
 Open access  Journal Article  DOI:10.1103/PHYSREVLETT.95.091101

Uniqueness and nonuniqueness in the Einstein constraints. — Source link 

Harald P. Pfeiffer, James W. York

Institutions: California Institute of Technology, Cornell University

Published on: 26 Aug 2005 - Physical Review Letters (American Physical Society)

Topics: General relativity, Minkowski space, Numerical relativity, Einstein and Uniqueness

Related papers:

 Conformal ``thin sandwich'' data for the initial-value problem of general relativity

 Extrinsic curvature and the Einstein constraints

 Einstein constraints: Uniqueness and nonuniqueness in the conformal thin sandwich approach

 Non-uniqueness in conformal formulations of the Einstein constraints

 Evolution of binary black-hole spacetimes.

Share this paper:    

View more about this paper here: https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-
1upv6zd9hx

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVLETT.95.091101
https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-1upv6zd9hx
https://typeset.io/authors/harald-p-pfeiffer-2j54j4xx7t
https://typeset.io/authors/james-w-york-4e69w2977z
https://typeset.io/institutions/california-institute-of-technology-3qpga2aa
https://typeset.io/institutions/cornell-university-azbw8aij
https://typeset.io/journals/physical-review-letters-3av85aju
https://typeset.io/topics/general-relativity-skfoyinj
https://typeset.io/topics/minkowski-space-3nr7yoww
https://typeset.io/topics/numerical-relativity-37lr8awr
https://typeset.io/topics/einstein-12p63rie
https://typeset.io/topics/uniqueness-3qxmcga9
https://typeset.io/papers/conformal-thin-sandwich-data-for-the-initial-value-problem-2gewegiuja
https://typeset.io/papers/extrinsic-curvature-and-the-einstein-constraints-5dvfzlu93w
https://typeset.io/papers/einstein-constraints-uniqueness-and-nonuniqueness-in-the-19ijsy5gun
https://typeset.io/papers/non-uniqueness-in-conformal-formulations-of-the-einstein-507vg9yvku
https://typeset.io/papers/evolution-of-binary-black-hole-spacetimes-slx629154c
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-1upv6zd9hx
https://twitter.com/intent/tweet?text=Uniqueness%20and%20nonuniqueness%20in%20the%20Einstein%20constraints.&url=https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-1upv6zd9hx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-1upv6zd9hx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-1upv6zd9hx
https://typeset.io/papers/uniqueness-and-nonuniqueness-in-the-einstein-constraints-1upv6zd9hx


Uniqueness and Nonuniqueness in the Einstein Constraints

Harald P. Pfeiffer1 and James W. York, Jr.2

1Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics, Cornell University, Ithaca, New York, 14853, USA

(Received 28 April 2005; published 26 August 2005)

The conformal thin-sandwich (CTS) equations are a set of four of the Einstein equations, which
generalize the Laplace-Poisson equation of Newton’s theory. We examine numerically solutions of the
CTS equations describing perturbed Minkowski space, and find only one solution. However, we find two

distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic
equation through specification of the mean curvature. While the relationship of the two systems and their
solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system
with nonunique solutions is also of broader interest.

DOI: 10.1103/PhysRevLett.95.091101 PACS numbers: 04.20.Ex, 04.20.Cv, 04.25.Dm

Within a space-plus-time decomposition [1,2], Ein-
stein’s equations, just as Maxwell’s equations, split into
evolution equations and initial value equations. The latter
constrain the initial data and are generally solved by the
use of potentials that satisfy elliptic equations. These po-
tentials are expected to be unique, given suitable boundary
conditions. For the Einstein constraints, indeed, in all cases
in which existence of solutions has been proved, the solu-
tion was also shown to be unique.

However, we demonstrate in this Letter that an impor-
tant method of solving the Einstein constraints through
potentials, the extended conformal thin-sandwich (XCTS)
equations [3,4], admits nonunique solutions. Two solutions
appear to exist even for arbitrarily small perturbations
away from Minkowski space; one solution is just perturbed
Minkowski space, but the second one even contains a black
hole for sufficiently small perturbation. The XCTS system
thus provides a fairly simple example of a nonlinear elliptic
system with nonunique solutions, which may be of interest
outside general relativity. Because the XCTS system lies at
the heart of most modern schemes to construct binary
neutron star [5–8] and binary black hole [9–12] initial
data, our result is also relevant to the astrophysical problem
of computing inspiral waveforms for compact objects.

In general relativity, the initial data are the induced
Riemannian metric gij and the extrinsic curvature Kij on

a spacelike hypersurface. The data �gij; Kij� must satisfy

four nonlinear constraint equations, and there are now two
equivalent, complete approaches with which we can solve
the constraints. One methods seeks �gij; Kij� directly [4],

while the other, the ‘‘conformal thin-sandwich’’ (CTS)
method [3], seeks to construct �gij; @tgij�. In general rela-

tivity, this difference is not trivial: Kij depends only on the

embedding of the slice (see, e.g., [13]) while @tgij depends

also on the ambient coordinate neighborhood of the slice.
Both methods result in four coupled elliptic equations, and
many existence and uniqueness results are known [14].

The extended conformal thin-sandwich formalism adds
a fifth elliptic equation for the lapse function, which arises

from specification of the time derivative of the mean
curvature K � Kijg

ij. In the extended system, the free

data consists entirely of ‘‘variable and velocity’’ pairs
�q; _q� [4], as desirable for a Lagrangian viewpoint, or a
thin-sandwich viewpoint. However, the fifth equation cou-
ples strongly all five equations of the extended system,
complicating mathematical analysis, so that to our knowl-
edge, there are no rigorous mathematical results for the
extended system, neither for existence nor for uniqueness.
Such difficulties, as well as the nonuniqueness results
reported in this Letter are not present for the standard
initial value problem, but arise when going beyond the
mere initial value problem by placing demands on the
slicing in the ambient spacetime via specification of @tK.
Similar issues connected with general relativity have been
called traditionally the ‘‘problem of time.’’

The CTS equations can be written as
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1
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Here, ~r and ~R are the covariant derivative and the trace of
the Ricci tensor associated with the conformal metric ~gij,

which is related to the physical metric by gij �  4~gij.

Furthermore,

~A ij �
1

2 ~N
��~L�ij � ~uij	 �  10

�

Kij �
1

3
gijK

�

(3)

represents the conformal trace-free extrinsic curvature,

�~L�ij � 2~r�ij� � 2=3~gij ~rk
k is the conformal longitu-

dinal operator, and the traceless tensor ~uij � @t~gij repre-

sents the time derivative of the conformal metric. Once the
free data �~gij; ~uij;K; ~N� are chosen, Eqs. (1) and (2) are

elliptic and determine the conformal factor  and the shift
vector i. The conformal lapse ~N is related to the physical
lapse by N �  6 ~N.
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The elliptic equation for the lapse, which follows from the Einstein evolution equation for K, can be written as

~r 2� ~N 7� � � ~N 7�

�

1

8
~R�

5

12
K2 4 �

7

8
 �8 ~Aij ~Aij

�

� � 5�@tK � k@kK�: (4)

Viewing @tK instead of ~N as freely specifiable, the free
data become �~gij; ~uij;K; @tK�, and one must solve the
coupled elliptic system Eqs. (1), (2), and (4). This is the
XCTS system.

We will show nonuniqueness by explicitly constructing
two solutions for a certain choice of free data. This choice
is based on a linearized quadrupolar gravitational wave
[15] and follows very closely [16]. We set

~gij � fij �
~Ahijjt�0; (5a)

~uij �
~ATF~g@thijjt�0; (5b)

K � 0; (5c)

~N � 1; for CTS; (5d)

@tK � 0; for XCTS; (5e)

where fij represents the Euclidean metric, TF~g means the

trace-free part with respect to ~gij, and,

hijdx
idxj � �8rK cos�sin2�drd�� 2r2Lsin3�d�d�:

The functions K and L are given by

K � r�2F�2� � 3r�3F�1� � 3r�4F;

L � �r�1F�3� � 2r�2F�2� � 3r�3F�1� � 3r�4F;

where F � F�r� t� � e��r�t�r0�
2=w2

denotes the radial

profile, and F�n� � dnF�x�=dxn. For small ~A, this choice
of hij corresponds to a localized incoming gravitational

wave at radius r0 � 20 with width w � 1, having odd
parity and azimuthal quantum number M � 0.

Being based on a solution to the linearized Einstein
equations, the free data (5) satisfy the conformal thin-
sandwich equations (1), (2), and (4), to linear order in
~A, but violate them to O� ~A2�. Consequently, the XCTS

equations have a solution which corrects the free data by

O� ~A2�, as demonstrated in [16]. However, this is not the
full story.

We employ the spectral elliptic solver described in [17]
to solve Eqs. (1), (2), and (4), in a computational domain
with outer radius 108 with Dirichlet boundary conditions,
 � N � 1, i � 0. For smooth problems, like the ones
considered here, such a spectral method results in expo-
nential convergence, and allows construction of highly
accurate solutions. All solutions presented in this Letter
converge indeed exponentially; generally, the maximum

residual of both Hamiltonian and momentum constraint
is &10�6, and other quantities we mention below have
converged to a similar level. The convergence rate dimin-
ishes along the ‘‘upper branch’’ of the extended system at

amplitudes ~A & 0:2, but the relative errors remain &10�4

even at ~A � 0:02. In all figures, numerical errors are

much smaller than the line thickness, so that essentially
the ‘‘true’’ analytical solutions are plotted.

Figure 1 presents solutions to the standard conformal

thin-sandwich equations for various amplitudes ~A. The

conformal factor  diverges as ~A approaches some criti-
cal amplitude. For our particular choice ~N � 1, K � 0,
Eqs. (1) and (2) reduce to a set of equations which is very
well understood mathematically [18–20]: Solutions are
unique and exist iff the Yamabe constant of ~gij is positive.

Figure 1 suggests that the Yamabe constant of the metric

Eq. (5a) is positive for small ~A and changes sign at ~A �
~Ac;4, similar to an example given in [19].

The situation is very different when solving the extended
system. Figure 2 presents the plot analogous to Fig. 1 for
this case. As in the standard system, we have not been able
to find solutions beyond some critical amplitude. However,
here the similarity ends. For the extended system, the

critical amplitude ~Ac;5 � 0:30422 is much smaller than
for the standard system. Therefore, existence of solutions
cannot depend simply on the sign of the Yamabe constant

of ~gij. Furthermore, as � ~A � ~Ac;5 �
~A becomes small,

max varies as �� ~A�1=2 and approaches a finite limit

 crit � 1:0999 (the numerical values for ~Ac;5 and  crit

were computed by fitting a parabola). The log-log plot in
the inset of Fig. 2 confirms these statements. Inspection of

the solutions shows that as � ~A ! 0 all variables vary in

proportion to �� ~A�1=2 at any spatial coordinate location x,

u��
~A; x� � ucrit�x� � vcrit�x�

���������

� ~A

q

: (6)

FIG. 1 (color online). Solutions of the standard (four) confor-
mal thin-sandwich equations vs the conformal amplitude. As the
critical amplitude ~Ac;4 � 2:01 is approached, the conformal

factor grows to infinity.
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Here, u�, ucrit, and vcrit represent the vector of all five
variables � ;i; ~N�, and the notation indicates that u�
depends on both ~A and the spatial coordinates x, whereas

ucrit and vcrit are independent of ~A sufficiently close to
~Ac;5.

Because of the parabolic behavior close to ~Ac;5, we

expect a second branch of solutions, generalizing Eq. (6) to

u�
~A; x� � ucrit�x�  vcrit�x�

���������

� ~A

q

: (7)

The solutions found so far in Fig. 2 were obtained with
trivial initial guess  � N � 1, i � 0, and constitute
the lower branch u� only; to converge to u�, an ini-
tial guess sufficiently close to u� is necessary. Differ-

entiation of Eq. (6) with respect to ~A yields vcrit �

2�� ~A�1=2du�=d
~A, so that, sufficiently close to ~Ac;5,

u��
~A; x� � u��

~A; x� � 4� ~A
du��

~A; x�

d ~A
: (8)

Approximating du�=d
~A by a finite-difference quotient of

solutions with ~A � 0:300 and ~A � 0:301, we compute
the right-hand side of Eq. (8) and use it as an initial guess

for the elliptic solver at ~A � 0:300. The solver now
converges to a different solution; for example, max �

1:12. This solution u� for one ~A is then used as an initial

guess for solutions with neighboring ~A and repeating this
process, we move along the upper branch and compute

solutions u� for a wide range of ~A. Eventually, Fig. 3
emerges, which shows clearly the two distinct branches

merging in a parabola at ~Ac;5.

The solutions u� are quite remarkable. They exist over a

wide range of ~A, down to small ~A. As ~A decreases,  
increases everywhere; the increase is particularly pro-
nounced close to the maximum of  which occurs in a
ring in the equatorial plane at a radius close to r0.

Consequently, with decreasing ~A, the maxima of  be-
come increasingly pronounced and concentrated around
r � r0 in the equatorial plane. This necessitates higher
angular resolution in latitude and diminishes the conver-
gence rate of the spectral expansion, so that we choose to

stop at ~A � 0:02. We note, however, that we do not see
any fundamental indication that the branch u� terminates;

it appears that u� extends to arbitrarily small ~A, with ever
increasing  . The physical (Arnowitt-Deser-Misner [1])
energy E of the computed initial data sets varies approxi-
mately proportionally to max � 1 along u� (see also

Fig. 4). At ~A � 0:02, E � 50:012 (in units in which r0 �
20). This data set also contains an apparent horizon with

mass M�
����������������������

Area=16"
p

�49:872. The apparent horizon is
oblate with equatorial radius 28.8 and polar radius 21.1.

Apparent horizons are present for ~A & 0:025.
Figure 3 shows clearly that the extended system admits

two solutions for the same free (conformal) data. However,
the physical properties of the initial data sets depend on the
physical quantities �gij; Kij�; for example, the metric takes

the form

gij �  4fij � � ~A 4�hij: (9)

This can be interpreted as the superposition of a gravita-

tional wave hij with physical amplitude ~A 4 on a physical

background  4fij. The conformal factor  is a function of

FIG. 3 (color online). Maximum of the conformal factor,
minimum of the physical lapse N �  6 ~N, and maximal magni-
tude of the shift vs conformal (unphysical) amplitude. Solid/
dashed curves represent the lower/upper branch. The insets show
enlargements around the critical point; circles/diamonds denote
individual solutions along the lower/upper branch.
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FIG. 2 (color online). Solutions of the extended (five) confor-
mal thin-sandwich equations vs conformal amplitude. The con-
formal factor remains finite as the critical amplitude
~Ac;5 � 0:304 is approached, as confirmed by the inset [� ~A �
~Ac;5 �

~A, � �  crit �max� �].

PRL 95, 091101 (2005)
P H Y S I C A L R E V I E W L E T T E R S week ending

26 AUGUST 2005

091101-3



space, and therefore ~A 4 is also spatially dependent. To
simplify, we take the maximum of  , which coincides with
the location of the gravitational wave at radius r0 � 20,

and define a representative physical amplitude by Amax �
~Amax 4.

Figure 4 plots energy E both vs ~A and Amax; the
qualitative difference between both definitions of ampli-
tude is apparent: The unphysical amplitude changes ‘‘di-
rection’’ along the sequence of solutions leading to the

largest energy at smallest ~A. In contrast, Amax is con-
tinuously increasing, precisely one solution corresponds
to each value of Amax, and large energies are obtained at
large Amax. The family of solutions passes smoothly
through the critical point, and even for arbitrarily large
Amax, a solution seems to exist. Thus, Amax represents
the amplitude of the physical perturbation much more

faithfully than ~A.
We see that uniqueness of the problem is not a straight-

forward issue. It depends on the question: for a given set of

free data (this is, for a given value of ~A), the elliptic

equations may have two solutions ( ~A< ~Ac;5) or no so-

lution at all ( ~A> ~Ac;5). However, for each value of the

physical amplitude Amax as described, precisely one so-
lution exists within the family of solutions considered here.

While the relationship between uniqueness and non-
uniqueness of the XCTS system as discussed above is
intriguing, the major result of this work lies in the fact
that the XCTS system may have two solutions for the same
free data. Besides the obvious importance of this result to
workers in mathematical relativity, we note that this issue

may complicate construction of astrophysical compact
object initial data, which relies on some form of the
XCTS equations [5–12]. Furthermore, the most common
elliptic gauge conditions [21] include precisely Eq. (4) to
determine the lapse function.
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FIG. 4 (color online). Energy E vs unphysical amplitude ~A

and physical amplitude Amax. The left inset shows an enlarge-
ment around the critical point. The right inset plots the data of
Fig. 3 vs Amax.
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