Unique reducibility of multiple blocking sets

Nóra V. Harrach*

Abstract

A weighted t-fold $(n-k)$-blocking set B of $\operatorname{PG}(n, q)$ always contains a minimal weighted t-fold $(n-k)$-blocking set. We prove that, if $|B|<(t+1) q^{n-k}+\theta_{n-k-1}$, then the minimal weighted t-fold $(n-k)$-blocking set contained in B is unique.

Mathematics Subject Classification (2010). 51E21, 51E20.
Keywords. Projective space, multiple blocking sets.

1 Introduction

A t-fold $(n-k)$-blocking set of $\operatorname{PG}(n, q)$ is a set of points which meets every k-dimensional subspace in at least t points. To exclude the trivial cases we will always suppose that $0<k<n$. If the points of the set are not all different, so the set is a multiset of points, then it is called a weighted t-fold $(n-k)$-blocking set. A weight function of $\mathrm{PG}(n, q)$ is a mapping from the point set of $\mathrm{PG}(n, q)$ to the set of nonnegative integers. For a point P the integer $w(P)$ is the weight of P. There is a natural correspondence between multisets and weight functions of $\operatorname{PG}(n, q)$: let the weight of a point be the multiplicity of that point in the set. For a weight function w, the weight of a set M of points is by definition the sum of the weights of all its points, denoted by $w(M)$, and $w(\operatorname{PG}(n, q))=:|w|$ can be called the total weight of w. The multiset associated to a weight function w is a t-fold $(n-k)$-blocking set if and only if the weight of every k-dimensional subspace is at least t. If this is the case, then we will call the weight function w a t-fold $(n-k)$-blocking set for short.

[^0]If w is a t-fold $(n-k)$-blocking set, then a point P is called a non-essential point of w, if the weight of every k-subspace containing P is at least $t+1$ and $w(P) \geq 1$. Then the weight function w^{\prime} defined by

$$
w^{\prime}(Q)= \begin{cases}w(Q) & \text { if } Q \neq P \\ w(P)-1 & \text { if } Q=P\end{cases}
$$

is also a t-fold $(n-k)$-blocking set.
If w and w^{\prime} are weight functions, and $w^{\prime}(P) \leq w(P)$ for all points $P \in$ $\operatorname{PG}(n, q)$, then we will say that w^{\prime} is contained in w, and denote this by $w^{\prime} \leq w$.

The t-fold $(n-k)$-blocking set w is said to be minimal if $w^{\prime} \equiv w$ for any t-fold $(n-k)$-blocking set w^{\prime} contained in w.

A t-fold $(n-k)$-blocking set is not minimal if and only if it has non-essential points. If we start reducing the weight of the non-essential points one by one, always checking carefully that the resulting set/weight function is still a t-fold $(n-k)$-blocking set, then after some steps we will arrive at a minimal t-fold $(n-k)$-blocking set. It is a natural question to ask if there are conditions which guarantee the uniqueness of this minimal t-fold $(n-k)$-blocking set. Here, two weight fuctions w^{\prime} and $w^{\prime \prime}$ are considered to be different if there is a point P, such that $w^{\prime}(P) \neq w^{\prime \prime}(P)$.
In [12] such a condition is given for non-weighted 1-fold 1-blocking sets of PG($2, q$).

Result 1.1. (Szőnyi, [12]) A non-weighted 1-fold 1-blocking set of $\operatorname{PG}(2, q)$, with size smaller than $2 q+1$ contains a unique minimal 1-fold 1-blocking set.

This result was recently generalized to non-weighted 1-fold $(n-k)$-blocking sets of $\operatorname{PG}(n, q)$ in [9].

Result 1.2. (Lavrauw, Storme and Van de Voorde, [9]) A non-weighted 1fold $(n-k)$-blocking set of $\mathrm{PG}(n, q)$, with size smaller than $2 q^{n-k}$ contains a unique minimal 1 -fold $(n-k)$-blocking set.

Using the standard notation $\theta_{m}=\frac{q^{m+1}-1}{q-1}$ for the number of points of an m-dimensional subspace of $\operatorname{PG}(n, q)$, our result is the following.

Theorem 1.3. A weighted t-fold $(n-k)$-blocking set of $\mathrm{PG}(n, q)$, with total weight smaller than

$$
(t+1) q^{n-k}+\theta_{n-k-1}
$$

contains a unique minimal weighted t-fold $(n-k)$-blocking set.

Note that Theorem 1.3 is stronger than Result 1.2. Examples in the last section show that the bound is sharp if $t=1$, or if $k=n-1$.

$2 t$-fold $(n-k)$-blocking sets containing two minimal t-fold $(n-k)$-blocking sets

Let w be a t-fold $(n-k)$-blocking set. We will now define a new weight function s_{w} on the points of $\operatorname{PG}(n, q)$. For a point P let $s_{w}(P)$ be the largest integer for which the weight function w^{\prime} defined by

$$
w^{\prime}(Q)= \begin{cases}w(Q) & \text { if } Q \neq P \\ w(P)-s_{w}(P) & \text { if } Q=P\end{cases}
$$

is also a t-fold $(n-k)$-blocking set. Then $w(P) \geq s_{w}(P) \geq 0$, so if $w(P)=0$, then $s_{w}(P)=0$. It is also clear that w is minimal if and only if $s_{w} \equiv 0$.

Lemma 2.1. For a t-fold $(n-k)$-blocking set w and $P \in \operatorname{PG}(n, q)$ the following are true:
(a) $s_{w}(P)=\min \left\{w(P), \min _{P \in \Pi_{k}}\left(w\left(\Pi_{k}\right)-t\right)\right\}$, where Π_{k} runs along the k dimensional subspaces containing P;
(b) $s_{w}(P)=\max _{w^{\prime} \leq w}\left\{w(P)-w^{\prime}(P)\right\}$, where w^{\prime} runs along the t-fold $(n-k)$ blocking sets contained in w.

Lemma 2.2. If w is a t-fold $(n-k)$-blocking set which contains two different minimal t-fold $(n-k)$-blocking sets, then there is a weight function $v \leq w$ and a line l^{*} with the following properties:
(a) $v\left(\Pi_{k}\right) \geq t$ for any k-subspace Π_{k} not containing l^{*};
(b) $v\left(\Pi_{k}\right) \geq t-1$ for any k-subspace Π_{k} containing l^{*};
(c) there is a k-subspace Π_{k}^{*} containing l^{*}, for which $v\left(\Pi_{k}^{*}\right)=t-1$;
(d) $|w| \geq|v|+2$.

Proof. Let w^{\prime} and $w^{\prime \prime}$ be two different minimal t-fold $(n-k)$-blocking sets contained in w. Then there is a point $P^{*} \in \mathrm{PG}(n, q)$, such that $w^{\prime}\left(P^{*}\right)>$ $w^{\prime \prime}\left(P^{*}\right)$. Define \tilde{w} as follows:

$$
\tilde{w}(Q)= \begin{cases}w(Q) & \text { if } Q \neq P^{*} \\ w^{\prime}\left(P^{*}\right) & \text { if } Q=P^{*}\end{cases}
$$

Then \tilde{w} is a t-fold $(n-k)$-blocking set, $w^{\prime}, w^{\prime \prime} \leq \tilde{w}$, and Lemma 2.1(b) yields that $s_{\tilde{w}}\left(P^{*}\right) \geq \tilde{w}\left(P^{*}\right)-w^{\prime \prime}\left(P^{*}\right)=w^{\prime}\left(P^{*}\right)-w^{\prime \prime}\left(P^{*}\right)>0 .\left(^{*}\right)$
As \tilde{w} contains the minimal t-fold $(n-k)$-blocking set w^{\prime}, we can start reducing the weight of the points with $\tilde{w}(P)>w^{\prime}(P)$, one at a time, until we arrive at w^{\prime}. Formally, let $\tilde{w}=w_{1} \geq w_{2} \geq \cdots \geq w_{m}=w^{\prime}$ be a sequence of t-fold $(n-k)$-blocking sets, such that for $i \in\{1,2, \ldots, m-1\}$ the t-fold $(n-k)$-blocking sets w_{i} and w_{i+1} only differ in one point P_{i}, and $w_{i+1}\left(P_{i}\right)=$ $w_{i}\left(P_{i}\right)-1$. Clearly $P_{i} \neq P^{*}$, and the points P_{i} are not necessarily all different. It is also clear that $\tilde{w} \neq w^{\prime}$, because $\tilde{w}=w^{\prime}$ would mean that $w^{\prime \prime}$ is contained in w^{\prime}, which is a contradiction, so $m \geq 2$ follows.

By Lemma 2.1(a), $s_{w_{i+1}} \leq s_{w_{i}}$, in fact, for any point Q, either $s_{w_{i+1}}(Q)=$ $s_{w_{i}}(Q)$, or $s_{w_{i+1}}(Q)=s_{w_{i}}(Q)-1$. For the point P^{*} we have $s_{\tilde{w}}\left(P^{*}\right)>0$ by $\left({ }^{*}\right)$, and $s_{w^{\prime}}\left(P^{*}\right)=0$ by the minimality of w^{\prime}. So there will be an $i \in\{1,2, \ldots, m-$ $1\}$ such that $s_{w_{i}}\left(P^{*}\right)=1$ and $s_{w_{i+1}}\left(P^{*}\right)=0$. The weight functions w_{i} and w_{i+1} only differ in the point P_{i}. Then by Lemma 2.1(a) there is a k-space Π_{k}^{*} which contains P_{i} and P^{*}, and has weight $w_{i}\left(\Pi_{k}^{*}\right)=t+1$. Also by Lemma 2.1(a) this yields $s_{w_{i}}\left(P_{i}\right) \leq 1$, and as $w_{i+1}\left(P_{i}\right)=w_{i}\left(P_{i}\right)-1$, so P_{i} is a nonessential point of w_{i}, then $s_{w_{i}}\left(P_{i}\right)=1$ follows. Thus for any k-dimensional subspace Π_{k}, which contains P^{*} and/or P_{i} we have $w_{i}\left(\Pi_{k}\right) \geq t+1$.
Let l^{*} be the line connecting P_{i} and P^{*}, and define v to be the following weight function:

$$
v(Q)= \begin{cases}w_{i}(Q) & \text { if } Q \notin\left\{P^{*}, P_{i}\right\} \\ w_{i}(Q)-1 & \text { if } Q \in\left\{P^{*}, P_{i}\right\}\end{cases}
$$

Clearly $|w| \geq\left|w_{i}\right|=|v|+2$, and v is a weight function contained in w. The weight of a k-subspace Π_{k} is $w_{i-1}\left(\Pi_{k}\right)-\left|\Pi_{k} \cap\left\{P^{*}, P_{i}\right\}\right|$. Thus, v, l^{*} and Π_{k}^{*} satisfy the properties given in the lemma.

$3 t$-fold nuclei

If $t=1, n=2, k=1$, then Lemma 2.2 yields that if w is a 1 -fold 1 -blocking set of $\operatorname{PG}(2, q)$ containing two different minimal 1-fold 1-blocking sets, then w contains a weight function v, which defines a blocking set of the affine plane $\mathrm{AG}(2, q):=\mathrm{PG}(2, q) \backslash l^{*}$. Thus $|w(\mathrm{PG}(2, q))| \geq s(q)+2$, where $s(q)$ denotes the size of the smallest 1-blocking set of $\operatorname{AG}(2, q)$. There are several independent proofs for $s(q)=2 q-1$, from which Result 1.1 follows (see Jamison [8], Brouwer and Schrijver [5], Blokhuis [2], Szőnyi [12]).

In [2], $s(q)=2 q-1$ is proved as a corollary of a theorem on nuclei of point sets. Now we generalize the notion of nucleus to multisets/weight functions.

Definition 3.1. (1) Let S be a multiset of $\operatorname{PG}(n, q)$. A point $P \notin S$ will be called a t-fold nucleus of S if every line through P meets S in at least t points, counted with multiplicities.
(2) Let w be a weight function of $\mathrm{PG}(n, q)$. A point $P \in \operatorname{PG}(n, q)$ with $w(P)=0$ will be called a t-fold nucleus of w if every line through P has weight at least t.

For S to have nuclei, clearly $|S| \geq t \theta_{n-1}$ is needed. Let $|S|=t \theta_{n-1}+r, r \geq 0$.
Note that for $|S|=t \theta_{n-1}-r, r \geq 0$, a 'symmetric' version of the definition can be: a point $P \notin S$ is a t-fold nucleus of S, if every line through P meets S in at most t points, counted with multiplicities.

The notion of nucleus was first introduced by Mazzocca for affine sets for $n=2, t=1$ and $r=0$. Blokhuis extended the notion to $r \geq 0$ in [2] and to $t \geq 1$ in [3], and Sziklai generalized the definition for sets of the projective space $\operatorname{PG}(n, q)$ in [11]. (The 'symmetric' version was introduced in [7] and [11].)

Denote by $N^{t}(S)$ the set of t-fold nuclei of S, and let p be the characteristic of the field GF (q).

Result 3.2. (Sziklai, [11]) Let S be a set of points in $\operatorname{PG}(n, q)$ with $|S|=$ $t \theta_{n-1}+r, r \geq 0$. Let H_{∞} be a given hyperplane, $\left|S \cap H_{\infty}\right|=m_{\infty}$. Then

$$
\left|N^{t}(S) \backslash H_{\infty}\right| \leq(r+1)(q-1)
$$

provided that $\left(\underset{r+1}{t \theta_{n-1}+r-m_{\infty}}\right) \neq 0(\bmod p)$.
Result 3.2 was proved in the case when $m_{\infty}=0, n=2$ by Blokhuis and Wilbrink $(r=0, t=1$, see [4]) and by Blokhuis (for $r \geq 0, t=1$, see [2], and for $r \geq 0, t \geq 1$ see [3]). The 'symmetric' version was also settled by Sziklai in [11].
As Result 3.2 is not applicable when $\binom{t \theta_{n-1}+r-m_{\infty}}{r+1}=0(\bmod p)$, to obtain an upper bound in this case, Ball presented the following theorem.

Result 3.3. (Ball, [1]) Let S be a set of points in $\operatorname{PG}(n, q)$ with $|S|=$ $t \theta_{n-1}+r, r \geq 0$, and let H_{∞} be a given hyperplane, $\left|S \cap H_{\infty}\right|=m_{\infty}$. Then

$$
\left|N^{t}(S) \backslash H_{\infty}\right| \leq(r+1+j)(q-1),
$$

provided that the binomial coefficient

$$
\binom{t \theta_{n-1}+r-m_{\infty}}{r+1+j} \neq 0 \quad(\bmod p)
$$

for some $j \geq 0$.

The proof of Result 3.2 and 3.3 can be easily copied for multisets/weight functions and we obtain the following lemma.

Lemma 3.4. Let w be a weight function on $\mathrm{PG}(n, q)$ and H_{∞} a given hyperplane with $w\left(H_{\infty}\right)=m_{\infty}$. Suppose that $w(\operatorname{PG}(n, q))=t \theta_{n-1}+r$, with $r \geq 0$. Then if

$$
\binom{t \theta_{n-1}+r-m_{\infty}}{r+1+j} \neq 0 \quad(\bmod p)
$$

for some $j \geq 0$, then the number of t-fold nuclei of w in $\mathrm{PG}(n, q) \backslash H_{\infty}$ is at most $(r+1+j)(q-1)$.

Proof. If the binomial coefficient is nonzero, then $w\left(\operatorname{PG}(n, q) \backslash H_{\infty}\right)>0$, so the number of t-fold nuclei in $\operatorname{PG}(n, q) \backslash H_{\infty}$ is at most $q^{n}-1$. Thus the statement is trivially true for $r+1 \geq \theta_{n-1}$, so from now on we will suppose $r<\theta_{n-1}-1$.

Identify the points of $\mathrm{AG}(n, q):=\mathrm{PG}(n, q) \backslash H_{\infty}$ with the elements of $\mathrm{GF}\left(q^{n}\right)$, and the points of H_{∞} with the θ_{n-1}-st roots of unity of $\operatorname{GF}\left(q^{n}\right)$ in the usual way. The points of $\operatorname{PG}(n, q)$ will be denoted by capital letters, and the corresponding elements of $\mathrm{GF}\left(q^{n}\right)$ by the same lowercase letters. Then for points $A \neq B \in \mathrm{AG}(n, q)$, the line $A B$ contains the ideal point $C \in H_{\infty}$ if and only if $(a-b)^{q-1}=c$ holds.
Let $\mathcal{S}=\left\{a_{1}, a_{2}, \ldots, a_{t \theta_{n-1}+r-m_{\infty}}\right\} \cup\left\{c_{1}, \ldots, c_{m_{\infty}}\right\}$ be the multiset of elements of $\mathrm{GF}\left(q^{n}\right)$ corresponding to the points of nonzero weight of $\mathrm{PG}(n, q) \backslash H_{\infty}$ and H_{∞} respectively, such that $a \in \mathcal{S}$ has multiplicity $w(A)$ in \mathcal{S} for the corresponding point $A \in \mathrm{PG}(n, q)$.

Let X and Y be variables, and define

$$
\mathcal{B}(X)=\left\{\left(X-a_{i}\right)^{q-1} \mid i=1, \ldots, t \theta_{n-1}+r-m_{\infty}\right\} \cup\left\{c_{1}, \ldots, c_{m_{\infty}}\right\}
$$

and

$$
F(Y, X)=\prod_{b \in \mathcal{B}(X)}(Y-b)
$$

Then

$$
F(Y, X)=\sum_{j=0}^{t \theta_{n-1}+r}(-1)^{j} \sigma_{j}(\mathcal{B}(X)) Y^{t \theta_{n-1}+r-j}
$$

where $\sigma_{j}(\mathcal{B}(X))$ denotes the j th elementary symmetric polynomial of the set $\mathcal{B}(X)$.
Suppose that $x \in \mathrm{GF}\left(q^{n}\right)$ is an element corresponding to a t-fold nucleus of w. Then $\mathcal{B}(x)$ contains every θ_{n-1}-st root of unity with multiplicity at least t, so

$$
F(Y, x)=\left(Y^{\theta_{n-1}}-1\right)^{t}\left(Y^{r}+\text { terms of lower degree }\right)
$$

As $r<\theta_{n-1}-1$, the coefficients of the terms

$$
Y^{t \theta_{n-1}-1}, Y^{t \theta_{n-1}-2}, \ldots, Y^{(t-1) \theta_{n-1}+r+1}
$$

are 0 in $F(Y, x)$. Thus $\sigma_{r+1+j}(\mathcal{B}(x))=0$ for $0 \leq j \leq \theta_{n-1}-r-2$.

The degree of $\sigma_{r+1+j}(\mathcal{B}(X))$ as a polynomial of X is at most $(r+1+j)(q-1)$, with equality precisely if the binomial coefficient

$$
\binom{t \theta_{n-1}+r-m_{\infty}}{r+1+j}
$$

does not vanish. In this case $\sigma_{r+1+j}(\mathcal{B}(X))$ is not the zero polynomial, and every nucleus is a root of it, hence the number of nuclei is at most its degree: $(r+1+j)(q-1)$.

We will now use Lemma 3.4 for $n=2, j=0$ and $m_{\infty}=t-1$.
Lemma 3.5. Suppose that v is a weight function of $\mathrm{PG}(2, q)$ such that there is a line l_{∞}, with $v\left(l_{\infty}\right)=t-1$, while all other lines have weight at least t. Then $|v| \geq(t+1) q-1$.

Proof. Assume first that $t \leq q-2$. Suppose on the contrary that v is such a weight function, yet the total weight of v is less than $(t+1) q-1$. We may suppose $|v|=(t+1) q-2$ (or else increase the weight of some of the points of $\left.\mathrm{PG}(2, q) \backslash l_{\infty}\right)$. All lines other than l_{∞} have weight at least t, which means that all the points of $\mathrm{PG}(2, q) \backslash l_{\infty}$ with weight 0 are t-fold nuclei of v. As $v\left(\mathrm{PG}(2, q) \backslash l_{\infty}\right)=(t+1) q-2-(t-1)=t q+q-t-1, \mathrm{PG}(2, q) \backslash l_{\infty}$ has at most $t q+q-t-1$ points with positive v weight (and exactly this many if every point of $\operatorname{PG}(2, q) \backslash l_{\infty}$ has weight $\left.\leq 1\right)$. So v has at least $q^{2}-(t q+q-t-1)=q^{2}-t q-q+t+1 t$-fold nuclei.
We will use Lemma 3.4 to prove that this is not possible. As

$$
|v|=(t+1) q-2=t(q+1)+q-t-2
$$

and

$$
\binom{t(q+1)+q-t-2-(t-1)}{q-t-2+1}=\binom{t q+q-t-1}{q-t-1} \neq 0 \quad(\bmod p)
$$

by Lucas' theorem, so Lemma 3.4 yields that the number of t-fold nuclei of v is at most $(q-t-1)(q-1)=q^{2}-t q-2 q+t+1$, a contradiction. The same arguments prove that, if $|v|=(t+1) q-1$, then $v(P) \leq 1$ for all points $P \in \mathrm{PG}(2, q) \backslash l_{\infty}$.
For $t \geq q-1$, the assertion can be proved by summing the weights of all lines through a carefully selected point P. If $P \in \mathrm{PG}(2, q) \backslash l_{\infty}$ and $v(P)=0$,
then $|v| \geq t(q+1)=t q+t \geq t q+q-1$. If $P \in l_{\infty}$ and $v(P)=0$, then $|v| \geq t q+t-1$ and so if $t \geq q$, then we are done. If $t=q-1$ and all points of $\mathrm{PG}(2, q) \backslash l_{\infty}$ have positive weight, then $v\left(\mathrm{PG}(2, q) \backslash l_{\infty}\right) \geq q^{2}$, so $|v| \geq q^{2}+t-1>(t+1) q-1$. With this we have proved that if we can select a point $P \in \operatorname{PG}(2, q)$ with $v(P)=0$, then the assertion is true.

Assume now that $v(P)>0$ for every point, let $m=\min _{P} v(P)$ and define a new weight function \tilde{v}, by $\tilde{v}(P):=v(P)-m$. Then $\tilde{v}\left(l_{\infty}\right)=t-m(q+1)-1$ and $\tilde{v}(l) \geq t-m(q+1)$ for any line $l \neq l_{\infty}$. If $t-m(q+1) \leq q-2$ then we can use the first part of the proof to prove $|\tilde{v}| \geq(t-m(q+1)+1) q-1$. If $t-m(q+1) \geq q-1$ then we can use the second part, as there will be a point with zero \tilde{v} weight. Then
$|v|=|\tilde{v}|+m\left(q^{2}+q+1\right) \geq(t-m(q+1)+1) q-1+m\left(q^{2}+q+1\right)=(t+1) q-1+m$.
Hence the result is established.

4 Proof of the main theorem

Theorem 1.3. A weighted t-fold $(n-k)$-blocking set of $\mathrm{PG}(n, q)$, with total weight smaller than

$$
(t+1) q^{n-k}+\theta_{n-k-1}
$$

contains a unique minimal weighted t-fold $(n-k)$-blocking set.

Proof. Assume that w is a weighted t-fold $(n-k)$-blocking set of $\operatorname{PG}(n, q)$ which contains two different minimal t-fold $(n-k)$-blocking sets. We will prove $|w| \geq(t+1) q^{n-k}+\theta_{n-k-1}$. By Lemma 2.2 there is a weight function $v \leq w$, a line l^{*} and a k-subspace Π_{k}^{*} containing l^{*}, such that
(a) $v\left(\Pi_{k}\right) \geq t$, for every k-subspace Π_{k} not containing l^{*};
(b) $v\left(\Pi_{k}\right) \geq t-1$ for every k-subspace Π_{k} containing l^{*};
(c) $v\left(\Pi_{k}^{*}\right)=t-1$;
(d) $|w| \geq|v|+2$.

Case 1

Assume first that $k=1$. Then $\Pi_{k}^{*}=l^{*}$ is a line, and $v\left(l^{*}\right)=t-1$, while the v weight of any other line is at least t. If $n=2$, then $|v| \geq(t+1) q-1$ by Lemma 3.5, which proves the theorem in this case. Now assume $n \geq 3$ and let Π be a plane containing the line l^{*}. Then the weight function v restricted to the plane Π fulfills the requirements of Lemma 3.5 , so $v(\Pi) \geq$ $(t+1) q-1$. This is true for all the planes containing the line l^{*}, so clearly $|v| \geq \theta_{n-2} \cdot((t+1) q-1-(t-1))+t-1=(t+1) q^{n-1}+\theta_{n-2}-2$.

Case 2

For $n \geq 3$ and $k \geq 2$ we will use induction on n to prove that

$$
|v| \geq(t+1) q^{n-k}+\theta_{n-k-1}-2 .
$$

Case 2a Let $V \in \Pi_{k}^{*} \backslash l^{*}$ be a point with $v(V)=0$. Consider the quotient space $\mathrm{PG}(n, q) / V \cong \mathrm{PG}(n-1, q)$, and the weight function \tilde{v} induced by v on $\operatorname{PG}(n-1, q)$. Clearly $\tilde{v}(\operatorname{PG}(n-1, q))=v(\operatorname{PG}(n, q))$. The plane $\left\langle V, l^{*}\right\rangle$ corresponds to a line, and a k-space containing V corresponds to a $(k-1)$ space. It is not hard to check that \tilde{v} fulfills requirements (a)-(c) with $\left\langle V, l^{*}\right\rangle / V$ as l^{*} and Π_{k}^{*} / V as Π_{k-1}^{*}, and so by induction

$$
\tilde{v}(\operatorname{PG}(n-1, q)) \geq(t+1) q^{n-k}+\theta_{n-k-1}-2 .
$$

Case 2b Suppose now that for all $P \in \Pi_{k}^{*} \backslash l^{*}: v(P)>0$, but there is a point $v(V)=0$. Then $t-1 \geq \theta_{k}-(q+1)$. Increase the weight of one point $(\neq V)$ of l^{*} by one to obtain the new weight function v^{\prime}, which is now a t-fold $(n-k)$-blocking set of $\mathrm{PG}(n, q)$. We will prove that $\left|v^{\prime}\right| \geq t q^{n-k}+\theta_{n-k}-1$. This is generally not true for t-fold $(n-k)$-blocking sets of $\operatorname{PG}(n, q)$, only if t is large enough.
Assume, on the contrary, that $\left|v^{\prime}\right| \leq t q^{n-k}+\theta_{n-k}-2$. Then we can find a line Σ_{1} containing V, such that

$$
v^{\prime}\left(\Sigma_{1}\right) \leq \frac{t-\left(q^{k-1}+q^{k-2}+\cdots+q\right)}{q^{k-1}}
$$

because if all lines through V had v^{\prime} weight more than

$$
\frac{t-\left(q^{k-1}+q^{k-2}+\cdots+q\right)}{q^{k-1}}
$$

then all these weights would be at least $\geq \frac{t-\left(q^{k-1}+q^{k-2}+\cdots+q\right)}{q^{k-1}}+\frac{1}{q^{k-1}}$, and then the total weight of v^{\prime} would be

$$
\begin{gathered}
\left|v^{\prime}\right| \geq\left(\frac{t-q^{k-1}-q^{k-2}-\cdots-q}{q^{k-1}}+\frac{1}{q^{k-1}}\right) \cdot \theta_{n-1} \\
=t q^{n-k}+\left(\frac{t}{q^{k-1}}-\frac{q^{k}+q^{k-1}+\cdots+q^{2}}{q^{k-1}}\right) \theta_{n-2}-\frac{q^{k-1}+q^{k-2}+\cdots+q}{q^{k-1}}+\frac{\theta_{n-1}}{q^{k-1}} \\
>t q^{n-k}+\frac{q^{n-1}+q^{n-2}+\cdots+q^{k}}{q^{k-1}}=t q^{n-k}+\theta_{n-k}-1 .
\end{gathered}
$$

We will now prove that if $1 \leq j \leq k-2$ and Σ_{j} is a j-space with

$$
v^{\prime}\left(\Sigma_{j}\right) \leq \frac{t-\left(q^{k-j}+q^{k-j-1}+\cdots+q\right)}{q^{k-j}}
$$

then we can find a $(j+1)$-space $\Sigma_{j+1} \supset \Sigma_{j}$, with

$$
v^{\prime}\left(\Sigma_{j+1}\right) \leq \frac{t-\left(q^{k-j-1}+\cdots+q\right)}{q^{k-j-1}}
$$

If this were not true, then we would have

$$
\begin{aligned}
& \left|v^{\prime}\right|>\left(\frac{t-\left(q^{k-j-1}+\cdots+q\right)}{q^{k-j-1}}-v^{\prime}\left(\Sigma_{j}\right)\right) \cdot \theta_{n-j-1}+v^{\prime}\left(\Sigma_{j}\right) \\
& \geq\left(\frac{t-\left(q^{k-j-1}+\cdots+q\right)}{q^{k-j-1}}-\frac{t-\left(q^{k-j}+q^{k-j-1}+\cdots+q\right)}{q^{k-j}}\right) \cdot \theta_{n-j-1} \\
& \quad+\frac{t-\left(q^{k-j}+q^{k-j-1}+\cdots+q\right)}{q^{k-j}}=t q^{n-k}+\theta_{n-k}+1 .
\end{aligned}
$$

Thus we can find a $(k-1)$-space Σ_{k-1}, with $v^{\prime}\left(\Sigma_{k-1}\right) \leq \frac{t-q}{q}$. But all k-spaces containing Σ_{k-1} have v^{\prime} weight at least t, so

$$
\left|v^{\prime}\right| \geq\left(t-\frac{t}{q}+1\right) \cdot \theta_{n-k}+\frac{t-q}{q}=t q^{n-k}+\theta_{n-k}-1
$$

a contradiction.
Case 2c There is one more case remaining to be proved: if $v(P)>0$ for all points $P \in \mathrm{PG}(n, q)$. Then let $m:=\min _{P} v(P)$ and let $\tilde{v}:=v-m$. Then
\tilde{v} fulfills requirements (a)-(c) with $\tilde{t}:=t-m \cdot \theta_{k}$. Cases 2 a and 2 b prove $|\tilde{v}| \geq \tilde{t} q^{n-k}+\theta_{n-k}-2$ and then

$$
\begin{aligned}
|v|=|\tilde{v}|+m \cdot \theta_{n} & \geq\left(t-m \cdot \theta_{k}\right) q^{n-k}+\theta_{n-k}-2+m \cdot \theta_{n} \\
& =t q^{n-k}+\theta_{n-k}-2+m \theta_{n-k-1} .
\end{aligned}
$$

5 Examples

In this section we investigate the sharpness of Theorem 1.3. We are looking for weighted t-fold $(n-k)$-blocking sets of size $(t+1) q^{n-k}+\theta_{n-k-1}$, which contain two different minimal t-fold $(n-k)$-blocking sets.

5.1 The case $t=1$

Example 1 Let Π^{1} and Π^{2} be two ($n-k$)-dimensional subspaces of $\operatorname{PG}(n, q)$ meeting in an $(n-k-1)$-dimensional subspace. Then $B:=\Pi^{1} \cup \Pi^{2}$ contains two different minimal 1-fold $(n-k)$-blocking sets (Π^{1} and Π^{2}), and $|B|=$ $2 q^{n-k}+\theta_{n-k-1}$.

Corollary 5.1. Theorem 1.3 is sharp, if $t=1$.
The following proposition is a corollary of Theorem 1.3, but in fact equivalent to it if $t=1$ and $k=1$. Corollary 5.3 can also be found in [13].

Proposition 5.2. Let B be a minimal 1-fold $(n-1)$-blocking set of $\operatorname{PG}(n, q)$, and $P \in B$. Then there are at least $\geq 2 q^{n-1}+\theta_{n-2}-|B|$ tangents thorugh P.

Proof. Suppose that there are k tangents through P. Take points P_{1}, P_{2}, \ldots, P_{k}, one from each of the tangents, $P_{i} \neq P$. Clearly $(B \backslash\{P\}) \cup\left\{P_{1}, \ldots, P_{k}\right\}$ is a 1 -fold $(n-1)$-blocking set. It contains a minimal 1 -fold $(n-1)$-blocking set B^{\prime}, and $B \neq B^{\prime}$. Thus $B \cup\left\{P_{1}, \ldots, P_{k}\right\}$ contains two different minimal 1-fold ($n-1$)-blocking sets, so $|B|+k \geq 2 q^{n-1}+\theta_{n-2}$.

Corollary 5.3. Let B be any 1-fold $(n-1)$-blocking set of $\operatorname{PG}(n, q)$, and $P \in B$ an essential point of B. Then there are at least $\geq 2 q^{n-1}+\theta_{n-2}-|B|$ tangents thorugh P.

Construction 1 Let B be a 1 -fold ($n-1$)-blocking set which has a point $P \in B$, through which there are exactly $2 q^{n-1}+\theta_{n-2}-|B|$ tangents to B. Then adding a point to every tangent will result in a 1 -fold $(n-1)$-blocking set of size $2 q^{n-1}+\theta_{n-2}$, which contains two different minimal 1-fold $(n-1)$ blocking sets.
Construction 2 Embed construction 1 in an $(n-k+1)$-dimensional subspace of $\operatorname{PG}(n, q)$ to obtain 1-fold $(n-k)$-blocking sets of size $2 q^{n-k}+\theta_{n-k-1}$, which contain two different minimal 1-fold $(n-k)$-blocking sets.

Note that blocking sets used in the above construction exist: the so called Rédei type blocking sets always contain points which are on exactly $2 q^{n-1}+$ $\theta_{n-2}-|B|$ tangents (see [10]).

5.2 The case $t \geq 2$

We will use the following notation: for the multisets B_{1} and B_{2}, with associated weight functions w_{1} and w_{2} respectively, $B_{1} \cup B_{2}$ will denote the multiset defined by the weight function $\max \left\{w_{1}, w_{2}\right\}$, while $B_{1}+B_{2}$ will denote the multiset defined by the weight function $w_{1}+w_{2}$.

Note that the proof of Lemma 3.5 yields that for $n=2, k=1$ it is not possible to have $v(\operatorname{PG}(2, q))=(t+1) q-1$, if $t \geq q+1$, and so the proof of Theorem 1.3 yields that the bound cannot be sharp if $t \geq q+1$. Also from the proofs of Lemma 3.5 and Theorem 1.3 it follows that if $t \leq q-2$ and B is a weighted t-fold $(n-k)$-blocking set which contains two different minimal t-fold $(n-k)$-blocking sets and $|B|=(t+1) q^{n-k}+\theta_{n-k-1}$, then only points on one line (the line l^{*}) can be multiple points.

Example 2 Let Π be a plane of $\operatorname{PG}(n, k)$, let $l_{1}, l_{2}, \ldots, l_{t}$ be different lines in Π through a common point P, and l_{t+1} a further line of Π, with $P \notin l_{t+1}$. Then the multiset $B:=\left(l_{1}+l_{2}+\cdots+l_{t}\right) \cup l_{t+1}$ is a t-fold 1-blocking set in $\operatorname{PG}(n, q),|B|=t(q+1)+(q+1-t)=(t+1) q+1$, and $l_{1}+l_{2}+\cdots+l_{t}$ and $l_{1} \cup\left(l_{2}+\cdots+l_{t}\right) \cup l_{t+1}$ are two minimal t-fold 1-blocking sets contained in B; the latter one differs from B only in the point P.

Corollary 5.4. Theorem 1.3 is sharp if $k=n-1,2 \leq t \leq q$.

The following proposition is again a corollary of Theorem 1.3 , which is in fact equivalent to it if $k=1$. For $n=2$ and with an upper bound on the size of B, it can also be found in [6].

Proposition 5.5. Let B be a minimal t-fold $(n-1)$-blocking set of $\mathrm{PG}(n, q)$, and $P \in B$. Then there are at least $\geq(t+1) q^{n-1}+\theta_{n-2}-|B| t$-secants through P.

Proof. Suppose that there are $k t$-secants through P. Take points P_{1}, P_{2}, \ldots, P_{k}, one from each of the t-secants, $P_{i} \neq P$. Clearly the t-fold ($n-1$)-blocking set $B \backslash\{P\}+\left\{P_{1}, \ldots, P_{k}\right\}$ contains a minimal t-fold $(n-1)$-blocking set B^{\prime}, and $B \neq B^{\prime}$. Thus $B+\left\{P_{1}, \ldots, P_{k}\right\}$ contains two different minimal t-fold ($n-1$)-blocking sets, so $|B|+k \geq(t+1) q^{n-1}+\theta_{n-2}$.

Construction 3 Let B be a minimal t-fold ($n-1$)-blocking set which has a point $P \in B$, through which there are exactly $(t+1) q^{n-1}+\theta_{n-2}-|B|$ t-secants to B. Then adding a point to every t-secant will result in a t-fold ($n-1$)-blocking set of size $(t+1) q^{n-1}+\theta_{n-2}$ and containing two different minimal t-fold $(n-1)$-blocking sets.
Construction 4 Embed Construction 3 in an $(n-k+1)$-dimensional subspace of $\operatorname{PG}(n, q)$ to obtain t-fold $(n-k)$-blocking sets of size $(t+1) q^{n-k}+$ θ_{n-k-1}, which contain two different minimal t-fold $(n-k)$-blocking sets.

For $n=2, k=1$ and $2 \leq t \leq q$ one can find t-fold 1-blocking sets in $\mathrm{PG}(2, q)$ which have points that are on exactly $(t+1) q+1-|B| t$-secants to B : take the sum of t Rédei type blocking sets which have a common Rédei line, and share exactly one point, that is not on the Rédei line. Example 2 is a special case of this: the sum of t lines sharing a common point. Then, with Construction 4, we get examples for $n \geq 3, k=n-1$ and $1 \leq t \leq q$. Unfortunately, for $t \geq 2, n \geq 3$ and $k=1$, in the minimal t-fold $(n-1)$-blocking sets examined by the author all points have at least $t \theta_{n-1}-(q+1-t) q^{n-2}-|B| t$-secants to B. Thus it may be conjectured that the correct bound in Theorem 1.3 should be

$$
t \theta_{n-k}+(q+1-t) q^{n-k-1}
$$

Acknowledgment

I am very grateful to Leo Storme for his valuable suggestions and help.

References

[1] Ball, S.: On nuclei and blocking sets in Desarguesian spaces. J. Combin. Theory Ser. A 85, 232-236 (1999)
[2] Blokhuis, A.: On nuclei and affine blocking sets. J. Combin. Theory Ser. A 67, 273-275 (1994)
[3] Blokhuis, A.: On multiple nuclei and a conjecture of Lunelli and Sce. Bull. Belg. Math. Soc. 3, 349-353 (1994)
[4] Blokhuis, A., Wilbrink, H.A.: A characterization of exterior lines of certain sets of points in $\mathrm{PG}(2, q)$. Geom. Dedicata 23, 253-254 (1987)
[5] Brouwer, A.E., Schrijver, A.: The blocking number of an affine space. J. Combin. Theory Ser. A 24, 251-253 (1978)
[6] Ferret, S., Storme, L., Sziklai, P., Weiner, Zs.: A t $(\bmod p)$ result on weighted multiple $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$. Innov. Incidence Geom. 6-7, 169-188 (2009)
[7] Gács, A., Sziklai, P., Szőnyi, T.: Two remarks on blocking sets and nuclei of planes of prime order. Des. Codes Cryptogr. 10, 29-39 (1997)
[8] Jamison, R.: Covering finite fields with cosets of subspaces. J. Combin. Theory Ser. A 22, 253-266 (1977)
[9] Lavrauw, M., Storme, L., Van de Voorde, G.: On the code generated by the incidence matrix of points and k-spaces in $\mathrm{PG}(n, q)$ and its dual. Finite Fields Appl. 14, 1020-1038 (2008)
[10] Storme, L., Sziklai, P.: Linear pointsets and Rédei type k-blocking sets in PG(n,q). J. Algebraic Comb. 14, 221-228 (2001)
[11] Sziklai, P.: Nuclei of pointsets in PG(n,q). Discrete Math. 174, 323-327 (1997)
[12] Szőnyi, T.: Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3, 187-202 (1997)
[13] Szőnyi, T., Gács, A., Weiner, Zs.: On the spectrum of minimal blocking sets in $\mathrm{PG}(2, q)$ J. Geom. 76, 256-281 (2003)

Nóra V. Harrach
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
13-15 Reáltanoda u., Budapest 1053, Hungary
e-mail: hanovi@cs.elte.hu

[^0]: *The author was supported by OTKA Grant K81310.

