures near the $\Gamma$ point of $Al\text{Ga}_{1-x}N$ alloys are depicted in Fig. 3 for (a) $x = 0$, (b) $x = 0.25$, and (c) $x = 1$.

$P = \frac{[I_{\perp} - I_{\parallel}]}{[I_{\perp} + I_{\parallel}]}$

FIG. 2. The degree of polarization $P$ vs $x$ in $Al\text{Ga}_{1-x}N$ alloys.

$P = \frac{[I_{\perp} - I_{\parallel}]}{[I_{\perp} + I_{\parallel}]}$

FIG. 3. The band structures near the $\Gamma$ point of $Al\text{Ga}_{1-x}N$ alloys for (a) $x = 0$, (b) $x = 0.25$, and (c) $x = 1$.

The conduction bands have $\Gamma_7$ symmetry in both AlN and GaN. Compared with the band structure of GaN, the most significant difference in AlN is the negative crystal-field splitting $\Delta_{CF}$ ($-219 \text{ meV}$) compared with a positive value ($+38 \text{ meV}$) in GaN. Because of this large negative $\Delta_{CF}$ in AlN, the order of the valence bands in AlN is different from that in GaN. The top valence band has $\Gamma_9$ ($\Gamma_7$) symmetry in GaN (AlN) because of the positive (negative) $\Delta_{CF}$. Therefore, light emission due to the recombination between the conduction band electrons and the holes in the top valence band is polarized with $E || c$ in AlN, which is in contrast to that in GaN ($E \perp c$). This unique band structure of AlN affects the optical properties of AlGaN alloys, in particular of Al-rich AlGaN alloys. When Al content is increased from $x = 0$ to 0.25, the valence band with $\Gamma_7$ symmetry evolves as the lowest valence band (C band) in GaN to the topmost valence band (A band) in $Al\text{Ga}_{1-x}N$ alloys ($x > 0.25$). At $x = 0.25$, three valence bands become degenerated at the $\Gamma$ point and the degree of polarization $P$ is thus zero.

$P = \frac{[I_{\perp} - I_{\parallel}]}{[I_{\perp} + I_{\parallel}]}$

FIG. 4(a) The FWHM of PL vs $x$ in $Al\text{Ga}_{1-x}N$ alloys at 10 K. (b) PL emission intensities for $E \perp c$ and $E || c$ vs $x$ in $Al\text{Ga}_{1-x}N$ alloys measured at 10 K.

$P = \frac{[I_{\perp} - I_{\parallel}]}{[I_{\perp} + I_{\parallel}]}$

Figure 4(a) shows the full width at half maxima (FWHM) of PL emission spectra of $Al\text{Ga}_{1-x}N$ alloys versus $x$ measured at 10 K. FWHM increases with increasing $x$ and decreases again as $x$ further increase from $x = 0.7$ to 1. The values of the PL linewidths we measure agree very well with those calculated using a model in which the broadening effect is assumed to be due to compositional disorder in completely random semiconductor alloys. Figure 4(b) shows the variation of the integrated PL emission intensity of $Al\text{Ga}_{1-x}N$ alloys with the Al content, $I_{PL}$ vs $x$, measured at 10 K for both polarization orientations of $E \perp c$ and $E || c$. The emission intensity for $E \perp c$ component decreases with increasing $x$, while $I_{PL}$ for $E || c$ component decreases slightly with increasing $x$ except for GaN. Our experimental results shown in Fig. 4(b) suggest that the unique optical property of AlGaN alloys is also partly responsible for the lower emission efficiency in $Al\text{Ga}_{1-x}N$ alloys and related UV emitters with higher $x$, i.e., the emission intensity of light with $E \perp c$ decreases with increasing $x$. The fact that the emission intensity of the $E || c$ component is almost independent of $x$ seems to preclude the dislocations and nonradiative centers being
AlGaN alloys as active layers. The light escape cone is about \( \theta_e \approx 20^\circ \), within which any photons extracted are nearly polarized perpendicular to the c axis. (b) Schematic diagram of LDs with AlGa\(_{1-x}\)N alloys as active layers. In contrast with other semiconductor LDs with TE being the dominant models the TM mode should be the dominant laser emission, in which the magnetic field is parallel to the layer interfaces.

In summary, we have investigated the optical properties of AlGa\(_{1-x}\)N epilayers grown on sapphire by MOCVD. The dominant PL emission of GaN is with polarization of \( E \perp c \) while that of AlN is with polarization of \( E \parallel c \). The emission intensity with polarization of \( E \perp c \) as well as the degree of polarization decreases with increasing x. It is argued that the poor emission efficiency of AlGa\(_{1-x}\)N alloys and related UV emitters is also partly related with the unique optical property of AlGa\(_{1-x}\)N alloys, i.e., the emission intensity of light with polarization of \( E \parallel c \) decreases with x. UV emitters with AlGa\(_{1-x}\)N alloys as active layers thus have very different properties than other existing semiconductor emitters.

Useful discussions with Dr. S. H. Wei and Dr. Yong Zhang are gratefully acknowledged. This research is supported by grants from NSF, DOE, DARPA, and ARO.

For edge-emitting LDs based on AlGaN alloys, since light cannot leak out from the top and bottom layers due to their unique polarization property, the guiding effect is thus enhanced. Figure 5(b) shows the schematic diagram of LDs with Al\(_{1-x}\)Ga\(_x\)-N alloys as active layers. The transverse-electric TE mode is usually the dominant laser emission in all other semiconductor LDs, where the electric field of the mode is parallel to the layer interfaces. However, for LDs with Al\(_{1-x}\)Ga\(_x\)-N as active layers \((x>0.25)\) the TM mode should be the dominant laser emission, in which the magnetic field is parallel to the layer interfaces.

In summary, we have investigated the optical properties of AlGa\(_{1-x}\)N epilayers grown on sapphire by MOCVD. The dominant PL emission of GaN is with polarization of \( E \perp c \) while that of AlN is with polarization of \( E \parallel c \). The emission intensity with polarization of \( E \perp c \) as well as the degree of polarization decreases with increasing x. It is argued that the poor emission efficiency of AlGa\(_{1-x}\)N alloys and related UV emitters is also partly related with the unique optical property of AlGa\(_{1-x}\)N alloys, i.e., the emission intensity of light with polarization of \( E \parallel c \) decreases with x. UV emitters with AlGa\(_{1-x}\)N alloys as active layers thus have very different properties than other existing semiconductor emitters.

Useful discussions with Dr. S. H. Wei and Dr. Yong Zhang are gratefully acknowledged. This research is supported by grants from NSF, DOE, DARPA, and ARO.


