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Abstract. A weighted t-fold (n − k)-blocking set B of PG(n, q) always
contains a minimal weighted t-fold (n − k)-blocking set. We prove that, if
|B| < (t+1)qn−k +θn−k−1, then the minimal weighted t-fold (n−k)-blocking
set contained in B is unique.
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1 Introduction

A t-fold (n− k)-blocking set of PG(n, q) is a set of points which meets every
k-dimensional subspace in at least t points. To exclude the trivial cases we
will always suppose that 0 < k < n. If the points of the set are not all
different, so the set is a multiset of points, then it is called a weighted t-fold
(n − k)-blocking set. A weight function of PG(n, q) is a mapping from the
point set of PG(n, q) to the set of nonnegative integers. For a point P the
integer w(P ) is the weight of P . There is a natural correspondence between
multisets and weight functions of PG(n, q): let the weight of a point be the
multiplicity of that point in the set. For a weight function w, the weight of
a set M of points is by definition the sum of the weights of all its points,
denoted by w(M), and w(PG(n, q)) =: |w| can be called the total weight of w.
The multiset associated to a weight function w is a t-fold (n−k)-blocking set
if and only if the weight of every k-dimensional subspace is at least t. If this
is the case, then we will call the weight function w a t-fold (n − k)-blocking
set for short.

∗The author was supported by OTKA Grant K81310.
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If w is a t-fold (n− k)-blocking set, then a point P is called a non-essential
point of w, if the weight of every k-subspace containing P is at least t + 1
and w(P ) ≥ 1. Then the weight function w′ defined by

w′(Q) =

{
w(Q) if Q 6= P ,

w(P )− 1 if Q = P

is also a t-fold (n− k)-blocking set.

If w and w′ are weight functions, and w′(P ) ≤ w(P ) for all points P ∈
PG(n, q), then we will say that w′ is contained in w, and denote this by
w′ ≤ w.

The t-fold (n − k)-blocking set w is said to be minimal if w′ ≡ w for any
t-fold (n− k)-blocking set w′ contained in w.

A t-fold (n−k)-blocking set is not minimal if and only if it has non-essential
points. If we start reducing the weight of the non-essential points one by one,
always checking carefully that the resulting set/weight function is still a t-fold
(n− k)-blocking set, then after some steps we will arrive at a minimal t-fold
(n − k)-blocking set. It is a natural question to ask if there are conditions
which guarantee the uniqueness of this minimal t-fold (n − k)-blocking set.
Here, two weight fuctions w′ and w′′ are considered to be different if there is
a point P , such that w′(P ) 6= w′′(P ).

In [12] such a condition is given for non-weighted 1-fold 1-blocking sets of
PG(2, q).

Result 1.1. (Szőnyi, [12]) A non-weighted 1-fold 1-blocking set of PG(2, q),
with size smaller than 2q+1 contains a unique minimal 1-fold 1-blocking set.

This result was recently generalized to non-weighted 1-fold (n− k)-blocking
sets of PG(n, q) in [9].

Result 1.2. (Lavrauw, Storme and Van de Voorde, [9]) A non-weighted 1-
fold (n− k)-blocking set of PG(n, q), with size smaller than 2qn−k contains a
unique minimal 1-fold (n− k)-blocking set.

Using the standard notation θm = qm+1−1
q−1

for the number of points of an

m-dimensional subspace of PG(n, q), our result is the following.
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Theorem 1.3. A weighted t-fold (n− k)-blocking set of PG(n, q), with total
weight smaller than

(t+ 1)qn−k + θn−k−1

contains a unique minimal weighted t-fold (n− k)-blocking set.

Note that Theorem 1.3 is stronger than Result 1.2. Examples in the last
section show that the bound is sharp if t = 1, or if k = n− 1.

2 t-fold (n − k)-blocking sets containing two

minimal t-fold (n− k)-blocking sets

Let w be a t-fold (n − k)-blocking set. We will now define a new weight
function sw on the points of PG(n, q). For a point P let sw(P ) be the largest
integer for which the weight function w′ defined by

w′(Q) =

{
w(Q) if Q 6= P ,

w(P )− sw(P ) if Q = P

is also a t-fold (n−k)-blocking set. Then w(P ) ≥ sw(P ) ≥ 0, so if w(P ) = 0,
then sw(P ) = 0. It is also clear that w is minimal if and only if sw ≡ 0.

Lemma 2.1. For a t-fold (n − k)-blocking set w and P ∈ PG(n, q) the
following are true:

(a) sw(P ) = min{w(P ), min
P∈Πk

(w(Πk) − t)}, where Πk runs along the k-

dimensional subspaces containing P ;

(b) sw(P ) = max
w′≤w
{w(P )− w′(P )}, where w′ runs along the t-fold (n− k)-

blocking sets contained in w.

Lemma 2.2. If w is a t-fold (n−k)-blocking set which contains two different
minimal t-fold (n − k)-blocking sets, then there is a weight function v ≤ w
and a line l∗ with the following properties:

(a) v(Πk) ≥ t for any k-subspace Πk not containing l∗;
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(b) v(Πk) ≥ t− 1 for any k-subspace Πk containing l∗;

(c) there is a k-subspace Π∗k containing l∗, for which v(Π∗k) = t− 1;

(d) |w| ≥ |v|+ 2.

Proof. Let w′ and w′′ be two different minimal t-fold (n − k)-blocking sets
contained in w. Then there is a point P ∗ ∈ PG(n, q), such that w′(P ∗) >
w′′(P ∗). Define w̃ as follows:

w̃(Q) =

{
w(Q) if Q 6= P ∗,

w′(P ∗) if Q = P ∗.

Then w̃ is a t-fold (n−k)-blocking set, w′, w′′ ≤ w̃, and Lemma 2.1(b) yields
that sw̃(P ∗) ≥ w̃(P ∗)− w′′(P ∗) = w′(P ∗)− w′′(P ∗) > 0. (*)

As w̃ contains the minimal t-fold (n−k)-blocking set w′, we can start reducing
the weight of the points with w̃(P ) > w′(P ), one at a time, until we arrive
at w′. Formally, let w̃ = w1 ≥ w2 ≥ · · · ≥ wm = w′ be a sequence of
t-fold (n − k)-blocking sets, such that for i ∈ {1, 2, . . . ,m − 1} the t-fold
(n− k)-blocking sets wi and wi+1 only differ in one point Pi, and wi+1(Pi) =
wi(Pi)−1. Clearly Pi 6= P ∗, and the points Pi are not necessarily all different.
It is also clear that w̃ 6= w′, because w̃ = w′ would mean that w′′ is contained
in w′, which is a contradiction, so m ≥ 2 follows.

By Lemma 2.1(a), swi+1
≤ swi

, in fact, for any point Q, either swi+1
(Q) =

swi
(Q), or swi+1

(Q) = swi
(Q)−1. For the point P ∗ we have sw̃(P ∗) > 0 by (*),

and sw′(P
∗) = 0 by the minimality of w′. So there will be an i ∈ {1, 2, . . . ,m−

1} such that swi
(P ∗) = 1 and swi+1

(P ∗) = 0. The weight functions wi and
wi+1 only differ in the point Pi. Then by Lemma 2.1(a) there is a k-space Π∗k
which contains Pi and P ∗, and has weight wi(Π

∗
k) = t + 1. Also by Lemma

2.1(a) this yields swi
(Pi) ≤ 1, and as wi+1(Pi) = wi(Pi) − 1, so Pi is a non-

essential point of wi, then swi
(Pi) = 1 follows. Thus for any k-dimensional

subspace Πk, which contains P ∗ and/or Pi we have wi(Πk) ≥ t+ 1.

Let l∗ be the line connecting Pi and P ∗, and define v to be the following
weight function:

v(Q) =

{
wi(Q) if Q /∈ {P ∗, Pi},
wi(Q)− 1 if Q ∈ {P ∗, Pi}.
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Clearly |w| ≥ |wi| = |v|+ 2, and v is a weight function contained in w. The
weight of a k-subspace Πk is wi−1(Πk)− |Πk ∩ {P ∗, Pi}|. Thus, v, l∗ and Π∗k
satisfy the properties given in the lemma.

3 t-fold nuclei

If t = 1, n = 2, k = 1, then Lemma 2.2 yields that if w is a 1-fold 1-blocking
set of PG(2, q) containing two different minimal 1-fold 1-blocking sets, then
w contains a weight function v, which defines a blocking set of the affine
plane AG(2, q) := PG(2, q) \ l∗. Thus |w(PG(2, q))| ≥ s(q) + 2, where s(q)
denotes the size of the smallest 1-blocking set of AG(2, q). There are several
independent proofs for s(q) = 2q − 1, from which Result 1.1 follows (see
Jamison [8], Brouwer and Schrijver [5], Blokhuis [2], Szőnyi [12]).

In [2], s(q) = 2q − 1 is proved as a corollary of a theorem on nuclei of point
sets. Now we generalize the notion of nucleus to multisets/weight functions.

Definition 3.1. (1) Let S be a multiset of PG(n, q). A point P /∈ S will
be called a t-fold nucleus of S if every line through P meets S in at
least t points, counted with multiplicities.

(2) Let w be a weight function of PG(n, q). A point P ∈ PG(n, q) with
w(P ) = 0 will be called a t-fold nucleus of w if every line through P
has weight at least t.

For S to have nuclei, clearly |S| ≥ tθn−1 is needed. Let |S| = tθn−1 +r, r ≥ 0.

Note that for |S| = tθn−1 − r, r ≥ 0, a ‘symmetric’ version of the definition
can be: a point P /∈ S is a t-fold nucleus of S, if every line through P meets
S in at most t points, counted with multiplicities.

The notion of nucleus was first introduced by Mazzocca for affine sets for
n = 2, t = 1 and r = 0. Blokhuis extended the notion to r ≥ 0 in [2] and to
t ≥ 1 in [3], and Sziklai generalized the definition for sets of the projective
space PG(n, q) in [11]. (The ’symmetric’ version was introduced in [7] and
[11].)

Denote by N t(S) the set of t-fold nuclei of S, and let p be the characteristic
of the field GF(q).
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Result 3.2. (Sziklai, [11]) Let S be a set of points in PG(n, q) with |S| =
tθn−1 + r, r ≥ 0. Let H∞ be a given hyperplane, |S ∩H∞| = m∞. Then

|N t(S) \H∞| ≤ (r + 1)(q − 1),

provided that
(
tθn−1+r−m∞

r+1

)
6= 0 (mod p).

Result 3.2 was proved in the case when m∞ = 0, n = 2 by Blokhuis and
Wilbrink (r = 0, t = 1, see [4]) and by Blokhuis (for r ≥ 0, t = 1, see [2], and
for r ≥ 0, t ≥ 1 see [3]). The ‘symmetric’ version was also settled by Sziklai
in [11].

As Result 3.2 is not applicable when
(
tθn−1+r−m∞

r+1

)
= 0 (mod p), to obtain

an upper bound in this case, Ball presented the following theorem.

Result 3.3. (Ball, [1]) Let S be a set of points in PG(n, q) with |S| =
tθn−1 + r, r ≥ 0, and let H∞ be a given hyperplane, |S ∩H∞| = m∞. Then

|N t(S) \H∞| ≤ (r + 1 + j)(q − 1),

provided that the binomial coefficient(
tθn−1 + r −m∞

r + 1 + j

)
6= 0 (mod p)

for some j ≥ 0.

The proof of Result 3.2 and 3.3 can be easily copied for multisets/weight
functions and we obtain the following lemma.

Lemma 3.4. Let w be a weight function on PG(n, q) and H∞ a given hyper-
plane with w(H∞) = m∞. Suppose that w(PG(n, q)) = tθn−1 + r, with r ≥ 0.
Then if (

tθn−1 + r −m∞
r + 1 + j

)
6= 0 (mod p)

for some j ≥ 0, then the number of t-fold nuclei of w in PG(n, q) \H∞ is at
most (r + 1 + j)(q − 1).
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Proof. If the binomial coefficient is nonzero, then w(PG(n, q) \H∞) > 0, so
the number of t-fold nuclei in PG(n, q) \ H∞ is at most qn − 1. Thus the
statement is trivially true for r + 1 ≥ θn−1, so from now on we will suppose
r < θn−1 − 1.

Identify the points of AG(n, q) := PG(n, q)\H∞ with the elements of GF(qn),
and the points of H∞ with the θn−1-st roots of unity of GF(qn) in the usual
way. The points of PG(n, q) will be denoted by capital letters, and the
corresponding elements of GF(qn) by the same lowercase letters. Then for
points A 6= B ∈ AG(n, q), the line AB contains the ideal point C ∈ H∞ if
and only if (a− b)q−1 = c holds.

Let S = {a1, a2, . . . , atθn−1+r−m∞}∪{c1, . . . , cm∞} be the multiset of elements
of GF(qn) corresponding to the points of nonzero weight of PG(n, q) \ H∞
and H∞ respectively, such that a ∈ S has multiplicity w(A) in S for the
corresponding point A ∈ PG(n, q).

Let X and Y be variables, and define

B(X) = {(X − ai)q−1|i = 1, . . . , tθn−1 + r −m∞} ∪ {c1, . . . , cm∞},

and
F (Y,X) =

∏
b∈B(X)

(Y − b).

Then

F (Y,X) =

tθn−1+r∑
j=0

(−1)jσj(B(X))Y tθn−1+r−j,

where σj(B(X)) denotes the jth elementary symmetric polynomial of the set
B(X).

Suppose that x ∈ GF(qn) is an element corresponding to a t-fold nucleus of
w. Then B(x) contains every θn−1-st root of unity with multiplicity at least
t, so

F (Y, x) = (Y θn−1 − 1)t(Y r + terms of lower degree).

As r < θn−1 − 1, the coefficients of the terms

Y tθn−1−1, Y tθn−1−2, . . . , Y (t−1)θn−1+r+1

are 0 in F (Y, x). Thus σr+1+j(B(x)) = 0 for 0 ≤ j ≤ θn−1 − r − 2.

7



The degree of σr+1+j(B(X)) as a polynomial of X is at most (r+1+j)(q−1),
with equality precisely if the binomial coefficient(

tθn−1 + r −m∞
r + 1 + j

)
does not vanish. In this case σr+1+j(B(X)) is not the zero polynomial, and
every nucleus is a root of it, hence the number of nuclei is at most its degree:
(r + 1 + j)(q − 1).

We will now use Lemma 3.4 for n = 2, j = 0 and m∞ = t− 1.

Lemma 3.5. Suppose that v is a weight function of PG(2, q) such that there
is a line l∞, with v(l∞) = t − 1, while all other lines have weight at least t.
Then |v| ≥ (t+ 1)q − 1.

Proof. Assume first that t ≤ q − 2. Suppose on the contrary that v is such
a weight function, yet the total weight of v is less than (t + 1)q − 1. We
may suppose |v| = (t + 1)q − 2 (or else increase the weight of some of the
points of PG(2, q) \ l∞). All lines other than l∞ have weight at least t, which
means that all the points of PG(2, q) \ l∞ with weight 0 are t-fold nuclei of
v. As v(PG(2, q) \ l∞) = (t+ 1)q− 2− (t− 1) = tq+ q− t− 1, PG(2, q) \ l∞
has at most tq + q − t − 1 points with positive v weight (and exactly this
many if every point of PG(2, q) \ l∞ has weight ≤ 1). So v has at least
q2 − (tq + q − t− 1) = q2 − tq − q + t+ 1 t-fold nuclei.

We will use Lemma 3.4 to prove that this is not possible. As

|v| = (t+ 1)q − 2 = t(q + 1) + q − t− 2

and (
t(q + 1) + q − t− 2− (t− 1)

q − t− 2 + 1

)
=

(
tq + q − t− 1

q − t− 1

)
6= 0 (mod p)

by Lucas’ theorem, so Lemma 3.4 yields that the number of t-fold nuclei of
v is at most (q − t − 1)(q − 1) = q2 − tq − 2q + t + 1, a contradiction. The
same arguments prove that, if |v| = (t+ 1)q− 1, then v(P ) ≤ 1 for all points
P ∈ PG(2, q) \ l∞.

For t ≥ q−1, the assertion can be proved by summing the weights of all lines
through a carefully selected point P . If P ∈ PG(2, q) \ l∞ and v(P ) = 0,
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then |v| ≥ t(q + 1) = tq + t ≥ tq + q − 1. If P ∈ l∞ and v(P ) = 0, then
|v| ≥ tq + t − 1 and so if t ≥ q, then we are done. If t = q − 1 and all
points of PG(2, q) \ l∞ have positive weight, then v(PG(2, q) \ l∞) ≥ q2, so
|v| ≥ q2 + t−1 > (t+ 1)q−1. With this we have proved that if we can select
a point P ∈ PG(2, q) with v(P ) = 0, then the assertion is true.

Assume now that v(P ) > 0 for every point, let m = minP v(P ) and define a
new weight function ṽ, by ṽ(P ) := v(P )−m. Then ṽ(l∞) = t−m(q+ 1)− 1
and ṽ(l) ≥ t −m(q + 1) for any line l 6= l∞. If t −m(q + 1) ≤ q − 2 then
we can use the first part of the proof to prove |ṽ| ≥ (t−m(q + 1) + 1)q − 1.
If t −m(q + 1) ≥ q − 1 then we can use the second part, as there will be a
point with zero ṽ weight. Then

|v| = |ṽ|+m(q2+q+1) ≥ (t−m(q+1)+1)q−1+m(q2+q+1) = (t+1)q−1+m.

Hence the result is established.

4 Proof of the main theorem

Theorem 1.3. A weighted t-fold (n− k)-blocking set of PG(n, q), with total
weight smaller than

(t+ 1)qn−k + θn−k−1

contains a unique minimal weighted t-fold (n− k)-blocking set.

Proof. Assume that w is a weighted t-fold (n − k)-blocking set of PG(n, q)
which contains two different minimal t-fold (n − k)-blocking sets. We will
prove |w| ≥ (t + 1)qn−k + θn−k−1. By Lemma 2.2 there is a weight function
v ≤ w, a line l∗ and a k-subspace Π∗k containing l∗, such that

(a) v(Πk) ≥ t, for every k-subspace Πk not containing l∗;

(b) v(Πk) ≥ t− 1 for every k-subspace Πk containing l∗;

(c) v(Π∗k) = t− 1;

(d) |w| ≥ |v|+ 2.
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Case 1

Assume first that k = 1. Then Π∗k = l∗ is a line, and v(l∗) = t − 1, while
the v weight of any other line is at least t. If n = 2, then |v| ≥ (t + 1)q − 1
by Lemma 3.5, which proves the theorem in this case. Now assume n ≥ 3
and let Π be a plane containing the line l∗. Then the weight function v
restricted to the plane Π fulfills the requirements of Lemma 3.5, so v(Π) ≥
(t + 1)q − 1. This is true for all the planes containing the line l∗, so clearly
|v| ≥ θn−2 · ((t+ 1)q − 1− (t− 1)) + t− 1 = (t+ 1)qn−1 + θn−2 − 2.

Case 2

For n ≥ 3 and k ≥ 2 we will use induction on n to prove that

|v| ≥ (t+ 1)qn−k + θn−k−1 − 2.

Case 2a Let V ∈ Π∗k \ l∗ be a point with v(V ) = 0. Consider the quotient
space PG(n, q)/V ∼= PG(n − 1, q), and the weight function ṽ induced by v
on PG(n − 1, q). Clearly ṽ(PG(n − 1, q)) = v(PG(n, q)). The plane 〈V, l∗〉
corresponds to a line, and a k-space containing V corresponds to a (k − 1)-
space. It is not hard to check that ṽ fulfills requirements (a)-(c) with 〈V, l∗〉/V
as l∗ and Π∗k/V as Π∗k−1, and so by induction

ṽ(PG(n− 1, q)) ≥ (t+ 1)qn−k + θn−k−1 − 2.

Case 2b Suppose now that for all P ∈ Π∗k \ l∗: v(P ) > 0, but there is a
point v(V ) = 0. Then t− 1 ≥ θk − (q + 1). Increase the weight of one point
(6= V ) of l∗ by one to obtain the new weight function v′, which is now a t-fold
(n− k)-blocking set of PG(n, q). We will prove that |v′| ≥ tqn−k + θn−k − 1.
This is generally not true for t-fold (n− k)-blocking sets of PG(n, q), only if
t is large enough.

Assume, on the contrary, that |v′| ≤ tqn−k + θn−k − 2. Then we can find a
line Σ1 containing V , such that

v′(Σ1) ≤ t− (qk−1 + qk−2 + · · ·+ q)

qk−1
,

because if all lines through V had v′ weight more than

t− (qk−1 + qk−2 + · · ·+ q)

qk−1
,
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then all these weights would be at least ≥ t− (qk−1 + qk−2 + · · ·+ q)

qk−1
+

1

qk−1
,

and then the total weight of v′ would be

|v′| ≥
(
t− qk−1 − qk−2 − · · · − q

qk−1
+

1

qk−1

)
· θn−1

= tqn−k+

(
t

qk−1
− qk + qk−1 + · · ·+ q2

qk−1

)
θn−2−

qk−1 + qk−2 + · · ·+ q

qk−1
+
θn−1

qk−1

> tqn−k +
qn−1 + qn−2 + · · ·+ qk

qk−1
= tqn−k + θn−k − 1.

We will now prove that if 1 ≤ j ≤ k − 2 and Σj is a j-space with

v′(Σj) ≤
t− (qk−j + qk−j−1 + · · ·+ q)

qk−j
,

then we can find a (j + 1)-space Σj+1 ⊃ Σj, with

v′(Σj+1) ≤ t− (qk−j−1 + · · ·+ q)

qk−j−1
.

If this were not true, then we would have

|v′| >
(
t− (qk−j−1 + · · ·+ q)

qk−j−1
− v′(Σj)

)
· θn−j−1 + v′(Σj)

≥
(
t− (qk−j−1 + · · ·+ q)

qk−j−1
− t− (qk−j + qk−j−1 + · · ·+ q)

qk−j

)
· θn−j−1

+
t− (qk−j + qk−j−1 + · · ·+ q)

qk−j
= tqn−k + θn−k + 1.

Thus we can find a (k−1)-space Σk−1, with v′(Σk−1) ≤ t−q
q

. But all k-spaces
containing Σk−1 have v′ weight at least t, so

|v′| ≥ (t− t

q
+ 1) · θn−k +

t− q
q

= tqn−k + θn−k − 1,

a contradiction.

Case 2c There is one more case remaining to be proved: if v(P ) > 0 for all
points P ∈ PG(n, q). Then let m := minP v(P ) and let ṽ := v −m. Then
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ṽ fulfills requirements (a)-(c) with t̃ := t − m · θk. Cases 2a and 2b prove
|ṽ| ≥ t̃qn−k + θn−k − 2 and then

|v| = |ṽ|+m · θn ≥ (t−m · θk)qn−k + θn−k − 2 +m · θn
= tqn−k + θn−k − 2 +mθn−k−1.

5 Examples

In this section we investigate the sharpness of Theorem 1.3. We are looking
for weighted t-fold (n − k)-blocking sets of size (t + 1)qn−k + θn−k−1, which
contain two different minimal t-fold (n− k)-blocking sets.

5.1 The case t = 1

Example 1 Let Π1 and Π2 be two (n−k)-dimensional subspaces of PG(n, q)
meeting in an (n−k−1)-dimensional subspace. Then B := Π1∪Π2 contains
two different minimal 1-fold (n − k)-blocking sets (Π1 and Π2), and |B| =
2qn−k + θn−k−1.

Corollary 5.1. Theorem 1.3 is sharp, if t = 1.

The following proposition is a corollary of Theorem 1.3, but in fact equivalent
to it if t = 1 and k = 1. Corollary 5.3 can also be found in [13].

Proposition 5.2. Let B be a minimal 1-fold (n−1)-blocking set of PG(n, q),
and P ∈ B. Then there are at least ≥ 2qn−1 + θn−2 − |B| tangents thorugh
P .

Proof. Suppose that there are k tangents through P . Take points P1, P2, . . . ,
Pk, one from each of the tangents, Pi 6= P . Clearly (B \ {P})∪ {P1, . . . , Pk}
is a 1-fold (n− 1)-blocking set. It contains a minimal 1-fold (n− 1)-blocking
set B′, and B 6= B′. Thus B ∪ {P1, . . . , Pk} contains two different minimal
1-fold (n− 1)-blocking sets, so |B|+ k ≥ 2qn−1 + θn−2.
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Corollary 5.3. Let B be any 1-fold (n − 1)-blocking set of PG(n, q), and
P ∈ B an essential point of B. Then there are at least ≥ 2qn−1 + θn−2 − |B|
tangents thorugh P .

Construction 1 Let B be a 1-fold (n − 1)-blocking set which has a point
P ∈ B, through which there are exactly 2qn−1 + θn−2 − |B| tangents to B.
Then adding a point to every tangent will result in a 1-fold (n− 1)-blocking
set of size 2qn−1 + θn−2, which contains two different minimal 1-fold (n− 1)-
blocking sets.

Construction 2 Embed construction 1 in an (n−k+1)-dimensional subspace
of PG(n, q) to obtain 1-fold (n−k)-blocking sets of size 2qn−k+θn−k−1, which
contain two different minimal 1-fold (n− k)-blocking sets.

Note that blocking sets used in the above construction exist: the so called
Rédei type blocking sets always contain points which are on exactly 2qn−1 +
θn−2 − |B| tangents (see [10]).

5.2 The case t ≥ 2

We will use the following notation: for the multisets B1 and B2, with associ-
ated weight functions w1 and w2 respectively, B1∪B2 will denote the multiset
defined by the weight function max{w1, w2}, while B1 + B2 will denote the
multiset defined by the weight function w1 + w2.

Note that the proof of Lemma 3.5 yields that for n = 2, k = 1 it is not
possible to have v(PG(2, q)) = (t+ 1)q − 1, if t ≥ q + 1, and so the proof of
Theorem 1.3 yields that the bound cannot be sharp if t ≥ q + 1. Also from
the proofs of Lemma 3.5 and Theorem 1.3 it follows that if t ≤ q − 2 and B
is a weighted t-fold (n−k)-blocking set which contains two different minimal
t-fold (n− k)-blocking sets and |B| = (t+ 1)qn−k + θn−k−1, then only points
on one line (the line l∗) can be multiple points.

Example 2 Let Π be a plane of PG(n, k), let l1, l2, . . . , lt be different lines
in Π through a common point P , and lt+1 a further line of Π, with P /∈ lt+1.
Then the multiset B := (l1 + l2 + · · · + lt) ∪ lt+1 is a t-fold 1-blocking set in
PG(n, q), |B| = t(q+ 1) + (q+ 1− t) = (t+ 1)q+ 1, and l1 + l2 + · · ·+ lt and
l1 ∪ (l2 + · · · + lt) ∪ lt+1 are two minimal t-fold 1-blocking sets contained in
B; the latter one differs from B only in the point P .
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Corollary 5.4. Theorem 1.3 is sharp if k = n− 1, 2 ≤ t ≤ q.

The following proposition is again a corollary of Theorem 1.3, which is in
fact equivalent to it if k = 1. For n = 2 and with an upper bound on the
size of B, it can also be found in [6].

Proposition 5.5. Let B be a minimal t-fold (n−1)-blocking set of PG(n, q),
and P ∈ B. Then there are at least ≥ (t+1)qn−1+θn−2−|B| t-secants through
P .

Proof. Suppose that there are k t-secants through P . Take points P1, P2, . . . ,
Pk, one from each of the t-secants, Pi 6= P . Clearly the t-fold (n−1)-blocking
set B \ {P}+ {P1, . . . , Pk} contains a minimal t-fold (n− 1)-blocking set B′,
and B 6= B′. Thus B + {P1, . . . , Pk} contains two different minimal t-fold
(n− 1)-blocking sets, so |B|+ k ≥ (t+ 1)qn−1 + θn−2.

Construction 3 Let B be a minimal t-fold (n − 1)-blocking set which has
a point P ∈ B, through which there are exactly (t + 1)qn−1 + θn−2 − |B|
t-secants to B. Then adding a point to every t-secant will result in a t-fold
(n − 1)-blocking set of size (t + 1)qn−1 + θn−2 and containing two different
minimal t-fold (n− 1)-blocking sets.

Construction 4 Embed Construction 3 in an (n− k + 1)-dimensional sub-
space of PG(n, q) to obtain t-fold (n− k)-blocking sets of size (t+ 1)qn−k +
θn−k−1, which contain two different minimal t-fold (n− k)-blocking sets.

For n = 2, k = 1 and 2 ≤ t ≤ q one can find t-fold 1-blocking sets in PG(2, q)
which have points that are on exactly (t+1)q+1−|B| t-secants to B: take the
sum of t Rédei type blocking sets which have a common Rédei line, and share
exactly one point, that is not on the Rédei line. Example 2 is a special case
of this: the sum of t lines sharing a common point. Then, with Construction
4, we get examples for n ≥ 3, k = n − 1 and 1 ≤ t ≤ q. Unfortunately, for
t ≥ 2, n ≥ 3 and k = 1, in the minimal t-fold (n− 1)-blocking sets examined
by the author all points have at least tθn−1 − (q + 1− t)qn−2 − |B| t-secants
to B. Thus it may be conjectured that the correct bound in Theorem 1.3
should be

tθn−k + (q + 1− t)qn−k−1.
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