Unique reducibility of multiple blocking sets

Nóra V. Harrach*

Abstract. A weighted t-fold (n - k)-blocking set B of PG(n,q) always contains a minimal weighted t-fold (n - k)-blocking set. We prove that, if $|B| < (t+1)q^{n-k} + \theta_{n-k-1}$, then the minimal weighted t-fold (n-k)-blocking set contained in B is unique.

Mathematics Subject Classification (2010). 51E21, 51E20.

Keywords. Projective space, multiple blocking sets.

1 Introduction

A *t*-fold (n-k)-blocking set of PG(n,q) is a set of points which meets every k-dimensional subspace in at least t points. To exclude the trivial cases we will always suppose that 0 < k < n. If the points of the set are not all different, so the set is a multiset of points, then it is called a weighted *t*-fold (n-k)-blocking set. A weight function of PG(n,q) is a mapping from the point set of PG(n,q) to the set of nonnegative integers. For a point P the integer w(P) is the weight of P. There is a natural correspondence between multisets and weight functions of PG(n,q): let the weight of a point be the multiplicity of that point in the set. For a weight function w, the weight of a set M of points is by definition the sum of the weights of all its points, denoted by w(M), and w(PG(n,q)) =: |w| can be called the total weight of w. The multiset associated to a weight function w is a *t*-fold (n-k)-blocking set if and only if the weight of every k-dimensional subspace is at least t. If this is the case, then we will call the weight function w a *t*-fold (n-k)-blocking set for short.

^{*}The author was supported by OTKA Grant K81310.

If w is a t-fold (n - k)-blocking set, then a point P is called a non-essential point of w, if the weight of every k-subspace containing P is at least t + 1 and $w(P) \ge 1$. Then the weight function w' defined by

$$w'(Q) = \begin{cases} w(Q) & \text{if } Q \neq P, \\ w(P) - 1 & \text{if } Q = P \end{cases}$$

is also a *t*-fold (n-k)-blocking set.

If w and w' are weight functions, and $w'(P) \leq w(P)$ for all points $P \in PG(n,q)$, then we will say that w' is *contained* in w, and denote this by $w' \leq w$.

The t-fold (n - k)-blocking set w is said to be minimal if $w' \equiv w$ for any t-fold (n - k)-blocking set w' contained in w.

A t-fold (n-k)-blocking set is not minimal if and only if it has non-essential points. If we start reducing the weight of the non-essential points one by one, always checking carefully that the resulting set/weight function is still a t-fold (n-k)-blocking set, then after some steps we will arrive at a minimal t-fold (n-k)-blocking set. It is a natural question to ask if there are conditions which guarantee the uniqueness of this minimal t-fold (n-k)-blocking set. Here, two weight fuctions w' and w'' are considered to be different if there is a point P, such that $w'(P) \neq w''(P)$.

In [12] such a condition is given for non-weighted 1-fold 1-blocking sets of PG(2,q).

Result 1.1. (Szőnyi, [12]) A non-weighted 1-fold 1-blocking set of PG(2, q), with size smaller than 2q+1 contains a unique minimal 1-fold 1-blocking set.

This result was recently generalized to non-weighted 1-fold (n-k)-blocking sets of PG(n,q) in [9].

Result 1.2. (Lavrauw, Storme and Van de Voorde, [9]) A non-weighted 1fold (n-k)-blocking set of PG(n,q), with size smaller than $2q^{n-k}$ contains a unique minimal 1-fold (n-k)-blocking set.

Using the standard notation $\theta_m = \frac{q^{m+1}-1}{q-1}$ for the number of points of an *m*-dimensional subspace of PG(n,q), our result is the following.

Theorem 1.3. A weighted t-fold (n - k)-blocking set of PG(n, q), with total weight smaller than

$$(t+1)q^{n-k} + \theta_{n-k-1}$$

contains a unique minimal weighted t-fold (n-k)-blocking set.

Note that Theorem 1.3 is stronger than Result 1.2. Examples in the last section show that the bound is sharp if t = 1, or if k = n - 1.

2 *t*-fold (n - k)-blocking sets containing two minimal *t*-fold (n - k)-blocking sets

Let w be a t-fold (n - k)-blocking set. We will now define a new weight function s_w on the points of PG(n,q). For a point P let $s_w(P)$ be the largest integer for which the weight function w' defined by

$$w'(Q) = \begin{cases} w(Q) & \text{if } Q \neq P, \\ w(P) - s_w(P) & \text{if } Q = P \end{cases}$$

is also a t-fold (n-k)-blocking set. Then $w(P) \ge s_w(P) \ge 0$, so if w(P) = 0, then $s_w(P) = 0$. It is also clear that w is minimal if and only if $s_w \equiv 0$.

Lemma 2.1. For a t-fold (n - k)-blocking set w and $P \in PG(n,q)$ the following are true:

- (a) $s_w(P) = \min\{w(P), \min_{P \in \Pi_k} (w(\Pi_k) t)\}$, where Π_k runs along the kdimensional subspaces containing P;
- (b) $s_w(P) = \max_{\substack{w' \leq w}} \{w(P) w'(P)\}$, where w' runs along the t-fold (n-k)-blocking sets contained in w.

Lemma 2.2. If w is a t-fold (n-k)-blocking set which contains two different minimal t-fold (n-k)-blocking sets, then there is a weight function $v \leq w$ and a line l^* with the following properties:

(a) $v(\Pi_k) \ge t$ for any k-subspace Π_k not containing l^* ;

- (b) $v(\Pi_k) \ge t 1$ for any k-subspace Π_k containing l^* ;
- (c) there is a k-subspace Π_k^* containing l^* , for which $v(\Pi_k^*) = t 1$;
- (d) $|w| \ge |v| + 2$.

Proof. Let w' and w'' be two different minimal t-fold (n - k)-blocking sets contained in w. Then there is a point $P^* \in PG(n,q)$, such that $w'(P^*) > w''(P^*)$. Define \tilde{w} as follows:

$$\tilde{w}(Q) = \begin{cases} w(Q) & \text{if } Q \neq P^*, \\ w'(P^*) & \text{if } Q = P^*. \end{cases}$$

Then \tilde{w} is a *t*-fold (n-k)-blocking set, $w', w'' \leq \tilde{w}$, and Lemma 2.1(b) yields that $s_{\tilde{w}}(P^*) \geq \tilde{w}(P^*) - w''(P^*) = w'(P^*) - w''(P^*) > 0$. (*)

As \tilde{w} contains the minimal t-fold (n-k)-blocking set w', we can start reducing the weight of the points with $\tilde{w}(P) > w'(P)$, one at a time, until we arrive at w'. Formally, let $\tilde{w} = w_1 \ge w_2 \ge \cdots \ge w_m = w'$ be a sequence of t-fold (n-k)-blocking sets, such that for $i \in \{1, 2, \ldots, m-1\}$ the t-fold (n-k)-blocking sets w_i and w_{i+1} only differ in one point P_i , and $w_{i+1}(P_i) =$ $w_i(P_i)-1$. Clearly $P_i \ne P^*$, and the points P_i are not necessarily all different. It is also clear that $\tilde{w} \ne w'$, because $\tilde{w} = w'$ would mean that w'' is contained in w', which is a contradiction, so $m \ge 2$ follows.

By Lemma 2.1(a), $s_{w_{i+1}} \leq s_{w_i}$, in fact, for any point Q, either $s_{w_{i+1}}(Q) = s_{w_i}(Q)$, or $s_{w_{i+1}}(Q) = s_{w_i}(Q) - 1$. For the point P^* we have $s_{\tilde{w}}(P^*) > 0$ by (*), and $s_{w'}(P^*) = 0$ by the minimality of w'. So there will be an $i \in \{1, 2, \ldots, m-1\}$ such that $s_{w_i}(P^*) = 1$ and $s_{w_{i+1}}(P^*) = 0$. The weight functions w_i and w_{i+1} only differ in the point P_i . Then by Lemma 2.1(a) there is a k-space Π_k^* which contains P_i and P^* , and has weight $w_i(\Pi_k^*) = t + 1$. Also by Lemma 2.1(a) this yields $s_{w_i}(P_i) \leq 1$, and as $w_{i+1}(P_i) = w_i(P_i) - 1$, so P_i is a nonessential point of w_i , then $s_{w_i}(P_i) = 1$ follows. Thus for any k-dimensional subspace Π_k , which contains P^* and/or P_i we have $w_i(\Pi_k) \geq t + 1$.

Let l^* be the line connecting P_i and P^* , and define v to be the following weight function:

$$v(Q) = \begin{cases} w_i(Q) & \text{if } Q \notin \{P^*, P_i\}, \\ w_i(Q) - 1 & \text{if } Q \in \{P^*, P_i\}. \end{cases}$$

Clearly $|w| \ge |w_i| = |v| + 2$, and v is a weight function contained in w. The weight of a k-subspace Π_k is $w_{i-1}(\Pi_k) - |\Pi_k \cap \{P^*, P_i\}|$. Thus, v, l^* and Π_k^* satisfy the properties given in the lemma.

3 *t*-fold nuclei

If t = 1, n = 2, k = 1, then Lemma 2.2 yields that if w is a 1-fold 1-blocking set of PG(2,q) containing two different minimal 1-fold 1-blocking sets, then w contains a weight function v, which defines a blocking set of the affine plane $AG(2,q) := PG(2,q) \setminus l^*$. Thus $|w(PG(2,q))| \ge s(q) + 2$, where s(q)denotes the size of the smallest 1-blocking set of AG(2,q). There are several independent proofs for s(q) = 2q - 1, from which Result 1.1 follows (see Jamison [8], Brouwer and Schrijver [5], Blokhuis [2], Szőnyi [12]).

In [2], s(q) = 2q - 1 is proved as a corollary of a theorem on *nuclei* of point sets. Now we generalize the notion of *nucleus* to multisets/weight functions.

- **Definition 3.1.** (1) Let S be a multiset of PG(n,q). A point $P \notin S$ will be called a *t*-fold nucleus of S if every line through P meets S in at least t points, counted with multiplicities.
 - (2) Let w be a weight function of PG(n,q). A point $P \in PG(n,q)$ with w(P) = 0 will be called a *t*-fold nucleus of w if every line through P has weight at least t.

For S to have nuclei, clearly $|S| \ge t\theta_{n-1}$ is needed. Let $|S| = t\theta_{n-1} + r$, $r \ge 0$. Note that for $|S| = t\theta_{n-1} - r$, $r \ge 0$, a 'symmetric' version of the definition can be: a point $P \notin S$ is a t-fold nucleus of S, if every line through P meets

S in at most t points, counted with multiplicities.

The notion of *nucleus* was first introduced by Mazzocca for affine sets for n = 2, t = 1 and r = 0. Blokhuis extended the notion to $r \ge 0$ in [2] and to $t \ge 1$ in [3], and Sziklai generalized the definition for sets of the projective space PG(n, q) in [11]. (The 'symmetric' version was introduced in [7] and [11].)

Denote by $N^t(S)$ the set of t-fold nuclei of S, and let p be the characteristic of the field GF(q).

Result 3.2. (Sziklai, [11]) Let S be a set of points in PG(n,q) with $|S| = t\theta_{n-1} + r$, $r \ge 0$. Let H_{∞} be a given hyperplane, $|S \cap H_{\infty}| = m_{\infty}$. Then

$$|N^t(S) \setminus H_{\infty}| \le (r+1)(q-1),$$

provided that $\binom{t\theta_{n-1}+r-m_{\infty}}{r+1} \neq 0 \pmod{p}$.

Result 3.2 was proved in the case when $m_{\infty} = 0$, n = 2 by Blokhuis and Wilbrink (r = 0, t = 1, see [4]) and by Blokhuis (for $r \ge 0, t = 1$, see [2], and for $r \ge 0, t \ge 1$ see [3]). The 'symmetric' version was also settled by Sziklai in [11].

As Result 3.2 is not applicable when $\binom{t\theta_{n-1}+r-m_{\infty}}{r+1} = 0 \pmod{p}$, to obtain an upper bound in this case, Ball presented the following theorem.

Result 3.3. (Ball, [1]) Let S be a set of points in PG(n,q) with $|S| = t\theta_{n-1} + r$, $r \ge 0$, and let H_{∞} be a given hyperplane, $|S \cap H_{\infty}| = m_{\infty}$. Then

$$|N^t(S) \setminus H_{\infty}| \le (r+1+j)(q-1),$$

provided that the binomial coefficient

$$\binom{t\theta_{n-1}+r-m_{\infty}}{r+1+j} \neq 0 \pmod{p}$$

for some $j \geq 0$.

The proof of Result 3.2 and 3.3 can be easily copied for multisets/weight functions and we obtain the following lemma.

Lemma 3.4. Let w be a weight function on PG(n,q) and H_{∞} a given hyperplane with $w(H_{\infty}) = m_{\infty}$. Suppose that $w(PG(n,q)) = t\theta_{n-1} + r$, with $r \ge 0$. Then if

$$\binom{t\theta_{n-1}+r-m_{\infty}}{r+1+j} \neq 0 \pmod{p}$$

for some $j \ge 0$, then the number of t-fold nuclei of w in $PG(n,q) \setminus H_{\infty}$ is at most (r+1+j)(q-1).

Proof. If the binomial coefficient is nonzero, then $w(\operatorname{PG}(n,q) \setminus H_{\infty}) > 0$, so the number of *t*-fold nuclei in $\operatorname{PG}(n,q) \setminus H_{\infty}$ is at most $q^n - 1$. Thus the statement is trivially true for $r + 1 \ge \theta_{n-1}$, so from now on we will suppose $r < \theta_{n-1} - 1$.

Identify the points of $AG(n,q) := PG(n,q) \setminus H_{\infty}$ with the elements of $GF(q^n)$, and the points of H_{∞} with the θ_{n-1} -st roots of unity of $GF(q^n)$ in the usual way. The points of PG(n,q) will be denoted by capital letters, and the corresponding elements of $GF(q^n)$ by the same lowercase letters. Then for points $A \neq B \in AG(n,q)$, the line AB contains the ideal point $C \in H_{\infty}$ if and only if $(a-b)^{q-1} = c$ holds.

Let $S = \{a_1, a_2, \ldots, a_{t\theta_{n-1}+r-m_{\infty}}\} \cup \{c_1, \ldots, c_{m_{\infty}}\}$ be the multiset of elements of $GF(q^n)$ corresponding to the points of nonzero weight of $PG(n,q) \setminus H_{\infty}$ and H_{∞} respectively, such that $a \in S$ has multiplicity w(A) in S for the corresponding point $A \in PG(n,q)$.

Let X and Y be variables, and define

$$\mathcal{B}(X) = \{ (X - a_i)^{q-1} | i = 1, \dots, t\theta_{n-1} + r - m_{\infty} \} \cup \{ c_1, \dots, c_{m_{\infty}} \},\$$

and

$$F(Y,X) = \prod_{b \in \mathcal{B}(X)} (Y-b)$$

Then

$$F(Y,X) = \sum_{j=0}^{t\theta_{n-1}+r} (-1)^j \sigma_j(\mathcal{B}(X)) Y^{t\theta_{n-1}+r-j},$$

where $\sigma_j(\mathcal{B}(X))$ denotes the *j*th elementary symmetric polynomial of the set $\mathcal{B}(X)$.

Suppose that $x \in GF(q^n)$ is an element corresponding to a *t*-fold nucleus of w. Then $\mathcal{B}(x)$ contains every θ_{n-1} -st root of unity with multiplicity at least t, so

$$F(Y,x) = (Y^{\theta_{n-1}} - 1)^t (Y^r + \text{terms of lower degree}).$$

As $r < \theta_{n-1} - 1$, the coefficients of the terms

$$Y^{t\theta_{n-1}-1}, Y^{t\theta_{n-1}-2}, \dots, Y^{(t-1)\theta_{n-1}+r+1}$$

are 0 in F(Y, x). Thus $\sigma_{r+1+j}(\mathcal{B}(x)) = 0$ for $0 \le j \le \theta_{n-1} - r - 2$.

The degree of $\sigma_{r+1+j}(\mathcal{B}(X))$ as a polynomial of X is at most (r+1+j)(q-1), with equality precisely if the binomial coefficient

$$\binom{t\theta_{n-1}+r-m_{\infty}}{r+1+j}$$

does not vanish. In this case $\sigma_{r+1+j}(\mathcal{B}(X))$ is not the zero polynomial, and every nucleus is a root of it, hence the number of nuclei is at most its degree: (r+1+j)(q-1).

We will now use Lemma 3.4 for n = 2, j = 0 and $m_{\infty} = t - 1$.

Lemma 3.5. Suppose that v is a weight function of PG(2,q) such that there is a line l_{∞} , with $v(l_{\infty}) = t - 1$, while all other lines have weight at least t. Then $|v| \ge (t+1)q - 1$.

Proof. Assume first that $t \leq q-2$. Suppose on the contrary that v is such a weight function, yet the total weight of v is less than (t+1)q-1. We may suppose |v| = (t+1)q-2 (or else increase the weight of some of the points of $PG(2,q) \setminus l_{\infty}$). All lines other than l_{∞} have weight at least t, which means that all the points of $PG(2,q) \setminus l_{\infty}$ with weight 0 are t-fold nuclei of v. As $v(PG(2,q) \setminus l_{\infty}) = (t+1)q-2 - (t-1) = tq + q - t - 1$, $PG(2,q) \setminus l_{\infty}$ has at most tq + q - t - 1 points with positive v weight (and exactly this many if every point of $PG(2,q) \setminus l_{\infty}$ has weight ≤ 1). So v has at least $q^2 - (tq + q - t - 1) = q^2 - tq - q + t + 1$ t-fold nuclei.

We will use Lemma 3.4 to prove that this is not possible. As

$$|v| = (t+1)q - 2 = t(q+1) + q - t - 2$$

and

$$\binom{t(q+1)+q-t-2-(t-1)}{q-t-2+1} = \binom{tq+q-t-1}{q-t-1} \neq 0 \pmod{p}$$

by Lucas' theorem, so Lemma 3.4 yields that the number of t-fold nuclei of v is at most $(q - t - 1)(q - 1) = q^2 - tq - 2q + t + 1$, a contradiction. The same arguments prove that, if |v| = (t + 1)q - 1, then $v(P) \leq 1$ for all points $P \in PG(2, q) \setminus l_{\infty}$.

For $t \ge q-1$, the assertion can be proved by summing the weights of all lines through a carefully selected point P. If $P \in PG(2,q) \setminus l_{\infty}$ and v(P) = 0, then $|v| \ge t(q+1) = tq+t \ge tq+q-1$. If $P \in l_{\infty}$ and v(P) = 0, then $|v| \ge tq+t-1$ and so if $t \ge q$, then we are done. If t = q-1 and all points of $PG(2,q) \setminus l_{\infty}$ have positive weight, then $v(PG(2,q) \setminus l_{\infty}) \ge q^2$, so $|v| \ge q^2 + t - 1 > (t+1)q - 1$. With this we have proved that if we can select a point $P \in PG(2,q)$ with v(P) = 0, then the assertion is true.

Assume now that v(P) > 0 for every point, let $m = \min_P v(P)$ and define a new weight function \tilde{v} , by $\tilde{v}(P) := v(P) - m$. Then $\tilde{v}(l_{\infty}) = t - m(q+1) - 1$ and $\tilde{v}(l) \ge t - m(q+1)$ for any line $l \ne l_{\infty}$. If $t - m(q+1) \le q - 2$ then we can use the first part of the proof to prove $|\tilde{v}| \ge (t - m(q+1) + 1)q - 1$. If $t - m(q+1) \ge q - 1$ then we can use the second part, as there will be a point with zero \tilde{v} weight. Then

$$|v| = |\tilde{v}| + m(q^2 + q + 1) \ge (t - m(q + 1) + 1)q - 1 + m(q^2 + q + 1) = (t + 1)q - 1 + m.$$

Hence the result is established.

Theorem 1.3. A weighted t-fold (n - k)-blocking set of PG(n, q), with total weight smaller than

$$(t+1)q^{n-k} + \theta_{n-k-1}$$

contains a unique minimal weighted t-fold (n-k)-blocking set.

Proof. Assume that w is a weighted t-fold (n - k)-blocking set of PG(n, q) which contains two different minimal t-fold (n - k)-blocking sets. We will prove $|w| \ge (t+1)q^{n-k} + \theta_{n-k-1}$. By Lemma 2.2 there is a weight function $v \le w$, a line l^* and a k-subspace Π_k^* containing l^* , such that

- (a) $v(\Pi_k) \ge t$, for every k-subspace Π_k not containing l^* ;
- (b) $v(\Pi_k) \ge t 1$ for every k-subspace Π_k containing l^* ;
- (c) $v(\Pi_k^*) = t 1;$
- (d) $|w| \ge |v| + 2$.

Case 1

Assume first that k = 1. Then $\Pi_k^* = l^*$ is a line, and $v(l^*) = t - 1$, while the v weight of any other line is at least t. If n = 2, then $|v| \ge (t+1)q - 1$ by Lemma 3.5, which proves the theorem in this case. Now assume $n \ge 3$ and let Π be a plane containing the line l^* . Then the weight function vrestricted to the plane Π fulfills the requirements of Lemma 3.5, so $v(\Pi) \ge$ (t+1)q - 1. This is true for all the planes containing the line l^* , so clearly $|v| \ge \theta_{n-2} \cdot ((t+1)q - 1 - (t-1)) + t - 1 = (t+1)q^{n-1} + \theta_{n-2} - 2$.

Case 2

For $n \geq 3$ and $k \geq 2$ we will use induction on n to prove that

$$|v| \ge (t+1)q^{n-k} + \theta_{n-k-1} - 2.$$

Case 2a Let $V \in \Pi_k^* \setminus l^*$ be a point with v(V) = 0. Consider the quotient space $\operatorname{PG}(n,q)/V \cong \operatorname{PG}(n-1,q)$, and the weight function \tilde{v} induced by von $\operatorname{PG}(n-1,q)$. Clearly $\tilde{v}(\operatorname{PG}(n-1,q)) = v(\operatorname{PG}(n,q))$. The plane $\langle V, l^* \rangle$ corresponds to a line, and a k-space containing V corresponds to a (k-1)space. It is not hard to check that \tilde{v} fulfills requirements (a)-(c) with $\langle V, l^* \rangle/V$ as l^* and Π_k^*/V as Π_{k-1}^* , and so by induction

$$\tilde{v}(\mathrm{PG}(n-1,q)) \ge (t+1)q^{n-k} + \theta_{n-k-1} - 2.$$

Case 2b Suppose now that for all $P \in \Pi_k^* \setminus l^*$: v(P) > 0, but there is a point v(V) = 0. Then $t - 1 \ge \theta_k - (q + 1)$. Increase the weight of one point $(\ne V)$ of l^* by one to obtain the new weight function v', which is now a *t*-fold (n - k)-blocking set of PG(n, q). We will prove that $|v'| \ge tq^{n-k} + \theta_{n-k} - 1$. This is generally not true for *t*-fold (n - k)-blocking sets of PG(n, q), only if *t* is large enough.

Assume, on the contrary, that $|v'| \leq tq^{n-k} + \theta_{n-k} - 2$. Then we can find a line Σ_1 containing V, such that

$$v'(\Sigma_1) \le \frac{t - (q^{k-1} + q^{k-2} + \dots + q)}{q^{k-1}},$$

because if all lines through V had v' weight more than

$$\frac{t - (q^{k-1} + q^{k-2} + \dots + q)}{q^{k-1}},$$

then all these weights would be at least $\geq \frac{t - (q^{k-1} + q^{k-2} + \dots + q)}{q^{k-1}} + \frac{1}{q^{k-1}}$, and then the total weight of v' would be

$$\begin{aligned} |v'| &\geq \left(\frac{t - q^{k-1} - q^{k-2} - \dots - q}{q^{k-1}} + \frac{1}{q^{k-1}}\right) \cdot \theta_{n-1} \\ &= tq^{n-k} + \left(\frac{t}{q^{k-1}} - \frac{q^k + q^{k-1} + \dots + q^2}{q^{k-1}}\right) \theta_{n-2} - \frac{q^{k-1} + q^{k-2} + \dots + q}{q^{k-1}} + \frac{\theta_{n-1}}{q^{k-1}} \\ &> tq^{n-k} + \frac{q^{n-1} + q^{n-2} + \dots + q^k}{q^{k-1}} = tq^{n-k} + \theta_{n-k} - 1. \end{aligned}$$

We will now prove that if $1 \leq j \leq k-2$ and Σ_j is a *j*-space with

$$v'(\Sigma_j) \le \frac{t - (q^{k-j} + q^{k-j-1} + \dots + q)}{q^{k-j}},$$

then we can find a (j + 1)-space $\Sigma_{j+1} \supset \Sigma_j$, with

$$v'(\Sigma_{j+1}) \le \frac{t - (q^{k-j-1} + \dots + q)}{q^{k-j-1}}.$$

If this were not true, then we would have

$$\begin{aligned} |v'| &> \left(\frac{t - (q^{k-j-1} + \dots + q)}{q^{k-j-1}} - v'(\Sigma_j)\right) \cdot \theta_{n-j-1} + v'(\Sigma_j) \\ &\ge \left(\frac{t - (q^{k-j-1} + \dots + q)}{q^{k-j-1}} - \frac{t - (q^{k-j} + q^{k-j-1} + \dots + q)}{q^{k-j}}\right) \cdot \theta_{n-j-1} \\ &+ \frac{t - (q^{k-j} + q^{k-j-1} + \dots + q)}{q^{k-j}} = tq^{n-k} + \theta_{n-k} + 1. \end{aligned}$$

Thus we can find a (k-1)-space Σ_{k-1} , with $v'(\Sigma_{k-1}) \leq \frac{t-q}{q}$. But all k-spaces containing Σ_{k-1} have v' weight at least t, so

$$|v'| \ge (t - \frac{t}{q} + 1) \cdot \theta_{n-k} + \frac{t-q}{q} = tq^{n-k} + \theta_{n-k} - 1,$$

a contradiction.

Case 2c There is one more case remaining to be proved: if v(P) > 0 for all points $P \in PG(n,q)$. Then let $m := \min_P v(P)$ and let $\tilde{v} := v - m$. Then

 \tilde{v} fulfills requirements (a)-(c) with $\tilde{t} := t - m \cdot \theta_k$. Cases 2a and 2b prove $|\tilde{v}| \geq \tilde{t}q^{n-k} + \theta_{n-k} - 2$ and then

$$|v| = |\tilde{v}| + m \cdot \theta_n \ge (t - m \cdot \theta_k)q^{n-k} + \theta_{n-k} - 2 + m \cdot \theta_n$$
$$= tq^{n-k} + \theta_{n-k} - 2 + m\theta_{n-k-1}.$$

5 Examples

In this section we investigate the sharpness of Theorem 1.3. We are looking for weighted t-fold (n - k)-blocking sets of size $(t + 1)q^{n-k} + \theta_{n-k-1}$, which contain two different minimal t-fold (n - k)-blocking sets.

5.1 The case t = 1

Example 1 Let Π^1 and Π^2 be two (n-k)-dimensional subspaces of PG(n,q) meeting in an (n-k-1)-dimensional subspace. Then $B := \Pi^1 \cup \Pi^2$ contains two different minimal 1-fold (n-k)-blocking sets $(\Pi^1 \text{ and } \Pi^2)$, and $|B| = 2q^{n-k} + \theta_{n-k-1}$.

Corollary 5.1. Theorem 1.3 is sharp, if t = 1.

The following proposition is a corollary of Theorem 1.3, but in fact equivalent to it if t = 1 and k = 1. Corollary 5.3 can also be found in [13].

Proposition 5.2. Let B be a minimal 1-fold (n-1)-blocking set of PG(n,q), and $P \in B$. Then there are at least $\geq 2q^{n-1} + \theta_{n-2} - |B|$ tangents thorugh P.

Proof. Suppose that there are k tangents through P. Take points P_1, P_2, \ldots, P_k , one from each of the tangents, $P_i \neq P$. Clearly $(B \setminus \{P\}) \cup \{P_1, \ldots, P_k\}$ is a 1-fold (n-1)-blocking set. It contains a minimal 1-fold (n-1)-blocking set B', and $B \neq B'$. Thus $B \cup \{P_1, \ldots, P_k\}$ contains two different minimal 1-fold (n-1)-blocking sets, so $|B| + k \geq 2q^{n-1} + \theta_{n-2}$.

Corollary 5.3. Let B be any 1-fold (n-1)-blocking set of PG(n,q), and $P \in B$ an essential point of B. Then there are at least $\geq 2q^{n-1} + \theta_{n-2} - |B|$ tangents thorough P.

Construction 1 Let *B* be a 1-fold (n-1)-blocking set which has a point $P \in B$, through which there are exactly $2q^{n-1} + \theta_{n-2} - |B|$ tangents to *B*. Then adding a point to every tangent will result in a 1-fold (n-1)-blocking set of size $2q^{n-1} + \theta_{n-2}$, which contains two different minimal 1-fold (n-1)-blocking sets.

Construction 2 Embed construction 1 in an (n-k+1)-dimensional subspace of PG(n,q) to obtain 1-fold (n-k)-blocking sets of size $2q^{n-k} + \theta_{n-k-1}$, which contain two different minimal 1-fold (n-k)-blocking sets.

Note that blocking sets used in the above construction exist: the so called Rédei type blocking sets always contain points which are on exactly $2q^{n-1} + \theta_{n-2} - |B|$ tangents (see [10]).

5.2 The case $t \ge 2$

We will use the following notation: for the multisets B_1 and B_2 , with associated weight functions w_1 and w_2 respectively, $B_1 \cup B_2$ will denote the multiset defined by the weight function $\max\{w_1, w_2\}$, while $B_1 + B_2$ will denote the multiset defined by the weight function $w_1 + w_2$.

Note that the proof of Lemma 3.5 yields that for n = 2, k = 1 it is not possible to have $v(\operatorname{PG}(2,q)) = (t+1)q - 1$, if $t \ge q+1$, and so the proof of Theorem 1.3 yields that the bound cannot be sharp if $t \ge q+1$. Also from the proofs of Lemma 3.5 and Theorem 1.3 it follows that if $t \le q-2$ and Bis a weighted t-fold (n-k)-blocking set which contains two different minimal t-fold (n-k)-blocking sets and $|B| = (t+1)q^{n-k} + \theta_{n-k-1}$, then only points on one line (the line l^*) can be multiple points.

Example 2 Let Π be a plane of PG(n, k), let l_1, l_2, \ldots, l_t be different lines in Π through a common point P, and l_{t+1} a further line of Π , with $P \notin l_{t+1}$. Then the multiset $B := (l_1 + l_2 + \cdots + l_t) \cup l_{t+1}$ is a *t*-fold 1-blocking set in PG(n,q), |B| = t(q+1) + (q+1-t) = (t+1)q + 1, and $l_1 + l_2 + \cdots + l_t$ and $l_1 \cup (l_2 + \cdots + l_t) \cup l_{t+1}$ are two minimal *t*-fold 1-blocking sets contained in B; the latter one differs from B only in the point P. \Box **Corollary 5.4.** Theorem 1.3 is sharp if k = n - 1, $2 \le t \le q$.

The following proposition is again a corollary of Theorem 1.3, which is in fact equivalent to it if k = 1. For n = 2 and with an upper bound on the size of B, it can also be found in [6].

Proposition 5.5. Let B be a minimal t-fold (n-1)-blocking set of PG(n,q), and $P \in B$. Then there are at least $\geq (t+1)q^{n-1}+\theta_{n-2}-|B|$ t-secants through P.

Proof. Suppose that there are k t-secants through P. Take points P_1, P_2, \ldots , P_k , one from each of the t-secants, $P_i \neq P$. Clearly the t-fold (n-1)-blocking set $B \setminus \{P\} + \{P_1, \ldots, P_k\}$ contains a minimal t-fold (n-1)-blocking set B', and $B \neq B'$. Thus $B + \{P_1, \ldots, P_k\}$ contains two different minimal t-fold (n-1)-blocking sets, so $|B| + k \geq (t+1)q^{n-1} + \theta_{n-2}$.

Construction 3 Let *B* be a minimal *t*-fold (n-1)-blocking set which has a point $P \in B$, through which there are exactly $(t+1)q^{n-1} + \theta_{n-2} - |B|$ *t*-secants to *B*. Then adding a point to every *t*-secant will result in a *t*-fold (n-1)-blocking set of size $(t+1)q^{n-1} + \theta_{n-2}$ and containing two different minimal *t*-fold (n-1)-blocking sets. \Box

Construction 4 Embed Construction 3 in an (n - k + 1)-dimensional subspace of PG(n,q) to obtain *t*-fold (n - k)-blocking sets of size $(t + 1)q^{n-k} + \theta_{n-k-1}$, which contain two different minimal *t*-fold (n - k)-blocking sets. \Box

For n = 2, k = 1 and $2 \le t \le q$ one can find t-fold 1-blocking sets in PG(2, q) which have points that are on exactly (t+1)q+1-|B| t-secants to B: take the sum of t Rédei type blocking sets which have a common Rédei line, and share exactly one point, that is not on the Rédei line. Example 2 is a special case of this: the sum of t lines sharing a common point. Then, with Construction 4, we get examples for $n \ge 3$, k = n - 1 and $1 \le t \le q$. Unfortunately, for $t \ge 2$, $n \ge 3$ and k = 1, in the minimal t-fold (n-1)-blocking sets examined by the author all points have at least $t\theta_{n-1} - (q+1-t)q^{n-2} - |B|$ t-secants to B. Thus it may be conjectured that the correct bound in Theorem 1.3 should be

$$t\theta_{n-k} + (q+1-t)q^{n-k-1}.$$

Acknowledgment

I am very grateful to Leo Storme for his valuable suggestions and help.

References

- Ball, S.: On nuclei and blocking sets in Desarguesian spaces. J. Combin. Theory Ser. A 85, 232-236 (1999)
- Blokhuis, A.: On nuclei and affine blocking sets. J. Combin. Theory Ser. A 67, 273-275 (1994)
- Blokhuis, A.: On multiple nuclei and a conjecture of Lunelli and Sce.
 Bull. Belg. Math. Soc. 3, 349-353 (1994)
- [4] Blokhuis, A., Wilbrink, H.A.: A characterization of exterior lines of certain sets of points in PG(2, q). Geom. Dedicata 23, 253-254 (1987)
- Brouwer, A.E., Schrijver, A.: The blocking number of an affine space. J. Combin. Theory Ser. A 24, 251-253 (1978)
- [6] Ferret, S., Storme, L., Sziklai, P., Weiner, Zs.: A t (mod p) result on weighted multiple (n k)-blocking sets in PG(n, q). Innov. Incidence Geom. **6-7**, 169-188 (2009)
- [7] Gács, A., Sziklai, P., Szőnyi, T.: Two remarks on blocking sets and nuclei of planes of prime order. Des. Codes Cryptogr. 10, 29-39 (1997)
- [8] Jamison, R.: Covering finite fields with cosets of subspaces. J. Combin. Theory Ser. A 22, 253-266 (1977)
- [9] Lavrauw, M., Storme, L., Van de Voorde, G.: On the code generated by the incidence matrix of points and k-spaces in PG(n,q) and its dual. Finite Fields Appl. **14**, 1020-1038 (2008)
- [10] Storme, L., Sziklai, P.: Linear pointsets and Rédei type k-blocking sets in PG(n,q). J. Algebraic Comb. 14, 221-228 (2001)
- [11] Sziklai, P.: Nuclei of pointsets in PG(n, q). Discrete Math. 174, 323-327 (1997)

- [12] Szőnyi, T.: Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3, 187-202 (1997)
- [13] Szőnyi, T., Gács, A., Weiner, Zs.: On the spectrum of minimal blocking sets in PG(2,q) J. Geom. 76, 256-281 (2003)

Nóra V. Harrach Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences 13-15 Reáltanoda u., Budapest 1053, Hungary e-mail: hanovi@cs.elte.hu