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UNIQUENESS AND ESTIMATION OF THREE-DIMENSIONAL MOTICN PARAMETERS

OF RIGID OBJECTS WITH CURVED SURFACES

R. Y. Tsai and T. S. Huang™

August 14, 1981

ABSTRACT

We show that seven point correspondences are sufficient to
uniquely determine from two pefspective views the three-dimensional
motion pﬁrameters (within a scale factor for thé translations) of a
rigid object with curved surfaces. The seven points should not be
traversed by two planes with one plane containing the origin,‘nor
by a cone containing the origin. A set of "essential parameters"
are introduced wnicn uniquely determine the motion parameters up to
a scale factor for the translations, and can be estimated by solving
a-set og_zineéf equations which are derived frqm the correspondences
of eight image points. The actual motion parameters can subsequently
be determined by computing the singular value decomposition (SVD) of a

3x3 matrix containing the essential parameters. No nonlinear equations

need be solved.

* The authors are with Coordinated Science Laboratory and Department of

Electrical Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801.



I. INTRODUCTION

The importance of motion estimation in image sequence analysis has
long been recognized, particularly in such fields as image coding, tracking
and robotic vision. Methods for two-dimensional motion estimation are rela-
tively well known [11-18]. As for three-dimensional motion estimation from
two image frames, [2-3,20] show that when the object surface is planar,
there exist a set of eight pure parameters that can be estimated by solving
a set of linear equations. The equations were derived using the Lie Group
theory [2], and the uniqueness of the eight pure parameters given all the
image point correspondences on the image plane is established either using
Lie Group Theory [2] or using elementary Mathematies [21]. In [20]), ¢&
is shown that only four image point correspondences (no three points
colinear) are sufficient to ensure the uniqueness of the pure parameters.
[3] shows that once these pure parameters are estimated, the motion para-
meters can be calculated by computing the SVD of a 3x3 matrix A consisting
of the eight pure parameters, and the number of solutions is either one
or two (usually two) depending on the multiplicity of the singular values
of the matrix A. [20] shows that regardless of the multiplicity of the

singular values, the motion parameters are always unique given three

image frames.

For the case when the object surface is not restriced *to be planar,
existing theorectical analyses and estimation Schemes were unsatisfactory
in the sense that, theorectically, it was not known precisely how many

image point correspondences are needed to ensure the uniqueness of the motion
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parameters (up to a scale factor for the translation parameters, of course),
and practically, all estimation schemes rely on the solution of nonlinear
equations using iterative search [4,10,19,23-25]. For example, it was
stated in [10] tﬁat "in any case, the general method ;ns not really practic=-
able, nor was it.designed for efficient use." [19] ended up with 18 non~-
linear equations, and [4] 5 nonlinear equations. The results stated in [23]
on the minimum number of image correspondences were not intended to be
rigorous or exact since the author tried simply to equate the numbers of
unknowns and equations. Another related problem is the stereo imaging prob=-
lem in photogrammetry and computer vision without assuming the relative orien-
tation of the two cameras since pictures taken at two time instances with one
camera can-be regarded as taken with two cameras at one instance. After the
motion parameters are computed, the surface structure of the object can be
determined by computing the z coordinates up to a scale factor dsing Eqs. (5a)
or (5b) in this paper. Despite the fact that much work has been done in this
area (e.g., [27,28]), no one has studied the problem of minimum information
required to ensure unique solutions, nor was there any technique deve-

loped otner than solving nonlinear equations iteratively or making

severe approximatons to the unknowns. Aﬁother related problem is the

so called "Location Determination Problem" as described in [26], where

tne distances between the observed points are assumed to be known a prior,
which of course creates a different but simpler problem. In short, the '

results in the present paper should be of interest to many areas of

research.

In this paper, a solution to the problem of estimating three-




dimensional motion of a rigid body from two image frames is presented.

Two major theorems, one lemma and six corollaries regarding the uniqueness
and estimation of motion parameters are stated and proved. First, a 3x3
matrix E containing 8 essential parameters are introduced. It can be
factored into a product of a skew-sysmetric matrix containing only the
translation parameters, and an orthonormal matrix containing only the
rotation parameters. Theorem I states that given the E matrix, the actual
motion parameters are unique and can be determined simply by computing the
SVD of the E matrix. The E matrix can be estimated by solving a set of
linear equations given 8 image point correspondences. Lemma I shows ‘hat
the actual motion parameters are unique if and only if a certain UYx4 matrix
C 1is skew-symmetric. Theorem II shows that if all the observed points

are not traversable by two planes with one plaﬁ; containing the origin, nor
by a cone containing the origin, then the matrix C has to be skew-symmetric.
All other results follow from these two theorems and the lemma. For
example: two planar patches determine the motion parameters uniquely;

4 points on a plane not passing through the origin and 2 other points

not on this plane determine the motion parameters uniquely; 6 points with

4 on one plane, 4 on another, and 2 common to the above two groups of 4
points on the intersections of the two planes can insure unique solution;

7 points in general positions are sufficient to determine the motion
parameters uniquely; etc. Note that Theorem II only gives a sufficient
condition. Although 7 or more points in general positions are enough

to ensure uniqueness, 6 or even 5 points are usually sufficient from

our experience. (One should be cautious not to take solutions that yield




z's that are positive before the motiom and negative after the motion, or
vice versa.) However, with 5, 6 or 7 points, one has to solve nonlinear
equations with iterative search, while with 8 or more points, the simple

method using SVD as stated in Theorem I can be used.

II. THE E MATRIX AND THE EIGHT ESSENTIAL PARAMETERS.

The basic geometry of the problem is sketched in Fig. 1. Consider

a particular point P on an object. Let

(X, ¥ ,Z) object-space coordinates of a point P before motion.

(x“,y°,2°) = object-space coordinates of P after motion.

(X,Y) image-space coordinates of P before motion.

(X°,Y°) = image-space coordinates of P after motion.

The mapping (X,Y)=»(X",Y") for a particular point is called an image point
correspondence. It is well known [22] that any 3-D rigid body motion is
equivalent to a rotation by an angle @ around an axis through the origi

with directional cosines n1,n2,n3, followed by a translation ( Ax, Ay, Az)

X X
y’ = R |y| + T (1)
2 z

whnere R is a 3 x 3 orthonormal matrix of the 1st kind (i.e. det(R)=1)

n11(1-n13cose nmn2(1-cos€)-n3sine nm3(1-cos8)+n2sine

R = | nn2(1-cos8)+n3sine n2:(1-n23cose nan3(1-cos®)-nising (2)

nn3(1-cose)-n2sin® n2n3l(1-cos&)+nlisind njﬁ(1-n§3cosa
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Although the elements in R, namely r1,r2,...,r9, are nonlinear
functions of the rotation parameters n1,n2,n3 and 8, throughout this
paper, the uniqueness and computation of R rather than ni1,n2,n3 and @ are
discussed. The reason is two fold. First, as will be seen later, to each
possible R in (2), there correspondS exactly'two sets of rotation parameters
n1,n2,n3,® with one set the negative of the other. Since these two solutions
are physically indistinguishable, we may regard the relationship between
K and the rotation parameters as one to one. The second reason is that once
R is determined, the task of computing n1,n2,n3 and € is trivial, as can
be seen in the following:

From (2), we have

R =8 +K
where
a1 +(1-n1"cose nin2(1-cose) nin3(1-cose)
S =z| nin2(1-cos€) n2*+(1-n2" )cose n2n3(1-cose) is symmetric
nin3(1-cose) n2n3(1-cosé) n3*+(1-n3%)cose
and | 1
|
0 -n3 +n2 ‘
X = sin&-+| +n3 0 -n1 is skew-symmetric. ‘

-n2 +n1 0
Since any matrix can be decomposed uniquely into a sum of a symmetric and

a skew-symmetric matrix, we see that K is unique given R, and *hus nl,n2,
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ns3,& are fixed up to a possible sign change. In fact, it is trvial to see
tnat

0 r2-ri r3-r7
K =1/2 | rd-r2 0 ré-ré
r7-r3 r8-r7 0

or ni-siné = (r8-r6)/2, n2-sin® = (r3-r7)/2, n3.siné = (r4-r2)/2,

which imply sin*@(n1*+n2™+n3*) = sin*6+1 = d/4

or sin€ = zd/2 , nl = £(r3-ré)/d,
n2 = #(r3-r7)/d , n3 = +(rd-r2)/d ,
where d = (r8-r6) +(r3-r7f + (r4-r2)® . (If d=0,then ©=0, R=I, and

nl,n2,n3 can be anything since without rotation, the axis is meaningless.)

Since sinf alone does not determine 6 uniquely, we still need cosf to fix 8.

From (2), nlz + (1 - nlz)cose = rl
2
r8-r6
e Pl =(feoe) d%cl = (8 - r6)?
cos@ ‘= > = = 3 : 5 -
1-nl r8-r6, 2 d° = (r8-r6)
1 - (——3-—0

Therefore, 6, nl, n2 and n3 can be easily determined from R.

Just as in [2-7], we now combine (1) with the following equa*ions

relating the object and image space coordinates:

X = x/2 X°=2x°/2°
(3)
Y = y/2 b S L
to obtain
(r1X+r2Y +r3)z + Ax

X (La)
(r7 X +r5¢Y r9)z + Az

+
+

(rd X + r5 Y + ré)z + Ay
Yo = (4b)
(r7 X +r8Y «+r9)z + Az

where the focal leng*h F is normalized *o 1 for simplicity. From (4),




Ax - Az X’
- AP (53)
X(r7TX +r8Y +r9) = (rt X +r2 Y + r3)

Ay - &z-X°
and 2z = (5b)
Y(r7T X +r8Y +r9) -« (rd X + r5 Y +ré)
Equating tne right hand sides of (52) and (5b) gives
i
[x‘ A X .
] E =0 (6)
4
.1-
where
Az-rld - ay-r7 Az r5 - Ay-rd Az-rb -Ay-r9
E z| Ax-r7T -Az-r! Ax-r8 -Az-r2 Ax-r9 -Az-r3 (7)
Ay'rl -Ax-r4 Ay-r2 - ax-r5 Ayr3 -Ax.rb
el ez e3
2| ey e5 eb (8)

e7 e8 e9

Note that the equality of (6) will not be influenced by mul*tiplying E
by any scalar. Since eacn element of E is linear in Ax, Ay and Az,
this simply means that there is a common scale factor for the translation
parameters that cannot be determined.(This scale factor also influences
z in (5a) and (5b), but not the rotation parameters.) For this reason,
we can always set e9 equal to some fixed number, say 1, without losing
generality. We call the elements in E "essential parameters" for
reasons that will be seen later.

It is obvious by observing (6) that the 3x3 matrix E contains all
the information one can possibly obtain given any number of image point

correspondences Y,Y)=3»(X",Y¥°). Thus if the E matrix can be de*ermined
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uniquely from a number of image point correspondences, then whether the

moticn parame‘ers are unique or not depends soly on whether the motion
parameters in (7) can be ;;£;uely detefmined fréﬁ E. This is one reason why
we call the elements in E essentizl parameters. The second reason is

that the actual 3-D motion parameters can be determined uniquely given E,
and can be computed simply by taking the SVD of E without having to solve
any nonlinear equations at all. The third reason is that given the image
correspondences of eight object points in general positions, the E ma*rix
can be determined uniquely by solving 8 linear equa‘ions.

Eefore giving Theorem 1 (which concerns the uniqueness and the

computation of motion parameters given the matrix E), let us first

analyze the matrix E. From (7), we have

- - - - -
Az 0 1 0 Ay 0 Q 1
E = Ax 0 0 1lR - Az 1 0 Q R
Avl 13608 Axl oA D
— - L p= — - L -
Az 7 s Ay
5 ax| R - |Az R= GR (9)
Ay ox
where 0] Az - Ay
c2|-az Q Ax (10)
Ay - &x 0

is skew-symmetric znd ccatains only the translation parameters and R is
the rotation matrix. It is well known in matrix *theory [1] that zany

skew-symmetric matrix XK must have even rank, say 2n, and that K, if real,

always assumes the following normal form:
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0 A Q (1)

e

where Q is some orthonormal matrix, not necessarily unique and the Y's are
real constants. Since G in (10) is 3x3 skew-symmetric, we can see from

the above that G must be singular, and that there exist a 3x3 orthonormal

matrix Q and a real number ‘f such that

o P
G=Q| 4 o Q (12)

Eq.(12) will play an important role in the analysis hereafter.

Let P = i E where i-.,,]-1 y then from (10), we have

P = i<E = i-G-R = KR (13)
where
0 i-Az -1.4y
H2:i.G6=:|-1az 0 i-Ax
LAY -bhax 0

Note that H is Hermi‘ian. Therafore, (13) gives the poclar decom-

pesition [1] of P. Since *the polar decomposition of any nonsingular
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matrix with distinct singular values is always unique [1], we can see
that Gand R would be unique if P should satisfy the conditions *hat
it was nonsingular and that P*P did not Have multiple eigenvalues.

(* denotes conjugate transpose) However, we have seen that G.is
always singular, which implies that P is always singular. Further=-

more, P always contains multiple singular values since

* %
P*P RHu-R (* denotes conjugate transpose)

f%5%R = R™1G)(iG)-R = -F*GR

.

0@ 0y
-ﬁ'{c’ ¥ 0 c}{d’[—? 0 QlR
0 0

"
i

=

o

- |-e-R=R-Q4 Y |.q-R (14)

and thus tne eigenvalues of P*P (or the square of the singular values of

P) are q%' 9% and 0. However, we shall show in Theorem I tha* because

of the special structure of G, once E is given, G and R are unique.

11I1.1 UNIQUENESS AND ESTIMATICN OF MOTION PARAMETERS GIVEN E : THECREM I.

THEGREM I
Let the SVWD of E be given by
E=UAVT (15)

then there are two solutions for the rotation matrix
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i S, Y

R=2U 1 0 v (16)
s
-: =
g B0

or » U j=1 0 W (7
2 s|

where s = det(U)-det(V) = +1 or -1

and one solution for the translation vector (up to a scale factor)

e Es
T, ,.T
Ax 019, / 939,

Az

—__..1 o
where ¢i is the ith row of E, i = 1, 2, 3, and o is some scale factor.
Furthermore, although U and V are not unique given E, once a particular pair
of U and V are selected, (16) and (17) include all the §ossib1e solutions.

However, only one of the two solutions yiel& positive z in (5a) and (5b).

Since the object must be in front of the camera, the solution is unique.

[Proof] Ax
" Let us first verify the uniqueness of|Ay| given E, and give the
computational formula for it. az
From (9), we have
EE=GRAG=GG=-0"
az' + ay* - Ax-Ay - ax-Az
= | - Ax-Ay Azt + Ax* - AY-Az (18)
-AXx-Dz -Ay-Az A +AV
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or AZ +AY = .*i. (19)
Azt+ax= @ (20)
AX+Ayi= R H (21)
AxXAy = -¢'} (22)
AxAz = - (23)
AyAz = -$T (24)

(19)+(20)-(21) gives

T )
or Az = 14T (HE TR - ¢ 1 (25)
similarly, Ox =+ 14T (-PTh + BT +f'E % (26)
Ay =+ T -B™R +fT¢ A 2n)

Therefore, given E, AX, Ay and Az are fixed except for the signs.

When a particular sign for Az is chosen, the signs for Ax and Ay

AX
are determined from (28) and (2§). Thus the translation vector [Ay]
Az

is fixed except for the sign. Since, as mentioned twice before,

multiplying E or G with any scalar does not alter the equality of (6),

AX
[AY] is unique up to a scale factor. Alternatively, since there is a common

Az
scale factor among the translatioms, Ax, Ay and Az, we have from (23) and

(24), T T 9
: e 9.9, [ 9,4,
iy | = o |efe,/e7e,

3 St o

where a is a scale factor. We now proceed to prove that given E, there

are two solutions given in (17) and (18) for the rotation matrix R with
only one among the two yielding z in (5a) and (5b) with the same signs

before and after the motion.
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From (9), (12) and (15), we have
T T
E=UAV=GR=Q[-% 0 QR (28)

ince P*P 0L Ef(i E) = E:rE, it follows from (14) that ‘f’,"f‘and 0,

wnich are the squares of the singular values of P’P, are also singular

values of E

ET

and ETE. Since, as mentioned earlier, multiplying E with
any scalar will not influence the equality of (6) and will only scale the
translation parameters in G, we can always, for the purpose of simplicity,
set & in (12) to 4 without losing generality. Thus (28) becomes

1 0 -1

Eow i T A B P (29)
0 0

By taking Q@ as UT, and premultiplying (29) with U] we have

1 » 0 -1
1 V=141 0 +Q-R (30)
0 0

Let the ith column of V be denoted by Vi, and the ith column of the

product QR be denoted by Qi, where i=1,2,3. Then (30) gives

Vi - Q2"
veT = | Q17
0 g=0 0 0 0

Thus Q2 =<V1, Q1 = #V2. Then it follows from ‘he orthonormality of QR

that Q3

"
I+

V3. Thus




(]

(-

0
=0 [ova ¥t w3 Tat0f-r o v (31)

where s = +1 or -1, &ince R is orthonormal of the first kind, we have

from (31),

0 1
det(R) = 1 = det(U)-det([-1 0 -J )edet (V)
; s

= det(U). s.det(V)

Thus

det(U) det(V) 1 = s [det(U)I"[det(v)]

Sy v et

or s = det(U)-det(V). Although U and V are not unique given E s’..ce

the multiplicity of the sngular values of E is 2, we shall show later
tnat due to the special structure of G, the solution for R is either

given by (31), or by

R=UGlY o vr (22)

and no cthers. Furthermore, only one of (31) and (32) can be accepted.

Let R1 and RZ be two orthonormal matrices of the 1st kind (i.e.,

det(R1) = det(R2) = +1 and not -1) that satisfy (9), i.e.,
E = G-R1 = £ G-Rz (33)
The "-" sign in (33) comes from the fact explained earlier that a sign

change of E will not influence the equality of (6). From (33) and (12),

tnere exist two orthonormal matrices Q1 and QZ2, not necessarily equal,
sucn that

g =g e
e1t.l -1 o «Q1:R1 =2Q2 +|-1 0 -Qz-R2 (34)
0 0

16



Ot 9 0 1
wnere G =2QY si=1 0 Q1 = & QZT- -1 0 ] Q2 (35)
0 0

First, we show that Q1 and Q2 nhave

Q2 = W s Q1
+1

———

to be related by following

woere W is a 2x2 orthonormal matrix. From (9) and (12) with @ set to

1 as explained earlier, we have

EE'a G RRGC: « 0>

A I o]

= is fixed (including the sign) given + E, we have from (36),

1 1
ary 90 togts oz"f[ : ]-Qz (37)
0 0

Premultiplying (37) by Q2 and postmultiplying by Q1 give

~
)
N

36)

1 1

B AN . 1 gz (38)
0 0
1 2 e
Let Q¢ iy q' & qj 3
2t Qe'Q1V'= g4 q5 q6| , then from (38),
Q7 @8 q9

Q1 q2 J q1 g2 q3
Q4 95 O = |q4 q5 qb
47 sg8 ' ‘g 0 0 0

which implies that qz = qé = q7 0, or

= =)
- B S B BE B A T B D D E e e E e

(2]

'.J

o]

(o]

o

e

I

0o
n
O
-
-4
"
I 0 .Q'
O =
0 .0
owm n
w o o
=
1]
= p
O
V) -
—d
~~
ta
0
N




‘' N . .

where W = [q1 qz] : (40)

q4 q5

(alternatively, one can show from (35), after some similar derivation

as above, that W has to be either [#1 0| or | 0 #1]|. But since (40)
0 &1 +1 0

is sufficient and handy for all the later purposes, it is simpler just
to maintain (40)). Since Q1 and Q2 are both orthonormal, it follows

from (39) that W is orthonormal and q9 = +1. Therefore,

Q2 = [w ] Q1 (41)
*1

Next, we substitute (41) into (34) to obtain

" 1 aro : "
Q1 k1 0 Q1 R1 ='W <10 || |Q1R2 =Q [WTkw [Q1 R2 (42)
+1 0 +1 0 .
where K =LP 1]. Since W is defined by (40), we have
q1 ” ql q3q? +q3 q1 -q2 q2 + ql qb
g2 10 3ql-l -quq1+q3q2 -q2 q4 + q2 qb4
[ 0 dettet s Flo- 4l or " To =
-det (W) 0 w10 1 0

Taus (42) gives - g 1 T Q0 s
: Q1:|-1 0 -Q1.R1 = Q1:f-s O -Q1:R2 (43)
o 0

=
e |
-~
=
"

where s = +1 or -1, Premultiplying (43) by Q1 and postmultiplying by

R1°Q1 give -
i 0 1
-1 0 =|-1 0o [s(Q1-R2:R1%Q1T) (44)
0 4 Q
: B1 ,
Let b 2 Q1-Rz-RTNQTD E; (45)
133"'_

18
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Thus 2
6 | og 1 B1 +sBz
%1 0 = s|l-1 0 B2'|= [ -sB1T
0 o||BsT 000
dence
B2's's[0 1 . 0] (46)
B1Vseal<1 00 0 w801 0 0} (47)

Since Q1, R1 and R2 in (45) are orthonormal, and that
Re 3
det(B) = det(Q1).det(Rz)-det(r1)-det(Q1) = (det(Q1)) = (£1) = 1

we see that E is orthonormal is orthonormal of “he 1st kind. This

fact, together with (46) and (47), imply that

S

Bi'= [0 0 1] or B( QIR2-R1TQ1)= s
:
S
Thus R2 =2 Q1 s Q1 R1
1
For s s el R2 = Q1T-I°Q1'R1 = R1 A (48)
-1
For s = =1, R2=Q1 -1 Q1 R1 (49)

Therefore, given E, if we regard R1 as a reference solution, then should
there be any other solution for the rotation matrix, it must satisfy
(49). We now show that although Q1 is not unique, (49) remains fixed
for different choices of Q1.

Let Q2 be another orthonormal matrix tha* satisfies (35) or
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-1
(36), and let R3 = QZT{ -1 }-QZ-RM then from (41),
1

-1 B
gz = Qnw kLl <v LW fetmt 2 @ |-w'w  lQieR1
+1 1 1 +1

= Gh -1 [G1-R1 (50)

or = Q1 -1 [Q1-R1 = =R1 (51)

-1

(51) is obviously not a solution since it implies that det(R3) = -1,

not +1. Eut (50) is exactly the same as (49). Note that (49) implies

R1 = Q1- -1 +Q1-R2
1
i.e., no matter which solution is chosen as the reference, the other
solution must be given be (49), of course.
it is now obvious that (16) and (17) are the only possible
two solutions despite the fact that U and V are not unique, since if
we regard (31) as the reference solution R1, then the only other

solution amust be given by

o -1 0 1
Rz % O -1 .Q*R1 = Q £ Q:U:|-1 o |¥7
1 1 B
1 1
= U 1 I-l=-1 0 -VT(since Q = UT)
: B
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Q0 =1
S which is identical to (32). We now show that

s

among the two solutions, exactly one of them must yield z with opposite

signs before and after the motion.

Since the E matrix in (6) has nothing to do with tne geometry of
of *he objeet surface, for a particular point with image correspondence
(X,Y)=>(X",Y"), we can imagine that there are two planes passing

through this point neither of them containing the origin. In section

1V, we shall show that given the image correspondences of the peints on
two planes, neither of which containing the origin, *he E matrix is fixed.

in [3], it was snhown that there are two solutions for the rotation matrix

given the image corrrespondences of one plane only :

P g
T = <
R1 = 01+|-s8 sd .02 (52)
L 1
i ®
R2 = G1-| s sé 02 (53)
1

wnere 01 and C2 are some 3x3 crthonormal matrices.(Note that %*he rows
of U1 and C2 are permutated for convenience.) There are two other
solutions corresponding to k<0 not stated in [3]1(see [3] for the defi-

nition of k) because it was proved in [3] that when k<0, the objec*

points move from the front to the back of the camera, or vice versa. It
can be shown using exactly the same procedure as in Theorem II of [3] that

these two other solutions are

Bl e -4 -8
R1° = C1.|s@ -sd |[-C2 (54)
L 4
- " .'? -d 5
and R2” = Q1:|-sB -sd |-C2 (55)
2 1 v
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[

Since the E matrix is fixed, it was proved earlier in this theorem
that only two solutions among the four in (52)-(55) may exist, and they

must be related precisly by (49). There are only two such possibilities,

one is
T -1
R1“ = 01 -1 +G1-R1 (56)
1
and the other is
T =1
R2° = OY. -1 «01-R2 (57)

Tnerefore, the two solutions are either R1,R1° or R2,R2°. In either

case, one of the solution must be one among (56) and (57), which corr-

esponds to the case when k < 0 and the object points must move from the
front to the back, or from the back to the front of the camera, as was
indicated above. We have thus proved that only one among (16) and (17),

or equivalently (48) and (49) is acceptable.

*# END OF PROOF FOR THECREM I *

III.z ESTIMATION CF E GIVEN 8 IMAGE POINT CORRESPCNDENCES.

Given eight image point correspondences (Xi,Yi)ep (Xi%,¥i%),

for i=1,...,8, we have from (6),

B xums ot g i oo Sxae adl Fetl fed
X2 %202 Xt ae 33 vyt k2 2] [eel T
X3 X3, %373 X3 X33X3 . LBLI XSRS X5 e3 L
XhXh  XByh XB' yhexh  yEeyh  yhc xh yh[ | ed| |-
X5°X5 X5°Y5 X5' ¥5°X5 ¥5°¥5  ¥5° X5 ¥5( | e5| ={-1{ (58)
X6°K6 X6°Y6 X6' Y6'X6 Y6°Y6 ¥6° X6 Y6 | es| |-
e S BT U e N R R
| X8°k6  XBYS X8' YE'XE Y&'Y8 Y8’ X6 YE| | eB| |-
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Tnerefore, e1,e2,...,e8 can be estimated by solving a system of linear
equations expressed in (58). The conditions when the ei’s are unique
(or equivalently when the 8x8 matrix in (58) is nonsingular) are sta‘ted
and proved in Lemma I and Theorem II in See. IV. In practice, given
eight image point correspondences, one first substitute the image point
coordinates into the above 8x8 matrix and check its determinant. If it
is nonzero, the matrix E can be determined by solving (58) for the ei’s.
Next the SVD of E is computed and used to calculaté the actﬁal motion

parameters by *he simple formula described in Theorem I.

IV. RESTRICTIONS ON THE SPATIAL DISTRIBUTION OF OBJECT POINTS TO

ENSURE UNIQUENESS: LEMMA I AND THEOREM II.

Multiplying (6) by z and z° gives

S % . A B

Y| =0 (59)
]
From (3) and (59),
fx* yv° 2°)-&f % (x* y° z2°1'GRJ x
yl=0 or yl= 0 (60)
z z
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3 X
Let | y°| be transformed from ¥y | with some reference rotation matrix
z z
Ax0
ko and translation vector To =| Ayol|, ife.,
AzZe
% X X Qxo
y°| = Ro| y|+ To = Ro| y| +| Avo (61)
%% z z Dzo
0 A zo - Ayo
Let Go = -Azo 0 Qxo and Eo = Go'Ro.
Ayo - Axo 0

The purpose of this section is to investigate how many imagé

point correspohdences are needed to ensure that there are no otner
sclutions to G and R as factors of E in (9) than the ref;rence Go and
R that can satisfy (59) (or (60)), and %o state the conditions

or restricticns on the spatial distribution of the object points under

observation in order to ensure unique solutions.

Substituting (61) into (60) gives

b

(VNLxsl-y z]-R57+ ToT)'E- (x y z]-Ro-Efx X

<
n
«
+

N
3}
N

-
Ex ¥y 2] (ToE 0]

s Olfx {2y 213 |0 X

= RoE Q||y | + 0 y
0flz 0 z

000 0] 1 1



xyz 1] 5. s0lfF% (¢, 2 1) el
=z RoE : Cl| y| = vyl =0 (62)
o | 2 z
ToE : C _1 1
where 19 ] oy
ce fadeiols |poamio
o) ) (63)
"1dEE0’] "ToGR: 0"

Note that if C is skew-symmetric, then (62) is always satisfied regard-

less of what x,y,z or X,Y are, since

T
29z v 2z V1-CIx fx ¥y 2 . 1)}C¥ = x ¥y 2 1]1Cl'x
yi= Y| + y
z z z
[ 1 1 1
[x gt 2 116G xw [x v 2z 1]-dr X
= VAl y
z z
& 1
(2 vz 1}l x (x v 2 1K-C)I x
= y| + Yyl = 0
z z
1 1

It is to be proved in Lemma I that C is skew-symmetric if
and only if E = Eo (then according to Theorem I, the solution for *he

motion parameters is unique;. The purpose of Theorem II is to prove

. that the matrix C in (63) has to be skew-symmetric if *the object points

under observation do not reside on two planes with one of the two planes
containing the origin, nor do they lie on a 2one containing the origin.
We note that five or fewer points in space can always be traversed by

two planes witn one plane containing the origin, and that six or fewer

25
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points in space can always be traversed by a cone containing the origin.
a minimum of seven points is needed to violate *hese two conditions.
Therefore, it follows from Theorem II and Lemma I that seven points in

general positions can ensure a unique solution for the mstion parameters.

LEMMA I

The necessary and sufficient conditions for C defined by (63) *o be

skew-symmetric is that

R = Ro - (64)
or -1
feadl]l Q Ro (65)

1

where Q is a 3x3 orthonormal matrix sucn that

o}y o8
G =Q' |-14 0 Q (66)
0
and
Ax Axo
Ayl = Avo (67)
Az A zo

wnere of is some constant. (According *to Theorem I, (65) and (67) are
equivalent to E =glEo)
(Proof]

If C is skew-symmetric, then it is necessary from (63) that
T
o

Ro-G-R = =(Ro'G R)T (

(&)
(03]
~




O
{a
|

and

T0-G'R = [0 0 0]
or
RthTo = [g]
0
(68) gives
RJ-G'R = - RTG'Ro = R'G-Ro

Substituting (66) into the above gives

0 1 0
o QF [-1 0 ] QR =RQ [.1
0

27

(69)

1
0 ] Q Ro (70)
Q

Premultiplying (70) by QR and postmultiplying by ﬁndrgive

Vsl [0 -9t
QR Ro Q [-1 0 s k=1 0
Ql A 0J
or £ o
057 A 1} 1
5 -1 0 = -1 0
O— - O.J
where
Jegs 33
L2QRROQA | 5 36
Gy A M.
From (71) and (72)
-j2 J1 0 j2 j5
-3j5 j4 0= |=31 -jl
=18 J7 0 0 0
Thus jT = j8 = 0
and je = =j2 or j2 =20
j4 = -il or j4 = 0
J1 = j5

QRo RGN
AT (71)
(72)
BT
-j7
0
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Then L becomes

31 N
L=l 0 3 jé (73)
0 0o 39

(72) implies that L is orthonormal of the 1st kind since R, Re, Qo are
orthonormal and that det(L) = det(Q) det(R) det(Ro) det(Q) = (det(Q))™
= (:1f'= 1. Taking the inner product of the 1st and 3rd rows of L in
(73), and equating it to zero gives j3-j9 = 0. Since j9 # 0 (other=-
wise the 3rd row of L would be zero), j3=0. Similarly, j6 = 0. With

these and the fact that det(L) = 1, we conclude taht L can assume only

the following forms:

1 -1
L = 1 or L= -1
1 1

From (72),
_r1
R =°Q" 1 *Q:-Ro = Ro
1
or
-1
N= dt -1 -Q-Ho

Thus (64) and (65) are the necessary conditions for C ‘o be skew-
symmetric. The next thing is to verify (67).

|
Premultiplying (69) by R gives i

or
0 Az -Av | Taxe g
-Aaz 0 A | |Ayo| = | O
PN - Ax 0 D\zo o)
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whicn gives

Az Qyo - z&%z}zo = 0
-Az-&x0 + Ax-Azo = 0
Ay Axo - AxAyo = 0

Let ol = Az/Azo , then Ay =X AY® , AX =zgl-Axo . Hence

Ax AXo
Avy| = Avyo
Az 0D\ 20

wnich is the same as (67). The E matrix then is equal to Eo (i.e.,

unique) up to a scale factor since

0 Az . =AY
E=GR= |[-Az 0 Ox| R =ol-Go-Ro = g{-Eo
Ay -Dx 0

- ) 0 1 = |
Go -1 QBo sl Q |+t o QqQ o Q Ro
1 0 1

"
x
(l

“

—
G
/')
o
o
n

!

&
[
o

if (65) is used.

(Sufficiency part)
From the structure of C in (63), it is obvious that in order

for C to be skew-symmetric, the row vector TétG-R on the 4th row nas




L0 be equal to the negative of the transpose of the U4th column, which

is a zero vector, and that the 3x3 matrix RGEG-R on the upper-left

corner of C must be itself skew-symmetric.

becomes

0-G'R = [Axo Ayo Azo] 0
- Azo
Avo

) 0 0l R = [0 0 0]

We now proceed to show that with R either given by (64) or by.(65), the

(- Ayo-Azo+ Azo-Ayo  Axo-Azo- Azo-Axo

with (67), Tg-c-a in (63)

Dzo -z;y61
0 Axo
- A xo 0

3X3 submatrix TétG-R in C has to be skew-symmetric.

With (64), Ro-G'R in (63) becomes

T

RS'G-H = RJ-G-Ro = Ro-(=GT)-Ro = =(RS G Ro)'

On the other hand, with (65), RO-G'R in (63) becomes

- - -1 T 0 =1 -l
Ro* G*R = Ro.G-Q -1 +Q+Ro = Ro:Q.} =1 0 Q- Q- -1
1 0
0 -1
o
= Ro-Q°| 1 0 Q Ro = -RJ:G-RO
0]
Thus
(Bo-G-R) ® (=Ro-G-Ro) = Ro G-Ro 3 ~Ror.G-H

- &xo-Ayo+Ayo-Axol R

(74)

(75a)

-Q *Ro

(75b)

(75a) and (75b) shows that either with (64) or (65), RérG-R is skew-

symmetric. Tnis fact, together with (74), imply that C in (63) is

SKew-symmetric.
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# END OF PRCCF FOR LEMMA I *

THEGREM II

i gl o Kt S ) % - = 0 is satisfied by the image point correspondences

- S >

of a group of object points not lying on two planes with ome plane containing
the origin, nor on a cone containing the origin, *hen the C matrix in

(63) has to be skew-symmetric.

[Proof]

From (62), which is the necessary condition of (6), we have

EXah vy % 1]Clx LE s A 11Clx 3
Y| + ; Y| \=
z z
1 1
or 4
TR, Y 136G+ CT) X
yt =0 (76)
z
1
From (63) b |
1
- Ro“E + E“Ro I - EMTo
ik C = - - - B e
To"G-R : 0
— ]
r‘ |
RO-G-R + RLGRo ! RYG-To
C + CT: i L S T o i 4
TO'G'R 1 O
. )

Substituting (12) into the above gives
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Then (77) becomes

T

e
+ |QR 2 m4 m5 m1 mb -t2 QR
C+C = mS-~-m1 -2 m2 -m3 t1 (78)
1 mb -m3 0 0 1
-t2 t1 0 0
Let the original cordnate system be rotated wi‘h R-Q such that
A
Xe X
Ye |= Q‘R+| y (79)
Zq z

then from (76) and (78),

s ¢
Xe
(¢ ¥ Z 11-4 - Ye| =20 (80)
Ze
1
S
wnere
2 m4 mS-m1 mb -t2
J = | m5-m1 -2 m2 -m3 t1 (81)
mé -m3 0 o)
-t2 t1 0 0

(30) gives

z[my. x;'+ (m5-m1 )xc-yc—mz'y:-tz-xc+ t1% +(m6.xt- m3-¥. )z ] = 0 (82)

or

z = [md-xzk(ms-ml)xgk_-mz-x;-tz-xc+:1-xg/(m6-§5m3-xg (83)
Unless J in (81) is identically zero, (82) indicate *that all “he
points must lie on a quadric surface of some type confaining the
origin. However, (33) implies that Ze 1s a single-valued function

of X¢ and y, unless m6-x.- m3.¥. = 0. There are two cases to be
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discussed. Tae first is when m6-xc- m3:Yedevides the numerator. Then
(83) must be a 1st order polynomial, say aX + bry+ c. Thus (82)
becomes (Z¢=- a-Xc =~ b-y - cmb-x.~ m3-y) = 0, which implies that
in the new coordinate system, all the points must lie on two planes
with one plane vertical and passing through the origin. Since, as in
(79), the new coordinate system is obtained by rotating the old coor-
dinate system around an axis through the origin, these two planes must
still be two planes with one plane passing through the origin in the
0ld coordinate system except that it is not necessarily vertical.
The second case is when mb6-x - m3.y¥. does not devide the numerator in
(33). In this case, z, must be :ooor-%-(i.e., indeterminate) along
tne line mo-X - m3-% = 0, while for other values of (xX.,¥.), 2 has to
be single-valued. It is well known that any quadric surface must fall
in one of the following categories [29]:

(1) imaginary quadric surface (e.g.,x;+ x:+ z:= -1)

(2) ellipsoid

(3) hyperboloid of one sheet

(4) hyperboloid of two sheets

(5) elliptic paraboloid

(6) hyperbolic paraboloid

(7) elliptic eylinder

(8) hyperbolic cylinder

(8) parabclic cylinder

(10) a cone

(11) two planes

Since zg is single-valued, the surface expressed in (83) cannot be
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ellipsoid.or cylinder of any type. Paraboloid also is not possible
since zg is oo or indeterminate along the line m6.x¢-m3-yc_ =0 and as

can be seen in Fig. 2 and 3, no such possibility can exist either

for the elliptic paraboloid or hyperbolic paraboloid. Hyperboloid

of one sheet should be excluded for consideration since, as is depicted
in Fig. U4, this type of surface cannot be single-valued in z.. It

mignt seem that hyperboloid of two sheets in Fig. 5 with one of the
separating hyperplanes vertical to the (Xe1¥. ) Plane and containing ‘he
Zgaxis could be qualified since it is single-valued in Ze except along a
line passing through origin, where z. is :oo. However, since the surface
must contain the origin as was explained earlier, one sheet of the two
in Fig. 5 must touch the vertical separating hyperplane. But it is well
known in geometry that if a hyperboloid intercepts its separafing plane,
it must degenerate into a cone as depicted in Fig. 6, in which case %he
intersection must be the 2z, axis. Therefore we conclude that unless J
in (81) is a zero matéix, all the points must either lie on *wo planes
with one plane containing the origin, or on a cone passing through the

origin. Eut, as was defined in (78),

—T -
¥ L 0 i L 0
QR 0 QR 1 0
1 0 e J o i 0
C+CT: ----------------------
8 A o S o ft- 1,J OQr Q=0 TN
tnerefore,
C + dT: 0
or
C=-CT

which means that C has %0 be skew-symmetric.

* END OF PROCF FOR THECREM II #




Fig. 2

Fig. 3

Elliptic Paraboloid can be single-valued in %, but cannot

diverge along a straight line.

Hyperbolic paraboloid can be single-valued in Z, but it cannot

diverge along a straight line.
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Fig. 4 Hyperboloid of one sheet cannot be single-valued in z.

Fig. 5 Hyperboloid of two sheets wi*th vertical separating hyperplane.




If a hyperboloid intersepts its separating plane, it has to

degenerate into a cone.
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CCRGLLARY 1

Given the image correspondences of two planes not passing through

the origin, the motion is unique.

(Proof]

Since neither a cone nor two planes with one plane passing through
the origin can contain two planes not passing through the origin, it
follows from Theorem II that the C matrix in (63) has to be skew-
symmetric. Then the uniqueness of the motion parameters follow direct-

ly from Lemma I. Q.E.D.

CORCLLARY II

Given the image correspondences of six points with four points on
one plane not containing the origin, four points on the other plane also
not containing the origin, and two points common %o the above two groups
of four points on *the intersection of the two planes can ensure unique

solutions for the motion parameters.

[Proof]

Since as was proved in [20], the image corresponuences of four
points with none of the three points colinear de*ermine *“he image motion
of tne whole plane, we can see that *he six points with four points on
one plane, four on the other plane can de*ermine *he image correspondences
of two planes not containing *the origin. Therefore, it follows from Coro-

llary I that the mo*ion parameters are unique. Q.E.D.




CORCLLARY III

The image correspondences of four points on a plane not passing

through the origin and two otner points not on this plane determine the

motion parameters uniquely.

[(Proof]

Obviously, on the very plane determined by the four points, whose
image correspondences can be determined from these four points according
to [20], there always exist *wo points that are coplanar with the other
two points not on this plane. Therefore, it follows from Corollary II

that the motion parameters are unique. Q.E.D.

COROLLARY IV

Given the image correspondences of seven or more points not
traversable by two planes with one plane containing the origin, nor by

a cone containing the origin, the motion parameters are unique.

[Proof]

If one of the image points before motion is chosen to be at
the origin, which can always be done, then should there be a cone con-
taining tne origin passes through all the points, one of the separating
nyperplane of the cone already passes through the z axis. Therefore,
the rotation matrix QR in (79) need only rotate the original coordinate

system around the z axis in order to arrive at (81), or

I
.

40
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Q:R = W
+1 ;

wnere w 1s some 2x2 orthonormal matrix. Then from (78)

T
W W
C +«Cha +1 O +1
1 1

—— ——
T i\ +mb -t2
WeN-W i
| +m3 1
+mo +m3 | O 0
]
]
-t2 1 I o 0
where " 2+m4 m5-m1
H o=
mS5-m1 -2 m2

Inerefore, even in the original coordinate system, the surface is

still given by the equation in the form of (82). Since (82) contains

)os

seven.terms with six effective coefficients, there is always a unique
cone containing the origin that passes through six points in general
positions, while no such cone exists that contain the origin and passes
through seven points in general positions, nor can two planes wi*h one
p;ane containing the origin. Thus we conclude that given seven or more
image point correspondences in general positions, tne matrix C in (63)
nas to be skew-symmetric and the motion parameters can be uniquely

determined. Q.E.D.

Since Corollary IV only gives the sufficient condition for unique-

ness, even if the seven points are traversable by two planes with one
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plane passing through the origin, or by a cone containing the origin,
the motion parameters might still be unique in some situatioms. For
example, if six among the seven points satisfy the condition stated in
Corollary III, then the motion parameters are unique even if there may
be two planes passing through these seven points with one plane contain=-

ing the origin.

From (82), the criteria for whether there exists a cone
containing the origin that passes through n points is whether the

following n by 7 rectangular matrix has full column rank or not.

xT Xy y1* x1 y1 z W1 zZW1

x2* X2y 2 ya2*™ x2 y2 z22x2 22y2

xn™ xnyn yn* xn yn zZnxn znyn
— e—d

However, since only the image coordinates are given, the only useful
criteria available is whether or not the 8x8 matrix in (58) is non-
singular or not., 1If it is nonsingular, one can solve for the E ma*rix,
compute its SVD, and then use the formula in Theorem I %o calculate
the actual motion parameters. The following two corollaries state the
necessary and sufficient conditions for the 8 x 8 matrix in (58) to be

singular.

Corollary V

Given the image correspondences of eight points among which more

than six points are coplanar, the 8 x 8 coefficient matrix in (58) is
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singular.

{Proof]

Let H be defined as the 8 x 8 coefficient matrix in (58), i.e.,

r

X1X1 X190 ' nm o vivr ov1e oz v
X2°x2  x2°y2 x2; Y2’ tfa‘v2 Y2° x2 Y32
3323083708 1% 1339 v vit Y x3. 13

" X4°X4  X4°Y4 X4 YWX4  Y4yh Y4 xn  yh (84)

X5°X5  X5°Y¥5 X5/ ¥Y5°X5  ¥5°Y¥5 y5° x5 ys
X6 :xs X6 :16 X6’ Y6°X6 Y6'Y6 Y6° X6 Y6
XT°XT  X7°Y7 x7’, T XL XTI ey oy
(X8°X8  X8°Y8 X8 'Y8'X8 Y8°Y8 ¥8° x& y@

o

We shall prove that if at least seven among the eight points are coplanar
in the object space, H is singular. Since interchanging the rows of H

will not alter the singularity of H, we can assume without losing gener=-
ality that the first seven object points corresponding to th; first seven

rows of H are coplanar. Let Hz be defined as

(2121

22z2" 0

Hz = - H (85)

z828"' g

il #1%1 %15l y1ha il oo yi'sl  pi'xl. 211
2222 © ¥2'y2 33'32 y2'=2 Co¥i'y2 92's2 ‘y2'zl 33'9l

an'xa x8'y8 x8'28 y8'x8 y8fy8 y8'28 28'x8 2z8'y8
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From (85),
8
det (Hz) = ( I zi zi') °* det (H) (86)
i=1

Since the object points must be in front of the camera lense in order to
be imaged, 2zi and zi' are greater than 1 (the normalized focal length)
for i =1, ..., 8. Therefore, from (86), det (Hz) = 0 if and only if
det (H) = 0, i.e., H is singular if and only if Hz is singular. We now
prove that the first seven rows of Hz must be linearly dependent.

Let the 7 x 8 submatrix of Hz corresponding to the first seven rows
be denoted by B. Since the first seven points are assumed to be co-

planar, from [3], we have

xi xi
yi' = kA |yi ' (87)
zi' zi

for i = 1, eeey 7, Where

al a2 a3
A = a4 as a6

a7 a8 it

ai's are the "pure parameters" defined in [2] and [3].
k is some constant.

Let D be defined as

B R R Rk
x22 y22 z2 x2y2 x222 y2z2
D é k . . L - . .
$1° 31 27t wme?  sta7  yia? |




Then, with (87), the columns of B become
I et 2 A 1 r 1
alxl™ + aZ2xlyl + a3xlzl al
I atx2® + a2x2y2 + a3x222 0
. 0
I Bl = &k - D
. a2
l Sy 7 a3
_alx?z + a2x7y7 + a3x7z7 | L0
i P e
Fal-xLyl + a2yl® + aldylzl 0
I akx2y2 + ,:-12y22 + ady2z2 a2
. 0
BZ w k = D
l . al
é 0
i s
L3EX7yT7 + a2y7° + al3y7z7 | a3 ]
7 9 -
l [alxlzl + a2ylzl + a3zl”® F 0
l . 0
. a3
B3 = % 5 = D
i . :
i . al
i | aixT27 + a2y7e7 + 23272 a2 |
7 . —
l [a4x1” + aSxlyl + aéxizl [ a4
I . 0
. O
34 = ~ = D
I . as
. ab
‘) -
I ax7” + adxivl + aé-x7z7_ b OV




l—

" -
a4xlyl + aSyl”™ + a6ylzl
BS = k
5 :
aéx7y7 + aSy7~ + abylz]
- Z ]
asxlzl + aSylzl + aézl
B6 = k
2
a¥x7z7 + ady7z7 + abz7" |
b —
[a7x1° + a8xlyl + a%xlzl
B7 = k
2.
alx7” + a8x7y7 + a%7z7
ranLy} + aSyl2 + aSvlzl ]
B8 = &
: &
arxly7'+ a8yi~ + a%yrz7 3

where Bi denotes the ith column of 3.

a8

a9

a8

a7

ag
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Therefore,
St Ond0 sk W 0 Lo
a2 0 0 0 a8
B = D Pl L M 2 (88)
a2 al 0 a5 a4 0 a8 a7
a3 0 al a6 0 a¢ a9 o0
0 al a2 o0 a6 a5 0 ajg |

Since, as can be seen in (88), B is the product of a 7 x 6 matrix D and a
6 x 8 matrix L, the column and row rank of B can be at most 6. To-elaborate

on this, since D is a 7 x 6 matrix, the SVD of D is given by

D = U - Ap ; vg
0 0 L 0
where
Al
A2
AD -

A6

Ai's are the singular values of D
UD is a 7 x 7 orthonormal matrix

VD is a 6 x 6 orthonormal matrix.

Then (88) becomes

B = D' D ’VD'L
U0 s 'O
T
8p+t Vg vk
:UD'
00 cosee Q
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or

U, « B = (89)
D 00 <ecs s 0

Since UD is orthonormal, the row rank of B is the same as that of Ug-B.
But the last row of Ug-B is zero, as can be seen in (89). Therefore, the

row rank of B can be at most 6. Since B is the 7 x 8 submatrix of Hz, one

R EE Tl EE - .
-

of the first seven rows of Hz can be expressed as a linear combination of

the others. Therefore, Hz is singular, which implies that H is singular.

Q. E. D.

—

Corollary VI

If the 8 x 8 coefficient matrix H containing the image correspondences

of eight points in (58) is singular, then either seven or eight points are

coplanar in the object space, or the eight object points are on a cone

containing the origin.

[Proof]

Corollary IV implies that if the motion parameters are not unique,
or equivalently the E matrix is not unique and H in (58) is singular, the
eight points are either traversable by two planes with one plane containing
the origin, or by a cone containing the origin. This conclusion is certainly
correct but can be made stronger since there are cases when the eight points
are traversable by two planes with one plane containing the origin while
the motion parameters are still unique. According to Corollary III, so long
as four among the eight points are on a plane not containing the origin, and
two other points not on this plane determine the motion parameters uniquely.
Obviously there are only three possibilities for this to happen when the

eight points are traversable by two planes with ome plane containing the origin:




49

(1) Six points are on a plane not passing through the origin, and two

points on another plane containing the origin.

(2) Five points are on a plane not passing through the origin, and three

points on another plane containing the origin.

(3) Four points are on a plane not passing through the origin, and four

points on another plane containing the origin.

This leaves only the following two cases which have been shown in Corollary

V to be the sufficient conditions for H to be singular:

(1) Exactly seven points among the eight are on a plane not passing through

the origin.
(2) All the eight points are on a plane not passing through the origin.

Therefore, the assertion of the corollary is justified.

Qo E. D.

The result; developed in this paper can also be applied to the stereo
imaging problems in photogrammetry and computer vision without assuming the
relative orientation of the two cameras since pictures taken at two time
instances can be regarded as taken by two cameras at one instance. After
the motion parameters are computed using the formula in Theorem I, the
surface structure of the object can be determined up to a common scale

factor by computing the z coordinates using (5a) or (5b).

V. PURE ROTATION AND PLANAR PATCH MOTION

Note that when the object undergoes pure rotation around an axis

through the origin, Ax = Ay = Az = 0, and therefore, from (7), E is a zero
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matrix. The converse is also true since if E = 0 (0 stands for a 3 x 3
zero matrix), then from (9), G = ERT = QBT =0, i.e., Ax = Ay = Az = 0.

In this case, the results described earlier in this paper cannot be applied
since (5a) and (5b) become z = 0/0, and are no longer meaningful. However,
it is to be seen in the following that the image motions for the case of
three-dimensional pure rotation are equivalent to the image motions of any
planar patch undergoing three-dimensional pure rotation with the same rota=-
tion parameters g, nl, n2, and n3. This means that even if the object
surface is nonplanar, the motion parameters can still be compuﬁed using the
results describéd in [3] for the planar patch motion. Furthermore, since
the motion parameters have been proved to be unique for a rigid planmar patch
undergoing three-dimensional pure rotation (seé Theorem III in [3]), the
motion parameters for any curved surface undergoing three-dimensional pure
rotation are also unique. A simple test for detecting the presence of pure
rotation and the planar patch motion will also be described.

By setting Ax, Ay and Az in (4a) and (4b) to zero, we have

rl « X + 12 » Y + 13

] S TOL T, ey

£ r7 « X+ 18 * Y + r9
(90)

v = th o X + 25 * ¥ + 6

7 « X + 18 « Y + 19

It can be seen from [2,3] that (90) gives the image mapping (X,¥) > (X',Y")
of a rigid planar patch undergoing 3-D motion with the 3 x 3 A matrix

containing the pure parameters in [2,3] being

A = TR (91)
Let U, + R, V, = I, Aa = r;I I. Then (91) becomes
A Ua . Aa . VaT (92)




-2 3

Since R and I (and thus U, and V,) are orthomormal, (92) is the singular
value decomposition of A with three identical singular values. Therefore,
according to Theorem III in [3], (90) gives the image point correspondences
of any rigid plamar patch undergoing 3-D pure rotation with rotation matrix R.
We now describe a simple procedure for detecting whether the object
points are on a planar patch or are undergoing 3-D pure rotation (given
eight or more image point correspondences), which are the cases when (58)
are not to be applied, and the motion parameters have to be computed using
the resutls in [2,3,4]. ‘
From [2] and [3], the following mapping characterizes image corres-

pondences of n object points on a rigid plamar patch undergoing 3-D motion:

alXi + a2¥i + a3

: 1 - e
i1 ajXL + abii + 1
(93)
Yi' = akXi + a5¥i + ab

arXi + a8y1 + 1

fori=1, 2, +.., n, and al, ..., a8 are some constants. Rewriting (93)

as a matrix equation with the ai's as the unknowns gives

-al‘
a2

M . = B (94)

a8 |

where the 2n x 8 matrix M is given by
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(x1 v1 1 o 0 0 -xiex' -yiemt’
0 8- W@ U T sfen | =Eem!
%2 ¥ .0 .0 0o <Xt <Y
0. 06 0 '} 9 1. =;e' S

M = . . L . . . . .

. L . . L . . .

g i ) 0 0 0 =Xn*Xn' ~Yn°<Xn'

0 0 O X Ya 1 <Xn°Ta' =Ya'Tn’

and 3 & [x1' n' %@ B ....0 W

Therefore, given eight image point correspondences, one first examines the
consistency of the 16 x 8 matrix equation in (94). If

rank (M) = rank (ME B)

then (94) is consistent. An efficient way of checking the consistency of
(94) is to solve the following 8 x 8 normal equation of (94) for the least

square solution of (94):

ralw
a2

MTM 2 = MTB
[ a8

The solution of the above normal equation is then substituted back to (94).
If it is satisfied, (94) is consistent. The solution will then be used to
form the 3 x 3 A matrix defined in [2,3]. If the singular values of A are

all identical, the motion consists of pure rotation around an axis through
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the origin only. In this case, the rotation matrix R is equal to A multi-
plied by a comstant (which is equal to the inverse of the norm of any column
of A since R is orthonormal) (See Theorem III in [4]). If (94) is not con~-
sistent, one solves (58) for the E matrix, and then computes the actual

motion parameters using the method described in Theorem I of Sec. III.l.

VI. NUMEﬁICAL EXAMPLES FOR THE CASES WHEN FIVE AND SIX POINTS CAN YIELD

TWO SOLUTIONS

Note that Theorem II only gives the sufficient conditions for unique-
ness. Although there always exists a cone passing through six points in
general position and the origin, this does not imply that there are two
solutions, one for the case when C is skew-symmetric and the other not
skew-symmetric. Experimental results show that six points are usually but
not always sufficient to yield unique solution. 1In fact, even five points
are sometimes sufficient. The following are two numerical examples for the
cases when five and six points are not sufficient to ensure uniqueness of
solutions for the motion parameters. In these two examples, the image
point correspondences were obtained by simulation. First, the image coor=-
dinates at tl of a number of object points with randomly chosen object space
coordinates (xi, yi, zi), i = 1, 2, ...; n (n = 5 for Example 1, and 6 for
Example 2), are obtained using (3). Next the object points are rotated with
some reference rotation parameters eo' 0,1 ngz, Ny3s Oggs and translated
with some reference translation parameters Axo, Ayo, Azo (=1), with com=- °
puter simulation using (1) to obtain (xi', yi', 2zi'), i = 1, ..., n. Then
the image coordinates of these n points at t2, i.e., (Xi', Yi'), i = 1, 2,

eesy 0, were computed using (3). These n simulated image point correspondences
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(RLa¥t) » (L' Y1"), 1. » 1,72, eesy W, Were then substituted into (6) to
obtain n simultaneous nonlineaf'equations, one for each image point corres~-
pondence (Xi,Yi) » (Xi',Yi'). The motion parameters in E of (6) with Az
set to 1 were obtained by solving this system of nonlinear equations using
global search. For each of the following two examples, two solutions were

found.

[Example 1] Five point case.

The object coordinates of the five points at tl:
(x1, yl, z1) = (3.0, 15.7, 5.0), (x2, y2, z2) = (28.1, 15.0, 32.3)
(x3, y3, 23) = (5.0, 12.9, 7.0), (x4, y4, z4) = (32.7, 24.7, 18.0)
(%5, 955 25) =(13.1, 31.0, 22.2).
By using (3),(Xi, Yi), i =1, ..., 5, were found to be:
(X1, Y1) =(0.6, 3.14), (X2, Y2) =(0.869969, 0.464396)
(X3, Y3) = (0.714286, 1.842857), (X4, Y4) = (1.816667, 1.372222)
(X5, ¥5) = (0.590090, 1.39639).
The reference rotation and translation parameters:
o = 78, n0l = 0.615661475, n02 = 0.258819045, n03 = 0.74429406,
Axo = 23, Ayo = =10, Azo =1
The object coordinates (xif, yi', zi'), and image coordinates (Xif, i)
at t2 were then computed accordingly using (1) and (3). The following two
solutions were found: -
Solution l: the same as the reference solution,
Solution 2: 6 = 159.722148, nl = 0.087422567, n2 = 0.36295928

n3 = =-0.9276949, Ax = 5.97327196, Ay = 1.50137639.
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[Example 2] Six point case.
The object coordinates at tl:

(x1, yl, z1) = (3, 15.7, 54.908), (x2; y2, z2) = (28.1, 15, 166.111)

(x3, y3, 23) = (5, 12.9, 42.232), (x4, y4, z4) = (32.7, 24.7, 309.716)

(x5, y5, 25)=(13.1, 31, 249.971), (=6, y6, z6) = (15, 9.7, 55.868)
The image coordinates at tl:

(X1, Y1) = (0.0546368, 0.285933), (X2, Y2) = (0.169164, 0.0903011)

(X3, ¥3) = (0.1183936, 0.3054556), (X4, Y4) = (0.1055806, 0.0797505)

(X5, ¥5) = (0.0524061, 0.1240144), (X6, Y6) = (0.26849, 0.1736235)
The reference motion parameters: '

o = 78, nol = 0.615661475, no2 = 0.258819045, no3 = 0.74429406,

Axo = 23, Ayo = =10, Azo = 1.
(xi', yi', 2zi') and (Xi', Yi') were then computed using (1) and (3) with
the above reference motion parameters. The following two solutions were
found:

Solution 1l: Same as the reference solution.

Solution 2: 6 = 47.65578, nl = 0.6304461986, n2 = 0.06582693435,

n3 = 0.7735214391, Ax = -3.,683375707, Ay = 0.6458049137.

For each of the two solutions in the above two examples, the z coordinates

for each point using (5a) and (5b) were all positive.
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VII. CCNCLUSIONS

Several theorems and corollaries have been stated and proved regarding
the uniqueness and estimation of 3-D motion parameters of rigid bodies. 1In

summary, the following results have been established:

(1) The fact that we can define 8 essential parameters el,e2,...,e8,
that contain all the information one can possibly obtain given
any number of image correspondences, and are unique given the
image correspondences of at least seven points not lying on two

planes with one plane passing through the origin, nor on a cone

containing the origin.

(2) The fact that given the E matrix consisting of the eight essential
parameters, the actual motion parameters are unique, and can be

computed simply by taking the singular value decomposition(SVD)

of the 3x3 E matrix.

(3) A method of determining the E matrix given 8 image correspondences.

(4) An operational criteria for the uniqueness of motion parameters.
If the determinant of a certain 8x8 matrix containing only the
image coordinates of eight image correspondences does not vanish,

the uniqueness is assured.

The results in this paper should be of interest o numerous

This requires the solution of a set of linear equations only.
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areas of research, including image sequence analysis, tracking, image

coding, stereo imaging, photogrammetry, and robotic vision.
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