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Migdal renormalization group approach, combined with Wilson· Kogut topological argu· 
ment, is applied to four dimensional lattice gauge theory of finite subgroup [(120) of 5U(2). 
i) A slight (compared with the Monte Carlo results) but clear crossover from strong coupling 
regime to weak coupling regime is observed for the Wilson action. ii) For mixed action, of the 
fundamental and the adjoint representation, a clearer stepwise transition, suggesting first order 
phase transition, is found at 1:S/:Iab:S3 (where /:lab denotes the bare inverse coupling constant of 
the adjoint representation). This stepwise transition changes into crossover for smaller /:lab 
iii) There are four critical lines in (/:1/, /:I:) plane starting from a quadruple point (/:1/ ~ 0.75, /:I: 
~ 3.2) where /:1/ denotes the bare inverse coupling constant of the fundamental representation; 
1) 50(3) critical line, 2) Z(2) critical line, 3) a critical line due to the discreteness of [(120), 
4) a critical line related to crossover. In this investigation, the unique trajectory of renormal· 
ization group is very important and plays a powerful role in finding crossover and stepwise 
transition. 

§ 1. Introduction 

221 

In a previous paper, I) it is pointed out that the point St.a., which we will call 

"turnover point,"*) situates very close to (i) the crossover2
),3) point in the case of 

LGT's of non abelian finite subgroups of SU(2) and continuous group SU(2) 
itself, and to (ii) the deconfining phase transition in the case of LGT's of abelian 

subgroups ZeN) of U(1) and the group U(1) itself.4) The turnover point St.a. is 

defined asl) the point 

(1,1) 

for all i ( ~ io), where i and io denote the irreducible and the fundamental repre

sentation respectively and ;1 denotes the amount of scale change of single itera

tion in the Migdal transformation. 5
) The turnover point St.a. is, qualitatively 

speaking, considered to be the point which separates the SiD-axis (Wilson axis) 

into two regions, 1) SiD < St.a., where the Migdal renormalization group trajectory 

rapidly converges to strong coupling regime, Le., Si,*iD<K..SiD <K..l, namely without 

leaving the Wilson axis too much, and 2) SiD> St.a., where the trajectory deviates 

from the original Wilson axis and moves to the Gaussian action. The fact, that 

St.a. situates quite close to the crossover point in l( 120) and S U (2) cases, 

*) /:Ito. was called critical point in Ref. 1), but it will be called "turnover point" in this paper in order 
to avoid confusion, because /:It.o. does not situate on the critical surface. 
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222 M. lmachi, S. Kawabe and H. Yoneyama 

suggests it deserves further investigation on the relation between the Migdal 
renormalization group and the crossover phenomena. 

In this paper, we will extensively investigate whether the Migdal renormal
ization group approach can really probe the crossover phenomena or not. 6

) For 
this purpose, flow diagram of the renormalization group trajectory of coupling 
constants is studied. In this procedure, the fact that every trajectory starting 
from various bare actions converges to a unique trajectory 7) in confining phase 
plays an essential role. Using this property and the Wilson-Kogut topological 
argument,S) we can derive the relation between bare coupling constants and the 
lattice constant a. Namely, we fix a renormalized coupling constant /3G on the 
unique trajectory, which is called "gate",S) and calculate the amount of change of 
scale between the gate /3G and some bare coupling constant /3b( a), and we obtain 
the functional relation between the bare coupling constant and the lattice con
stant a, which gives the coupling constant renormalization procedure. We will 
call this process "unique trajectory method". The unique trajectory method, 
which combines the Migdal recursion equation with the Wilson-Kogut topological 
argument, makes it possible to study phase structures of various lattice gauge 
theories. 

In the Migdal renormalization group approach, the change of scale is given 
by a parameter ;1 and the total amount of change of scale between bare theory at 
a and the renormalized theory, whose scale is denoted as ~G, is given by IFc, 

(1·2) 

where tG denotes the number of steps of the Migdal transformation necessary for 
a trajectory starting from a bare theory to reach. the gate. The beta function 
(Cell-Mann-Low function) is given by 

(1·3) 

Main results are as follows: 
i) The relation between tG and /3b is calculated for the LGT of i(120), icosahe
dral subgroup of SU(2). We will observe a slight but clear crossover from 
strong coupling regime to weak coupling regime in the case of the Wilson action.9

) 

ii) The same procedure, the unique trajectory method, is applied to the case of 
mixed action.10),11) It is shown that the renormalization group trajectories start
ing from various bare actions approach (i) the same trajectory found in the bare 
Wilson action case if (/3/, /3}) lies far from the /3a-axis and (ii) another unique 
trajectory dominated by adjoint representation if (S/, Sa b) lies close to the Sa
axis, where Sf and /3a denotes the inverse coupling constant of the fundamental 
and adjoint representation, respectively. Since these two unique trajectories 
lead to the same fixed point /3i = 0 (i = all), we define a gate on the second unique 
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Unique Trajectory Method in Migdal Renormalization Croup 223 

trajectory so as to give the same amount of T (isospin) = 1 contribution as that 
given by the coupling constant at the gate on the first unique trajectory. By this 
procedure, the unique trajectory method leads to the functional relation between 
the bare coupling constants and the lattice constant a. For /3g::s 1.0, crossover 
phenomena, similar to the Wilson action case, are observed and at 1::S /3a b::s 3 
region we find a clearer stepwise transition from strong coupling regime to weak 
coupling regime suggesting the first order phase transition. 
iii) There is a quadruple point where four critrical lines meet together in the 
fundamental·adjoint coupling constant plane. Four critical lines are 1) 50(3) 
critical line, 2) Z(2) critical line, 3) critical line due to the discreteness of i (120) 
and 4) critical line related to crossover. The first critical line represents the 
phase transition of the orthogonal subgroup 1(60) (= i(120)/Z(2)) of 50(3). 
The second critical line is due to Z(2) subgroup of i(120) at /3a-4CD, namely the 
freedom of 1(60) group is frozen in i(120) and only Z(2) freedom survives. The 
third critical line is due to the finiteness of i(120) group. In 5U(2) group, this 
critical line is expected to disappear. 

In § 2, we will briefly list the formula necessary to apply the Migdal recursion 
in LGT of finite group. 

In § 3, the unique trajectory method is performed for LGT of i (120). In § 4, 
some conclusions and discussion are presented. 

§ 2. Migdal recursion equation for finite group LGT 

The Migdal renormalization group transformation5
) is written down for LGT 

of finite group C.!) The partition function at scale L is given by the function 
F(L, vpv) as 

(2·1) 

where Vp.v denotes the group element of the loop with size L and situated in fl.)). 

plane (fl., )) = 1, 2, ... , D). In general the bare theory is defined at lattice constant 
a as, 

s 
F( a, v)= exp[(3o b_ ~ /3/(1- Xi( v)/ ni )], 

i=2 
(2·2) 

where xJ v) denotes the character of the irreducible representation i of dimension 
ni of the group C, and /3/ denotes the bare coupling constants and /3o b is the 
normalization constant. Since Xi( v) depends only on class of the group, we 
denote it as Xi(a), where a(l,.···, s) specifies the class and s is the number of 
irreducible representations or the number of classes of C. The recursion equa· 
tion is!) 
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224 M. lmachi, S. Kawabe and H Yoneyama 

(2·3) 

where D is the euclidean space time dimension and h denotes the total number of 
elements of the group G and Fi is defined as 

(2·4) 

where Pa is the number of elements contained in the class a. Using this relation 
we are able to obtain coupling constants at scale )'L from those at scale L; 

The characters should satisfy, 

(2·6 ) 

(2·7) 

s 
PaPpXi(a h;(/l)= n; L: dpPrX;( r), (2·8) 

r~l 

where dp denotes the class constants. 12
) The characters Xi(a) for the 120 

element icosahedral subgroup of 5 U (2), 1(120), are listed in the Appendix. 
By the successive transformation (2·3) ~ (2·5), the renormalization group 

trajectories are given in (s - 1 )-dimensional parameter space of (/l2, /la, ... , /ls ). 
The merit of studying the finite subgroup is that renormalization transforma

tion is given in a closed form about the finite set of coupling constants and makes 
it quite easier to perform renormalization transformation numerically. 

§ 3. The unique trajectory method in the Migdal 
renormalization group 

In this section, we present a method of analysis which is based on the Migdal 
renormalization group transformation and the Wilson-Kogut topological argu
ment. We will show that the Migdal-Wilson-Kogut combined method provides 
useful information on the phase structures including crossover phenomena. 
When it is applied to finite subgroup of 5U(2) it gives not only the critical 
surfaces but also the crossover and the stepwise structure suggesting the first 
order phase transition. In this analysis the role of the unique trajectory is 
essential, so we call this method "unique trajectory method". The existence of 
the unique trajectory means that trajectories starting from various bare theories 
with different lattice constant, a, and bare coupling constants, /l/, converge to a 
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Unique Trajectory Method in Migdal Renormalization Group 225 

unique renormalized theory. In other words, we can derive the relation between 
the lattice constant a and the bare coupling constant /3/ by fixing any renormal
ized coupling constant /3 T on the unique trajectory. 

3.1. Unique trajectory 

Starting from a bare action with bare coupling constants /3/ (i = io, "', s) on 
the Wilson axis, /3fo*O and /3F'Ho=O for all the other i's, where io denotes the 
fundamental representation, we obtain a trajectory in (s -1) dimensional pa
rameter space of coupling constants by successive renormalization transforma
tions. For different initial values /3fo we obtain a set of trajectories. An impor
tant feature of these trajectories is that every trajectory converges to a single 
trajectory irrespective of /3fo, which is thus called "unique trajectory", after 
sufficient. iterations. A flow diagram of renormalization group trajectories of 
1(120) subgroup for the Wilson action projected on the /3r/3a plane, is shown in 
Fig. 1, where /3f=/3io=/3z and /3a=/34 in [(120) denote the coupling constant of the 
fundamental and the adjoint representation respectively. 

We have two fixed points A and C. The point A denotes the extreme of the 
strong coupling limit. A critical line absorbed by the point*) C cuts across the 
Wilson axis at point B. Let the value of coupling constant /3fo of this critical 
point be /3c b

• For /3fo</3cb
, all trajectories approach a unique trajectory connect-' 

ing two fixed points A and C. The region specified by the fixed point A is called 
the confining phase. The region /3fo > /3c is the non confining phase and the 
presence of this phase is due to the finiteness of I (120) group. In continuous 
group SU(2), /3c-400 and this phase is expected to disappear. 

The phase which we are interested in is the confining phase, i.e., /3fo</3cb in 
[(120). In this confining phase there are still two qualitatively different regions, 
the strong coupling region and the weak coupling region. For smaller /3fo, i.e., the 
strong coupling region, the renormalization group trajectory rapidly approaches 
the unique trajectory which lies close to the Wilson axis, namely, the ratio of 
renormalized coupling constants on this part of unique trajectory satisfies 
/3[*io//3[,,-40 as /3[,,-40. For larger /370 which is smaller than /3c, i.e., for the weak 

8 
A r-0~~-r-T---"<:--<~~--'.;;:--'----'---~~'-----.J15.0 

-1.0 

-2.0 
-3.0 
-4.0 

Fig. 1. Flow diagram of renormalization group 
trajectories of the bare Wilson action. Criti
cal point is B (/3, b ~ 7.5). A is the fixed point 
of confinement phase. C is the fixed point 
which separates confinement and non
confinement phase. All renormalization 
group trajectories for /3,b<7.5 flow into a 
unique trajectory. 

*) The fixed point C is given by /32 = 10.2, /33 =3.53 x 10-3, /3, = -2.59, /35= -9.23 X 10-', /36 = 1.31, /37 

= - 2.02 X 10-1
, /38 = -7.10 X 10-1 and /39 = 6.30 X 10-1

• 
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226 M. Imachz: S. Kawabe and H Yoneyama 

coupling region, the unique trajectory which the renormalization group trajectory 
approaches situates far from the Wilson axis and near the Gaussian model. The 
Gaussian action is represented by the irreducible characters as 

00 

82 = Co+ ~ (Xi(8)/ni-1)ci 
i=2 

with 

C i = ( - 1 )2 T 2 (2 T + 1 )2/ { T2 ( T + 1 )2}, i=2T+l (3'1) 

for 5U(2) group. In the wE;ak coupling region, the ratio between the renormal· 
ized couplings approaches finite value, 

(3·2) 

After reaching the unique trajectory with (3[,Fio/ /3 To ~ C2T+1/ C2, the renormalized 
coupling constants move along the unique trajectory from the weak coupling 
region to the strong coupling region and finally tend to /3TFio//3fo-40 as shown in 
Fig. 1. In Fig. 2, various trajectories starting from various bare coupling con
stants are shown. Convergence to the unique trajectory, namely, independence 

.. of the asymptotic form of the unique trajectory from the bare coupling constants, 
is outstandingly clear. 

We are able to obtain the analytic form of the unique trajectory at strong 
coupling limit (/3io = /324:: 1). First, in order to know the order of magnitude of 
coupling constants of each irreducible representation, we consider a simple 
example, 

(2,5) 

(5,3) 
'(1,3) 

(4,10) 
(6,16) 

(5.4,14) 

(4.4,11) 

/ (3,7) 

f34=3(1.-I3)f322!16 (7.4,26) 

(6.8,19) 

(7.2,22) 
• (1,2) 

(7,20) 

(2,4) 

(3·3) 

Fig. 2. The coupling constants (32 and (3, on the 
unique trajectory in the strong coupling 
region are expected to satisfy (3,=3(1 

-./3)(32'/16, which is denoted by a solid line. 
The renormalized couplings (/32, /3,) given by 
the Migdal recursion equation starting from 
various Wilson actions are plotted by the 
points ( • ), where the numbers in the paren
thesis denote the bare coupling /3" and the 
number of iterations necessary to reach each 
point respectively. 
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Unique Trajectory Method in Migdal Renormalization Group 227 

Keeping up to O( (/32)2) term, we have 

F(a)~ 1 + A a 2/32 + ~ A~2/322 = go+ g2X2(a)+ g4X4(a), (3'4) 

where 

go=1-/32+5/322/4, g2=(/32-/3/)/2 and g4=/322/8 (3'5) 

and we used X4(a)=X22(a)-1. We obtain 

and (D=4) 

/3i(J..L)=J.. 2 LJ(Pan;x;*(a )/h)ln G(a)= (J..2 n dh)LJ Xi*(a )Pa In G(a) 
a a 

~ J.. 2{[ln( h'<2-1g~2)_ 2(g2/ 2go )2.<2]0 il + 4(gd 2g0)"2 0 i2 

+ [9(g4/ 3g0).<2-6(g2/ 2goY.<2]0i4}, (3'7) 

where G(a)= LJj(Xj(a )n)h)(Fj )"2 and In G(a) is expanded into power series. 
N ow we derive, 

/32(J..L)~4J..2(gd2go)'<2~4J..2(/32(L)/ 4)"2, 

/34(J..L) ~ J.. 2{9(g4/ 3go ).<2 - 6(gd 2go )2.l2} 

~J..2(9/ (24)"2-6/ (16).<2)(/32(L))2.l2, 

so /34(J..L)cx:: (/32(J..L) Y in the strong coupling region. 
When we slightly generalize to the case 

we have the result (3·7)~(3·9) where go, g2 and g4 are replaced by 

and 

go=1-/32(L)-/34(L)+5/322(L)/4, 

g2 = (/32(L)- /322(L))/ 2 

There is a solution of renormalized couplings satisfying 

and J..-dependent constant k is obtained as the solution of 

(3'8) 

(3'9) 

(3·10) 

(3'11) 

(3'12) 
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228 M. Imachi, S. Kawabe and H. Yoneyama 

9 (16 ( k 1 )),,2 3 
k= 16,1z :3 3+8 - 8,1z . (3·13) 

For the choice ,1 Z =2, 

k=3(1-13)/ 16= -0.1373'" . (3·14) 

The solid line in Fig. 2 is given by Eq. (3'12) with k=3(1-13)/16. Other 
coupling constants IJrFz,4(,1L) are given by higher integer power of /32 T(,1L) as 
/33 T(,1L)cx./3zT(,1L)1, /35 T(,1L )cx./3zT(,1L )6, /36 T(,1L )cx./3zT(,1L p, /37 T(,1L )cx./3zT(,1L )6, 
/3s T(,1L)cx./3z T(,1L)4 and /3gT(,1L)cx./3zT(,1L)5. 

3.2. Coupling constant renormalization 

Let us investigate the coupling constant renormalization according to the 
Wilson· Kogut topological argument.8

) The existence of the unique trajectory 
shows that there is a unique renormalized theory for various theories with 
different bare coupling constants. We will set a "gate" /3c on the unique tra· 
jectory. Let tc(/3b) be the number of iterations to reach the gate /3c from a bare 
coupling constant /3 b

• The amount of change of scale per iteration is taken to be 
A. When we fix a renormalized coupling constant /3c at some physical length ~c, 
tc changes depending on the bare coupling constant /3b, namely, we obtain tc as 
a function of /3 b. In the example shown in Fig. 1, tc is small for small /3b and 
large for larger /3b( </3c). tc tends to infinity as /3 b-4/3c from below. The tra· 
jectory starting from /3c (point B) is the critical line and tc = 00 means that the 
dimensionless correlation length is divergent. The beta function (Gell·Mann· 
Low function 13

» is given by 

(3·15) 

and the point /3c b gives ¢(/3/)=0. 
N ow we consider the relation between the lattice constant a of bare theory 

and the bare coupling constant /3 b. The lattice constant a is related to the 
physical length ~c as 

(3·16) 

tc is chosen so as to fix renormalized coupling constant /3c at physical length ~c 
by adjusting /3b suitably, namely, tc is given as a function of bare coupling 
constant /3 b. So Eq. (3·16) provides the relation between /3b and a. The relation 
between a and /3b thus obtained corresponds to the a-/3b relation in Monte Carlo 
calculation obtained by fixing the string tension. Z) In the Monte Carlo calcula
tion, a clear crossover from strong to weak coupling regime was observed. 
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Unique Trajectory Method in Migdal Renormalization Group 229 

3.3. Wilson action and crossover phenomena 
It is an interesting question whether the Migdal renormalization group can 

detect the crossover phenomena or not. It is only method which is known to be 
applicable analytically, but due to the crudeness of the approximation, such a 
delicate structure as crossover, compared with ordinary phase transitions, may 

_1°r-~lT·O~2~.O~~3r·O __ 4T·O __ ,5.0~~&rOP~:~7T·O~ 

- 5 

-10 

-15 

, , 
critical point 

" 

Wilson action 

Fig. 3. The number of iterations, tc, necessary 
to reach the gate is given as a function of B2 b 

(Wilson action). A slight but a clear cross· 
over is seen in the tc-B2 b relation. 

escape from the detection. In conclu
sion we find a slight but clear cross
over in the Wilson action case, by the 
unique trajectory method. According 
to the unique trajectory method, we 
calculated tcU]b). The obtained 
result is shown in Fig. 3 where fJc is set 
to be 10- 3 and .il = /2. 
1 ) A slight but clear sudden cross
over from the strong coupling regime 
to the weak coupling regime is observ
ed at fJFa=fJ2b~2.3 Uo=2 denotes the 
fundamental representation). 
2) Phase transition is observed at fJ2 b 

~7.5=fJcb, which is seen as the zero 
point of the beta function ¢ of (3 ·15). 
This phase transition corresponds to 
the phase transition observed in the 
Monte Carlo calculation at fJ/~6. 

The position of fJ/ is shifted due to the value of .il=/2 which differs from unity. 
This phase transition is considered31 to be due to the discreteness of I (120) and 
is expected to disappear in the continuous 5U(2) group case. 
3) Phase transition at fJ2 b ~ 7.5 is second order in Migdal renormalization group, 
while it is first order like in the Monte Carlo calculation. 
4) Between fJgo.~2.3 and fJ/~7.5, the curve is approximately linear, 

(3·17) 

where c and d are constants. It gives qualitatively the same results as pertur
bative QCD beta function. Since the "physical quantity" ~c which gives physical 
coupling constant fJG should be independent of lattice constant a, it satisfies 

o = d~cI da= (a~cI aa)+ (a~cI afJb)( dfJb / da). (3·18) 

From ~c=a.iltc.<li,l and (3'18), we obtain 

(3·19) 

By fJb=4/gb 2 (gb denotes the bare coupling constant), 
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230 M. lmachz: S. Kawabe and H. Yoneyama 

(3·20) 

It is similar to the form of beta function obtained in perturbative QeD. Numer
ically, however, the coefficient of gb 3 term is 1/8e In /2~0.13 in our calculation (e 
~2.7, ,.1=/2) which is too much greater compared with the value (11/247[2) 
~0.046 by factor 2.9_ According to the original Migdal's paper,5) 5U(2) group 
gives (,12-1)/24In,1~0.12 for ,1=/2, which is close to our 1(120) result (0.13). 
The value of this coefficient depends strongly on,1. For example, the discrepan
cy becomes ~ 1.8 instead of 2.9 in ,1 .... 1 limit. 

3.4. Mixed action and stepwise transition 

In order to know more about the phase structure of 1(120) group, we next 
consider the mixed action model/O),II) where some members of /3/ other than /32b 
(fundamental representation io=2) are set equal to non vanishing value. In this 
section we consider the fundamental + adjoint model, where /32b and /3/ are non 
vanishing and others are zero. Renormalization group transformation drives 
various bare coupling constants to the unique trajectory as in the previous 
subsection (Fig. 4). For small /3/=/3/ and large /34 b=/3ab, the coupling constant 
/3a T of adjoint representation dominates, and the renormalization group trajectory 
approaches another unique trajectory, which we will call "unique trajectory II". 
Leading coupling constants on unique trajectory II are those of integer isospin T, 
/34T( T=l), /3s T( T=2) etc. 

Unique trajectory II runs along the Gaussian action of 50(3) theory at /34T 
=large (but below /3fc~3.5) and goes along /38T~kII(/34r)2 at strong coupling limit 
(/34 r .... 0) and is finally absorbed by the fixed point A, /3; = 0 (i = 2, ... , 9). The 
unique trajectory found in renormalization group transformation starting from 
bare Wislon action, which we will call "unique trajectory I", flows into the same 
fixed point A as unique trajectory II and the behavior of both trajectories at weak 
and strong coupling regime is described by the 82 type and the cosine type 
Lagrangian in the respective region. In order to adjust the gate on unique 
trajectory I and that on II, we choose the gate /3~,G on unique trajectory II in the 
strong coupling region as done in the case of unique trajectory I as, 

0.0 15.0 (3: 

Fig. 4. The flow diagram of renormalization 
group trajectories starting from bare mixed 
action (/32 b, /3/), where /3/=2.8. For larger 
/32b (but smaller than /3e), the renormaliza· 
tion group trajectory is given by unique tra· 
jectory I and for smaller /32 b, the renormal· 
ization group trajectory is given by unique 
trajectory II. 
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Unique Trajectory Method in Migdal Renormalization Group 231 

(3·21) 

where S~,G~ k[(S},G)2 (Eq. (3·12)) with k[= 3(1-/3)/16 (Eq. (3·14)). This choice 
leads to the same contribution of cos2

( 8/2) term in the small S expansion of the 
partition function. For the choice S},G = 1.0 X 10-3 we have 

(3·22) 

Now we are able to obtain tG-(S2 b
, S4b) relation. When we start from some bare 

coupling (S2 b, S4 b), we obtain the value of tG by the gate S},G=10- 3 if the renormal
ization group trajectory goes into unique trajectory I and by the gate S~,G = 2.377 
X 10-7 if renormalization group trajectory goes into unique trajectory II. We 

.show the tG-S2 b relation in the mixed action model in Fig. 5. 
1) Surprisingly clear stepwise structure is found in the region 1;S S4 b;S 3. Since 
this stepwise structure means the approximate discontinuity of the dimensionless 
correlation length, it suggests first order phase transition. This structure 
continuously tends to the crossover behavior as S/ -> small. 
2) Phase transition with ¢ (Sb) = 0 appears along a line connecting a point 
QO(=(S2 b, S/)=(0.75, 3.2)) and the point B«7.5, 0)) (Fig. 6). This phase transi
tion is expected to be due to the discreteness of l( 120). 
3) Critical lines with c/J(Sb)=O run from the point Qo to (0,3.5) and from Qo to 

-10 

-20 

-30 

criticol point 
xxx)(.)(x f3b 28 "\ ,.=. 

region I 

~ reg ion n 

Fig. 5. The stepwise structure at 82 b", 0.85_ seen 
in the fc-S! relation for the mixed action 
model at S/=2.8. The points (.) and the 
crosspoints (x) denote the bare theories 
which lead to the unique trajectories I and II, 
respectively. 

B.O 

f3: 
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Fig. 6. The phase diagram of the fundamental
adjoint mixed action model. The cross
points (x) denote the critical points of the 
second order phase transition (tc = =) and 
the points ( ... ) and (6) show the stepwise 
transitions and the crossover structures, re
spectively. The regions I and II are distin
guished by the points (0). The quadruple 
point Qo situates at (0.75,3.2). 
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(0.6,00). The former is due to the finite subgroup of 50(3), 1(60) (=1(120) 
/Z(2» and the latter is due to Z(2). These phase transitions are of second order 
in the Migdal approximation. 
4) The "stepwise transition" connected to crossover runs along a line connecting 
the point Qo and (2.3,0). In this way, the point Qo is a quadruple point of phase 
transition in (/32 b, /34b) plane. 
5) Phase diagram thus obtained is shown in Fig. 6. The two regions of (/32 b, 
/34b) which lead to the unique trajectories I and II are denoted as I and II in this 
figure. The region whose renormalization group trajectory is given by unique 
trajectory II is 50(3) like. Two regions I and II are separated by a line which 
is shown by a dotted curve. 
6) The phase transition and possible crossover point in the Manton14

) action are 
also plotted in Fig. 6 for comparison. It should be noted that other /3F*2,4 are not 
zero in this case so the points are the proj~cted ones into (/32 b, /34 b) plane. The 
crossover is very slight in the Manton action as shown in Fig. 7 (/3tc ~ 10.5, /3tc.o. 
~3.5). 

7) By fixing the renormalized coupling (e.g., that of the gate) at ~G, the "equi· 
lattice constant surface" can be derived. According to the relation ~G = A Ie a, the 
equi-Iattice constant surface can be obtained by the condition td/32b, /34 b)=con
stant. The equi-Iattice constant surface in confinement phase is shown in Fig. 8. 

" " ... 
". 
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-10 
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critical point 

Fig. 7. The tc-82 b relation in the Manton action. 
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Fig. 8. The "equi·iattice constant surface" in the 
regions I and II for the mixed action model. 
The points (x •• , 6, 0) are same as those 
in Fig. 6. 
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§ 4. Discussion 

In this paper we presented the "unique trajectory method" in the Migdal 
renormalization group approach and applied it to 1(120) group in four dimen
sional lattice gauge theory. It probes various phase structures. In the Wilson 
action case, a slight but clear sudden crossover is observed and in the mixed 
action case approximately singular behavior like a discontinuity is observed. 
The latter singular stepwise behavior means the sudden change of the correlation 
length like a gap, then this critical line approximately indicates the first order 
phase transition. This feature is outstanding in the neighborhood of the quadru
ple point and becomes weaker as we approach the Wilson axis. On the way to 
reach the Wilson axis this stepwise singular behavior changes into crossover 
structure. Therefore, the crossover can be considered to be reminiscence of the 
first order phase transition. 

There is a region ((3/, (3a b) whose renormalization trajectory is given by 
unique trajectory II (that of 50(3)). The boundary between two regions (one 
leads to unique trajectory I and another leads to unique trajectory II) was 
observed (Fig. 6). 

The success of the unique trajectory method in probing crossover and step
wise singular behavior is very encouraging. It is worth while to apply the 
method to other gauge groups including the continuous group 5U(2),15) 5U(3), 
5U(4), 5U(5), etc. 

There are, however, problems in the method: i) Quantitative results, e.g., the 
slope of beta function deviates by factor 3 from the value expected from 
continuum theory and ii) the order of phase transition cannot be reproduced 
correctly, namely, the first order phase transition is approximately well re
produced in one case but not in other (three) cases around the quadruple point. 
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Appendix 

We list the irreducible characters I) Xi(a) of [(120) group in Table I. 
i = io = 2, i = 4, i = 6, i = 8 and i = 9 correspond to the fundamental representation 
(T=1/2), the adjoint representation (T=l), T=3/2, T=2 and T=5/2 repre
sentation respectively. 
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Table 1. Irreducible characters of i. 

Xl X, X3 X, X, X. X, X. X9 

class ~ 1 2 2 3 3 4 4 5 6 

C 1 1 2 2 3 3 4 4 5 6 
C, 20 1 1 1 0 0 -1 1 -1 0 

C3 20 1 -1 -1 0 0 1 1 -1 0 
C, 12 1 (/5+1)/2 -(/5-1)/2 (/5+1)/2 -(/5-1)/2 1 -1 0 -1 

C, 12 1 (/5-1)/2 -(/5+1)/2 -(/5-1)/2 (/5+1)/2 -1 -1 0 1 

C. 12 1 -(/5-1)/2 (/5+1)/2 -(/5-1)/2 (/5+1)/2 1 -1 o -1 

C, 12 1 -(/5+1)/2 (/5-1)/2 (/5+1)/2 -(/5-1)/2 -1 -1 0 1 

C8 30 1 0 0 -1 -1 0 0 1 0 

C9 1 1 -2 -2 3 3 -4 4 5 -6 
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