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ABSTRACT

The use of robust feature descriptors is now key for many 3D tasks
such as 3D object recognition and surface alignment. Many de-
scriptors have been proposed in literature which are based on a
non-unique local Reference Frame and hence require the compu-
tation of multiple descriptions at each feature points. In this paper
we show how to deploy a unique local Reference Frame to improve
the accuracy and reduce the memory footprint of the well-known
3D Shape Context descriptor. We validate our proposal by means
of an experimental analysis carried out on a large dataset of 3D
scenes and addressing an object recognition scenario.

Categories and Subject Descriptors

1.4.8 [Image processing and computer vision]: Scene Analysis

General Terms
Theory
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INTRODUCTION

Analysis of 3D data is a hot research topic in computer vision
due to, one side, the continuous progresses in the field of 3D sens-
ing technologies (laser scanner, stereo vision, Time-of-Flight cam-
eras) and, on the other side, the demand for novel 3D applications
calling for increasingly more reliable processing techniques. In this
framework, one of the mostly investigated problems during the last
decade has been 3D object recognition, that aims at detecting the
presence of specific models in 3D data by means of surface anal-
ysis. One of the main challenges of 3D object recognition deals
with the ability to recognize objects immersed in complex real-
world environments, that is, in presence of a cluttered background
and -possibly- with the object sought for only partially visible (i.e.
occluded). Due to these nuisances, early approaches for 3D ob-
ject recognition relying on global descriptions of the models (e.g.
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[15,20]) did not prove effective enough in complex real-world set-
tings. Indeed, a more successful and investigated approach makes
use of local description of the 3D shapes through sets of distinc-
tive features, that is performed by means of 3D feature detectors
and descriptors [4,5,7,9-11,13,14,16,17,22]. With this approach,
first salient and repeatable 3D features are extracted from both the
model and the scene by means of a feature detector. Next, each
feature is associated with a local description of its spatial neigh-
borhood, which is usually invariant to rotation and scale. Finally,
scene features are put in correspondence with the model features
by matching their local descriptions.

The research activity concerning the field of 3D feature descrip-
tors has been particularly active in the past few years. One of
the most prominent proposals is 3D Shape Context (3DSC) [7],
which has shown state-of-the-art performance due to its descrip-
tiveness and robustness to noise (e.g. outperforming the popular
Spin Images technique [9]). One characteristic of 3DSC is that it
requires the computation of multiple descriptions of each model
feature point due to the lacking of the definition of a local Refer-
ence Frame (RF) to be associated with each feature point. Analo-
gously to 3DSC, other state-of-the-art methods resort to the use of
multiple descriptions to deal with the lacking of a full local 3D RF:
this is the case of, e.g., [22] and [5]. More specifically, in [22] 4
different local RFs have to be taken into account for each feature
point to deal with the intrinsic ambiguity on the sign of the local
RF unit vectors. In other words, these 4 RFs are built up by unit
vectors sharing the same directions but having opposite signs. As
for [5], the local RF relies on a Repeatable Axis (the normal of the
feature point), then a full local RF is defined by adding the direc-
tion and sign of the global maximum of the signed height of the
3D curve obtained by intersecting a sphere centered in the point
with the surface. Since typically there are multiple maxima with
the same height, each feature point is associated with multiple de-
scriptions even in this proposal.

In this paper we show how 3D Shape Context can benefit of the
definition of an unique local 3D RF. In particular, the use of a lo-
cal RF allows the method to avoid computing multiple descriptions
at a given feature point. This directly results in a decreased mem-
ory footprint, hence a better scalability toward large 3D database,
where the models to be stored could be on the order of thousands
of points. Furthermore, as pointed out in Figure 1, we also aim at
demonstrating how the proposed approach can yield higher accu-
racy in the matching stage, in particular by reducing the amount
of wrong correspondences, thanks to the smaller set of model fea-
tures to be put in correspondence with each scene (or query) fea-
ture. More specifically, we propose a novel descriptor that relies on
the formulation of 3DSC but, differently from the original method,
leverages on a recent study highlighting the importance of a repeat-
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Figure 1: The proposed approach (right) increases the ability of 3D Shape Context (left) to find correct feature correspondences in
cluttered and noisy point clouds (green lines: correct correspondences; red lines: wrong correspondences).

able and unambiguous local RF [18] in order to achieve a unique
description at each feature point. We validate our proposal on a
dataset composed of 60 scenes and by means of two different kinds
of experiments: one addresses a typical feature matching for object
recognition scenario, while the other one concerns object retrieval
in a cluttered environment.

2. RELATED WORK

The 3DSC descriptor has been proposed in [7] and represents
an extension to the 3D space of the 2D shape context introduced
in [2]. It relies on a specific subdivision of the spherical volume
around the feature point that needs to be described. In particular, as
shown in Figure 2, a spherical grid is defined by means of subdivi-
sions along the azimuth, elevation and radial dimensions. While the
subdivision along the former 2 dimensions is equally spaced, that
along the latter is logarithmically spaced. To account for generality,
the number of subdivisions can be different along each dimension.
Each bin of the resulting spherical grid accumulates a weighted
sum of the surface points falling thereby, where each weight is in-
versely proportional to the local point density and the bin volume.

To achieve repeatability and to allow for comparison of 3DSC
descriptors in different coordinate systems, the placement of the
spherical grid around the feature point has to be unique, i.e. in-
variant to rotations and translations of the model and robust to the
presence of noise. To this purpose, the north pole of the sphere
is oriented with the estimation of the surface normal at the feature
point. Nevertheless, this still leaves one degree of freedom for the
reference vectors on the tangent plane. To solve this, a vector is ran-
domly chosen on the plane and the L azimuth subdivisions of the
descriptor sphere are created using it. This defines a set of L dis-
crete rotations on the tangent plane, and each rotation is taken into
account to build up a local 3D Reference Frame used to orientate
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Figure 2: Spatial subdivision applied by the 3DSC descriptor
over the spherical local support of a 3D feature.

the sphere grid. Hence, for each reference feature point (i.e. that
referring to the model and computed offline) a total of L descrip-
tors needs to be computed and stored to account for all the pos-
sible positions of the reference azimuth direction. Other than an
increased memory footprint, this slows down the matching stage,
where each scene feature has to be matched with all the possible
L "variants" of each model feature. In addition, this overhead rep-
resents a disadvantage also in terms of matching accuracy, since a
higher number of model feature descriptors can cause mismatches
in terms of retrieved correspondences. In [7] an indexing scheme
to speed up the matching stage is proposed, where the similarity
measure is the Euclidean distance among a descriptors pair. Results
shown in [7] demonstrate the higher descriptiveness and robustness
of 3DSC compared to the popular Spin Images technique [9] in a
typical object recognition scenario.



3. THE PROPOSED UNIQUE SHAPE CON-
TEXT DESCRIPTOR

As highlighted in the previous Section, 3DSC represents a state-
of-the-art 3D feature descriptor technique. From our analysis, the
main weak point of this technique is represented by the lacking of
a repeatable local Reference Frame, with the aforementioned nega-
tive consequences in terms of memory footprint, efficiency and also
accuracy. The main contribution of this work is the proposal of an
improved Shape Context method which does not need to compute
the descriptor over multiple rotations on different azimuth direc-
tions. For this aim, we propose to employ a unique, unambiguous
local RF that can yield not only a repeatable normal axis, but also
a unique pair of directions lying on the tangent plane. The main
advantage of such an approach, that we dub Unique Shape Con-
text (USC), is that it requires to compute, at each model feature,
one single descriptor over the rotation indicated by the repeatable
vectors over the tangent plane. This not only reduces the overall
memory footprint, but also, and more importantly, notably sim-
plifies the matching stage, since every scene feature needs to be
matched with one single descriptor instance for every model fea-
ture. If standard matching approaches are employed, i.e. each
scene feature is matched by exhaustively searching over all model
features (brute force), the proposed approach allows speeding-up
the matching stage given the highly reduced number of model fea-
tures that each scene feature needs to be matched to. Instead, if
efficient approximate indexing schemes are used to speed-up the
matching stage (such as those based on Locality-Sensitive Hash-
ing, as originally proposed in [7], or Kd-trees [1]) the main benefit
attained by the use of USC in spite of 3DSC is the reduction of
spurious correspondences that arise due to the higher number of
possible matching candidates.

The definition of a unique, unambiguous local RF has been lack-
ing in literature until recently [18]. Hence, in our approach, we em-
ploy the unique and unambiguous local RF proposed in [18], which
is briefly reviewed here. Given a feature point p and a spherical
neighborhood centered on p and defined by radius R, a weighted
covariance matrix M of the points within the neighborhood is com-
puted as:

1
M=_ > (R—d)(p:—p)(Pi—p)" e)
:d; <R
where d; = ||p; — p||2 and Z is a normalization factor computed
as:
Z=Y r-a )
i:d; <R

The weighting scheme embedded in (1) is performed so as to as-
sign smaller weights to distant points, i.e. those more likely laying
out of the object of interest. Then, a Total Least Squares (TLS)
estimation of the 3 unit vectors of the local RF of p is performed
by computing the EigenVector Decomposition (EVD) of M. The
TLS estimation of the normal direction is given by the eigenvector
corresponding to the smallest eigenvalue of M. Unfortunately, as
discussed in [3], due to the EVD ambiguity ,the sign of each unit
vector obtained by such a procedure is itself a numerical accident,
thus not repeatable. Hence, a further stage in the computation of the
local RF proposed in [18] carries out a sign disambiguation step so
as to yield a fully repeatable local RF. More specifically, the sign of
each eigenvector is re-oriented so that it is coherent with the major-
ity of the vectors it is representing. This is performed for the first
and the third eigenvectors (i.e. those corresponding, respectively,
to the biggest and smallest eigenvalues), while the sign of the last
is obtained via the cross product due to the orthonormal constraint.
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Hence, overall, for each feature point the USC descriptor is com-
puted as follows. First, the aforementioned local RF is computed
over a specific support around the feature point. Then, the spherical
volume around the feature point is uniquely subdivided by means of
a spherical grid oriented with the 3 repeatable directions yielded by
the local RF. Each bin of the grid then accumulates a weighted sum
of the surface points falling thereby analogously to the approach
used by 3DSC. It is worth pointing out that, if the local support for
the computation of the local RF is the same as that used to compute
the descriptor (i.e. they have the same radius), the computation of
the points falling within the two supports needs to be done only
once, with benefits in terms of efficiency: in this specific case, in
fact, the additional burden brought in by the local RF at description
stage has an almost negligible overhead compared to the computa-
tional load of the 3DSC descriptor.

4. EXPERIMENTAL RESULTS

This Section aims at assessing the benefits brought in by the pro-
posed USC descriptor by comparing it with the original 3DSC for-
mulation in a typical feature matching scenario, which is the core
stage of any object recognition process relying on 3D feature de-
scriptors (Experiment 1). Additionally, we also propose qualitative
results concerning a typical object retrieval experiment in a clut-
tered scene (Experiment 2).

In Experiment 1 we use two datasets composed of several scenes
and models. More specifically, one dataset, referred to as Stanford,
is composed of 6 models ("Armadillo", "Asian Dragon", "Thai
Statue", "Bunny", "Happy Buddha", "Dragon") taken from the Stan-
ford 3D Scanning Repository *. Given these models, 45 scenes are
built up by randomly rotating and translating different subsets of
the model set in order to create clutter’; then, similarly to [19],
we add Gaussian random noise with increasing standard deviation,
namely o1, o2 and o3 at respectively 10%, 20% and 30% of the av-
erage mesh resolution (computed on all models). A sample scene
of the Stanford dataset is shown in Figure 3. The other dataset,
referred to as Lab, consists of scenes and models acquired in our
laboratory by means of a 3D sensing technique known as Spacetime
Stereo [6], [21]. In particular, we compare 8 object models against
15 scenes characterized by clutter and occlusions, each scene con-
taining two models. Some sample scenes of the Lab dataset are
shown in Figure 4.

In this feature matching experiment we use the same feature de-
tector for both algorithms: we randomly extract a set of feature
points from each model, then we extract their corresponding points
from the scene, so that performance of the descriptors is not af-
fected by errors in the detection stage. More specifically, we extract
1000 feature points from each model in both datasets, while in the
scenes we extract n * 1000 features per scene (n being the number
of models in the scene) in the Stanford dataset, and 3000 features
per scene in the Lab dataset.

Analogously, for what concerns the matching stage, we adopt the
Euclidean distance as the matching measure for both algorithms.
For each scene and model, we match each scene feature against all
model features. We adopt a Kd-tree based indexing scheme which,
for each given scene descriptor, finds its closest model descriptor
as that yielding the minimum Euclidean distance (though with a
different indexing algorithm, this same strategy is that originally
proposed in [7]). According to the methodology for evaluation of
2D descriptors recommended in [12], we evaluate the accuracy of
both methods in terms of Precision-Recall curves.

'"http://graphics.stanford.edu/data/3Dscanrep
%3 sets of 15 scenes each, containing respectively 3, 4 and 5 models
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Figure 3: Experiment 1: Precision-Recall curves yielded by 3DSC and USC on the Stanford dataset at the 3 different noise levels
Bottom-right: a scene from the dataset at the 3 different noise levels.

Parameter 3DSC USC
Max Radius (7maz) | 20 m, 20 m,
Min Radius (71min) | 0.1 7oz 0.1 Pipas

RF Radius 1/l 20 m,

Radial div. (J) 10 10
Elevation div. (K) 14 14
Azimuth div. (L) 16 14
Density Radius (&) 2 m, 2 m,

Table 1: Tuned parameters for USC and 3DSC descriptors
(m,: mean mesh resolution of the models).

As for parameters, we have performed a tuning of both 3DSC
and USC over a tuning scene corrupted with noise level o1 and
built by rotating and translating three Stanford models ("Bunny",
"Happy Buddha", "Dragon"). As for USC, we have constrained the
support used to calculate the local RF to be the same as that used
for description, to account for improved efficiency as previously
explained. The parameter values obtained by the tuning procedure
are then kept constant throughout all the experiments concerning
the two datasets. Table 1 reports the tuned values for the parameters
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used by 3DSC and USC. For each parameter it shows, between
brackets, the parameter names as originally defined in [7].

Figures 3 and 4 show the results yielded by USC and 3DSC and
concerning Experiment 1. In particular, the 3 charts in Figure 3
are relative to the Stanford dataset, one for each of the 3 different
noise levels added to each scene, while the chart in Figure 4 re-
ports the result concerning the Lab dataset. As it can be clearly ob-
served from the Figures, the novel USC approach yields substantial
performance improvements with respect to original 3DSC proposal
in the experiments concerning both datasets. More specifically, it
yields improved results compared to 3DSC both in the case of data
with synthetic noise as well as in the case of more realistic 3D data
acquisition conditions. It is also worth pointing out that USC, simi-
larly to 3DSC, shows small performance degradation (hence, good
robustness) with respect to increasing noise.

In terms of efficiency, the use of the indexing scheme notably de-
creases the higher number of descriptors needed to be considered
during the matching stage by 3DSC. On the other hand, the addi-
tional overhead required by USC is mainly represented by the com-
putation of the local RF at description time, which tends to have a
relatively small computational cost compared to the total load of
the algorithm. Overall, the two effects tend to cancel out and our
experiments showed practically equal measured execution times for
USC and 3DSC. Nevertheless, in terms of memory requirements,
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dataset.

and as previously mentioned, 3DSC has a memory footprint that is
L times that of USC: in the experiments shown in this Section, as
reported by Table 1, L was tuned to 16.

As for Experiment 2, we propose some qualitative results con-
cerning an experiment of object retrieval from a cluttered scene. In
particular, we have built up a database of 6 models, taken from the
Lab dataset. We then aim at retrieving each object from a cluttered
scene (also taken from the Lab dataset) that includes only 2 models
out of the 6 in the database. The parameters of each descriptor are
the same as those tuned in Experiment 1. After the matching stage,
in order to compute a subset of reliable correspondences out of
those yielded by the matcher, the Geometric Consistency approach
is used, which is a typical object recognition algorithm [4,9]. More
specifically, starting from a seed feature correspondence, corre-
spondence grouping is carried out by iteratively aggregating those
correspondences that satisfy geometric consistency constraints. If
the number of the most numerous set of grouped correspondences
is higher than a threshold, the object is found in the scene and a
final stage based on Absolute Orientation [8] is performed in order
to retrieve the pose of the object.

Figure 5 shows for both descriptors the 6 models and the scene
used in the experiment, and reports with colored bounding boxes
the objects from the database which were found by the algorithm,
showing in the scene and with the same color the estimated object
pose. As it can be seen, the USC descriptor yields an improved
accuracy with regards to 3DSC, since it yields no false positives
(one false positive is found by 3DSC). Also, the average pose esti-
mation error for the two models present in the scene, computed in
terms of RMSE, is 2.7 - m,. (m, being the mean mesh resolution
of the models) for USC, against the 3.1 - m,. yielded by 3DSC.

S. CONCLUSION

Inspired by a very recent study on the importance of the local
RF for local 3D description, in this paper we have investigated on
the deployment of a unique and unambiguous local 3D RF together
with the well-known, state-of-the-art 3D Shape Context descrip-
tor. Thanks to the use of a unique local RF, our proposal, dubbed
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Unique Shape Context, needs not to resort to multiple descriptions
at each feature point. This significantly decrease memory occu-
pancy and holds the potential to improve the accuracy of the feature
matching stage. The latter benefit is vouched by our experimental
evaluation, which shows how the proposed approach compares fa-
vorably with respect to the original 3D Shape Context method.

6. REFERENCES

[1] J. Beis and D. Lowe. Shape indexing using approximate
nearest-neighbour search in high dimensional spaces. In
Proc. CVPR, pages 1000-1006, 1997.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. I[EEE Trans. PAMI,
24(4):509-522, 2002.

R. Bro, E. Acar, and T. Kolda. Resolving the sign ambiguity
in the singular value decomposition. J. Chemometrics,
22:135-140, 2008.

H. Chen and B. Bhanu. 3d free-form object recognition in
range images using local surface patches. Patt. Rec. Letters,
28:1252-1262, 2007.

C. S. Chua and R. Jarvis. Point signatures: A new
representation for 3d object recognition. IJCV, 25(1):63-85,
1997.

J. Davis, D. Nehab, R. Ramamoothi, and S. Rusinkiewicz.
Spacetime stereo : A unifying framework for depth from
triangulation. PAMI, 27(2):1615-1630, 2005.

A. Frome, D. Huber, R. Kolluri, T. Biilow, and J. Malik.
Recognizing objects in range data using regional point
descriptors. In ECCV, volume 3, pages 224-237, 2004.

B. Horn. Closed-form solution of absolute orientation using
unit quaternions. J. Optical Society of America A,
4(4):629-642, 1987.

A. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. PAMI,
21(5):433-449, 1999.

[10] A. Mian, M. Bennamoun, and R. Owens. A novel

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]



MODELS

3DsC

Usc

SCENE

Figure 5: Experiment 2 (object retrieval in a cluttered scene) comparing 3DSC and USC. Retrieved models in the scene are marked
with a colored bounding box, which also shows the estimated object pose. 3DSC yields a false positive, while USC correctly finds
only the 2 models present in the scene.

[11]

[12]

[13]

[14]

[15]

representation and feature matching algorithm for automatic
pairwise registration of range images. IJCV, 66(1):19—40,
2006.

A. Mian, M. Bennamoun, and R. Owens. On the
repeatability and quality of keypoints for local feature-based
3d object retrieval from cluttered scenes. Int. J. Computer
Vision, page to appear, 2009.

K. Mikolajezyk and C. Schmid. A performance evaluation of
local descriptors. PAMI, 27(10):1615-1630, 2005.

J. Novatnack and K. Nishino. Scale-dependent 3d geometric
features. In Proc. Int. Conf. on Computer Vision, pages 1-8,
2007.

J. Novatnack and K. Nishino. Scale-dependent/invariant
local 3d shape descriptors for fully automatic registration of
multiple sets of range images. In ECCV, 2008.

F. Solina and R. Bajcsy. Recovery of parametric models from
range images: the case for superquadrics with global
deformations. PAMI, 12(2):131-147, 1990.

62

[16]

(17]

[18]

[19]
[20]
[21]

[22]

F. Stein and G. Medioni. Structural indexing: Efficient 3-d
object recognition. PAMI, 14(2):125-145, 1992.

J. Sun, M. Ovsjanikov, and L. Guibas. A concise and
provably informative multi-scale signature based on heat
diffusion. In Proc. Eurographics Symposium on Geometry
Processing, 2009.

F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of
histograms for local surface description. In Proc. 11th Europ.
Conf. on Computer Vision (ECCV 10), 2010.

R. Unnikrishnan and M. Hebert. Multi-scale interest regions
from unorganized point clouds. In CVPR-WS: S3D, 2008.

K. Wu and M. Levine. Recovering parametrics geons from
multiview range data. In CVPR, pages 159-166, 1994.

L. Zhang, B. Curless, and S. Seitz. Spacetime stereo: Shape
recovery for dynamic scenes. In CVPR, 2003.

Y. Zhong. Intrinsic shape signatures: A shape descriptor for
3d object recognition. In ICCV-WS: 3dRR, 2009.



