
 Open access  Book Chapter  DOI:10.1007/978-3-642-15558-1_26

Unique signatures of histograms for local surface description — Source link 

Federico Tombari, Samuele Salti, Luigi Di Stefano

Institutions: University of Bologna

Published on: 05 Sep 2010 - European Conference on Computer Vision

Topics: Local reference frame

Related papers:

 Fast Point Feature Histograms (FPFH) for 3D registration

 Using spin images for efficient object recognition in cluttered 3D scenes

 A method for registration of 3-D shapes

 3D is here: Point Cloud Library (PCL)

 Distinctive Image Features from Scale-Invariant Keypoints

Share this paper:    

View more about this paper here: https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-
dbxl9xe6lq

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-15558-1_26
https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-dbxl9xe6lq
https://typeset.io/authors/federico-tombari-3rjrh7koj1
https://typeset.io/authors/samuele-salti-2alj2k9uej
https://typeset.io/authors/luigi-di-stefano-520wz8yfhr
https://typeset.io/institutions/university-of-bologna-2eizmpk2
https://typeset.io/conferences/european-conference-on-computer-vision-2ddurqx3
https://typeset.io/topics/local-reference-frame-7b1eq5hd
https://typeset.io/papers/fast-point-feature-histograms-fpfh-for-3d-registration-2g4y4hfmn7
https://typeset.io/papers/using-spin-images-for-efficient-object-recognition-in-53ur0etqcx
https://typeset.io/papers/a-method-for-registration-of-3-d-shapes-357dm6j7j6
https://typeset.io/papers/3d-is-here-point-cloud-library-pcl-12x3p8s6ma
https://typeset.io/papers/distinctive-image-features-from-scale-invariant-keypoints-3waurjqzke
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-dbxl9xe6lq
https://twitter.com/intent/tweet?text=Unique%20signatures%20of%20histograms%20for%20local%20surface%20description&url=https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-dbxl9xe6lq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-dbxl9xe6lq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-dbxl9xe6lq
https://typeset.io/papers/unique-signatures-of-histograms-for-local-surface-dbxl9xe6lq


Unique Signatures of Histograms for Local Surface

Description

Federico Tombari, Samuele Salti, and Luigi Di Stefano

CVLab - DEIS, University of Bologna,

Viale Risorgimento, 2 - 40135 Bologna, Italy

{federico.tombari,samuele.salti,luigi.distefano}@unibo.it
http://www.vision.deis.unibo.it

Abstract. This paper deals with local 3D descriptors for surface matching. First,

we categorize existing methods into two classes: Signatures and Histograms.

Then, by discussion and experiments alike, we point out the key issues of unique-

ness and repeatability of the local reference frame. Based on these observations,

we formulate a novel comprehensive proposal for surface representation, which

encompasses a new unique and repeatable local reference frame as well as a new

3D descriptor. The latter lays at the intersection between Signatures and His-

tograms, so as to possibly achieve a better balance between descriptiveness and

robustness. Experiments on publicly available datasets as well as on range scans

obtained with Spacetime Stereo provide a thorough validation of our proposal.

1 Introduction and Previous Work

The ability of computing similarities between 3D surfaces, sometimes referred to as

surface matching [1], is a key for computer vision tasks such as 3D object recognition

and surface alignment. These tasks find numerous applications in fields such as robotics,

automation, biometric systems, reverse engineering, search in 3D object databases [1]

[2] [3].

There has been strong research interest in surface matching since the 1980’s. Early

works were based on fitting 3D data with global parametric surfaces such as geons [4]

or superquadrics [5]. For the last 15 years though, the most popular trend for surface

matching exploits a compact local representation of the input data, known as descriptor,

and shares basic motivations with the successful approaches for matching 2D images

that rely on local invariant features. Local correspondences established by matching

3D descriptors (Fig. 1) can then be used to solve higher level tasks such as 3D object

recognition. This approach allows for dealing effectively with issues such as occlusion,

clutter and changes of viewpoint. As a result, a variety of proposals for 3D descriptors

can be found in recent literature.

In Table 1 we propose a categorization of the main proposals in the field. As shown

in the second column, we divide proposals for 3D descriptors into two main categories,

namely Signature and Histogram. The first category, that includes earliest works on the

subject, describes the 3D surface neighborhood of a given point (hereinafter support)

by defining an invariant local Reference Frame (RF) and encoding, according to the

local coordinates, one or more geometric measurements computed individually on each

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 356–369, 2010.
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Fig. 1. Example of matching local descriptors in an 3D object recognition scenario. Green lines

identify correct matches, whereas red ones represent wrong correspondences.

point of a subset of the support. On the other hand, Histogram-based methods describe

the support by accumulating local geometrical or topological measurements (e.g. point

counts, mesh triangle areas) into histograms according to a specific quantized domain

(e.g. point coordinates, curvatures) which requires the definition of either a Reference

Axis (RA) or a local RF. In broad terms, signatures are potentially highly descriptive

thanks to the use of spatially well localized information, whereas histograms trade-off

descriptive power for robustness by compressing geometric structure into bins.

As far as Signature-based methods are concerned, one of the first proposals is Struc-

tural Indexing [6], which builds up a representation based on either a 3D curve or a

Splash depending on the characteristics of the 3D support. The former encodes the

angles between consecutive segments of the polygonal approximation of edges (corre-

sponding to depth or orientation discontinuities) on the surface. The latter encodes as a

3D curve the local distribution of surface orientations along a geodesic circle centered

on the point. In Point Signatures [7] the signature is given by the signed height of the 3D

curve obtained by intersecting a sphere centered in the point with the surface. 3D Point

Fingerprint [8] encodes the normal angle variations and the contour radius variations

along different geodesic circles projected on the tangent plane. Recently, Exponential

Mapping [9] proposed a descriptor that encodes the components of the normals within

the support by deploying a 2D parametrization of the local surface.

As for Histogram-based methods, those relying on the definition of just a RA are

typically based on the feature point normal. For example, Spin Images [1], arguably

the most popular method for 3D mesh description, computes 2D histograms of points

falling within a cylindrical volume by means of a plane that ”spins” around the normal.

Within the same subclass, Local Surface Patches [10] computes histograms of normals

and shape indexes [11] of the points belonging to the support. As for methods rely-

ing on the definition of a full local RF, 3D Shape Context [12] modifies the basic idea

of Spin Images by accumulating 3D histograms of points within a sphere centered at the
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feature point. Intrinsic Shape Signatures [13] proposed an improvement of [12] based

on a different partitioning of the 3D local volume as well as on a different definition

of the local RF. Finally, Mian et al. [2] accumulate 3D histograms (Tensors) of mesh

triangle areas within a cubic support.

Table 1. Taxonomy of 3D descriptors

Method Category
Local RF

Unique Unambig.

StInd [6] Signature No Yes

PS [7] Signature No Yes

3DPF [8] Signature No Yes

EM [9] Signature Yes No

SI [1] Histogram RA

LSP [10] Histogram RA

3DSC [12] Histogram No Yes

ISS [13] Histogram Yes No

Tensor [2] Histogram No Yes

SHOT Both Yes Yes

As pointed out in Tab. 1, all propos-

als rely on the definition of a local RF or,

at least, a repeatable RA. However, we

believe that the importance of the choice

of the local reference for a 3D descrip-

tor is underrated in literature, with ef-

forts mainly focused on the development

of discriminative descriptors. As a con-

sequence, approaches for the choice of

the local reference are ambiguous, or not

unique, or too sensitive to noise and also

lack specific experimental validation. In-

stead, as we will show in the remainder

of the paper, the repeatability of the lo-

cal RF (or, analogously, of the RA) is

mandatory to achieve effective local sur-

face description.

Therefore, the first contribution of this paper is a specific study upon local RFs.

We carry out an analysis of repeatability and robustness on proposed local RFs, and

provide experiments that demonstrate the strong impact of the choice of the RF on the

performance of a 3D descriptor (Sec. 2). Given the impact of such a choice, the second

contribution of this paper is a robust local RF that, unlike all other proposals, is unique

and unambiguous(Sec. 3).

As for the descriptor, based on the nature of existing approaches highlighted by the

proposed categorization, it is our belief that an effective and robust solution to the prob-

lem of 3D shape description can be found as a proper combination of Signatures and

Histograms. Hence, the third contribution of the paper is a novel 3D descriptor aware of

the proposed categorization (Sec. 4). Its design, inspired by an analysis of the successful

choices performed in the related field of 2D descriptors, has been explicitly conceived

to achieve computational efficiency, descriptive power and robustness. Finally, we pro-

vide a thorough experimental validation of our proposals (Sec. 5). We compare them to

three state-of-the-art methods in surface matching experiments run on publicly available

datasets as well as on range scans acquired in our lab.

2 On the Traits and Importance of the Local RF

The definition of a local RF, invariant to translations and rotations and robust to noise

and clutter, has been the preferred option to endow a 3D descriptor with invariance to

the same sources of variations, similarly to the way rotation and/or scale invariance

is injected into 2D descriptors. On the other hand, the definition of such an invariant

frame is challenging. Furthermore, although almost every new proposal for local shape
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description is equipped with its own local RF, experimental validation has always been

focused on the results obtained by the joint used of an RF and a descriptor, whilst the

impact of the selected local RF on the descriptor performance has not been investigated

in literature.

Fig. 2. Impact of the local RF on a descriptor performance

In Table 1 we have reported for each proposal the properties of uniqueness and unam-

biguity of their local RF. As highlighted in the third column, the majority of proposals

are based on RFs that are not unique [6] [7] [8] [12] [2], i.e. to obtain an invariant de-

scription they require multiple descriptors to be computed at each feature point. This is

usually handled by describing a ”model” point using multiple descriptors, each based on

a different local RFs, and a ”scene” point with just one of them. This approach causes

additional ambiguity to the correspondence problem since it shifts the intrinsic non-

uniqueness of the local RF to the matching stage, thus increasing potential mismatches,

computational requirements and sometimes also memory footprint. Another disadvan-

tage brought in by the use of multiple local RFs is that the proposed matching stage is

so tailored on the descriptor that it prevents the use of off-the-shelf efficient solutions

for matching and indexing, that in principle could be advantageously performed orthog-

onally with respect to the description. This may result in a severe loss of computational

efficiency.

In addition to multiple RFs, another limit of current proposals consists in the intrin-

sic ambiguity of the sign of the local RF axes. For example, in [9] and [13], normals

and principal curvature directions are used. The main problem with this choice is that

principal directions are not vectors, i.e. their sign is not defined. From a practical point

of view, principal directions are computed using Singular Value Decomposition (SVD)

or Eigenvalue Decomposition (EVD) of the covariance matrix of the point coordinates

within the support. Of course, the output of the algorithm is a vector with a sign. Never-

theless, this sign is simply a numerical accident and, thus, is not repeatable on different

(e.g. rotated) instances of the same mesh, even though the same SVD/EVD algorithm

is used, as clearly discussed in [14]. Therefore, such an approach to the definition of the
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local RF is inherently ambiguous and thus not repeatable. [13] resorts to multiple RFs

to overcome this limitation, while [9] does not deal with it explicitly.

To highlight the impact of the local RF on a descriptor performance, we show in

Fig. 2 the performance of the EM descriptor [9] with different local RFs. Results are

reported as Recall vs 1-Precision curves (see Sec. 5 for a discussion about this choice

and for the settings used in all our experiments). The ambiguous RF used in [9] leads

to unsatisfactory performances (yellow curve). Using exactly the same settings and ex-

actly the same descriptor, we can boost performances simply by deploying the Sign

Disambiguation technique recently proposed in [14]. Furthermore, using the more ro-

bust and more repeatable local RF that we propose in next section we can obtain another

significant improvement (e.g. at recall 0.7 precision raises from 0.308 to 0.994) without

changing the descriptive power of the descriptor.

3 Disambiguated EVD for a Repeatable RF

As shown by Table 1, none of current local RF proposals is at the same time unique

and unambiguous. To fill this gap we have designed and extensively tested a variety

of novel unique and unambiguous local RFs. We present here the method that turned

out to be the most robust in our thorough experimental evaluation. It builds on a well

known technique presented in [15] and [16], where the problem of normal estimation

in presence of noise is specifically addressed. A Total Least Squares (TLS) estimation

of the normal direction is obtained in [15] and [16] by EVD of the covariance matrix

M of the k−nearest neighbors pi of the point, defined by

M =
1

k

k
∑

i=0

(pi − p̂)(pi − p̂)T , p̂ =
1

k

k
∑

i=0

pi . (1)

In particular, the TLS estimation of the normal direction is given by the eigenvector

corresponding to the smallest eigenvalue of M . Finally, they perform the sign disam-

biguation of the normals globally by means of sign consistency, i.e. propagating the

sign from a seed chosen heuristically.

While this has proven to be a robust and effective technique for surface reconstruc-

tion of a single object, it cannot work for local surface description since in the latter case

signs must be repeatable across any possible object pose as well as in scenes with multi-

ple objects, so that a local rather than global sign disambiguation method is mandatory.

Moreover, Hoppe’s sign disambiguation concerns the normal only, hence it leaves am-

biguous the signs of the remaining two axes.

In our proposal, we start by modifying (1) so as to assign distant points smaller

weights, in order to increase repeatability in presence of clutter. Then, to improve ro-

bustness, all points laying within the spherical support (of radius R) which are used to

compute the descriptor are used also to calculate M. For the sake of efficiency, we also

neglect the centroid computation, replacing it with the feature point p. Therefore, we

compute M as a weighted linear combination,

M =
1

∑

i:di≤R

(R−di)

∑

i:di≤R

(R − di)(pi − p)(pi − p)T (2)
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where di = ‖pi − p‖2. Our experimental evaluation indicates that the eigenvectors of

M define repeatable, orthogonal directions in presence of noise and clutter. It is worth

pointing out that, compared to [15] and [16], in our proposal the third eigenvector no

longer represents the TLS estimation of the normal direction and sometimes it notably

differs from it. However, this does not affect performance, since in the case of local

surface description what matters is a highly repeatable and robust triplet of orthogonal

directions, and not its geometrical or topological meaning.

Hence, eigenvectors of (2) represent a good starting point, but they need to be disam-

biguated to yield a repeatable local RF. The problem of sign disambiguation for EVD

and SVD has been recently addressed in [14]. Their proposal basically reorients the

sign of each singular or eigenvector so that its sign is coherent with the majority of the

vectors it is representing. We determine the sign on the local x and z axes according to

this principle. In the following we refer to the three eigenvectors in decreasing eigen-

value order as the x+, y+ and z+ axis, respectively. With x−, y− and z−, we denote

instead the opposite vectors. Hence, the final disambiguated x axis is defined as

S+
x =̇

{

i : di ≤ R ∧ (pi − p) · x+ ≥ 0
}

(3)

S−
x =̇

{

i : di ≤ R ∧ (pi − p) · x− > 0
}

(4)

x =

{

x+, |S+
x | ≥ |S−

x |

x−, otherwise
(5)

The same procedure is used to disambiguate the z axis. Finally, the y axis is obtained

as z × x.

We compare the repeatability of our proposal against two representative RFs: that of

PS and that of EM, respectively a not-unique solution and an ambiguous one. To pre-

vent these shortcomings from invalidating the comparison we consider only the global

maximum of the height [7] for PS and we add the sign disambiguation of [14] to EM

(EM+SD), thereby obtaining two unique and unambiguous RFs. We also consider the

original EM approach to show the effectiveness of sign disambiguation. Using again

the settings detailed in Sec. 5, in Fig. 3 we plot, for 5 increasing noise levels, the mean

cosine between corresponding axes of the local RFs computed on two instances of the

same mesh, i.e. the original one and a rotated and noisy instance. On one hand, am-

biguity is clearly the most serious nuisance, as the low performances of the original

EM proposal demonstrate. On the other hand, the use of a higher number of points to

compute the local RF ( i.e. the whole surface contained in the spherical support, as

done by EM, instead of the 3D curve resulting by the intersection of the spherical sup-

port with the surface, as done by PS) yields better robustness, as shown by the relative

drop of EM with respect to PS when noise increases. The disambiguation introduced in

EM+SD dramatically enhances repeatability. However, both EM and EM+SD subordi-

nate computation of the directions on the tangent plane to the normal estimation (i.e. ,

the repeatable directions they compute are then projected onto the tangent plane to cre-

ate an orthogonal basis). This choice sums noise on the normal to the noise inevitably

affecting the other directions, thereby leading to increased sensitivity of the estimation
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of the axes on the tangent plane and finally to poor repeatability. Our proposal, instead,

estimates all axes simultaneously and turns out to be the most effective, thanks to the

combination of its noise and clutter-aware definition, the effectiveness of the proposed

disambiguation and the inherent uniqueness deriving from its theoretical formulation.

Fig. 3. Comparison between local RFs

4 Description by Signatures of Histograms

In Sec. 1 we have classified 3D descriptors as based on either histograms or signatures.

We have designed our proposal following this intuition and aiming at a local represen-

tation that is efficient, descriptive, robust to noise and clutter as well as to point density

variation. The point density issue is specific to the 3D scenario, where the same 3D

volume of the real world may be represented with different amounts of vertexes in its

mesh approximation, e.g. due to the use of different 3D sensors (stereo, ToF cameras,

LIDARs, etc...) or different acquisition distances.

Beside our taxonomy, another source of inspiration has been the related field of 2D

feature descriptors, which has reached a remarkable maturity during the last years. By

analyzing SIFT [17], arguably the most successful and widespread proposal among 2D

descriptors, we have singled out what we believe are among the major reasons behind

its effectiveness. First of all, the use of histograms is spread throughout the algorithm,

from the definition of the local orientation to the descriptor itself, this accounting for

its robustness. Since a single global histogram computed on the whole patch would

be not descriptive enough, SIFT relies on a set of local histograms, that are computed

on specific subsets of pixels defined by a regular grid superimposed on the patch. The

use of this coarse geometric information creates what we identify as a signature-like

structure. Moreover, the elements of these local histograms are based on first order

derivatives describing the signal of interest, i.e. intensity gradients. Although it has

been argued that building a descriptor based on differential entities may result in poor

robustness to noise [7], they hold high descriptive power, as the effectiveness of SIFT

clearly demonstrates. Therefore, we believe they can provide a more effective solution

for a descriptor than point coordinates [1] [12]. Yet, to account for robustness to noise,

differential entities have to be filtered, and not deployed directly, e.g. as done in [9].
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Fig. 4. Signature struc-

ture for SHOT

Based on these considerations, we propose a 3D descriptor

that encodes histograms of basic first-order differential entities

(i.e. the normals of the points within the support), which are

more representative of the local structure of the surface com-

pared to plain 3D coordinates. The use of histograms brings in

the filtering effect required to achieve robustness to noise. Hav-

ing defined an unique and robust 3D local RF (see Sec. 3), it is

possible to enhance the discriminative power of the descriptor

by introducing geometric information concerning the location

of the points within the support, thereby mimicking a signa-

ture. This is done by first computing a set of local histograms

over the 3D volumes defined by a 3D grid superimposed on the

support and then grouping together all local histograms to form

the actual descriptor. Hence, our descriptor lays at the intersection between Histograms

and Signatures: we dub it Signature of Histograms of OrienTations (SHOT).

For each of the local histograms, we accumulate point counts into bins according to

a function of the angle, θi, between the normal at each point within the corresponding

part of the grid, nvi
, and the normal at the feature point, nu. This function is cosθi, the

reason being twofold: it can be computed fast, since cosθi = nu ·nvi
; an equally spaced

binning on cosθi is equivalent to a spatially varying binning on θi, whereby a coarser

binning is created for directions close to the reference normal direction and a finer one

for orthogonal directions. In this way, small differences in orthogonal directions to the

normal, i.e. presumably the most informative ones, cause a point to be accumulated

in different bins leading to different histograms. Moreover, in presence of quasi-planar

regions (i.e. not very descriptive ones) this choice limits histogram differences due to

noise by concentrating counts in a fewer number of bins.

As for the structure of the signature, we use an isotropic spherical grid that encom-

passes partitions along the radial, azimuth and elevation axes, as sketched in Fig. 4.

Since each volume of the grid encodes a very descriptive entity represented by the local

histogram, we can use a coarse partitioning of the spatial grid and hence a small cardi-

nality of the descriptor. In particular, our experimentations indicate that 32 is a proper

number of spatial bins, resulting from 8 azimuth divisions, 2 elevation divisions and 2

radial divisions (though, for clarity, only 4 azimuth divisions are shown in Fig. 4).

Since our descriptor is based upon local histograms, it is important to avoid bound-

ary effects, as pointed out e.g. in [1] [17]. Furthermore, due to the spatial subdivision of

the support, boundary effects might arise also in presence of perturbations of the local

RF. Therefore, for each point being accumulated into a specific local histogram bin, we

perform quadrilinear interpolation with its neighbors, i.e. the neighboring bins in the

local histogram and the bins having the same index in the local histograms correspond-

ing to the neighboring volumes of the grid. In particular, each count is multiplied by

a weight of 1 − d for each dimension. As for the local histogram, d is the distance of

the current entry from the central value of the bin. As for elevation and azimuth, d is

the angular distance of the entry from the central value of the volume. Along the radial

dimension, d is the Euclidean distance of the entry from the central value of the volume.
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Fig. 5. Exp. 1: Precision-Recall curves on Stanford dataset and a scene at the 3 noise levels

Along each dimension, d is measured in units of the histogram or grid spacing, i.e. it is

normalized by the distance between two neighbor bins or volumes.

To achieve robustness to variations of the point density, we normalize the whole

descriptor to sum up to 1. This is preferable to the solution proposed in [12], i.e. nor-

malizing each bin with the inverse of the point density and bin volume. In fact, while

[12] implicitly assumes that the sampling density may vary independently in every bin,

and thus discards as not informative the differences in point density among bins, we as-

sume global (or at least regional) variations of the density and keep the local differences

as a source of discriminative information.

5 Experimental Results

In this section we provide experimental validation of our proposals, i.e. the unique

local RF together with the SHOT descriptor. To this purpose, we carry out a quanti-

tative comparison against three state-of-the-art approaches in a typical surface match-

ing scenario, where correspondences have to be established between a set of features

extracted from a scene and those extracted from a number of models. The consid-

ered approaches are: Spin Images (SI), as representative of Histogram-based methods

due to its vast popularity in the addressed scenario; Exponential Mapping (EM) and

Point Signatures (PS) as representatives of Signature-based methods, the former since

it is a very recent approach, the latter given its importance in literature. All methods

were implemented in C++ and are made publicly available together with the datasets

(www.vision.deis.unibo.it/SHOT ).

www.vision.deis.unibo.it/SHOT
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Fig. 6. Exp. 2: Precision-Recall curves on subsampled dataset and a detail from one scene

Fig. 7. Exp. 3: Results on Spacetime Stereo dataset and two models (middle) and scenes (right)

For a fair comparison, we use the same feature detector for all algorithms: in par-

ticular, we randomly extract a set of feature points from each model, then we extract

their corresponding points from the scene, so that performance of the descriptors is not

affected by errors of the detector. Analogously, for what concerns the matching stage,

we adopt the same matching measure for all algorithms, i.e. , as proposed in [1], the

Euclidean distance. We could also have evaluated the synergistic effect of description

and matching for those methods that explicitly include a proposal for the latter, e.g. the

tolerance band for PS. In turn, we did experiments on the whole dataset with the origi-

nal EM and PS matching schemes, obtaining slightly worse performance for both. This,

and the attempt to be as fair as possible, leaned us to use the same measure for all algo-

rithms. However, we did not discard the characteristics of the descriptors that required

a specific treatment during matching: in particular, since EM is a sparse descriptor, we

compute the Euclidean distance only on the overlapping subset of EM descriptor pairs,

as proposed by the authors; and for PS we use the matching scheme proposed by the

authors to disambiguate its not-unique local RF [7]. For each scene and model, we

match each scene feature against all model features and we compute the ratio between

the nearest neighbor and the second best (as in [17]): if the ratio is below a threshold a

correspondence is established between the scene feature and its closest model feature.
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Time (s) Radius (mr) Length

SHOT 4.8 15 320

SI 5.6 30 100

EM 52.6 10 2700

PS 248.8 10 90

Fig. 8. Charts: ms/correspondence vs. support radius (in the smaller chart the time axis is zoomed

in for better comparison between SI and SHOT). Table: measured execution times (in Experiment

1) and tuned parameter values. Radius values are reported in mesh resolution units. As for SI, the

support radius is the product of the bin size by the number of bins in each side of the spin image

According to the methodology for evaluation of 2D descriptors recommended in

[18], we provide results in terms of Recall versus 1-Precision curves. This choice is

preferable compared to ROC curves (i.e. True Positive Rate versus False Positive rate)

when comparing descriptors or detectors due to the ambiguity in calculating the False

Positive Rate [19]. We present three different experiments. Experiment 1 deals with

6 models (”Armadillo”, ”Asian Dragon”, ”Thai Statue”, ”Bunny”, ”Happy Buddha”,

”Dragon”) taken from the Stanford 3D Scanning Repository 1. We build up 45 scenes

by randomly rotating and translating different subsets of the model set so to create

clutter2; then, similarly to [20], we add Gaussian random noise with increasing standard

deviation, namely σ1, σ2 and σ3 at respectively 10%, 20% and 30% of the average mesh

resolution (computed on all models). In Experiment 2 we consider the same models

and scenes as in Experiment 1, add noise (i.e. σ1) and resample the 3D meshes down

to 1/8 of their original point density. For a fair comparison in this experiment, our

implementation of SI -used throughout all the evaluation- normalizes each descriptor to

the unit vector to make it more robust to density variations [3]. Finally, in Experiment 3

the dataset consists of scenes and models acquired in our lab by means of a 3D sensing

technique known as Spacetime Stereo [21], [22]. In particular, we compare 8 object

models against 15 scenes characterized by clutter and occlusions, each scene containing

two models. Fig. 7 shows two scenes together with the models appearing in them. In

each of the three experiments, 1000 feature points were extracted from each model. As

for the scenes, in Exp. 1 and 2 we extract n ∗ 1000 features per scene (n being the

number of models in the scene) whereas in Exp. 3 we extract 3000 features per scene.

Throughout all the three experiments we used the same values for the parameters

of considered methods. In particular, we tuned the two parameters of each descrip-

tor (support radius and length of the descriptor) based on a tuning scene corrupted

1
http://graphics.stanford.edu/data/3Dscanrep

2 3 sets of 15 scenes each, containing respectively 3, 4 and 5 models.

http://graphics.stanford.edu/data/3Dscanrep
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with noise level σ1 and built rotating and translating three Stanford models (”Bunny”,

”Happy Buddha”, ”Dragon”). The values resulting from the tuning process are reported

in the last two columns of the Table in Fig. 8. It is worth noting that our tuning yielded

comparable values of the support radius among the various methods, and that, for SI

and PS, the resulting parameter values are coherent, as far as the order of magnitude is

concerned, with those originally proposed by their authors (no indication about EM pa-

rameters is given in [9]). Yet, we used the finely tuned values instead of those originally

proposed by the authors since the former yield higher performance in these experiments.

Results for the three Experiments are reported in Figure 5, 6 and 7, respectively. Ex-

periment 1 focuses on robustness to noise. Given the reported results, it is clear that

SHOT performs better than the other methods at all different noise levels on the Stan-

ford dataset. We can observe that, comparing the two Signature methods, PS exhibits

a higher robustness than EM. We address this mainly to the higher robustness of its

local RF, as shown in Fig. 3. As for SI, it appears to be highly susceptible to noise, its

performance notably deteriorating as the noise level increases. This is due to the fact

that this descriptor is highly sensitive to small variations in the normal estimation (i.e.

SI Reference Axis), that here we compute as proposed in [1]. This is also consistent

with the results reported in [12]. As for Experiment 2, it is clear that the point density

variation is the most challenging nuisance among those accounted for, causing a severe

performance loss of all methods. SHOT, PS and SI obtain comparable performance,

nevertheless for high values of precision, that are typical working points for real appli-

cations, SHOT obtains the highest levels of Recall. Experiment 3 shows that under real

working conditions SHOT outperforms the other methods. It is worth noting that this

experiment is especially focused on the descriptiveness of evaluated approaches, since

the much smoother shapes of the objects surfaces compared to those of the Stanford

models make the former harder to discriminate. Hence, results demonstrate the higher

descriptiveness embedded in SHOT with respect to the other proposals.

In addition, we have compared the methods in terms of their computational efficiency

and memory requirements. Since, as discussed in Sec. 2, descriptors based on multiple

RFs, like PS, can not deploy efficient indexing to speed-up the matching stage, we use

a full search strategy for all methods. Results are reported in Fig. 8. The two charts

in the Figure, showing the number of milliseconds per correspondence needed by the

various methods using different support sizes, demonstrate the notable differences in

computational efficiency between the algorithms. In particular, SI and SHOT run one

order of magnitude faster than EM and almost two orders of magnitude faster than PS,

with SI turning out consistently slightly faster than SHOT at each support size. As for

EM, efficiency is mainly affected by the re-parametrization of the support needed to de-

scribe each feature point and to the large memory footprint (see next). With regards to

PS, as discussed in Sec. (2) the use of multiple local RFs dramatically slows down the

matching stage. These results are confirmed by the Table in the Figure (first column),

which reports the measured times required to match the scene to the models in Exper-

iment 1 (i.e. 3000 scene features and 3000 models features) using the tuned parameter

values. Here, the larger support needed by SI allows SHOT to run slightly faster. As

for memory requirements, the reported descriptor length (third column) highlights the

much higher memory footprint required by EM compared to other methods.
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Finally, as a practical application in a challenging and active research area, we demon-

strate the use of SHOT correspondences to perform fully automatic 3D Reconstruction

from Spacetime Stereo data. We merge 18 views covering a 360◦ field of view of one of

the smooth objects used in Experiment 3. We follow a 2 steps procedure: 1) we obtain

a coarse registration by estimating the 3D transformations between every pair of views

and retaining only those maximizing the global area of overlap; 2) we use the coarse reg-

istration as initial guess for a final global registration carried out using a standard exter-

nal tool (Scanalyze). In the first step, correspondences among views are established by

computing and matching SHOT descriptors on 1000 randomly selected feature points.

3D transformations are estimated by applying a well known Absolute Orientation algo-

rithm [23] on such correspondences and filtering outliers with RANSAC. Maximization

of the area of overlap is achieved through the Maximum Spanning Tree approach de-

scribed in [9]. As shown in Fig. 9, without any assumptions about the initial poses,

SHOT correspondences allows for attaining a coarse alignment which is an accurate

enough initial guess to successfully reconstruct the 3D shape of the object without any

manual intervention. To the best of our knowledge, fully automatic 3D reconstruction

from multiple Spacetime Stereo views has not been demonstrated yet.

(a) (b) (c) (d)

Fig. 9. 3D Reconstruction from Spacetime Stereo views: (a) initial set of views (b) coarse regis-

tration (c) global registration frontal view (d) global registration rear view

6 Conclusion and Future Work

Overall, our proposals compare favorably with the considered methods. The results val-

idate the proposed categorization as well as the intuition that the synergy between the

design of a repeatable local RF and the embedding of an hybrid signature/histogram

nature into SHOT allows for achieving at the same time state-of-the-art robustness

and descriptiveness. Remarkably, our proposal delivers such notable performances with

high computational efficiency. As for future work, we plan to investigate on how to im-

prove robustness to point density variations. Comparing our proposal with other relevant

methods and on a larger dataset is another main direction of our research.
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