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Abstract
Magnetic resonance electrical impedance tomography (MREIT) is a new
medical imaging modality providing high resolution conductivity images based
on the current injection MRI technique. In contrast to electrical impedance
tomography (EIT), the MREIT system utilizes the internal information of
current density distribution which plays an important role in eliminating the
ill-posedness of the inverse problem in EIT. It has been shown that the
J -substitution algorithm in MREIT reconstructs conductivity images with
higher spatial resolution. However, fundamental mathematical questions,
including the uniqueness of the MREIT problem itself and the convergence
of the algorithm, have not yet been answered. This paper provides a rigorous
proof of the uniqueness of the MREIT problem and analyses the convergence
behaviour of the J -substitution algorithm.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The primary goal of electrical impedance tomography (EIT) is to provide cross-sectional
conductivity images of the human body [3]. When we inject current into an electrically
conducting subject through a pair of surface electrodes, the internal current pathway is
determined by the conductivity distribution and the shape of the subject. Any local change
of the conductivity distribution results in a distortion of the internal current pathway, whose
effect is conveyed to boundary voltages. In EIT, we measure the boundary voltages due to
multiple injection currents to reconstruct images of the conductivity distribution. However,
these boundary voltages are insensitive to a local change of the conductivity distribution
and the relation between them is highly nonlinear. EIT images suffer from poor spatial
resolution and accuracy due to the ill-posed characteristic of the corresponding inverse problem.
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This motivated us to look for a new way of incorporating more information so that we can
avoid this ill-posed nature of the inverse problem.

Magnetic resonance electrical impedance tomography (MREIT) was proposed in order to
overcome this difficulty in EIT [5, 8, 11, 13, 20, 21]. In MREIT, we note that the injection
current produces a magnetic field as well as an electric field. Since we have been relying only on
the measured electrical quantities at the boundary of the subject in EIT, the important keyword
in transforming the ill-posed problem into a well-posed one is the internal information of the
induced magnetic field. Measuring the induced magnetic flux density B due to the injection
current, we can obtain the internal current density distribution J = ∇ × B/µ0, where µ0 is the
magnetic permeability of free space. This can be done using the magnetic resonance current
density imaging (MRCDI) technique [4, 6, 7, 9, 10, 18, 19].

Once the current density J is acquired, we should effectively utilize it to reconstruct an
image of the conductivity distribution. In our previous papers [11, 13], we proposed the
J -substitution algorithm which can provide conductivity images with high spatial resolution
and accuracy. Experimental verification of the J -substitution algorithm has also been
demonstrated in [14] using two different current injections. Although the J -substitution
algorithm performs well, it still remains for us to study the uniqueness of the MREIT problem
itself and the convergence behaviour of the algorithm.

Let us begin with stating the mathematical model of the MREIT problem. A domain
� ⊂ R

n , n = 2, 3, denotes an electrically conducting subject with a conductivity distribution
σ . We assume that the domain � is bounded and has a connected C2-boundary. We also assume
that the conductivity distribution σ is C1(�̄) and strictly positive σ > 0. (See remark 2.5 for
an extension of the theory for more general cases.)

The injection current g is applied through a pair of electrodes attached at P, Q ∈ ∂�.
Assuming that each electrode is a disc with a radius ε, we can express the injection current
approximately as

g(x) = g[ε; P, Q](x) :=




1

πε2
if |x − P| < ε and x ∈ ∂�

− 1

πε2
if |x − Q| < ε and x ∈ ∂�

0 otherwise.

According to the Maxwell equations, the conductivity σ dictates the relation between g and
the corresponding voltage v via the following Neumann boundary value problem:

∇ · (σ∇v) = 0 in �,

σ∇v · ν = g on ∂�,
(1)

where ν is the outward unit normal vector to the boundary. Here, σ and v are unknowns and v

depends on σ . For the uniqueness of v, we normalize v(ξ0) = 0, where the choice of ξ0 ∈ ∂�

is arbitrary as long as it is separated enough from P and Q. The normalization of v(ξ0) = 0
is mathematically equivalent to

∫
∂�

v = 0. In practice, we use a reference or ground electrode
at ξ0 and measure the voltage v with respect to the electrode. Hence, ξ0 can be regarded as a
reference point for voltage measurements.

In MREIT, it is supposed that the magnitude J of the current density vector field J = −σ∇v

is given. We may take advantage of this additional information, J := |J| = σ |∇v|, and
transform the EIT model in (1) to

∇ ·
(

J

|∇u|∇u

)
= 0, in �,

J

|∇u|
∂u

∂ν
= g on ∂�, u(ξ0) = 0,

(2)
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which has only one unknown function u. Now, the inverse problem of the classical EIT model
is converted to the direct problem in (2), where σ can be obtained directly from its solution u
by the relation σ = J/|∇u|. However, it must be observed that, if u is a solution of (2), so is cu
for any positive constant c. In order to fix this scaling uncertainty, we adopt the normalization
of J (ξ0)/|∇u(ξ0)| = 1 that corresponds to the normalization of conductivity values with
σ(ξ0) = 1. Here, since the choice of ξ0 is arbitrary, we set it to be the same point for voltage
normalization. In practice, we may attach a small amount of material of known conductivity at
the point ξ0 and image the subject including it. Adding this conductivity normalization into (2)
together with the positivity of J , we now consider

∇ ·
(

J

|∇u|∇u

)
= 0, in �,

J

|∇u|
∂u

∂ν
= g on ∂�, u(ξ0) = 0,

J (ξ0)

|∇u(ξ0)| = 1.

(3)

In order to reconstruct σ = J/|∇u|, the solvability of (3) will be the major issue.
Unfortunately, it has been proved in a recent paper [12] that the problem (3) with general
J has either infinitely many solutions or no solution at all. In practice, the existence is always
guaranteed as long as J is the magnitude of the current density,but the non-uniqueness structure
raises a serious issue because we do not know whether a reconstructed solution is the true one
or not.

The coupled MREIT system was designed in [13] to handle this issue by using two injection
currents:

gi(x) = g[ε; Pi , Q](x) x ∈ ∂�, i = 1, 2, (4)

and it can be expressed as the following coupled system:

∇ ·
(

Ji

|∇ui |∇ui

)
= 0, in �, i = 1, 2

J1

|∇u1| = J2

|∇u2| in �,

Ji

|∇ui |
∂ui

∂ν
= gi on ∂�, ui (ξ0) = 0,

J (ξ0)

|∇ui(ξ0)| = 1,

(5)

where ξ0, P1, P2 and Q are four different points on ∂�. This type of current injection was
used in [1]. The second coupling identity in (5) connecting u1 and u2 stems from the fact that
the variation in σ due to different injection currents is negligible.

The J-substitution algorithm is a natural iterative scheme based on the coupled system (5).
Although it performs well in numerical simulations [13] and experimental work [14], the
fundamental questions, such as the uniqueness of the coupled MREIT system and the
convergence of the algorithm, have not been answered yet. In [12], we only showed that
the edges of discontinuity in σ are uniquely decided in two dimensions, while the uniqueness
of the smooth part of σ was left open. In this paper, we prove this uniqueness including
three-dimensional cases. In section 3, we will explain the convergence behaviour of the
J -substitution algorithm.

2. Uniqueness of the MREIT problem

The solution v of the EIT model (1) clearly satisfies the MREIT model (3). Therefore, the
existence of the MREIT model is guaranteed as long as the positive function J represents the
magnitude of the current density vector field of the EIT model. One of the main difficulties
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in obtaining the conductivity distribution is related to the uniqueness issue of the MREIT
model (3). In fact, in the process of the transformation from (1) to (3), infinitely many
solutions have been introduced and the new model suffers for its non-uniqueness structure.
The following proposition manifests in a constructive way how the non-uniqueness of the
problem (3) occurs.

Proposition 2.1. Suppose u ∈ C1(�) ∩ H 1(�) is a solution of (3). For any φ ∈ C1(R) with
φ(0) = 0 and φ′ > 0 in R, the following function w is also a solution of (3):

w(x) := φ(u(x))

φ′(u(ξ0))
for x ∈ �. (6)

Proof. From the definition, w ∈ C1(�) and w(ξ0) = 0. Direct computation yields

∇w(x) = ρ(x)∇u(x), where ρ(x) := φ′(u(x))

φ′(u(ξ0))
. (7)

Substituting x = ξ0, we obtain ∇w(ξ0) = ∇u(ξ0) and

J (ξ0)

|∇w(ξ0)| = J (ξ0)

|∇u(ξ0)| = 1.

Since φ is monotonic, ρ > 0 and

∇w(x)

|∇w(x)| = ∇u(x)

|∇u(x)| , x ∈ �.

Hence, w satisfies (3). �
Since there are infinitely many ways to choose the function φ in proposition 2.1, there are

the same number of solutions of (3). We can easily check that, if u satisfies the EIT model (1),
the modified solution w given by (6) also satisfies the same EIT model after replacing σ by

σ̃ := φ′(u(ξ0))

φ′(u(x))
σ

(
= J

|∇w|
)

.

When J is given, we can obtain a conductivity distribution from σ = J/|∇u|. However,
from proposition 2.1, we can construct a different solution w, producing another conductivity
distribution σ̃ = J/|∇w|. As an example, figure 1 shows two conductivity distributions
recovered from two different solutions u and w using the same J .

Now, let us discuss the uniqueness of the coupled MREIT model (5). We assume that σ

belongs to the class


 := {σ ∈ C1(�̄) : 0 < σ < ∞}.
The smoothness condition is used for the simplicity of its analysis and it can be relaxed in
various ways as in remark 2.5. We consider a pair (u1, u2) ∈ H 1(�) × H 1(�) satisfying the
following coupled system:

∇ ·
(

Ji

|∇ui |∇ui

)
= 0, in �, i = 1, 2

J1

|∇u1| = J2

|∇u2| ∈ 
,

Ji

|∇ui |
∂ui

∂ν
= gi on ∂�, ui (ξ0) = 0,

Ji (ξ0)

|∇ui(ξ0)| = 1, i = 1, 2.

(8)

In the following theorem, we show the desired uniqueness which implies that the conductivity
is uniquely decided by two measurements of J1 and J2 for both two- and three-dimensional
space.
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Figure 1. Distribution of (a) J/|∇u| and (b) J/|∇w|, where u and w are two different solutions
of (3). Here, � = (−1, 1) × (−1, 1), g(x) = δ(x − (0, 1)) − δ(x − (0,−1)), x ∈ ∂� and φ in (6)
is chosen so that φ′(t) = 2 + 3 sin(400π t)/4 with ξ0 = (1, 0).

Before describing the theorem, we introduce a couple of lemmas. In proposition 2.1, the
gradient vectors of the two solutions w and u have the same direction as in (7). In fact, we
show in the following lemma that the gradient vectors of all possible solutions to (3) have the
same direction.

Lemma 2.2. For any two solutions u and ũ of (3), their gradient vectors ∇u and ∇ũ are
parallel to each other, i.e.

∇u(x)

|∇u(x)| = ∇ũ(x)

|∇ũ(x)| for any x ∈ � such that ∇u(x) �= 0, ∇ũ(x) �= 0. (9)

Proof. Since u and ũ have the same Neumann data g, we have∫
�

(
J

|∇u|∇u − J

|∇ũ|∇ũ

)
· ∇(u − ũ) dx =

∫
∂�

(g − g)(u − ũ) ds = 0,

which can be written as∫
�

σ |∇u|(|∇u| + |∇ũ|)
(

1 − ∇u · ∇ũ

|∇u||∇ũ|
)

dx = 0.

Since each factor of the above integrand is non-negative, the whole integrand should be
identically zero. Since σ > 0, 1 − u(x)·∇ũ(x)

|∇u(x)||∇ũ(x)| = 0 if ∇u(x) �= 0 and ∇ũ(x) �= 0. This
completes the proof. �
Lemma 2.3. Let (u1, u2) and (ũ1, ũ2) be solutions of (8). If we set σ = J1

|∇u1| , σ̃ = J1
|∇ũ1| and

J j = −σ∇u j , then

∇
(

log
σ

σ̃

)
× J j = �0 in �, j = 1, 2. (10)

Proof. Using lemma 2.2, we can easily check that J̃ j(= − σ̃∇ũ j) = J j , j = 1, 2. Since
∇ × ∇u j = �0,

�0 = ∇ ×
(

1

σ
J j

)
= 1

σ
(−∇ log σ × J j + ∇ × J j) in �, (11)

which leads to ∇ log σ × J j = ∇ × J j , and similarly we have ∇ log σ̃ × J j = ∇ × J j . By
taking the difference of these two identities, (10) is obtained. �
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Theorem 2.4. Let (u1, u2), (ũ1, ũ2) ∈ H 1(�) × H 1(�) be two pairs of solutions of the
system (8). Let σ = J1

|∇u1| and σ̃ = J1
|∇ũ1| . Then

σ = σ̃ , u1 = ũ1, u2 = ũ2 in �. (12)

Proof. Set J j = −σ∇u j , J̃ j = −σ̃∇ũ j and η(x) = log σ (x)

σ̃ (x)
. Let us begin with proving

η = 0 in � for the two-dimensional case. Due to the choice of g1 and g2, we have

|∇u1(x) × ∇u2(x)| =
∣∣∣∣ ∂1u1(x) ∂2u1(x)

∂1u2(x) ∂2u2(x)

∣∣∣∣ �= 0 for all x ∈ �.

(See [2, 17] for the proof using level curves.) Hence

J1(x) × J2(x) = σ 2(x)∇u1(x) × ∇u2(x) �= 0 for all x ∈ �.

Lemma 2.3 means that (−∂2η(x), ∂1η(x)) · J j(x) = 0 for j = 1, 2. Since the vectors J1(x)

and J2(x) are linearly independent for all x ∈ �, ∇η(x) = �0 or η is a constant. According to
the assumption σ(ξ0) = 1 = σ̃ (ξ0), we have η(ξ0) = 0, and therefore η(x) = 0 for all x ∈ �.

Now, let us prove (12) for the three-dimensional case. (Definitely, the following proof
also works for the two-dimensional case.) Suppose �̂ is the set of all points x such that J1(x)

and J2(x) are linearly independent:

J1(x) × J2(x) = σ 2(x)∇u1(x) × ∇u2(x) �= �0 for all x ∈ �̂. (13)

Since σ ∈ C1(�̄), u j ∈ C1,α(�) for any 0 < α < 1 and �̂ is open. Moreover, we may show

that �̄ = ¯̂
�. If not, there is an open ball B ⊂ � \ �̂ such that ∇u1(x) × ∇u2(x) = �0

in B . Let us pick two points y, z ∈ B such that u1(y) �= u1(z),∇u1(y) �= 0, and
∇u1(z) �= 0. Since ∇u1 and ∇u2 are parallel in B , u1 and u2 have the same level surfaces
in B and, in particular, {x ∈ B : u1(x) = u1(y)} = {x ∈ B : u2(x) = u2(y)} and
{x ∈ B : u1(x) = u1(z)} = {x ∈ B : u2(x) = u2(z)}.

Obviously, there exists a closed curve γ ⊂ {u1 = u1(y)} such that the domain D enclosed
by the integral surface passing through γ and the two level surfaces {x ∈ � : u1(x) = u1(y)}
and {x ∈ � : u1(x) = u1(z)} lie in B . Hence, u j |D can be viewed as a solution of
∇ · (σ∇u j) = 0 in D with the special boundary data having u = constant on each of the
level surfaces and zero Neumann data on the other boundary. Hence, it is easy to see that
∇u1 = α∇u2 in D for some constant α. From the unique continuation, ∇u1 = α∇u2 must
hold on the entire domain �, which contradicts the boundary conditions g1 and g2. Therefore,

we obtain �̄ = ¯̂
�.

Let J j = (a j , b j , c j ). From the linear independence between J1 and J2, at least one of
the following three matrices should be invertible for each x ∈ �̂:

A1(x) :=
(

b1(x) c1(x)

b2(x) c2(x)

)
, A2(x) :=

(
c1(x) a1(x)

c2(x) a2(x)

)
,

A3(x) :=
(

a1(x) b1(x)

a2(x) b2(x)

)
.

Moreover, lemma 2.3 implies that

A1

( −∂3η

∂2η

)
=

(
0
0

)
, A2

( −∂1η

∂3η

)
=

(
0
0

)
,

A3

( −∂2η

∂1η

)
=

(
0
0

)
in �.

(14)
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Now, we are ready to prove that ∇η(x) = �0 for all x ∈ �̂. Let x be fixed. Since at least
one of the A j(x) is invertible, without loss of generality we assume that A1(x) is invertible.
According to (14), we have ∂2η(x) = 0 = ∂3η(x) and

A2(x)

( −∂1η(x)

0

)
=

(
0
0

)
= A3(x)

(
0

∂1η(x)

)
,

which is equivalent to

A1(x)

(
∂1η(x)

−∂1η(x)

)
=

(
0
0

)
.

The invertibility of A1(x) yields ∂1η(x) = 0 and we have

∇η(x) = �0 for all x ∈ �̂ := {x ∈ � : J1(x) × J2(x) �= �0}. (15)

Hence, σ/σ̃ is constant for each component of �̂. Since �̄ = ¯̂
�, the continuity of σ and σ̃

leads to σ(x) = cσ̃ (x) for all x ∈ � for a constant c > 0. Now, the normalization factor
σ(ξ0) = 1 = σ̃ (ξ0) implies that σ = σ̃ in �.

Since σ = σ̃ , u j and ũ j are solutions of the same problem (1) with the same Neumann
data and, hence, the uniqueness of the Neumann boundary value problem implies u j = ũ j .
This completes the proof. �

Remark 2.5 (Discontinuous conductivity σ). The smoothness condition on σ can be relaxed
in various ways. For example, consider

σ = σ0 + σ1χD1 + · · · + σN χDN > 0 in �,

where Di are smooth sub-domains of �, D̄i are disjoint and σi ∈ C1(D̄i ). Here, χDi is the
characteristic function of Di . Following the lines in the proof of the theorem, we obtain that
σ

σ̃
is constant in each connected components of �̂ := {x ∈ � : J1(x) × J2(x) �= �0}

and the set T = {x ∈ � : σ/σ̃ is discontinuous at x } is contained in ∪N
j ∂ D j . Suppose that

T �= ∅. Then there exists Dk such that ∂ Dk ⊂ T . Since J j = J̃ j and σ/σ̃ has a jump along
∂ Dk , it follows from the transmission condition of J j and J̃ j along the boundary ∂ Dk that the
vector J j(J̃ j) on ∂ Dk must be normal to ∂ Dk . Hence, ∂ Dk itself is a level surface of u j and
therefore, according to the maximum principle, u j is a constant in Dk . Hence, ∇u j = 0 in the
entire �, which contradicts the boundary condition g j .

Remark 2.6 (Injection currents). Theorem 2.4 holds for arbitrary choices of g1 and g2 with
the same proof for the three-dimensional case. In our experimental studies [11, 14], we attach
four electrodes on the surface of the subject, through which we inject currents (or Neumann
data).

3. J-substitution algorithm and its convergence behaviour

In this section, we first explain the J-substitution algorithm which is a natural iterative scheme
of the MREIT system. Then we try to provide some aspects of the algorithm related to its
convergence behaviour. Its strong convergence is still left open and we suggest further study
on more rigorous convergence analysis.

Using the MREIT model (3), we may design an iterative J -substitution algorithm as
follows.

(i) Initial guess σ0 = 1.
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(ii) For each n = 0, 1, . . . , solve

∇ · (σn∇un) = 0 in �,

σn
∂un

∂ν
= g on ∂�, u(ξ0) = 0.

(iii) Stop the process if ‖J − σn|∇un|‖L2(�) < ε, where ε is a given tolerance.
(iv) Update the conductivity using

σn+1(x) = Cn
J (x)

|∇un(x)| with Cn = |∇un(ξ0)|
J (ξ0)

.

The following theorem shows how the sequences of solutions un and conductivity
distributions σn evolve as n → ∞.

Theorem 3.1. Let u be a solution of (3) and un be a sequence of solutions generated by the
iterative algorithm. Then, we have∫

�

(σn+1 − σ)

{(
1 +

σn+1

σ

)
J 2

σ 2
n+1

}
dx

=
∫

�

(σn − σ)

{(
1 + ρn

σn+1

σ

)
J 2

σ 2
n+1

}{ ∇un · (∇un + ∇u)

|∇un|(|∇un| + |∇u|)
}

dx, (16)

where ρn = |∇u(ξ0)|
|∇un(ξ0)| .

Proof. Observing that

(σ 2
n+1 − σ 2)|∇un|2 = J 2 − σ 2|∇un|2 = σ 2(|∇u|2 − |∇un|2),

we obtain ∫
�

(σ 2
n+1 − σ 2)

σ
|∇un|2 dx =

∫
�

σ(|∇u|2 − |∇un|2) dx . (17)

The right-hand side of the above identity can be written as∫
�

σ(|∇u|2 − |∇un|2) dx =
∫

�

(σn − σ)∇un · (∇un + ∇u) dx

+
∫

�

(σ∇u − σn∇un) · ∇(u − un) dx

=
∫

�

(σn − σ)∇un · (∇un + ∇u) dx

where we use ∫
�

(σ∇u − σn∇un) · ∇(u − un) dx =
∫

∂�

(g − g)(u − un) ds = 0.

Hence, using σn+1(x) = Cn
J (x)

|∇un(x)| , (17) becomes

C2
n

∫
�

(σn+1 − σ)

{(
1 +

σn+1

σ

)
J 2

σ 2
n+1

}
dx =

∫
�

(σn − σ)∇un · (∇un + ∇u) dx . (18)

Since

|∇un|(|∇un| + |∇u|) = Cn
J

σn+1

(
Cn

J

σn+1
+ C

J

σ

)
= C2

n

(
1 + ρn

σn+1

σ

)
J 2

σ 2
n+1

,

the right side of (18) is equal to

C2
n

∫
�

(σn − σ)

{(
1 + ρn

σn+1

σ

)
J 2

σ 2
n+1

}{ ∇un · (∇un + ∇u)

|∇un|(|∇un| + |∇u|)
}

dx .

This completes the proof. �
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Figure 2. (a) True conductivity distribution to be reconstructed. Distributions of current density
in � = (−1, 1) × (−1, 1): (b) J1 and (c) J2 due to g1(x) = δ(x − (0, 1)) − δ(x − (0,−1)) and
g2 = δ(x − (1, 0)) − δ(x − (0, −1)) for x ∈ ∂�, respectively.

Remark 3.2. Note that

|∇un · (∇un + ∇u)|
|∇un|(|∇un| + |∇u|) � 1

and the equality holds only if ∇u and ∇un are parallel. Roughly speaking, the effect of the
updating process disappears as soon as ∇un becomes parallel to ∇u. The sequence obtained
by the iterative method may not converge to the true solution u. Instead, it may converge to
another solution, which has the same equipotential lines as the true solution.

Since a solution to the MREIT model (3) is not unique, we cannot expect the sequence σn

generated by the numerical algorithm based on this model to reconstruct σ . Even if it converges,
it may show a wrong conductivity. Figure 2(a) shows a true conductivity distribution to be
imaged. If we use only one injection current shown in figure 2(b), the iterative algorithm
reconstructs the conductivity image shown in figure 3(a). We can clearly observe errors in
the reconstructed image. For the numerical simulation, we used the forward solver described
in [15].
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Figure 3. Reconstructed conductivity image using (a) one injection current g1 and (b) two injection
currents g1, g2 after 20 iterations.

Now, we consider an iterative method based on the coupled MREIT system (5). Since
the conductivity should be given by σ = J1/|∇u1| = J2/|∇u2|, we can easily design the
following iterative scheme updating u1, u2 and σ .

(i) Initial guess σ0 = 1.
(ii) For each n = 0, 1, . . . , solve

∇ · (σn∇un
1) = 0 in �

σn
∂un

1

∂ν
= g1 on ∂�, un

1(ξ0) = 0.

(iii) Update the conductivity using

σn+1/2(x) = Cn
J1(x)

|∇un
1(x)| with Cn = |∇un

1(ξ0)|
J1(ξ0)

.

(iv) Solve

∇ · (σn+1/2∇un+1/2
2 ) = 0 in �

σn+1/2
∂un+1/2

2

∂ν
= g2 on ∂�, un+1/2

2 (ξ0) = 0.

(v) Stop the process if ‖J2 − σn+1/2|∇un+1/2
2 |‖L2(�) < ε, where ε is a given tolerance.

(vi) Update the conductivity using

σn+1(x) = Cn+1/2
J2(x)

|∇un+1/2
2 (x)| with Cn+1/2 = |∇un+1/2

2 (ξ0)|
J2(ξ0)

.

The following is clear from theorem 3.1.

Corollary 3.3. Let a pair (u1, u2) be the unique solution of (5) and un
1, un+1/2

2 be the sequences
generated by the iterative J-substitution algorithm. Then
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Figure 4. Convergence behaviour of the J -substitution algorithm. The dotted curve is the plot
of the metric on the left side of (16) for the reconstructed conductivity image in figure 3(a) using
one injection current. The full curve is the plot of the metric on the left-hand side of (20) for the
reconstructed conductivity image in figure 3(b) using two injection currents. The x axis is the
iteration number n.

∫
�

(σn+1 − σ)

{(
1 +

σn+1

σ

)
J 2

2

σ 2
n+1

}
dx

=
∫

�

(σn+1/2 − σ)

{(
1 + ρn+1/2

σn+1

σ

)
J 2

2

σ 2
n+1

}{ ∇un+1/2
2 · (∇un+1/2

2 + ∇u2)

|∇un+1/2
2 |(|∇un+1/2

2 | + |∇u2|)
}

dx

(19)

and∫
�

(σn+1/2 − σ)

{(
1 +

σn+1/2

σ

)
J 2

1

σ 2
n+1/2

}
dx

=
∫

�

(σn − σ)

{(
1 + ρn

σn+1/2

σ

)
J 2

1

σ 2
n+1/2

}{ ∇un
1 · (∇un

1 + ∇u1)

|∇un
1|(|∇un

1| + |∇u1|)
}

dx, (20)

where ρn = |∇u1(ξ0)|
|∇un

1(ξ0)| and ρn+1/2 = |∇u2(ξ0)|
|∇un+1/2

2 (ξ0)| .

Remark 3.4. Noting that

|∇un
1 · (∇un

1 + ∇u1)|
|∇un

1|(|∇un
1| + |∇u1|) � 1 and

|∇un+1/2
2 · (∇un+1/2

2 + ∇u2)|
|∇un+1/2

2 |(|∇un+1/2
2 | + |∇u2|)

� 1,

we can see that the effect of the updating process disappears if ∇un
1 and ∇un+1/2

2 have the same
directions as ∇u1 and ∇u2, respectively and simultaneously. Therefore, to obtain a better
result, we need to choose g1 and g2 in such a way that the angle between the generated current
density vector fields J1 and J2 is bigger.

Using two injection currents shown in figures 2(b) and (c), we could reconstruct the
conductivity image in figure 3(b). Compared with the reconstructed image using only one
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injection current in figure 3(a), we can see that the iterative algorithm using two injection
currents provides the correct image. Figure 4 shows the convergence characteristics of the
J -substitution algorithm using one and two injection currents. The dotted curve is the change
of the metric on the left side of (16) for the reconstructed conductivity image in figure 3(a)
using one injection current. It shows that the iterative algorithm converges to a wrong image,
as shown in figure 3(a). The full curve shows the change of the metric on the left side of (20) for
the reconstructed conductivity image in figure 3(b) using two injection currents. As we increase
the iteration number n, the iterative algorithm using two injection currents converges to the true
image with a negligibly small value of the metric on the left side of (20). Various numerical
experiments have been performed with simulation data and also with real experimental data
in [11, 13–16].
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