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UNIQUENESS AND UNIVERSALITY OF THE BROWNIAN MAP

BY JEAN-FRANÇOIS LE GALL

Université Paris-Sud and Institut universitaire de France

We consider a random planar map Mn which is uniformly distributed
over the class of all rooted q-angulations with n faces. We let mn be the vertex
set of Mn, which is equipped with the graph distance dgr. Both when q ≥ 4 is
an even integer and when q = 3, there exists a positive constant cq such that
the rescaled metric spaces (mn, cqn−1/4dgr) converge in distribution in the
Gromov–Hausdorff sense, toward a universal limit called the Brownian map.
The particular case of triangulations solves a question of Schramm.
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1. Introduction. In the present work, we derive the convergence in distribu-
tion in the Gromov–Hausdorff sense of several important classes of rescaled ran-
dom planar maps, toward a universal limit called the Brownian map. This solves
an open problem that has been stated first by Oded Schramm [26] in the particular
case of triangulations.

Recall that a planar map is a proper embedding of a finite connected graph in the
two-dimensional sphere, viewed up to orientation-preserving homeomorphisms of
the sphere. Loops and multiple edges are allowed in the graph. The faces of the
map are the connected components of the complement of edges, and the degree of
a face counts the number of edges that are incident to it, with the convention that if
both sides of an edge are incident to the same face, this edge is counted twice in the
degree of the face. Special cases of planar maps are triangulations, where each face
has degree 3, quadrangulations, where each face has degree 4, and, more gener-
ally, q-angulations, where each face has degree q . For technical reasons, one often
considers rooted planar maps, meaning that there is a distinguished oriented edge
whose origin is called the root vertex. Since the pioneering work of Tutte [28],
planar maps have been studied thoroughly in combinatorics, and they also arise in
other areas of mathematics: See, in particular, the book of Lando and Zvonkin [12]
for algebraic and geometric motivations. Large random planar graphs are of inter-
est in theoretical physics, where they serve as models of random geometry [3], in
particular, in the theory of two-dimensional quantum gravity.

Let us introduce some notation in order to give a precise formulation of our
main result. Let q ≥ 3 be an integer. We assume that either q = 3 or q is even.
The set of all rooted planar q-angulations with n faces is denoted by Aq

n. For every
integer n ≥ 1 (if q = 3 we must restrict our attention to even values of n, since
A3

n is empty if n is odd), we consider a random planar map Mn that is uniformly
distributed over Aq

n. We denote the vertex set of Mn by mn. We equip mn with the
graph distance dgr, and we view (mn, dgr) as a random variable taking values in
the space K of isometry classes of compact metric spaces. We equip K with the
Gromov–Hausdorff distance dGH (see, e.g., [6]) and note that (K, dGH) is a Polish
space.

THEOREM 1.1. Set

cq =
(

9

q(q − 2)

)1/4

if q is even, and

c3 = 61/4.

There exists a random compact metric space (m∞,D∗) called the Brownian map,
which does not depend on q , such that(

mn, cqn
−1/4dgr

) (d)−→
n→∞

(
m∞,D∗),

where the convergence holds in distribution in the space K.
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Let us give a precise definition of the Brownian map. We first need to intro-
duce the random real tree called the CRT, which can be viewed as the tree coded
by a normalized Brownian excursion, in the following sense. Let (es)0≤s≤1 be a
normalized Brownian excursion, that is, a positive excursion of linear Brownian
motion conditioned to have duration 1, and set, for every s, t ∈ [0,1],

de(s, t) = es + et − 2 min
s∧t≤r≤s∨t

er .

Then de is a (random) pseudometric on [0,1], and we consider the associated
equivalence relation ∼e: for s, t ∈ [0,1],

s ∼e t if and only if de(s, t) = 0.

Since 0 ∼e 1, we may as well view ∼e as an equivalence relation on the unit cir-
cle S

1. The CRT is the quotient space Te := S
1/ ∼e, which is equipped with the

distance induced by de. We write pe for the canonical projection from S
1 onto

Te, and ρ = pe(1). If u, v ∈ S
1, we let [u, v] be the subarc of S

1 going from u

to v in clockwise order, and if a, b ∈ Te, we define [a, b] as the image under the
canonical projection pe of the smallest subarc [u, v] of S

1 such that pe(u) = a

and pe(v) = b. Roughly speaking, [a, b] corresponds to the set of vertices that one
visits when going from a to b around the tree in clockwise order.

We then introduce Brownian labels on the CRT. We consider a real-valued pro-
cess Z = (Za)a∈Te indexed by the CRT, such that, conditionally on Te, Z is a
centered Gaussian process with Zρ = 0 and E[(Za − Zb)

2] = de(a, b) (this pre-
sentation is slightly informal as we are considering a random process indexed by
a random set, see Section 2.4 for a more rigorous approach). We define, for every
a, b ∈ Te,

D◦(a, b) = Za + Zb − 2 max
(

min
c∈[a,b]Zc, min

c∈[b,a]Zc

)
,

and we put a � b if and only if D◦(a, b) = 0. Although this is not obvious, it turns
out that � is an equivalence relation on Te, and we let

m∞ := Te/ �
be the associated quotient space. We write � for the canonical projection from Te
onto m∞. We then define the distance on m∞ by setting, for every x, y ∈ m∞,

D∗(x, y) = inf

{
k∑

i=1

D◦(ai−1, ai)

}
,(1)

where the infimum is over all choices of the integer k ≥ 1 and of the elements
a0, a1, . . . , ak of Te such that �(a0) = x and �(ak) = y. It follows from [15],
Theorem 3.4, that D∗ is indeed a distance, and the resulting random metric space
(m∞,D∗) is the Brownian map.
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The present work can be viewed as a continuation and in a sense a conclu-
sion to our preceding papers [15] and [16]. In [15], we proved the existence of
sequential Gromov–Hausdorff limits for rescaled uniformly distributed rooted 2p-
angulations with n faces, and we called a Brownian map any random compact
metric space that can arise in such limits (the name Brownian map first appeared
in the work of Marckert and Mokkadem [21] which was dealing with a weak form
of the convergence of rescaled quadrangulations). The main result of [15] used a
compactness argument that required the extraction of suitable subsequences in or-
der to get the desired convergence. The reason why this extraction was needed is
the fact that the limit could not be characterized completely. It was proved in [15]
that any Brownian map can be written in the form (m∞,D), where the set m∞ is
as described above, and D is a distance on m∞, for which only upper and lower
bounds were available in [15, 16]. In particular, the paper [15] provided no charac-
terization of the distance D and it was conceivable that different sequential limits,
or different values of q , could lead to different metric spaces. In the present work,
we solve this uniqueness problem by establishing the explicit formula (1), which
had been conjectured in [15] and in a slightly different form in [21]. As a con-
sequence, we obtain the uniqueness of the Brownian map, and we get that this
random metric space is the scaling limit of uniformly distributed q-angulations
with n faces, for the values of q discussed above. Our proofs strongly depend on
the study of geodesics in the Brownian map that was developed in [16].

At this point, one should mention that the very recent paper of Miermont [22]
has given another proof of Theorem 1.1 in the special case of quadrangulations
(q = 4). Our approach was developed independently of [22] and uses very different
ingredients, leading to more general results. On the other hand, the proof in [22]
gives additional information about the properties of geodesics in m∞, which is of
independent interest.

Let us briefly sketch the main ingredients of our proof in the bipartite case
where q is even. From the main theorem of [15], we can find sequences (nk)k≥1 of
integers converging to ∞ such that the random metric spaces (mnk

, cqn
−1/4
k dgr)

converge in distribution to (m∞,D), where D is a distance on m∞ such that
D ≤ D∗. Additionally, the space (m∞,D) comes with a distinguished point x∗,
which is such that, for every y ∈ m∞, and every a ∈ Te such that �(a) = y,

D(y,x∗) = D∗(y, x∗) = Za − minZ.

The heart of the proof is now to verify that D = D∗ (Theorem 7.2 below). To
this end, it is enough to prove that D(y,y ′) = D∗(y, y′) a.s. when y and y′ are
distributed uniformly and independently on m∞ (the word uniformly refers to the
volume measure on m∞, which is the image of the normalized Lebesgue measure
on S

1 under the projection � ◦ pe). By the results in [16], it is known that there is
an almost surely unique geodesic path (�(t),0 ≤ t ≤ D(y,y′)) from y to y′ in the
metric space (m∞,D).
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Proving that D(y,y′) = D∗(y, y′) is then essentially equivalent to verifying
that the geodesic � is well approximated (in the sense that the lengths of the
two paths are not much different) by another continuous path going from y to y′,
which is constructed by concatenating pieces of geodesics toward the distinguished
point x∗. To this end, we prove that, for every choice of r ≥ ε > 0, and condition-
ally on the event {D(y,y′) ≥ r + ε}, the probability that we have either

D
(
x∗,�(r)

)= D
(
x∗,�(r + ε)

)+ ε or
(2)

D
(
x∗,�(r)

)= D
(
x∗,�(r − ε)

)+ ε

is bounded below by 1−εβ when ε is small, where β > 0 is a constant. If (2) holds,
this means that there is a geodesic from x∗ to �(r) that visits either �(r − ε) or
�(r + ε) and then coalesces with �. This is of course reminiscent of the results
of [16] saying that any two geodesic paths (starting from arbitrary points of m∞)
ending at a “typical” point x of m∞ must coalesce before hitting x. The difficulty
here comes from the fact that interior points of geodesics are not typical points
of m∞ and so one cannot immediately rely on the results of [16] to establish the
preceding estimate (though these results play a crucial role in the proof).

As in many other papers investigating scaling limits for large random planar
maps, our proofs make use of bijections between planar maps and various classes
of labeled trees. In the bipartite case, we rely on a bijection discovered by Bouttier,
Di Francesco and Guitter [4] between rooted and pointed 2p-angulations with n

faces and labeled p-trees with n black vertices (see Section 2.1, in the case of
triangulations we use another bijection from [4], which is presented in Section 8.1).
A variant of this bijection allows us to introduce the notion of a discrete map with
geodesic boundaries (DMGB in short), which, roughly speaking, corresponds to
cutting the map along a particular discrete geodesic from the root vertex to the
distinguished vertex. This cutting operation produces two distinguished geodesics,
which are called the boundary geodesics. The notion of a DMGB turns out to play
an important role in our proofs and is also of independent interest. The general
philosophy of our approach is that a large planar map can be obtained by gluing
together many DMGBs along their boundary geodesics.

To complete this introduction, let us mention that the idea of studying the con-
tinuous limit of large random quadrangulations first appeared in the pioneering
paper of Chassaing and Schaeffer [7], which obtained detailed information about
the asymptotics of distances from the root vertex. The results of Chassaing and
Schaeffer were extended to more general classes of random maps in several papers
of Miermont and his coauthors (see, in particular, [20, 23]), using the bijections
with trees found in [4]. All these results are concerned with the profile of distances
from a particular vertex of the graph and do not provide enough information to
understand Gromov–Hausdorff limits. The understanding of these limits would be
possible if one could compute the asymptotic k-point function, that is, the asymp-
totic distribution of the matrix of mutual distances between k randomly chosen
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vertices. In the particular case of quadrangulations, the asymptotic 2-point func-
tion can be derived from the results of [7], and the asymptotic 3-point function
has been computed by Bouttier and Guitter [5]. However, the extension of these
calculations to higher values of k seems a difficult problem.

As a final remark, Duplantier and Sheffield [10] recently developed a mathe-
matical approach to two-dimensional quantum gravity based on the Gaussian free
field. It is expected that this approach should be related to the asymptotics of large
planar maps. The very recent paper [27] contains several conjectures in this di-
rection. Another very appealing related question is concerned with canonical em-
beddings of the Brownian map: It is known [18] that the space (m∞,D∗) is a.s.
homeomorphic to the 2-sphere S

2, and one may look for a canonical construc-
tion of a random distance d on S

2 such that (m∞,D∗) is a.s. isometric to (S2, d).
The random distance d is expected to have nice conformal invariance properties.
Hopefully these questions will lead to a promising new line of research in the near
future.

The paper is organized as follows. Section 2 recalls basic facts about the coding
of 2p-angulations by labeled trees, and known results from [15] and [16] about the
convergence of rescaled 2p-angulations. Section 3 discusses discrete maps with
geodesic boundaries and their scaling limits. In Section 4 we prove the traversal
lemmas, which are concerned with certain properties of geodesics in large discrete
maps with geodesic boundaries. Roughly speaking, these lemmas provide lower
bounds for the probability that a geodesic path starting from a point of one bound-
ary geodesic and ending at a point of the other boundary geodesic will share a
significant part of both boundary geodesics. Section 5 proves our main estimate
Lemma 5.3, which bounds the probability that (2) does not hold. Section 6 gives
another preliminary estimate relating the distances D and D∗, which comes as an
easy consequence of estimates for the volume of balls proved in [16] (a slightly
different approach to the result of Section 6 appears in [22]). Section 7 contains
the proof of Theorem 1.1 in the bipartite case where q is even. The case of triangu-
lations is treated in Section 8, and Section 9 discusses extensions, in particular, to
the Boltzmann distributions on bipartite planar maps considered in [20], and open
problems. Finally, the Appendix provides the proof of two technical lemmas.

TABLE OF NOTATION.
Mn uniform rooted and pointed 2p-angulation with n faces
mn vertex set of Mn

dgr graph distance on mn

(τn, (�
n
v)v∈τ ◦

n
) labeled p-tree associated with Mn via the BDG bijection

vn
0 , vn

1 , . . . , vn
pn contour sequence of τ ◦

n

dn(i, j) = dgr(v
n
i , vn

j )

Cn contour function of τ ◦
n

	n label function of (τn, (�
n
v)v∈τ ◦

n
)

γn simple geodesic from the first corner of ∅ in Mn or M̃n



2886 J.-F. LE GALL

�n = −min�n + 1
M̃n discrete map with geodesic boundaries (DMGB) associated with Mn

d̃gr graph distance in M̃n

γ ′
n second distinguished boundary geodesic in M̃n

λp, κp scaling constants (cf. Theorem 2.3)
rn = �rκ−1

p n1/4�
σn = min{i ≥ 0 :	n

i = −rn}
vn = vn

σn

ψn,r (δ) (half) generation of last ancestor of vn with label > −rn + δκ−1
p n1/4

�n,r(δ) maximal index in the contour sequence of τ ◦
n of this last ancestor

e = (et )0≤t≤1 normalized Brownian excursion
Te = [0,1]/ ∼e tree coded by e (CRT)
pe : [0,1] −→ Te canonical projection
Z = (Zt )0≤t≤1 head of Brownian snake driven by e (Brownian labels on Te)
� = −minZ

s∗ time minimizing Z

m∞ = [0,1]/ ≈= Te/ � Brownian map
� : Te −→ m∞ canonical projection
p = � ◦ pe
D distance on the Brownian map derived as scaling limit of graph distances
D◦(s, t) = Zs + Zt − 2 max(min[s∧t,s∨t] Zr,min[0,s∧t]∪[s∨t,1] Zr)

D◦(a, b) = min{D◦(s, t) :pe(s) = a,pe(t) = b} for a, b ∈ Te
D∗(a, b) = inf{∑k

i=1 D◦(ai−1, ai) :a = a0, a1, . . . , ak = b} for a, b ∈ Te
Sr = inf{t ∈ [0,1] :Zt = −r}
S′

r = sup{t ∈ [0,1] :Zt = −r}
�(r) = p(Sr) = p(S′

r ) simple geodesic from p(0) to p(s∗)
ηδ(r) = inf{s > Sr : es = mint∈[Sr ,s] et and Zs = −r + δ}
η′

δ(r) = sup{s < S′
r : es = mint∈[s,S′

r ] et and Zs = −r + δ}

2. Convergence of rescaled planar maps.

2.1. Labeled p-trees. A plane tree τ is a finite subset of the set

U =
∞⋃

n=0

N
n

of all finite sequences of positive integers (including the empty sequence ∅), which
satisfies the three following conditions:

(i) ∅ ∈ τ ;
(ii) for every v = (u1, . . . , uk) ∈ τ with k ≥ 1, the sequence (u1, . . . , uk−1)

also belongs to τ [(u1, . . . , uk−1) is called the “parent” of v];
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FIG. 1. A 3-tree τ and the associated contour function Cτ ◦
of τ◦.

(iii) for every v = (u1, . . . , uk) ∈ τ there exists an integer kv(τ ) ≥ 0 such that,
for every j ∈ N, the vertex vj := (u1, . . . , uk, j) belongs to τ if and only if 1 ≤
j ≤ kv(τ ) [the vertices of the form vj with 1 ≤ j ≤ kv(τ ) are called the children
of v].

For every v = (u1, . . . , uk) ∈ U , the generation of v is |v| = k. The notions of
an ancestor and a descendant in the tree τ are defined in an obvious way. By
convention a vertex is a descendant of itself.

Throughout this work, the integer p ≥ 2 is fixed. A p-tree is a plane tree τ that
satisfies the following additional property: For every v ∈ τ such that |v| is odd,
kv(τ ) = p − 1.

If τ is a p-tree, vertices v of τ such that |v| is even are called white vertices, and
vertices v of τ such that |v| is odd are called black vertices. We denote the set of
all white vertices of τ by τ ◦ and the set of all black vertices by τ •. By definition,
the size |τ | of a p-tree τ is the number of its black vertices. See the left side of
Figure 1 for an example of a 3-tree.

A labeled p-tree is a pair θ = (τ, (�v)v∈τ ◦) that consists of a p-tree τ and a col-
lection of integer labels assigned to the white vertices of τ , such that the following
properties hold:

(a) �∅ = 0 and �v ∈ Z for each v ∈ τ ◦.
(b) Let v ∈ τ •, let v(0) be the parent of v and let v(j) = vj , 1 ≤ j ≤ p − 1, be

the children of v. Then for every j ∈ {0,1, . . . , p − 1}, �v(j+1)
≥ �v(j)

− 1, where
by convention v(p) = v(0).

Condition (b) means that if one lists the white vertices adjacent to a given black
vertex in clockwise order, the labels of these vertices can decrease by at most one
at each step. By definition, the size of θ is the size of τ .

Let τ be a p-tree with n black vertices and let k = #τ − 1 = pn. The depth-first
search sequence of τ is the sequence w0,w1, . . . ,w2k of vertices of τ which is
obtained by induction as follows. First w0 = ∅, and then for every i ∈ {0, . . . ,2k−
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1}, wi+1 is either the first child of wi that has not yet appeared in the sequence
w0, . . . ,wi or the parent of wi if all children of wi already appear in the sequence
w0, . . . ,wi . It is easy to verify that w2k = ∅ and that all vertices of τ appear in the
sequence w0,w1, . . . ,w2k (some of them appear more than once).

Vertices wi are white when i is even and black when i is odd. The contour
sequence of τ ◦ is by definition the sequence v0, . . . , vk defined by vi = w2i for
every i ∈ {0,1, . . . , k}. If v is a given white vertex, each index i such that vi = v

corresponds to a “corner” (angular sector) around v, and we abusively speak about
the corner vi .

Our limit theorems for random planar maps will be derived from similar limit
theorems for trees, which are conveniently stated in terms of the coding functions
called the contour function and the label function. The contour function of τ ◦ is
the discrete sequence Cτ ◦

0 ,Cτ ◦
1 , . . . ,Cτ ◦

pn defined by

Cτ ◦
i = 1

2 |vi | for every 0 ≤ i ≤ pn.

See Figure 1 for an example with p = n = 3. The label function of θ =
(τ, (�v)v∈τ ◦) is the discrete sequence (	θ

0,	
θ
1, . . . ,	

θ
pn) defined by

	θ
i = �vi

for every 0 ≤ i ≤ pn.

From property (b) of the labels and the definition of the contour sequence, it is clear
that 	θ

i+1 ≥ 	θ
i − 1 for every 0 ≤ i ≤ pn − 1. The pair (Cτ ◦

,	θ) determines θ

uniquely.
We will need to consider subtrees of a p-tree τ branching from the ancestral line

of a given white vertex. Let v ∈ τ ◦, and write v = vj for some j ∈ {0,1, . . . , pn}
(the choice of j does not matter in what follows). The vertices vi , j < i ≤ pn

which are not descendants of v are partitioned into “subtrees” that can be described
as follows. First, for every white vertex u that is an ancestor of v distinct of v, we
can consider the subtree consisting of u and of its descendants that belong to the
right side of the ancestral line of v (or, equivalently, that are greater than v in
lexicographical order). Second, for every black vertex w that is an ancestor of v,
and every child u of w that is greater than v in lexicographical order, we can
consider the subtree consisting of all descendants of u (including u itself). In both
cases, this subtree is called a subtree branching from the right side of the ancestral
line of v, and the quantity 1

2 |u| is called the branching level of the subtree. These
subtrees can be viewed as p-trees, modulo an obvious renaming of the vertices that
preserves the lexicographical order. In the same way, we can partition the vertices
vi , 0 ≤ i ≤ j which are not descendants of v into subtrees branching from the left
side of the ancestral line of v.

If we start from a labeled p-tree θ = (τ, (�v)v∈τ ◦), we can assign labels to the
white vertices of each subtree in such a way that it becomes a labeled p-tree: just
subtract the label �u of the root u of the subtree from the label of every vertex in
the subtree.
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2.2. The Bouttier–Di Francesco–Guitter bijection. Let T
p
n stand for the set of

all labeled p-trees with n black vertices. We denote the set of all rooted and pointed
2p-angulations with n faces by Mp

n . An element of Mp
n is thus a pair (M,v)

consisting of a rooted 2p-angulation M ∈ A2p
n and a distinguished vertex v. By

Euler’s formula, the number of choices for v is (p − 1)n+ 2, independently of M .
We now describe the Bouttier–Di Francesco–Guitter bijection (in short, the

BDG bijection) between T
p
n × {0,1} and Mp

n . This bijection can be found in Sec-
tion 2 of [4] in the more general setting of bipartite planar maps. Note that [4] deals
with pointed planar maps rather than with rooted and pointed planar maps. How-
ever, the results described below easily follow from [4] (the bijection we will use
is a variant of the one presented in [15, 16], which was concerned with nonpointed
rooted 2p-angulations and particular labeled p-trees called mobiles in [15, 16]).

Let θ = (τ, (�v)v∈τ ◦) ∈ T
p
n and let ε ∈ {0,1}. As previously, we denote the con-

tour sequence of τ ◦ by v0, v1, . . . , vpn. We extend this sequence periodically by
putting vpn+i = vi for every 0 ≤ i ≤ pn. Suppose that the tree τ is drawn on the
sphere and add an extra vertex ∂ . We associate with the pair (θ, ε) a 2p-angulation
M with n faces, whose set of vertices is

m = τ ◦ ∪ {∂}
and whose edges are obtained as follows: For every i ∈ {0,1, . . . , pn − 1},
• if �vi

= min{�v :v ∈ τ ◦}, draw an edge between the corner vi and ∂ ;
• if �vi

> min{�v :v ∈ τ ◦}, draw an edge between the corner vi and the corner vj ,
where j is the first index in the sequence i + 1, i + 2, . . . , i + pn − 1 such that
�vj

= �vi
− 1 (we then say that j is the successor of i, or sometimes that vj is a

successor of vi ).

Notice that condition (b) in the definition of a p-tree entails that �vi+1 ≥ �vi
− 1

for every i ∈ {0,1, . . . , pn − 1}. This ensures that whenever �vi
> min{�v :v ∈ τ ◦}

there is at least one vertex among vi+1, vi+2, . . . , vi+pn−1 with label �vi
− 1. The

construction can be made in a unique way (up to orientation-preserving homeo-
morphisms of the sphere) if we impose that edges of the map do not intersect, ex-
cept possibly at their endpoints, and do not intersect the edges of the tree. We refer
to Section 2 of [4] for a more detailed description (here we will only need the fact
that edges are generated in the way described above). The resulting planar map M

is a 2p-angulation. By definition, this 2p-angulation is rooted at the edge between
vertex ∅ and its successor w = vj , where j = min{i ∈ {1, . . . , pn} :�i = −1}, and
by convention w = ∂ if min{�v :v ∈ τ ◦} = 0. The orientation of this edge is spec-
ified by the variable ε: if ε = 1, the root vertex is ∅ and if ε = 0, the root vertex
is w. Finally, the 2p-angulation M is pointed at the vertex ∂ , so that we have indeed
obtained a rooted and pointed 2p-angulation. Each face of M contains exactly one
black vertex of τ (see Figure 2).

The preceding construction yields a bijection from the set T
p
n ×{0,1} onto Mp

n ,
which is called the BDG bijection. Figure 2 gives an example of a labeled 3-tree
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FIG. 2. A labeled 3-tree θ with 5 black vertices and the associated 6-angulation.

with 5 black vertices (the numbers appearing inside the circles representing white
vertices are the labels assigned to these vertices) and shows the 6-angulation with 5
faces associated with this 3-tree via the BDG bijection.

The following property, which relates labels on the tree τ ◦ to distances in the
planar map M , plays a key role. As previously, we write dgr for the graph distance
in the vertex set m. Then, for every vertex v ∈ τ ◦, we have

dgr(∂, v) = �v − min
{
�w :w ∈ τ ◦}+ 1.(3)

If v and v′ are two arbitrary vertices of M , there is no such simple expression
for dgr(v, v′) in terms of the labels on τ ◦. However, the following bound is useful.
Suppose that v = vi and v′ = vj for some i, j ∈ {1, . . . , pn} with i < j . Then,

dgr
(
v, v′)≤ �vi

+ �vj
− 2 max

(
min

i≤k≤j
�vk

, min
j≤k≤i+pn

�vk

)
+ 2.(4)

See [15], Lemma 3.1, for a proof in a slightly different context, which is easily
adapted. This proof makes use of simple geodesics, which are defined as follows.
Let v ∈ τ ◦, and let i ∈ {0,1, . . . , pn− 1} such that vi = v. For every integer k such
that 0 ≤ k ≤ �v − min{�w :w ∈ τ ◦}, put

φ(i)(k) = min
{
j ∈ {i, i + 1, . . . , i + pn − 1} :�vj

= �v − k
}
,

and ω(i)(k) = vφ(i)(k). Then, if we also set ω(i)(dgr(v, ∂)) = ∂ , it easily follows
from (3) that (ω(i)(k),0 ≤ k ≤ dgr(v, ∂)) is a discrete geodesic from v to ∂ in M .
Such a geodesic is called a (discrete) simple geodesic.
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The bound (4) then simply expresses the fact that the distance between vi and
vj can be bounded by the length of the path obtained by concatenating the simple
geodesics φ(i) and φ(j) up to their coalescence time.

2.3. The CRT. An important role in this work is played by the random real
tree called the CRT, which was first introduced and studied by Aldous [1, 2]. For
our purposes, the CRT is conveniently viewed as the tree coded by a normalized
Brownian excursion. Throughout this work, the notation e = (es)0≤s≤1 stands for a
normalized Brownian excursion (see [25], Chapter XII, for basic facts about Brow-
nian excursion theory). Recall from Section 1 the definition of the pseudometric
de and of the associated equivalence relation ∼e. By definition, the CRT is the
quotient space Te := [0,1]/ ∼e and is equipped with the induced distance, which
is still denoted by de. It is easy to verify that the topology of Te coincides with the
quotient topology.

Then (Te, de) is a random compact real tree (see Section 2.1 of [16] for the
definition and basic properties of compact real trees). We write pe : [0,1] −→ Te
for the canonical projection. By convention, Te is rooted at the point ρ := pe(0) =
pe(1). The ancestral line of a point a of the CRT is the range of the unique (up to
re-parametrization) continuous and injective path from the root to a. This ancestral
line is denoted by [[ρ,a]]. If a, b ∈ Te, we say that a is an ancestor of b (or b is
a descendant of a) if a ∈ [[ρ,b]]. For every a ∈ Te, we can thus define the subtree
of descendants of a. If a, b ∈ Te, we write a ∧ b for the unique vertex such that
[[ρ,a]] ∩ [[ρ,b]] = [[ρ,a ∧ b]].

We refer to Section 2.2 in [16] for more information about the coding of com-
pact real trees by continuous functions. Many properties related to the genealogy
of Te can be expressed conveniently in terms of the coding function e. For instance,
if s ∈ [0,1] is given, a point of the form pe(t), t ∈ [0,1], belongs to the ancestral
line of pe(s) if and only if

et = min
s∧t≤r≤s∨t

er .

We will use such simple facts without further comment in what follows.
A leaf of Te is a vertex a such that Te \ {a} is connected. If t ∈ (0,1), the vertex

pe(t) is a leaf if and only if the equivalence class of t for ∼e is a singleton. The
vertex ρ = pe(0) = pe(1) is also a leaf. The set of all vertices of Te that are not
leaves is called the skeleton of Te and denoted by Sk(Te).

2.4. Brownian labels on the CRT. Brownian labels on the CRT are another
crucial ingredient of our study. We consider a real-valued process Z = (Zs)0≤s≤1
such that, conditionally given (es)0≤s≤1, Z is a centered Gaussian process with
covariance

E[ZsZt |e] = min
s∧t≤r≤s∨t

er .
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Note, in particular, that Z0 = 0 and E[(Zs − Zt)
2|e] = de(s, t). One way of

constructing the process Z is via the theory of the Brownian snake [13]. It is
easy to verify that Z has a continuous modification, which is even Hölder con-
tinuous with exponent 1

4 − ε for every ε ∈ (0, 1
4). From now on, we always deal

with this modification. From the invariance of the law of the Brownian excursion
under time-reversal, one immediately gets that the processes (es,Zs)0≤s≤1 and
(e1−s,Z1−s)0≤s≤1 have the same distribution.

From the formula E[(Zs − Zt)
2|e] = de(s, t), one obtains that

Zs = Zt for every s, t ∈ [0,1] such that de(s, t) = 0, a.s.

Hence, we may view Z as indexed by the CRT Te, in such a way that Zs = Zpe(s)

for every s ∈ [0,1]. In what follows, we write indifferently Zs = Za if s ∈ [0,1]
and a ∈ Te are such that a = pe(s). Using standard techniques as in the proof of
the classical Kolmogorov lemma, one checks that the mapping Te � a −→ Za is
a.s. Hölder continuous with exponent 1

2 − ε with respect to de, for every ε ∈ (0, 1
2).

It is natural (and more intuitive than the presentation we just gave) to interpret Z

as a Brownian motion indexed by the CRT. Although the latter interpretation could
be justified precisely, the approach we took is mathematically more tractable, as
it avoids constructing a random process indexed by a random set. As we will see
below, the pair (Te, (Za)a∈Te) is a continuous analog of a uniformly distributed
labeled p-tree with n black vertices.

Throughout this work, we will use the notation

� = − min
0≤s≤1

Zs.

Detailed information about the distribution of � can be found in [9]. Here we
will only use the simple fact that the topological support of the law of � is the
whole of R+. This can be verified by elementary arguments. It is known (see [19],
Proposition 2.5) that there is an almost surely unique instant s∗ ∈ (0,1) such that
Zs∗ = −�. We will write a∗ = pe(s∗). Note that a∗ is a leaf of Te.

We say that t ∈ (0,1] is a left-increase time of e, respectively of Z, if there
exists ε ∈ (0, t) such that es ≥ et , respectively Zs ≥ Zt , for every s ∈ [t − ε, t].
We similarly define the notion of a right-increase time. Note that the equivalence
class of t for ∼e is a singleton if and only if t is neither a left-increase time nor a
right-increase time of e. The following result is Lemma 3.2 in [18].

LEMMA 2.1. With probability one, any point t ∈ [0,1] which is a right-
increase or a left-increase time of e is neither a right-increase nor a left-increase
time of Z.

We set for every r ≥ 0,

Sr = inf
{
s ∈ [0,1] :Zs = −r

}
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with the usual convention inf ∅ = ∞. Note that Sr < ∞ if and only if r ≤ �.
If r ∈ (0,�], then by definition Sr is a left-increase time of Z, and Lemma 2.1
implies that the equivalence class of Sr for ∼e is a singleton, so that pe(Sr) is a
leaf of Te (the latter property is also true for r = 0).

The following lemma shows that, in some sense, labels do not vary too much
between Sr and Sr+ε when ε is small.

LEMMA 2.2. There exists a constant β0 ∈ (0,1) such that the following holds.
Let μ,A,κ be three reals with 0 < μ < A and κ ∈ (0,1). There exists a constant
CA,μ,κ such that, for every r ∈ [μ,A] and ε ∈ (0,μ/2),

P
[
{Sr ≤ 1 − κ} ∩

{
sup

s∈[Sr−ε,Sr ]
Zs ≥ −r + √

ε
}]

≤ CA,μ,κεβ0 .

Our proof of Lemma 2.2 depends on certain fine properties of the Brown-
ian snake, which are also used in the proof of another more difficult lemma
(Lemma 5.1 below). For this reason, we postpone the proof of both results to the
Appendix.

For every s, t ∈ [0,1] such that s ≤ t , we set

D◦(s, t) = D◦(t, s) = Zs + Zt − 2 max
(

min
r∈[s,t]Zr, min

r∈[t,1]∪[0,s]Zr

)
.

We then set, for every a, b ∈ Te,

D◦(a, b) = min
{
D◦(s, t) : s, t ∈ [0,1],pe(s) = a,pe(t) = b

}
.

This is equivalent to the definition given in the introduction. Suppose that
D◦(a, b) = 0 for some a, b ∈ Te with a �= b. Then we can find s, t ∈ [0,1] such
that pe(s) = a, pe(t) = b and D◦(s, t) = 0. Clearly, s and t must be (right or left)
increase times of Z and Lemma 2.1 implies that both a and b are leaves of Te.

As a function on Te × Te, D◦ does not satisfy the triangle inequality, but we can
set, for every a, b ∈ Te,

D∗(a, b) = inf

{
k∑

i=1

D◦(ai−1, ai)

}
,

where the infimum is over all choices of the integer k ≥ 1 and of a0, . . . , ak ∈ Te
such that a0 = a and ak = b. Then D∗ is a pseudometric on Te, and obviously
D∗ ≤ D◦. It will sometimes be convenient to view D∗ as a function on [0,1]2, by
setting

D∗(s, t) = D∗(pe(s),pe(t)
)

for every s, t ∈ [0,1].
As a consequence of Theorem 3.4 in [15], the property D∗(a, b) = 0 holds if

and only if D◦(a, b) = 0, for every a, b ∈ Te, a.s. (to be precise, the results of [15]
are formulated in terms of a pair (e,Z) which corresponds to re-rooting the CRT
at the vertex pe(s∗) with a minimal label—see Section 2.4 in [15]—however, the
preceding formulation easily follows from the results stated in [15]).
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2.5. Convergence toward the Brownian map. For every integer n ≥ 1, let Mn

be a random rooted and pointed 2p-angulation, which is uniformly distributed
over the set Mp

n . We can write Mn as the image under the BDG bijection of a pair
(θn, εn), where θn = (τn, (�

n
v)v∈τ ◦

n
) is a random labeled p-tree and εn is a random

variable with values in {0,1}. Clearly, θn is uniformly distributed over the set T
p
n

(and εn is uniformly distributed over {0,1}). We write vn
0 , vn

1 , . . . , vn
pn for the con-

tour sequence of τ ◦
n . We denote the contour function of τ ◦

n by Cn = (Cn
i )0≤i≤pn

and the label function of θn by 	n = (	n
i )0≤i≤pn. We extend the definition of both

Cn and 	n to the real interval [0,pn] by linear interpolation.
Let mn stand for the vertex set of Mn. Thanks to the BDG bijection, we have

the identification

mn = τ ◦
n ∪ {∂},

where ∂ denotes the distinguished vertex of Mn. We also observe that the nota-
tion mn is consistent with Section 1, since the random rooted 2p-angulation Mn

obtained from Mn by “forgetting” the distinguished vertex of Mn is uniformly dis-
tributed over A2p

n . Therefore, when proving Theorem 1.1, we may assume that the
random metric space (mn, dgr) is constructed from Mn as explained above.

If i, j ∈ {0,1, . . . , pn}, we set dn(i, j) = dgr(v
n
i , vn

j ). We have then |	n
i −	n

j | ≤
dn(i, j) by (3) and the triangle inequality. As in [15], Section 3, we extend the
definition of dn(s, t) to noninteger values of (s, t) ∈ [0,pn]2 by setting

dn(s, t) = (
s − �s�)(t − �t�)dn

(�s�, �t�)+ (
s − �s�)(�t� − t

)
dn

(�s�, �t�)
+ (�s� − s

)(
t − �t�)dn

(�s�, �t�)+ (�s� − s
)(�t� − t

)
dn

(�s�, �t�),
where �t� = max{k ∈ Z :k ≤ t} and �t� = min{k ∈ Z :k > t}.

The following theorem shows that the contour and label processes and the dis-
tance process associated with Mn have a joint scaling limit, at least along a suitable
sequence of integers converging to ∞. This result is closely related to [15], Theo-
rem 3.4. To simplify notation, we set

λp = 1

2

√
p

p − 1
, κp =

(
9

4p(p − 1)

)1/4

.

THEOREM 2.3. From every sequence of integers converging to ∞, we can ex-
tract a subsequence (nk)k≥1 along which the following convergence in distribution
of continuous processes holds:(

λpn−1/2Cn
pnt , κpn−1/4	n

pnt , κpn−1/4dn(pns,pnt)
)
0≤s≤1,0≤t≤1

(5)
(d)−→

n→∞
(
et ,Zt ,D(s, t)

)
0≤s≤1,0≤t≤1,

where the pair (e,Z) is as in Section 2.4, and (D(s, t))0≤s≤1,0≤t≤1 is a continuous
random process such that the function (s, t) −→ D(s, t) defines a pseudometric on
[0,1]2, and the following properties hold:
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(a) D(s, s∗) = Zs + � = D◦(s, s∗) for every s ∈ [0,1];
(b) D(s, t) ≤ D∗(s, t) ≤ D◦(s, t) for every s, t ∈ [0,1].

For every s, t ∈ [0,1], we put s ≈ t if D(s, t) = 0. Then, a.s. for every s, t ∈
[0,1], the property s ≈ t holds if and only if D∗(s, t) = 0 or, equivalently,
D◦(pe(s),pe(t)) = 0.

Finally, set m∞ = [0,1]/ ≈ and equip m∞ with the distance induced by D,
which is still denoted by D. Then, along the same sequence where the conver-
gence (5) holds, the random compact metric spaces(

mn, κpn−1/4dgr
)

converge in distribution to (m∞,D) in the sense of the Gromov–Hausdorff con-
vergence.

REMARKS. (a) The bound D(s, t) ≤ D◦(s, t) is an analog of the bound (4).
Since D satisfies the triangle inequality, this bound immediately gives D(s, t) ≤
D∗(s, t) [and D∗(s, t) ≤ D◦(s, t) is true by definition as we already noticed].

(b) The convergence of the first two components in (5) does not require the use
of a subsequence; see [20].

(c) The identity D(s, s∗) = Zs + � is a continuous analog of formula (3).
(d) It is not hard to prove that equivalence classes for ≈ can contain at most 3

points (see the discussion in [15], Section 3). Moreover, if s and t are distinct
points of [0,1) such that s ≈ t , then we have either pe(s) = pe(t) or D◦(s, t) = 0,
but these two properties cannot hold simultaneously by Lemma 2.1.

PROOF OF THEOREM 2.3. Although this theorem is very close to the results
of [15], it cannot be deduced immediately from that paper, because [15] deals
with rooted 2p-angulations, where the associated tree is constructed by using
distances from the root vertex, whereas in our setting of rooted and pointed 2p-
angulations the associated tree is obtained by considering the distances from the
distinguished vertex. Still, the arguments in Section 3 of [15] can be adapted to
the present setting. The convergence of the first two components in (5) is deduced
from [20], Theorem 8 (we should note that [20] deals with the so-called height
process, which is a variant of the contour process, and the corresponding vari-
ant of the label process, but it is easy to verify that limit theorems for the height
process can be translated in terms of the contour process; see, for example, Sec-
tion 1.6 in [14]). From this convergence, the tightness of the laws of the processes
(n−1/4dn(pns,pnt))0≤s≤1,0≤t≤1 is derived exactly as in [15], Proposition 3.2, or
in [17], Section 6, in the particular case p = 2. It follows that the convergence (5)
holds along a suitable subsequence and, via the Skorokhod representation theorem,
we may even assume that this convergence holds a.s. The other assertions of the
theorem are then obtained in a straightforward way (see Section 3 of [15] or Sec-
tion 6 of [17]), with the exception of the fact that D(s, t) = 0 implies D∗(s, t) = 0.
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To verify the latter fact, one can reproduce the rather delicate arguments of [15],
Section 4, in the present setting. Alternatively, one can use the estimates for the
volume of balls proved in [16], Section 6, and follow the ideas that will be devel-
oped below in Section 6 to get a sharper comparison estimate between D and D∗.
We leave the details to the reader. �

We will write p for the canonical projection from [0,1] onto m∞ = [0,1]/ ≈.
As a consequence of the bound D ≤ D◦, this projection is continuous when [0,1]
is equipped with the usual Euclidean distance. The volume measure Vol on m∞ is
the image of the Lebesgue measure on [0,1] under the projection p.

From the characterization of the equivalence relation ≈, we see that m∞ can be
viewed as well as a quotient space of Te, for the equivalence relation � defined
by a � b if and only if D◦(a, b) = 0 (this is consistent with the presentation we
gave in Section 1). We then write � for the canonical projection from Te onto
m∞ in such a way that p = � ◦ pe. Noting that the topology on Te is the quotient
topology and that p is continuous, it follows that � is also continuous. We set
x∗ = p(s∗) = �(a∗). Note that property (a) in the theorem identifies all distances
from x∗ in m∞ in terms of the label process Z.

We can define D∗(x, y) for every x, y ∈ m∞, so that D∗(�(a),�(b)) =
D∗(a, b) for every a, b ∈ Te. Then D∗ is also a random distance on m∞. Most of
what follows is devoted to proving that D(x,y) = D∗(x, y) for every x, y ∈ m∞.
If this equality holds, the limiting space in Theorem 2.3 coincides with (m∞,D∗)
and in particular does not depend on the choice of the sequence (nk)k≥1. The state-
ment of Theorem 1.1 (in the bipartite case when q = 2p is even) follows.

Notice that we already know by property (b) of the theorem that D ≤ D∗ and
that an easy compactness argument shows that the topologies induced, respec-
tively, by D and by D∗ on m∞ coincide, as it was already noted in [15]. Further-
more, it is immediate from properties (a) and (b) in the theorem that

D∗(x∗, x) = D(x∗, x) for every x ∈ m∞.(6)

2.6. Geodesics in the Brownian map. If x, y are points in a metric space
(E,d), a (continuous) geodesic from x to y is a path (ω(t),0 ≤ t ≤ d(x, y)) such
that ω(0) = x, ω(d(x, y)) = y and d(ω(t),ω(t ′)) = t ′ − t for every 0 ≤ t ≤ t ′ ≤
d(x, y). The metric space (E,d) is called geodesic if for any two points x, y ∈ E

there is (at least) one geodesic from x to y.
From general results about Gromov–Hausdorff limits of geodesic spaces [6],

Theorem 7.5.1, we get that (m∞,D) is almost surely a geodesic space. Detailed
information about the geodesics in m∞ has been obtained in [16], and we summa-
rize the results that will be needed below.

Let s ∈ [0,1]. For every r ∈ [0,D(s, s∗)], we set

ϕs(r) =
{

inf
{
t ∈ [s,1] :Zt = Zs − r

}
, if min

{
Zt : t ∈ [s,1]}≤ Zs − r,

inf
{
t ∈ [0, s] :Zt = Zs − r

}
, otherwise.



UNIQUENESS AND UNIVERSALITY OF THE BROWNIAN MAP 2897

Since D(s, s∗) = Zs + �, the preceding definition makes sense. For every r ∈
[0,D(s, s∗)], set

�s(r) = p
(
ϕs(r)

)
.

By construction, D◦(ϕs(r), ϕs(r
′)) = r ′ − r for every 0 ≤ r ≤ r ′ ≤ D(s, s∗). On

the other hand, by property (a) of Theorem 2.3, we have also

r ′ − r = D◦(ϕs(r), ϕs

(
r ′))≥ D

(
ϕs(r), ϕs

(
r ′))

≥ D
(
s∗, ϕs

(
r ′))− D

(
s∗, ϕs(r)

)= r ′ − r.

It follows that �s is a geodesic in (m∞,D). Using property (b) of Theorem 2.3,
we have then D∗(�s(r),�s(r

′)) = r ′ − r for every 0 ≤ r ≤ r ′ ≤ D(s, s∗), and thus
�s is also a geodesic in (m∞,D∗).

The geodesics of the form �s are called simple geodesics. They are indeed the
continuous analogs of the discrete simple geodesics discussed at the end of Sec-
tion 2.2.

The following theorem reformulates the main results of [16] in our setting.

THEOREM 2.4. All geodesics in (m∞,D) from an arbitrary vertex of m∞ to
x∗ are simple geodesics, and therefore also geodesics in (m∞,D∗).

PROOF. For the same reason that was discussed in the proof of Theorem 2.3,
this result is not a mere restatement of Theorem 7.4 and Theorem 7.6 in [16]. How-
ever, it can be deduced from these results along the following lines. Showing that
all geodesics from an arbitrary vertex of m∞ to x∗ are simple geodesics is eas-
ily seen to be equivalent to verifying that a geodesic ending at x∗ cannot visit the
skeleton Sk(Te), except possibly at its starting point. However, points of the skele-
ton are exactly those from which there are (at least) two distinct simple geodesics.
Hence, supposing that there exists a geodesic ending at x∗ that visits the skeleton
at a strictly positive time, one could construct two geodesics ω and ω′ starting from
the same point and both ending at x∗ such that ω(t) = ω′(t) for every t ∈ [0, ε],
for some ε > 0. By the invariance of the Brownian map under uniform re-rooting
(Theorem 8.1 of [16]) and the main results of [16], this does not occur. �

If x ∈ m∞ is such that p−1(x) is a singleton, Theorem 2.4 shows that there is
a unique geodesic from x to x∗. The particular case x = p(0) plays an important
role in the remaining part of this work. In this case p−1(x) = {0,1}, a.s., but it
is trivial that �0 = �1, so that there is a.s. a unique geodesic from p(0) to x∗. To
simplify notation, we will write � = �0 for this unique geodesic. We note that we
have ϕ0(r) = Sr , for every r ∈ [0,�], where Sr was introduced in Section 2.4, and,
thus, �(r) = p(Sr).
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3. Maps with geodesic boundaries.

3.1. Discrete maps with geodesic boundaries. We will now describe a variant
of the BDG bijection that produces a 2p-angulation with a boundary. We start from
a labeled p-tree θ = (τ, (�v)v∈τ ◦) with n black vertices, and we set

δ = −min
{
�v :v ∈ τ ◦}+ 1.

We use again the notation v0, v1, . . . , vpn for the contour sequence of τ ◦. We
write M for the rooted and pointed 2p-angulation associated with θ via the BDG
bijection (we should have fixed ε ∈ {0,1} to determine the orientation of the root
edge, but the choice of ε is irrelevant in what follows), and dgr for the graph dis-
tance on the vertex set m.

We then add δ − 1 vertices ṽ1, ṽ2, . . . , ṽδ−1 to the tree τ in the following way.
If k = k∅(τ ) is the number of children of ∅ in τ , we put ṽ1 = (k + 1), ṽ2 = (k +
1,1), ṽ3 = (k + 1,1,1) and so on until ṽδ−1 = (k + 1,1,1, . . . ,1). For notational
convenience, we also set ṽ0 = ∅ and ṽδ = ∂ . Then τ̃ := τ ∪{ṽ1, . . . , ṽδ−1} is again
a plane tree (but no longer a p-tree). By convention, we put

τ̃ ◦ = τ ◦ ∪ {ṽ1, . . . , ṽδ−1}.
We thus view ṽ1, . . . , ṽδ−1 as white vertices with labels �ṽi

= −i for i =
1, . . . , δ − 1.

Now recall the construction of edges in the BDG bijection: For every i ∈
{0,1, . . . , pn − 1} with �i > −δ + 1, the corner vi is connected by an edge to
the corner vj , where j ∈ {i, i + 1, . . . , i + pn − 1} is the successor of i. Note that
every corner of τ corresponds to one corner of τ̃ (the vertex ∅ has one more cor-
ner in τ̃ , except in the particular case δ = 1). To construct the planar map with a
boundary, we follow rules similar to those of the BDG bijection. We start by draw-
ing an edge between vi and ∂ , for all i ∈ {0,1, . . . , pn − 1} such that �vi

= min�.
Then, let i ∈ {0,1, . . . , pn − 1} such that �vi

> min�. If the successor j of i is
in {i + 1, i + 2, . . . , pn}, we draw an edge between vi and vj , as we did before.
However, if the successor of i is in {pn + 1, . . . , i + pn − 1}, we instead draw an
edge between vi and ṽ−�i+1 (since each new vertex ṽj is assigned the label −j ,
vi is again connected by an edge to the next vertex of τ̃ with a smaller label). Fi-
nally, for every i ∈ {0,1, . . . , δ − 1}, we also draw an edge between ṽi and ṽi+1 (in
particular, we draw an edge between ṽδ−1 and ∂).

The preceding construction gives a planar map M̃ with vertex set m̃ = τ̃ ◦ ∪ {∂}
(see Figure 3 for an example). The planar map M̃ is in general not a 2p-angulation.
Leaving aside the special case δ = 1, where M̃ = M , the map M̃ can be viewed
as a 2p-angulation with a boundary. Indeed, it is not hard to verify that every face
of M̃ has degree 2p (and corresponds to one face in the planar map M), with the
exception of one face, which has degree 2δ and is bounded by the two geodesics
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FIG. 3. The DMGB associated with the 6-angulation of Figure 2. In this case, δ = 3 and the two
extra vertices ṽ1 and ṽ2 appear on the right of the figure. The map is bounded by the two boundary
geodesics connecting the root of the tree to the vertex ∂ .

from ∅ to ∂ that are defined as follows: γ (0) = γ̃ (0) = ∅, γ (δ) = γ̃ (δ) = ∂ , and
for every i ∈ {1, . . . , δ − 1},

γ (i) = vφ(i) where φ(i) = min{j ≥ 0 :�vj
= −i},

γ̃ (i) = ṽi .

Let d̃gr be the graph distance on the vertex set m̃. The following properties are
easily checked:

(i) γ and γ̃ are two geodesics from ∅ to ∂ in M̃ , that intersect only at their
initial and final points;

(ii) dgr(v, v′) ≤ d̃gr(v, v′) for every v, v′ ∈ τ ◦;
(iii) d̃gr(v, ∂) = �v + δ for every v ∈ τ̃ ◦, and, in particular, d̃gr(v, ∂) = dgr(v, ∂)

for every v ∈ τ ◦;
(iv) d̃gr(∅, v) = dgr(∅, v) for every v ∈ τ ◦.

Informally, M can be recovered from M̃ by gluing the two geodesics γ and γ̃ onto
each other (and, in particular, identifying vφ(i) with ṽi for every i = 1, . . . , δ − 1).
This explains why distances from ∅ or from ∂ are the same in M and in M̃ ,
whereas other distances may be different. Note that the geodesic γ coincides with
the discrete simple geodesic ω(0) introduced at the end of Section 2.2.

We will say that M̃ is the discrete map with geodesic boundaries (in short,
the DMGB) associated with M . Notice that the boundary of M̃ is only piecewise
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geodesic since it consists of the union of two geodesics from ∅ to ∂ . We sometimes
say that γ , respectively γ ′, is the left boundary geodesic, respectively the right
boundary geodesic, of M̃ .

The definition of discrete simple geodesics can be extended to M̃ in the follow-
ing way. Recall the notation at the end of Section 2.2, and let i ∈ {0, . . . , pn − 1}.
If the minimal label on τ ◦ is attained at vj for some j ∈ {i, . . . , pn}, we just put
ω̃(i) = ω(i), which is also a geodesic from vi to ∂ in M̃ . On the other hand, if the
preceding property does not hold, there is a unique integer k ∈ {1, . . . , dgr(vi, ∂)−
1} such that φ(i)(k − 1) ≤ pn and φ(i)(k) > pn. Then the edge of M between
ω(i)(k − 1) and ω(i)(k) does not exist in M̃ , but instead there is an edge of M̃

between ω(i)(k − 1) and ṽk′ , where k′ = k − �vi
. So we can put ω̃(i)(j) = ω(i)(j)

if j ≤ k − 1 and ω̃(i)(j) = γ̃ (j − �vi
) if k ≤ j ≤ dgr(vi, ∂), and ω̃(i) is again a

geodesic from vi to ∂ in M̃ .

3.2. Scaling limits. We now apply the construction of the preceding subsec-
tion to a random 2p-angulation Mn that is uniformly distributed over the set
Mp

n . We let θn = (τn, (�
n
v)v∈τn) be the labeled p-tree associated with Mn, and

we write vn
0 , . . . , vn

pn for the contour sequence of τ ◦
n . As previously, we also write

(Cn
i )0≤i≤pn for the contour function of τ ◦

n and (	n
i )0≤i≤pn for the label function

of θn.
The DMGB associated with Mn is denoted by M̃n. We also let mn and m̃n

denote, respectively, the vertex set of Mn and the vertex set of M̃n.
Recall the definition of the function dn before Theorem 2.3. For every i, j ∈

{0,1, . . . , pn}, we also set

d̃n(i, j) = d̃gr
(
vn
i , vn

j

)
.

A simple adaptation of the proof of (4) gives the bound

dn(i, j) ≤ d̃n(i, j) ≤ d•
n(i, j),

where, for every i, j ∈ {0,1, . . . , pn},
d•
n(i, j) = 	n

i + 	n
j − 2 min

i∧j≤k≤i∨j
	n

k + 2.

Similarly as in the case of dn, we extend the definition of d̃n to [0,pn] × [0,pn]
by linear interpolation. The next proposition reinforces the joint convergence (5)
in Theorem 2.3 by considering also the distance d̃n jointly with the contour and
label processes and the distance dn.

PROPOSITION 3.1. From every sequence of integers converging to ∞, we can
extract a subsequence (nk)k≥1 along which the following convergence in distribu-
tion of continuous processes indexed by s, t ∈ [0,1] holds:(

λpn−1/2Cn
pnt , κpn−1/4	n

pnt , κpn−1/4dn(pns,pnt), κpn−1/4d̃n(pns,pnt)
)

(7)
(d)−→

n→∞
(
et ,Zt ,D(s, t), D̃(s, t)

)
,
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where (et )0≤t≤1, (Zt )0≤t≤1 and (D(s, t))0≤s≤1,0≤t≤1 are as in Theorem 2.3, and
(D̃(s, t))0≤s≤1,0≤t≤1 is a continuous random process such that D ≤ D̃ and the
function (s, t) −→ D̃(s, t) defines a pseudometric on [0,1]2. We put s ≡ t if and
only if D̃(s, t) = 0. The property s ≡ t holds if and only if at least one of the
following two conditions holds:

(a) s ∼e t ;
(b) Zs = Zt = minr∈[s∧t,s∨t] Zr .

Finally, along the same sequence where the convergence (7) holds, we have
the joint convergence in distribution of random metric spaces in the Gromov–
Hausdorff sense:((

mn, κpn−1/4dgr
)
,
(
m̃n, κpn−1/4d̃gr

)) (d)−→
n→∞

(
(m∞,D), (m̃∞, D̃)

)
,

where (m∞,D) is as in Theorem 2.3, m̃∞ = [0,1]/ ≡, and D̃ is the induced dis-
tance on m̃∞.

PROOF. From the bound d̃n(i, j) ≤ d•
n(i, j), we can use the same arguments

as in the proof of [15], Proposition 3.2, to verify that the sequence of laws of
the processes (n−1/4d̃n(pns,pnt))0≤s,t≤1 is tight in the space of all probability
measures on C([0,1]2,R). To be specific, we write for every s, t, s′, t ′ ∈ [0,1],∣∣n−1/4d̃n(pns,pnt) − n−1/4d̃n

(
pns′,pnt ′

)∣∣
≤ n−1/4(d̃n

(
pns,pns′)+ d̃n

(
pnt,pnt ′

))
≤ n−1/4(d•

n

(
pns,pns′)+ d•

n

(
pnt,pnt ′

))
.

By (5), the processes (κpn−1/4d•
n(pns,pnt))0≤s,t≤1 converge in distribution to the

process (
Zs + Zt − 2 min

s∧t≤r≤s∨t
Zr

)
0≤s,t≤1

.

It then follows that, for every fixed δ > 0, the quantity

P
(

sup
|s−s′|≤ε,|t−t ′|≤ε

∣∣n−1/4d̃n(pns,pnt) − n−1/4d̃n

(
pns′,pnt ′

)∣∣> δ
)

can be made arbitrarily small, uniformly in n, by choosing ε > 0 small enough.
This yields the desired tightness property.

Using also the convergence (5), we see that we can extract a subsequence along
which the convergence (7) holds, and obviously the processes e,Z and D satisfy
the same properties as in Theorem 2.3. From now on we restrict our attention to
values of n in this subsequence. Using the Skorokhod representation theorem, we
may assume throughout the proof that the convergence (7) holds a.s.

From the analogous properties for d̃n, it is immediate that D̃ is symmetric and
satisfies the triangle inequality. Note that the bound dn ≤ d̃n implies that D ≤ D̃.
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Let us now verify that D̃(s, t) = 0 if and only if (at least) one of the two con-
ditions (a) and (b) holds. First, if (a) holds, the same argument as in the proof of
Proposition 3.3(iii) in [15] shows that D̃(s, t) = 0. Then, by passing to the limit
n → ∞ in the bound

n−1/4d̃n

(�pns�, �pnt�)≤ n−1/4d•
n

(�pns�, �pnt�),
we easily get that, a.s. for every s, t ∈ [0,1],

D̃(s, t) ≤ Zs + Zt − 2 min
s∧t≤r≤s∨t

Zr .

If (b) holds, the right-hand side vanishes, which immediately gives D̃(s, t) = 0.
Conversely, suppose that D̃(s, t) = 0, and without loss of generality assume that

s < t . Since D ≤ D̃, we have also D(s, t) = 0 and, by Theorem 2.3, we know that
either (a) holds (in which case we are done) or

Zs = Zt = max
(

min
r∈[s,t]Zr, min

r∈[t,1]∪[0,s]Zr

)
.

If

Zs = Zt = min
r∈[s,t]Zr,

then (b) holds. So we concentrate on the case where

Zs = Zt = min
r∈[t,1]∪[0,s]Zr.(8)

Assuming that this equality holds and that s ∼e t does not hold, we will arrive
at a contradiction, which will complete the proof of our characterization of the
equivalence relation ≡. We may assume that s > 0 and t < 1 [the case s = 0,
t = 1 is excluded, and then we note that min[0,ε] Z < 0 and min[1−ε,1] Z < 0, for
every ε ∈ (0,1), a.s. by Lemma 2.1]. Then we can find positive integers in, jn ∈
{0,1, . . . , pn}, with in ≤ jn, such that s = lim(pn)−1in and t = lim(pn)−1jn, and
we have

lim
n→∞κpn−1/4d̃gr

(
vn
in
, vn

jn

)= D̃(s, t) = 0.(9)

From (8) and the fact that the minimum of Z is attained at a unique time, we know
that, for n large, the minimum of �n will be attained (only) in {in, . . . , jn}. Let
kn ∈ {in, . . . , jn} be the largest integer such that �n

vn
kn

= min�n, and write [[∅, vn
kn

]]
for the ancestral line of vn

kn
in τn. By construction, if an edge of m̃n connects a

point of {vn
kn

, vn
kn+1, . . . , v

n
pn) to a point of {vn

0 , vn
1 , . . . , vn

kn
}, then (at least) one

of these two points must belong to [[∅, vn
kn

]]. Therefore, if ωn is a geodesic path
from vn

in
to vn

jn
in m̃n, it must either visit ∂ or intersect [[∅, vn

kn
]] at (at least) one

point, which may be written in the form vn
�n

with �n ∈ {0,1, . . . , pn}. The case
when ωn visits ∂ does not occur when n is large, since this would imply that Zs =
Zt = minZ, which is absurd. In the other case, we can find a subsequence of the
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sequence (pn)−1�n that converges to r ∈ [0,1], and automatically pe(r) belongs
to the ancestral line of the vertex a∗ = pe(s∗) minimizing Z. Furthermore, it is also
clear from (9) that D̃(s, r) = D̃(t, r) = 0 and, therefore, D(s, r) = D(t, r) = 0. By
Theorem 2.3, we must have D◦(pe(s),pe(r)) = 0. However, pe(s) is a leaf of Te
(by Lemma 2.1), whereas pe(r) is a point of Sk(Te). This contradicts our previous
observation that, if a, b ∈ Te with a �= b, D◦(a, b) = 0 may hold only if a and b are
both leaves of Te. This contradiction completes the proof of the characterization of
the property D̃(s, t) = 0.

We still have to prove the last convergence of the proposition. The almost
sure convergence of the random compact metric spaces (mn, κpn−1/4dgr) toward
(m∞,D) is easily derived from the (almost sure) convergence (7) as in the first
part of the proof of Theorem 3.4 in [15]. A similar argument will give the al-
most sure convergence of (m̃n, κpn−1/4d̃gr) toward (m̃∞, D̃). Let us provide de-
tails for the sake of completeness. We first observe that we may discard the extra
vertices that we added to mn in order to define m̃n. Indeed, it is immediate that the
Hausdorff distance between mn [viewed as a compact subset of the metric space
(m̃n, d̃gr)] and m̃n is bounded by 1, and so the Gromov–Hausdorff convergence of
(m̃n, κpn−1/4d̃gr) will follow from that of (mn, κpn−1/4d̃gr). For the same reason,
we may replace mn by mn \ {∂}. We then construct a correspondence between
mn \ {∂} and m̃∞ by saying that, for every i ∈ {0,1, . . . , pn} and s ∈ [0,1], the
vertex vn

i is in correspondence with the equivalence class of s in m̃∞ = [0,1]/ ≡
if |i −pns| ≤ 1. Thanks to the convergence (7), we can easily verify that the distor-
tion of this convergence, when mn \ {∂} is equipped with the distance κpn−1/4d̃gr
and m̃∞ with D̃, tends to 0 a.s. as n → ∞. This completes the proof. �

Let us state some important properties of the space (m̃∞, D̃). In the follow-
ing proposition, as well as in the remaining part of this section, we consider the
processes (e,Z,D, D̃) and the associated random metric spaces (m∞,D) and
(m̃∞, D̃) that arise from the convergences of the preceding proposition via the
choice of a suitable subsequence. We write p̃ for the canonical projection from
[0,1] onto m̃∞ = [0,1]/ ≡. Recall the notation

� = −min
{
Zs : s ∈ [0,1]}.

PROPOSITION 3.2. (i) For every s, t ∈ [0,1],
D̃(s, t) ≤ Zs + Zt − 2 min

s∧t≤r≤s∨t
Zr .

(ii) For every s ∈ [0,1], D̃(0, s) = D(0, s).
(iii) For every s ∈ [0,1], D̃(s, s∗) = D(s, s∗) = Zs + �.
(iv) For every t ∈ [0,�], put

�̃(t) = p̃
(
inf
{
s ∈ [0,1] :Zs = −t

})
,

�̃′(t) = p̃
(
sup
{
s ∈ [0,1] :Zs = −t

})
.
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Then �̃ and �̃′ are two geodesic paths from p̃(0) to p̃(s∗) in (m̃∞, D̃), which
intersect only at their initial and final points.

PROOF. Property (i) was already derived in the preceding proof. Properties (ii)
and (iii) follow from the analogous properties of a DMGB stated at the end of
Section 3.1 by a straightforward passage to the limit. Let us verify (iv). First it is
immediate that �̃(0) = �̃′(0) = p̃(0) = p̃(1), and �̃(�) = �̃′(�) = p̃(s∗). Then,
from (ii) or (iii), we have

D̃
(̃
p(0), p̃(s∗)

)= D̃(0, s∗) = D(0, s∗) = �.

On the other hand, for every 0 ≤ t ≤ t ′ ≤ �, (i) gives

D̃
(
�̃(t), �̃

(
t ′
))≤ t ′ − t.

Thanks to the triangle inequality, this implies that D̃(�̃(t), �̃(t ′)) = t ′ − t for every
0 ≤ t ≤ t ′ ≤ �. The fact that �̃′ is a geodesic path is proved in a similar way.
Finally, the property �̃(t) �= �̃′(t) for t ∈ (0,�) follows from the characterization
of the equivalence relation ≡ in Proposition 3.1, using also Lemma 2.1. �

We will now explain how the space (m̃∞, D̃) can be constructed from (m∞,D)

by “cutting” the surface (m∞,D) along the geodesic �, which produces the two
geodesics �̃ and �̃′. Such surgery is common in the study of the geometry of
surfaces, but since we are working in a singular setting we will proceed with some
care.

We set

R� = {
�(t) : 0 < t < �

}⊂ m∞,

and write R� = R� ∪ {p(0),p(s∗)} for the closure of R� . We consider a set m•∞
which is obtained from m∞ by duplicating every point of R� . Formally,

m•∞ = (m∞ \ R�) ∪ {(x,0) :x ∈ R�

}∪ {(x,1) :x ∈ R�

}
.

We then define a topology on m•∞ by the following prescriptions:

• If x ∈ m∞ \ R� , a subset of m•∞ is a neighborhood of x in m•∞ if and only if it
contains a neighborhood of x in m∞.

• A subset V of m•∞ is a neighborhood of p(0), respectively of p(s∗), in m•∞ if
and only if there exists a neighborhood U of p(0), respectively of p(s∗), in m∞,
and ε > 0 such that

V ⊃ (
(U \ Rγ ) ∪ {(�(t),1

)
: 0 ≤ t ≤ ε

}∪ {(�(t),0
)

: 0 ≤ t ≤ ε
})

,

respectively,

V ⊃ (
(U \ Rγ ) ∪ {(�(t),1

)
:� − ε ≤ t ≤ �

}∪ {(�(t),0
)

:� − ε ≤ t ≤ �
})

.
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• If x ∈ R� , a subset V of m•∞ is a neighborhood of (x,0), respectively of (x,1),
in m•∞ if and only if there exists a neighborhood U of x in m∞ such that V

contains U ∩ p([0, s∗]), respectively U ∩ p([s∗,1]).
We write π for the obvious projection from m•∞ onto m∞, and note that π is

continuous. We define a metric D• on m•∞ by setting, for every x, y ∈ m•∞,

D•(x, y) = inf
{
L(π ◦ g) :g ∈ C

(
m•∞, x → y

)}
,

where C(m•∞, x → y) stands for the set of all continuous paths g : [0,1] → m•∞
such that g(0) = x and g(1) = y, and L(π ◦g) denotes the length of the path π ◦g

in (m∞,D). Informally, the paths of the form π ◦ g are those paths from π(x) to
π(y) in m∞ that do not cross the geodesic �.

PROPOSITION 3.3. The metric spaces (m̃∞, D̃) and (m•∞,D•) are almost
surely isometric.

PROOF. This proposition is not needed in the derivation of our main result, and
so we only sketch the proof. We first observe that there is an obvious bijection h

from m•∞ onto m̃∞ such that, for every t ∈ (0,�),

h
((

�(t),0
))= �̃(t),

h
((

�(t),1
))= �̃′(t).

Indeed, every x ∈ m∞ \ R� clearly corresponds to exactly one point y of m̃∞ and
we take h(x) = y.

We then need to verify that h is an isometry. Since (m̃∞, D̃) is a geodesic space
(as a Gromov–Hausdorff limit of rescaled graphs), we know that, for every z1, z2 ∈
m•∞,

D̃
(
h(z1), h(z2)

)= inf
{
L̃(f̃ ) :f ∈ C

(
m̃∞, h(z1) → h(z2)

)}
,

where C(m̃∞, h(z1) → h(z2)) is the set of all continuous paths f̃ : [0,1] −→ m̃∞
such that f̃ (0) = h(z1) and f̃ (1) = h(z2), and L̃(f̃ ) denotes the length of f̃

in m̃∞. It is easy to verify that f̃ ∈ C(m̃∞, h(z1) → h(z2)) if and only if it can
be written in the form f̃ = h ◦ g, where g ∈ C(m•∞, z1 → z2). Moreover, we have
then

L̃(f̃ ) = L(π ◦ g).(10)

Once (10) has been established, it readily follows from the preceding formulas for
D̃ and D• that we have D̃(h(z1), h(z2)) = D•(z1, z2) for every z1, z2 ∈ m•∞, so
that h is an isometry. We leave the details of the proof of (10) to the reader. �
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3.3. A technical lemma. We will now use the results of the preceding sub-
section to derive a technical lemma that will play an important role later in this
work. Recall the notation introduced at the beginning of Section 3.2. In particular,
the random 2p-angulation Mn is uniformly distributed over the set Mp

n , and the
DMGB associated with Mn is denoted by M̃n. We put �n = dgr(∅, ∂) (where dgr
refers to the graph distance in Mn) and following the end of Section 3.1, we intro-
duce the two distinguished geodesics from ∅ to ∂ in M̃n, which are denoted by γn

and γ ′
n.

LEMMA 3.4. We can find two positive constants ε and η such that, for every
sufficiently large integer n,

P
[
10n1/4 ≤ �n ≤ 11n1/4, min

n1/4≤i≤9n1/4

n1/4≤j≤9n1/4

d̃gr
(
γn(i), γ

′
n(j)

)≥ εn1/4
]
≥ η.

REMARK. Lemma 3.4 is related to the fact that the (continuous) geodesics �̃

and �̃′ in Proposition 3.2 do not intersect except at their initial and final points. In
the discrete setting, “interior points” of the geodesics γn and γ ′

n stay at a distance
of order n1/4.

PROOF. Set εk = 2−k and ηk = 2−k for every integer k ≥ 0. We argue by
contradiction and assume that for every k ≥ 0 we can find an integer nk ≥ k such
that

P
[
10n

1/4
k ≤ �nk

≤ 11n
1/4
k , min

n
1/4
k ≤i≤9n

1/4
k

n
1/4
k ≤j≤9n

1/4
k

d̃gr
(
γnk

(i), γ ′
nk

(j)
)≥ εkn

1/4
k

]
< ηk.(11)

From Proposition 3.1 and replacing the sequence (nk)k≥0 by a subsequence, we
may assume that the convergence (7) holds along the sequence (nk)k≥0. Notice
that the bound (11) remains valid after this replacement. By using the Skorokhod
representation theorem, we may even assume that (7) holds almost surely. From
now on until the end of the proof, we consider only values of n belonging to the
sequence (nk)k≥0, even if this is not indicated in the notation.

We then consider the random closed subsets K and K ′ of [0,1], which are
defined by

K =
{
t ∈ [0,1] :Zt = min

0≤s≤t
Zs ∈ [κp,9κp]

}
,

K ′ =
{
t ∈ [0,1] :Zt = min

t≤s≤1
Zs ∈ [κp,9κp]

}
.

We recall that by definition, for every n, and 0 ≤ i ≤ �n − 1,

γn(i) = vn
φn(i) where φn(i) = min

{
j ≥ 0 :�n

vn
j
= −i

}
.
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No similar formula holds for γ ′
n, but we can write, for every 1 ≤ i ≤ �n,

d̃gr
(
γ ′
n(i), v

n
φ′

n(i)

)= 1 where φ′
n(i) = max

{
j ≤ pn :�n

vn
j
= −i + 1

}
.

The latter equality easily follows from the construction of edges in the DMGB. We
thus have, for every i ∈ {0, . . . ,�n − 1} and j ∈ {1, . . . ,�n},

d̃gr
(
γn(i), γ

′
n(j)

)≤ d̃gr
(
vn
φn(i), v

n
φ′

n(j)

)+ 1 = d̃n

(
φn(i), φ

′
n(j)

)+ 1.(12)

Recall that �n
vn
j
= 	n

j and that the sequence of processes (κpn−1/4	n
pnt )0≤t≤1 con-

verges almost surely to (Zt )0≤t≤1 by (7). Elementary arguments using the latter
convergence and the definition of the functions φn and φ′

n then show that, on the
event {� > 10κp},

sup
n1/4≤i≤9n1/4

d

(
φn(i)

pn
,K

)
a.s.−→

n→∞ 0, sup
n1/4≤j≤9n1/4

d

(
φ′

n(j)

pn
,K ′

)
a.s.−→

n→∞ 0,(13)

where d refers to the usual Euclidean distance on [0,1]. Notice that, on the event
{� > 10κp}, we have �n ≥ 10n1/4 for n large enough, a.s., and, in particular, φn(i)

and φ′
n(j) are well defined for n1/4 ≤ i ≤ 9n1/4 and n1/4 ≤ j ≤ 9n1/4.

From (12), (13) and the convergence (7), we now get, on the event {10κp < � <

11κp},
lim inf
k→∞

(
κpn

−1/4
k min

n
1/4
k ≤i≤9n

1/4
k

n
1/4
k ≤j≤9n

1/4
k

d̃gr
(
γnk

(i), γ ′
nk

(j)
))≥ inf

t∈K,t ′∈K ′ D̃
(
t, t ′

)
,

almost surely. In particular, for every ε > 0,

lim inf
k→∞ P

[
10n

1/4
k ≤ �nk

≤ 11n
1/4
k , min

n
1/4
k ≤j≤9n

1/4
k

n
1/4
k ≤i≤9n

1/4
k

d̃gr
(
γnk

(i), γ ′
nk

(j)
)≥ εn

1/4
k

]

(14)
≥ P

[
10κp < � < 11κp, inf

t∈K,t ′∈K ′ D̃
(
t, t ′

)
> κ−1

p ε
]
.

The characterization of the equivalence relation ≡ in Proposition 3.1 shows that
D̃(t, t ′) > 0 for every t ∈ K and t ′ ∈ K ′, a.s. on the event {� > 10κp}. By com-
pactness, we have thus

inf
t∈K,t ′∈K ′ D̃

(
t, t ′

)
> 0

a.s. on that event. In particular, we can fix ε > 0 so that the right-hand side of (14)
is (strictly) positive. This gives a contradiction with (11), and this contradiction
completes the proof. �

In the next section we will use a minor extension of Lemma 3.3, concerning the
case when our random p-tree has a random number of black vertices. Let μ > 0
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and, for every (sufficiently large) integer n, consider a random labeled p-tree θ̂n

whose size belongs to [μ4n,2μ4n], and such that the conditional distribution of
θ̂n given its size is uniform. With θ̂n we associate a DMGB as explained in Sec-
tion 3.1, and we let γ̂n and γ̂ ′

n be, respectively, the left and right boundary geodesics
in this map. We also denote by �̂n the common length of these geodesics. We can
apply Lemma 3.3 to θ̂n after conditioning on its size, and we get, for all sufficiently
large n,

P
[{

10μn1/4 ≤ �̂n ≤ 15μn1/4}
(15)

∩
{

min
21/4μn1/4≤i≤9μn1/4

21/4μn1/4≤j≤9μn1/4

d̃gr
(
γ̂n(i), γ̂

′
n(j)

)≥ εμn1/4
}]

≥ η.

4. The traversal lemmas. We use the notation of Sections 3.2 and 3.3.

LEMMA 4.1. We can find a constant α0 > 0 such that the following holds. For
every α ∈ (0, α0), for every choice of the constants β1 and β2 such that 15α <

β1 < β2, and for every sufficiently large integer n, the probability of the event{
β1n

1/4 < �n < β2n
1/4}

∩
{
d̃gr
(
γn

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋))

= d̃gr

(
γn

(⌊
α

3
n1/4

⌋)
, γ ′

n

(⌊
α

3
n1/4

⌋))
+ 2

(⌊
αn1/4⌋−

⌊
α

3
n1/4

⌋)}
is bounded below by a positive constant independent of n.

We note that, provided that �n ≥ �αn1/4�, one has

d̃gr

(
γn

(⌊
αn1/4⌋), γn

(⌊
α

3
n1/4

⌋))
= ⌊

αn1/4⌋−
⌊
α

3
n1/4

⌋
and similarly if γn is replaced by γ ′

n. Therefore, the event considered in the
lemma holds if and only if β1n

1/4 < �n < β2n
1/4 and there exists a geodesic

from γn(�αn1/4�) to γ ′
n(�αn1/4�) in M̃n, which visits both points γn(�α

3 n1/4�) and
γ ′
n(�α

3 n1/4�) in this order.
To simplify notation, we will write un = vn�pn/2� in the remaining part of this

section. An important role in the proof below will be played by subtrees branching
from the right side of the ancestral line of un (see the end of Section 2.1).

PROOF OF LEMMA 4.1. Recall the notation Cn for the contour function and
	n for the label function of the labeled p-tree tree θn = (τn, (�

n
v)v∈τ ◦

n
). We know

from (5) that the pair of processes (λpn−1/2Cn
pnt , κpn−1/4	n

pnt )0≤t≤1 converges
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in distribution toward (et ,Zt )0≤t≤1 [this convergence does not require the use of a
subsequence; see remark (a) after Theorem 2.3]. We will use this convergence in
distribution to get that, with a probability bounded from below when n is large, the
pair (Cn,	n) satisfies certain properties, which can then be expressed in terms of
properties of the subtrees branching from the right side of the ancestral line of un.

We let ε > 0 be the constant appearing in Lemma 3.4, and we put

A =
⌊

2

ε

⌋
+ 1.

We determine α0 by the condition pα4
0A = 1

8 . Then we fix α ∈ (0, α0) and β1, β2
such that 15α < β1 < β2.

Let F be the event where the following properties hold:

(a) We have e1/2 > λp and Z1/2 < −κpα. Moreover, for any vertex a of Te that

is an ancestor of pe(1/2) in Te and is such that λp

2 ≤ de(ρ, a) ≤ λp , we have
3κpα < Za < 4κpα.

(b) � = −min{Zs : 0 ≤ s ≤ 1} ∈ (κpβ1, κpβ2).

(c) For every s such that either 0 ≤ s ≤ sup{r ≤ 1
2 : er ≤ λp

2 } or inf{r ≥ 1
2 : er ≤

λp

2 } ≤ s ≤ 1, we have Zs > −κpα/6.
(d) There exist A subintervals [s1, t1], . . . , [sA, tA] of [0,1], with 1

2 < s1 < t1 <

· · · < sA < tA < 1, such that, for every i ∈ {1, . . . ,A}:
(d1) esi = eti = min{es : 1

2 ≤ s ≤ ti}, and esi ∈ (
λp

2 , λp).
(d2) α4 < ti − si < 2α4.
(d3) −15κpα < mins∈[si ,ti ] Zs − Zsi < −10κpα.

Let us comment on condition (d). By (d1), the intervals [s1, t1], . . . , [sA, tA] corre-
spond to excursions of the process (e(1/2)+s)0≤s≤1/2 above its minimum process.
In particular, for every i ∈ {1, . . . ,A}, pe(si) = pe(ti) belongs to the ancestral line
of pe(1/2). In terms of the tree Te coded by e, each interval [si, ti] can be inter-
preted as a subtree branching from the ancestral line of pe(1/2) at level esi . Con-
dition (d2) then gives bounds for the “mass” of this subtree, and condition (d3)
provides bounds for the minimal relative label on this subtree.

Simple arguments show that P(F) > 0. The conditions that do not involve the
label process Z are easily seen to hold with positive probability [note that our
choice of α such that pα4A < 1

8 makes it possible to fulfill condition (d2)]. The
fact that the other conditions then also hold with positive probability requires a
little more work, but we leave the details to the reader.

For every integer n ≥ 1, we then let Fn be the event where the following prop-
erties hold:

(a′) We have Cn�pn/2� = 1
2 |un| > √

n and �n
un

< −αn1/4. Moreover, if v is a vertex

of τ ◦
n that is an ancestor of un and such that 1

2

√
n ≤ 1

2 |v| ≤ √
n, we have

3αn1/4 < �n
v < 4αn1/4.
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(b′) �n = 1 − min{�n
v :v ∈ τ ◦

n } ∈ (β1n
1/4, β2n

1/4).
(c′) For every vertex v of τ ◦

n that belongs to a subtree branching from the left side
or from the right side of the ancestral line of un at level (strictly) less than
1
2

√
n, we have �n

v ≥ −α
6 n1/4.

(d′) There exist at least A subtrees τn,1, . . . , τn,A branching from the right side of
the ancestral line of un, such that, for every i ∈ {1, . . . ,A}:
(d1′) The branching level of τn,i belongs to [1

2

√
n,

√
n].

(d2′) α4n < |τn,i | < 2α4n.
(d3′) The minimal difference between the label of a vertex of τn,i and the

label of its root belongs to [−15αn1/4,−10αn1/4].
In condition (d2′), we recall that the size |τn,i | is the number of black vertices of
τn,i . See Figure 4 for a rough illustration of conditions (a′), (c′), (d′).

The convergence in distribution of (λpn−1/2Cn
pnt , κpn−1/4	n

pnt )0≤t≤1 toward
(et ,Zt )0≤t≤1 now implies that

lim inf
n→∞ P(Fn) ≥ P(F).

To see this, first note that we can replace the convergence in distribution by an
almost sure convergence, thanks to the Skorokhod representation theorem. Then
on the event F , the almost sure (uniform) convergence of (λpn−1/2Cn

pnt )0≤t≤1

FIG. 4. Illustration of the proof. The geodesic from γ̃ (�αn1/4�) to γ (�αn1/4�) cannot visit the
part of the ancestral line of un between height 1

2
√

n and height
√

n. If it does not visit the part of the

ancestral line between 0 and 1
2
√

n, it has to cross the A subtrees.
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toward (et )0≤t≤1) will imply the existence of subintervals [m1, n1], . . . , [mA,nA]
of [pn/2,pn] such that properties analogous to (d1),(d2) hold for these subin-
tervals and for the contour function Cn. From the relation between the contour
function and the tree τn, we then get, still on the event F and for large enough n,
the existence of subtrees satisfying the properties in (d′). The remaining part of the
argument is straightforward.

Fix ν > 0 such that P(F) > ν. We can then find n0 such that P(Fn) ≥ ν

for every n ≥ n0. Let us fix n ≥ n0 and argue under the conditional probability
P(·|Fn). We can determine the choice of the subtrees τn,1, . . . , τn,A by saying that
we choose the first A subtrees branching from the right side of the ancestral line
of un and satisfying the conditions (d1′), (d2′), (d3′), and order them in lexico-
graphical order. As mentioned in Section 2.1, we can view each τn,i as a (random)
p-tree, via an obvious renaming of the vertices, and we can equip the vertices of
this p-tree with labels obtained by taking the difference of the original labels (in
θn) with the label of the root of τn,i . In this way we obtain a random labeled p-tree,
which we denote by θn,i , for every i ∈ {1, . . . ,A}. Let k1, . . . , kA be integers with
α4n < ki < 2α4n for i ∈ {1, . . . ,A}. We claim that under the measure P(·|Fn) and
conditionally on the event {|τn,1| = k1, . . . , |τn,A| = kA}, the random labeled p-
trees θn,1, . . . , θn,A are independent, and the conditional distribution of each θn,i

is uniform over labeled p-trees with ki black vertices subject to the constraint that
the minimal label belongs to [−15αn1/4,−10αn1/4]. This follows from the fact
that the tree θn is uniformly distributed, and the conditions (a′), (b′), (c′) do not
depend on the properties of the trees θn,i [in the case of (b′), we note that, because
of (a′) and the assumption α < β1/15, the minimal label in τn will certainly not be
attained at a vertex of one of the subtrees τn,i].

We write M̃n,i for the DMGB associated with θn,i , and we let γn,i and γ ′
n,i be,

respectively, the left and right boundary geodesic in M̃n,i . Let Gn be the intersec-
tion of Fn with the event where

min
21/4αn1/4≤j≤9αn1/4

21/4αn1/4≤k≤9αn1/4

d̃gr
(
γn,i(j), γ ′

n,i(k)
)≥ εαn1/4(16)

for every i ∈ {1, . . . ,A} [in (16), d̃gr obviously stands for the graph distance in
M̃n,i ]. From (15) and the preceding considerations, we can find n1 ≥ n0 such that,
for every n ≥ n1, P(Gn) ≥ ηAP (Fn) ≥ ηAν. To complete the proof of Lemma 4.1,
it now suffices to verify that the event considered in this lemma contains Gn.

So suppose that Gn holds. We already know that �n ∈ (β1n
1/4, β2n

1/4) by (b′).
Next consider a geodesic path ωn from γ ′

n(�αn1/4�) to γn(�αn1/4�) in M̃n. Recall
that the label of both γn(�αn1/4�) and γ ′

n(�αn1/4�) is equal to −�αn1/4�. From the
trivial bound

d̃gr
(
γ ′
n

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋))≤ 2

⌊
αn1/4⌋

and the fact that labels correspond to distances from ∂ in M̃n (modulo a shift by
a fixed quantity), we immediately see that the path ωn cannot visit a vertex whose
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label is positive or strictly smaller than −2�αn1/4�. To simplify notation, write
wn,i for the (white) vertex at generation 2i on the ancestral line of un, for every
i ∈ {0,1, . . . ,

|un|
2 }. It follows from (a′) and the preceding considerations that ωn

does not visit the set {wn,i : 1
2

√
n ≤ i ≤ √

n}.
We claim that ωn must visit the set Hn := {wn,i : 0 ≤ i < 1

2

√
n}. If the claim

holds, the proof is easily completed. Indeed, suppose that ωn visits the vertex
w ∈ Hn. Then we can construct a geodesic path ω̂n, respectively ω̂′

n, that connects
w to γn(�αn1/4�), respectively to γ ′

n(�αn1/4�), and visits the point γn(�α
3 n1/4�),

respectively the point γ ′
n(�α

3 n1/4�). To construct ω̂n, pick any k ∈ {0, . . . , �pn/2�}
such that vn

k = w and consider the simple geodesic ω̃(k) as defined in Section 3.1.
By condition (c′), this simple geodesic will coalesce with γn at a point of the
form γn(j) with j < �α

3 n1/4�. Therefore, we can just let ω̂n coincide with ω(k)

up to its hitting time of γn(�αn1/4�). Similarly, to construct ω̂′
n, we pick any

k′ ∈ {�pn/2�, . . . , pn} such that vn
k′ = w. By condition (c′) again, the simple

geodesic ω̃(k′) will coalesce with γ ′
n at a point of the form γ ′

n(j) with j < �α
3 n1/4�,

and we let ω̂′
n coincide with ω̃(k′) up to its hitting time of γ ′

n(�αn1/4�). The con-
catenation of ω̂n and ω̂′

n gives a geodesic path from γ ′
n(�αn1/4�) to γn(�αn1/4�)

that visits both γn(�α
3 n1/4�) and γ ′

n(�α
3 n1/4�), as desired.

It remains to verify the claim. We argue by contradiction and suppose that ωn

does not visit Hn. Recall that ωn does not visit the set {wn,i : 1
2

√
n ≤ i ≤ √

n} ei-
ther, and notice that the condition �n

un
< −αn1/4 ensures that γn(�αn1/4�) belongs

to the left side of the ancestral line of un. Also recall that labels along ωn must
remain in the range [−2�αn1/4�,0]. From these observations, the properties (a′)
and (d3′) and the construction of edges in M̃n, it follows that ωn must visit each
of the trees τn,A, τn,A−1, . . . , τn,1 in this order before it can hit the left side of the
ancestral line of un. Furthermore, the path ωn hits τn,A for the first time at a vertex
v such that the following property holds: There is no occurrence of the label �n

v −1
among vertices that appear in the part of the contour sequence of τ ◦

n corresponding
to τn,A after the last occurrence of v. Indeed, this property is needed for v to be
connected to a vertex on the right side of τn,A. If we now view v as a vertex of
the DMGB M̃n,A, this means that v is connected by an edge to the vertex γ ′

n,A(k),
where −k + 1 is the difference between �n

v and the label of the root of τn,A. Since
−2�αn1/4� ≤ �n

v ≤ 0, property (a′) implies that 3αn1/4 − p ≤ k ≤ 6αn1/4 + p + 1
(notice that although the root of τn,A may not belong to the ancestral line of un, its
label differs by at most p from the label of a vertex in this ancestral line, whose
generation belongs to [1

2

√
n,

√
n]). We may assume that p + 1 ≤ αn1/4 and so

we get that 2αn1/4 ≤ k ≤ 7αn1/4. Similarly, the last vertex of ωn belonging to
τn,A before ωn first hits τn,A−1 can be written as γn,A(j) for some j such that
2αn1/4 ≤ j ≤ 7αn1/4. We can now use (16) to obtain that the time spent by ωn be-
tween its first visit of τn,A and its first visit of τn,A−1 is at least εαn1/4. The same
lower bound holds for the time between the first hitting time of τn,i and the first
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hitting time of τn,i−1, for every i = A,A − 1, . . . ,2. We conclude that the length
of ωn is bounded below by

A × εαn1/4 > 2αn1/4 ≥ d̃gr
(
γn

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋)),

by our choice of A. This contradiction completes the proof. �

In our applications, we will need a version of Lemma 4.1 where the roles of the
root vertex and of the distinguished vertex ∂ of mn are interchanged. To this end,
we will rely on a symmetry property of rooted and pointed 2p-angulations that we
state in the next lemma.

LEMMA 4.2. We can construct a random 2p-angulation Mn with two oriented
edges en and e∗

n and two distinguished vertices ∂n and ∂∗
n , in such a way that:

(i) Both (Mn, en, ∂n) and (Mn, e
∗
n, ∂

∗
n) are uniformly distributed over rooted and

pointed 2p-angulations with n faces.
(ii) If ρn, respectively ρ∗

n , is the origin of en, respectively of e∗
n, we have

P
(
dgr
(
∂n, ρ

∗
n

)
> p

)≤ 2

(p − 1)n
, P

(
dgr
(
∂∗
n, ρn

)
> p

)≤ 2

(p − 1)n
.

PROOF. We start from a uniformly distributed rooted and pointed 2p-
angulation Mn with n faces, given (as previously) as the image under the BDG
bijection of a uniformly distributed labeled p-tree (τn, �

n
v)v∈τ ◦

n
with n black ver-

tices and an independent Bernoulli variable ε with parameter 1/2. We let en be
the root edge of Mn, and as previously we write ∂ for the distinguished vertex of
Mn. We can easily equip Mn with another distinguished oriented edge e∗

n by using
the following device: We choose an independent random variable Un uniformly
distributed over {0,1, . . . , pn − 1} and we let e∗

n be the edge generated by the
Unth step of the BDG construction, oriented uniformly at random independently
of Un. In this way, and “forgetting” the distinguished vertex ∂ , we get a triplet
(Mn, en, e

∗
n) which is uniformly distributed over 2p-angulations with n faces and

two oriented edges. Note that we distinguish the first oriented edge and the second
one, so that (Mn, en, e

∗
n) �= (Mn, e

∗
n, en) unless en = e∗

n. However, it is easy to see
(from the fact that a 2p-angulation with n faces has always pn edges) that the
triplets (Mn, en, e

∗
n) and (Mn, e

∗
n, en) have the same distribution.

Let ρn and ρ∗
n be the respective origins of en and e∗

n. Although ρ∗
n is not uni-

formly distributed over the vertex set mn of Mn, we can construct a uniformly
distributed random vertex ∂n that will be close to ρ∗

n with high probability. To
do so, recall the notation Cn for the contour function, and vn

0 , vn
1 , . . . , vn

pn for
the contour sequence of τ ◦

n . If Cn
Un+1 ≥ Cn

Un
, let ∂̂n be equal to vn

Un+1. On the
other hand, if Cn

Un
> Cn

Un+1, we let ∂̂n be chosen uniformly at random among the
p − 1 children of the black vertex which is the parent of vn

Un
in τn. Then it is not
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hard to see that ∂̂n and ρ∗
n are on the boundary of the same face of Mn, so that

dgr(̂∂n, ρ
∗
n) ≤ p. Furthermore, a moment’s thought shows that ∂̂n is uniformly dis-

tributed over mn \ {∅, ∂}. So, independently of the other random quantities, we
may define

∂n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂̂n, with probability
(p − 1)n

(p − 1)n + 2
,

∅, with probability
1

(p − 1)n + 2
,

∂, with probability
1

(p − 1)n + 2
,

so that the triplet (Mn, en, ∂n) is uniformly distributed over rooted and pointed
2p-angulations with n faces, and the first bound in (ii) holds by the preceding
considerations.

To complete the proof, we select independently of e∗
n and of the other ran-

dom quantities a random vertex ∂̃n uniformly distributed over mn. Applying the
(inverse) BDG bijection to the (uniformly distributed) rooted and pointed 2p-
angulation (Mn, e

∗
n, ∂̃n), we can associate with the edge en a random variable U∗

n

uniformly distributed over {0,1, . . . , pn − 1} (just as Un was associated with e∗
n).

By duplicating the preceding argument, we then construct from U∗
n a random ver-

tex ∂∗
n such that (Mn, e

∗
n, ∂

∗
n) is uniformly distributed and the second bound in (ii)

holds. �

If ω = (ω(0),ω(1), . . . ,ω(k)) is a path in Mn, the length of ω is |ω| = k, and the
reversed path (ω(|ω|),ω(|ω| − 1), . . . ,ω(0)) is denoted by ω. Recall the constant
α0 introduced in Lemma 4.1.

LEMMA 4.3. Let α ∈ (0, α0) and β1, β2 such that 15α < β1 < β2. For every
integer n ≥ 1, and every δ > 0, consider the event

En,δ = {
β1n

1/4 < �n < β2n
1/4}

∩
{
d̃gr
(
γ n

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋)),

≥ d̃gr

(
γ n

(⌊
α

3
n1/4

⌋)
γ ′

n

(⌊
α

3
n1/4

⌋))
+
(

4α

3
− δ

)
n1/4

}
.

There exist a real sequence (δn)n≥0 decreasing to 0, and a constant a1 > 0 such
that

P(En,δn) ≥ a1

for every sufficiently large integer n.
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Furthermore, if the event En,δn holds, we have also

d̃gr
(
γ ′

n

(
j ′), γ n(j)

)
(17)

≥ d̃gr

(
γ ′

n

(
j ′), γ n

(⌊
α

3
n1/4

⌋))
+ j −

⌊
α

3
n1/4

⌋
− δnn

1/4 − 2

for every j ∈ {�α
3 n1/4�, . . . , �αn1/4�} and j ′ ∈ {0,1, . . . , �αn1/4�}. The same

bound holds if the roles of γ n and γ ′
n are interchanged.

PROOF. We start by proving the existence of a constant a2 > 0 such that, for
every δ > 0,

lim inf
n→∞ P(En,δ) ≥ a2.(18)

The first part of the lemma follows: Just construct by induction a monotone in-
creasing sequence (nk)k≥0 such that P(En,2−k ) ≥ a2/2 for every n ≥ nk , and put
δn = 2−k for nk ≤ n < nk+1.

We consider a random 2p-angulation Mn with two oriented edges en and e∗
n and

two distinguished vertices ∂n and ∂∗
n , such that properties (i) and (ii) of Lemma 4.2

hold. We also write ρn and ρ∗
n for the respective origins of en and e∗

n. With the
uniformly distributed rooted and pointed 2p-angulation (Mn, en, ∂n) we associate
the DMGB M̃n, and similarly with (Mn, e

∗
n, ∂

∗
n) we associate the DMGB M̃∗

n . We
write γn and γ ′

n, respectively γ ∗
n and γ ∗

n
′, for the left and right boundary geodesics

in M̃n, respectively in M̃∗
n . The common length of γn and γ ′

n, respectively of γ ∗
n

and γ ∗
n

′, is denoted by �n, respectively by �∗
n. Notice that γn, respectively γ ∗

n ,
can also be viewed as a geodesic in Mn, which starts from one of the two vertices
incident to en, respectively to e∗

n, and ends at ∂n, respectively at ∂∗
n .

Thanks to property (ii) of Lemma 4.2, we can use γ ∗
n , or rather the time-reversed

path γ ∗
n, to construct an “approximate” geodesic from ρn to ∂n in Mn. To do so,

we concatenate a geodesic path from ρn to ∂∗
n with the path γ ∗

n, and then with a
geodesic path from the initial point of γ ∗

n (which is either ρ∗
n or a neighbor of ρ∗

n)
to ∂n. Let γ ∗∗

n be the path resulting from this concatenation. From property (ii)
of Lemma 4.2, the length of γ ∗∗

n is bounded above by dgr(ρn, ∂n) + 4(p + 1),
with probability at least 1 − 2((p − 1)n)−1. From Proposition 1.1 in [16] (and
the fact that this result also holds for approximate geodesics as discussed in the
introduction of [16]), we know that the paths γn and γ ∗∗

n must be close to each
other with high probability when n is large. More precisely, we get for every ε > 0,

lim
n→∞P

[
max
i≥0

dgr
(
γn(i ∧ �n), γ

∗
n

(
i ∧ �∗

n

))
> εn1/4

]
= 0.(19)

In what follows, we suppose that the event considered in Lemma 4.1 holds for
the DMGB M̃n. We fix δ > 0 and using the property (19), we will show that we
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have on this event

d̃gr
(
γ ∗

n

(⌊
αn1/4⌋), γ ∗′

n

(⌊
αn1/4⌋))

(20)

≥ d̃gr

(
γ ∗

n

(⌊
α

3
n1/4

⌋)
, γ ∗′

n

(⌊
α

3
n1/4

⌋))
+
(

4α

3
− δ

)
n1/4,

except possibly on a set of probability tending to 0 when n → ∞. Our claim (18)
will follow since the DMGBs M̃n and M̃∗

n have the same distribution [and P(|�n−
�∗

n| ≥ εn1/4) tends to 0 as n → ∞, for every ε > 0].
Without loss of generality, we can assume that 0 < δ < α/2. We write

BMn(v, r), respectively BM̃n
(v, r), BM̃∗

n
(v, r) for the open ball of radius r cen-

tered at v in Mn, respectively in M̃n, in M̃∗
n . We first note that a geodesic path in

M̃n from γ ′
n(�αn1/4�) to γn(�αn1/4�) cannot visit BM̃n

(∂n, δn
1/4), because other-

wise its length would be at least 2(�n − δn1/4 − �αn1/4�) ≥ 2(β1 − δ − α)n1/4,
which is clearly impossible. For the same reason, a geodesic path in M̃∗

n from
γ ∗′

n (�αn1/4�) to γ ∗
n(�αn1/4�) does not visit BM̃∗

n
(γ ∗

n (0), δn1/4), except perhaps on
a set of probability tending to 0 as n tends to infinity, which we may discard.

To simplify notation, set R(γn) = {γn(i) : 0 ≤ i ≤ �n}. Let i0 ∈ {1, . . . ,�n −1}.
A path ω = (ω(i),0 ≤ i ≤ |ω|) in Mn is said to be an admissible loop from γn(i0)

in Mn if ω(0) = ω(|ω|) = γn(i0), if ω does not visit γn(0) or γn(�n), and if there
exist integers kω and �ω such that 0 ≤ kω < �ω ≤ |ω|, and the following holds:

(i) ω(i) ∈ R(γn) if and only if 0 ≤ i ≤ kω or �ω ≤ i ≤ |ω|;
(ii) ω(kω) is connected to ω(kω + 1) by an edge starting from a corner belong-

ing to the left side of γn [here and later, γn is oriented from γn(0) to γn(�n)];
(iii) ω(�ω) is connected to ω(�ω − 1) by an edge starting from a corner belong-

ing to the right side of γn.

In the same way, we define a ∗-admissible loop in Mn by replacing γn with γ ∗
n

and �n with �∗
n everywhere in the previous definition. Note that an admissible

loop (resp., a ∗-admissible loop) winds exactly once in clockwise order around the
point γn(�n) = ∂n [resp., around γ ∗

n(�
∗
n) = γ ∗

n (0)] in the twice punctured sphere
S

2 \ {γn(0), γn(�n)} (resp., in S
2 \ {γ ∗

n (0), γ ∗
n (�∗

n)}).
The following properties are easily checked from the relation between Mn and

M̃n or M̃∗
n :

(a) If ω is an admissible loop from γn(i0), then we can find a path ω̃ in M̃n such
that ω̃(0) = γ ′

n(i0), ω̃(|ω̃|) = γn(i0) and |ω̃| = |ω|.
(b) Similarly, if ω∗ is a ∗-admissible loop from γ ∗

n(i0), then we can find a path
ω̃∗ in M̃∗

n such that ω̃(0) = γ ∗′
n (i0), ω̃(|ω̃|) = γ ∗

n(i0) and |ω̃∗| = |ω∗|.
(c) Let ω̃ be a path in M̃n that does not visit γn(0) or γn(�n), such that ω̃(0) =

γ ′
n(i0) and ω̃(|ω̃|) = γn(i0), and such that ω̃ visits γ ′

n(i) and γn(i) in this order, for
some i ∈ {1, . . . ,�n −1}. Then we can find an admissible loop ω from γn(i0) such
that |ω| ≤ |ω̃|, and such that γn(i) ∈ {ω(j) : 0 ≤ j ≤ kω} ∩ {ω(j) :�ω ≤ j ≤ |ω|}.
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If, for some r, r ′ > 0, ω̃ does not visit BM̃n
(γn(0), r) ∪ BM̃n

(γn(�n), r
′), then ω

can be constructed so that it does not visit BMn(γn(0), r) ∪ BMn(γn(�n), r
′).

(d) Similarly, if ω̃∗ is any path in M̃∗
n that does not visit γ n(0) or γ n(�

∗
n) and is

such that ω̃(0) = γ ∗′
n (i0) and ω̃∗(|ω̃∗|) = γ ∗

n(i0), then we can find a ∗-admissible
loop ω∗ from γ ∗

n(i0) such that |ω∗| ≤ |ω̃∗|. If, for some r, r ′ > 0, ω̃∗ does not visit
BM̃∗

n
(γ ∗

n(0), r) ∪ BM̃∗
n
(γ n(�

∗
n), r

′), then ω∗ can be constructed so that it does not
visit BMn(γ

∗
n(0), r) ∪ BMn(γ n(�

∗
n), r

′).
Let ω̃∗

n be a geodesic in M̃∗
n from γ ∗′

n (�αn1/4�) to γ ∗
n(�αn1/4�). As mentioned

above, we may assume that ω̃∗
n does not visit BM̃∗

n
(γ ∗

n (0), δn1/4). Also, if ω̃∗
n visits

BM̃∗
n
(∂∗

n, δ
4n1/4), then it readily follows that (20) holds. So we may restrict our

attention to the case when ω̃∗
n does not visit this ball.

By property (d) above, we can construct a ∗-admissible loop ω∗ from
γ ∗

n(�αn1/4�), such that |ω∗| ≤ d̃gr(γ
∗
n(�αn1/4�), γ ∗′

n (�αn1/4�)) and such that ω∗
does not visit BMn(γ

∗
n (0), δn1/4) or BMn(∂

∗
n, δ

4n1/4). Now pick a geodesic gn from
γn(�αn1/4�) to γ ∗

n(�αn1/4�) and note that, thanks to (19), we have |gn| ≤ δ
16n1/4,

except on a set of probability tending to 0 which we may discard. By concate-
nating gn, ω∗ and the time-reversed path gn, we get a path ω whose length is
bounded above by |ω∗| + δ

8n1/4, and which starts and ends at γn(�αn1/4�). More-
over, we can also use property (ii) of Lemma 4.2 to get that, except on an event
of probability tending to 0 as n → ∞, ω does not visit the balls BMn(∂n,

δ
2n1/4)

and BMn(γn(0), δ
8n1/4). Of course, ω need not be an admissible loop. However,

since ω∗ is a ∗-admissible loop and therefore winds exactly once in clockwise or-
der around γ ∗

n(�
∗
n) = γ ∗

n (0) in the twice punctured sphere S
2 \ {γ ∗

n (0), γ ∗
n (�∗

n)},
it follows that ω also winds exactly once around γn(�n) = ∂n in clockwise order
in S

2 \ {γn(0), γn(�n)}. Hence, a simple topological argument shows that there
must exist a subinterval {kn, . . . , �n} of {0,1, . . . , |ω|}, with kn < �n, such that
ω(kn) ∈ R(γn), ω(�n) ∈ R(γn), ω(i) /∈ R(γn) if kn < i < �n, ω(kn) is connected
to ω(kn + 1) by an edge that starts from the left side of γn and ω(�n) is connected
to ω(�n − 1) by an edge that starts from the right side of γn. It follows that we can
find an admissible loop ω′ from γ (�αn1/4�) such that |ω′| ≤ |ω| ≤ |ω∗| + δ

8n1/4.
By property (a), we have then

d̃gr
(
γn

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋))

(21)

≤ ∣∣ω′∣∣≤ d̃gr
(
γ ∗

n

(⌊
αn1/4⌋), γ ∗′

n

(⌊
αn1/4⌋))+ δ

8
n1/4.

Now recall that we are arguing on the event of Lemma 4.1. Hence, we know
that there exists a geodesic path ω̃n in M̃n from γ ′

n(�αn1/4�) to γn(�αn1/4�), that
visits γ ′

n(�α
3 n1/4�) and γn(�α

3 n1/4�) in this order. We already noticed that ω̃n does
not visit the ball BM̃n

(∂n, δn
1/4). If ω̃n visits the ball BM̃n

(γn(0), δ
8n1/4), then

d̃gr
(
γn

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋))≥ 2

⌊
αn1/4⌋− δ

4
n1/4
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and it follows from (21) that

d̃gr
(
γ ∗

n

(⌊
αn1/4⌋), γ ∗′

n

(⌊
αn1/4⌋))≥ 2

⌊
αn1/4⌋− δ

2
n1/4,

from which (20) is immediate. So we may assume that ω̃n does not visit
BM̃n

(γn(0), δ
8n1/4). It follows from property (c) that there exists an admissible

loop ωn from γn(�αn1/4�), which visits γn(�α
3 n1/4�) both between times 0 and kωn

and between times �ωn and |ωn|, and has length |ωn| ≤ |ω̃n| = d̃gr(γn(�αn1/4�),
γ ′
n(�αn1/4�)). Moreover, ωn does not visit BMn(∂n, δn

1/4) or BMn(γn(0), δ
8n1/4).

Let pn ∈ {0,1, . . . , kωn} and qn ∈ {�ωn, . . . , |ωn|} such that ωn(pn) = ω(qn) =
γn(�α

3 n1/4�). Notice that necessarily

qn − pn ≤ |ωn| − 2
(⌊

αn1/4⌋−
⌊
α

3
n1/4

⌋)
.

Let hn be a geodesic path in Mn from γ ∗
n(�α

3 n1/4�) to γn(�α
3 n1/4�), and let ω′

n be
the path obtained by concatenating hn, (ωn(pn + i),0 ≤ i ≤ qn − pn) and hn in
this order. Notice that by (19), we have |ω′

n| ≤ qn − pn + δ
4n1/4 outside a set of

probability tending to 0 as n → ∞, which we may discard. By the same topologi-
cal argument as previously, we can find a ∗-admissible loop ω∗

n from γ ∗
n(�α

3 n1/4�)
such that |ω∗

n| ≤ |ω′
n|. By property (b), we have now

d̃gr

(
γ ∗

n

(⌊
α

3
n1/4

⌋)
, γ ∗′

n

(⌊
α

3
n1/4

⌋))
≤ ∣∣ω∗

n

∣∣≤ ∣∣ω′
n

∣∣≤ qn − pn + δ

4
n1/4(22)

≤ d̃gr
(
γn

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋))− 2

(⌊
αn1/4⌋−

⌊
α

3
n1/4

⌋)
+ δ

4
n1/4.

We now notice that (20) follows from (21) and (22), which completes the proof
of (18) and of the first part of the lemma.

To prove the second part of the lemma, we first note that if En,δn holds, we
have also, for every integer i, j, i′, j ′ such that �α

3 n1/4� ≤ i ≤ j ≤ �αn1/4� and
�α

3 n1/4� ≤ i ′ ≤ j ′ ≤ �αn1/4�,

d̃gr
(
γ n(j), γ ′

n

(
j ′))≥ d̃gr

(
γ n(i), γ

′
n

(
i ′
))+ j + j ′ − i − i′ − δnn

1/4 − 2.(23)

This immediately follows from the triangle inequality, which gives

d̃gr
(
γ n(j), γ ′

n

(
j ′))+ 2

⌊
αn1/4⌋− j − j ′ ≥ d̃gr

(
γ n

(⌊
αn1/4⌋), γ ′

n

(⌊
αn1/4⌋))

and

d̃gr
(
γ n(i), γ

′
n

(
i ′
))≤ d̃gr

(
γ n

(⌊
α

3
n1/4

⌋)
, γ ′

n

(⌊
α

3
n1/4

⌋))
+ i + i ′ − 2

⌊
α

3
n1/4

⌋
.
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Then, if �α
3 n1/4� ≤ j ′ ≤ �αn1/4�, the bound (17) follows from the special case

i ′ = j ′, i = �α
3 n1/4� in (23). If 0 ≤ j ′ < �α

3 n1/4�, consider a geodesic from
γ ′

n(j
′) to γ n(j), and a geodesic from γ ′(�α

3 n1/4�) to γ (�α
3 n1/4�), and observe

that, by a topological argument, these two geodesics must intersect, say, at a ver-
tex v. Because v belongs to a geodesic from γ ′(�α

3 n1/4�) to γ (�α
3 n1/4�), the case

j ′ = �α
3 n1/4� in (17) easily gives

d̃gr
(
v, γ n(j)

)≥ d̃gr

(
v, γ n

(⌊
α

3
n1/4

⌋))
+ j −

⌊
α

3
n1/4

⌋
− δnn

1/4 − 2.

Then, by adding d̃gr(γ
′
n(j

′), v) to both sides of this inequality, we arrive at the
desired bound (17) also in the case 0 ≤ j ′ < �α

3 n1/4�. The case when the roles of
γ n and γ ′

n are interchanged is treated similarly. �

5. The main estimate. In this section and in the next two ones, we consider
the setting of Theorem 2.3, and we assume that the convergence (5) holds almost
surely along a suitable sequence (nk)k≥0. We use the notation introduced at the
beginning of Section 2.5. Recall from Section 2.6 the notation � = (�(r),0 ≤ r ≤
�) for the geodesic from p(0) to p(s∗) in m∞. For every r ∈ [0,�], we have
�(r) = p(Sr), where

Sr := inf{s ≥ 0 :Zs = −r}.
Let r > 0 and argue under the conditional probability measure P(·|� ≥ r). The
main result of this section (Lemma 5.3) shows that, with a probability close to 1
when ε > 0 is small, for every point z of m∞ “sufficiently far” from �(r), either
there is a geodesic from z to �(r) that visits �(r − ε) or there is a geodesic from z

to �(r) that visits �(r + ε).
We fix μ ∈ (0,1/2), A > μ and κ ∈ (0,1/4). We assume that μ ≤ r ≤ A. The

forthcoming estimates will depend on μ,A and κ , but not on the choice of r in the
interval [μ,A].

We start by introducing some notation. For every δ ∈ (0, r), we set

ηδ(r) := inf
{
s ≥ Sr : es = min

t∈[Sr ,s]
et and Zs = −r + δ

}
.

In other words, ηδ(r) is the first instant s after Sr such that pe(s) belongs to the
ancestral line of pe(Sr) and has label −r + δ. We may also say that eSr − eηδ(r) is
the minimal distance needed when moving from pe(Sr) toward the root of Te in
order to meet a vertex with label −r + δ.

In order to state our first lemma, we need to introduce the subtrees that branch
from the “right side” of the ancestral line of pe(Sr). Formally, we consider all
(nonempty) open subintervals (u,u′) of [Sr,1] that satisfy the property

eu = eu′ = min
t∈[Sr ,u′] et ,
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which automatically implies that et > eu for every t ∈ (u,u′) (otherwise, this
would contradict the fact that the local minima of e are distinct). We write
(u(i), u

′
(i))i∈I for the collection of all these intervals. For each i ∈ I , we will be

interested especially in the quantities Zu(i)
= Zu′

(i)
, representing the label at the

root of the subtree, and

�(i) := Zu(i)
− min

s∈[u(i),u
′
(i)]

Zs,

representing (minus) the minimal relative label in the subtree.
Recall the constant α0 introduced in Lemma 4.1. We fix α ∈ (0,1/10) such that

α/κp < α0. We start by choosing four positive constants α1, α2, α
′
2, α̃ such that⎧⎪⎨⎪⎩

2α1 + α̃ < α,

α2 − α′
2 >

α

3
,

α1 > α2.

It is easy to verify that such a choice is possible. We then choose β1, β2 ∈ (2,4)

such that β2 > β1 and α1 + β1 > α2 + β2. We finally fix a constant λ ∈ (0,1) such
that

α

3
(1 + λ)1/4 < α2 − α′

2 and α2 + β2 < (1 + λ)1/4(α1 + β1),

and an integer K ≥ 2 such that K ≥ α1/α
′
2. We then set

�0 :=
⌊

log(1/μ)

logK

⌋
+ 3

in such a way that K−�0+2 < μ.
For every integer � ≥ �0, we say that the event E� holds if Sr < 1 − κ , and if

there exists an index i ∈ I such that:

(a) ηK−�+1(r) < u(i) < u′
(i) < ηK−�+2(r) < 1 − κ

2 ;

(b) (α2 + β2)K
−� < �(i) < (α1 + β1)K

−�;
(c) −r + β1K

−� < Zu(i)
< −r + β2K

−�;
(d) min{Zs : s ∈ [Sr, u(i)] ∪ [u′

(i), ηK−�+2(r)]} > −r − α′
2K

−�;
(e) there exists a vertex b of Te that belongs to the ancestral line of pe(Sr) in Te,

such that eη
K−�+2 (r) ≤ de(ρ, b) ≤ eu(i)

, and Zb < −r + α̃K−�;

(f) K−4� < u′
(i) − u(i) < (1 + λ)K−4�.

The meaning of these conditions will appear more clearly in the forthcoming
proofs. Informally, noting that the index i ∈ I corresponds to a subtree branching
from the right side of the ancestral line of pe(Sr), condition (a) gives information
about the level at which this subtree branches, and condition (f) provides bounds
on its size. Condition (b) gives bounds on the relative minimal label of the sub-
tree, and condition (c) is concerned with the label of its root. Condition (d) gives
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(in particular) a lower bound on the minimum of the labels “between” the subtree
and the vertex pe(Sr). Finally, condition (e), which seems mysterious at this point,
will be used together with the construction of edges in the BDG bijection to get an
upper bound for the minimal label on a path before it enters the subtree. Of course
the choice of the various constants that appear in (a)–(f) is made in an appropriate
manner in view of the proof of our main estimate (Lemma 5.3 below).

We note that conditions (b) and (c) imply that

min
{
Zs : s ∈ [u(i), u

′
(i)

]}
< −r − α2K

−�

and since α′
2 < α2, conditions (a) and (d) show that there can be at most an index i

satisfying (a)–(f). When E� holds, we will write (u�, u
′
�) = (u(i), u

′
(i)) and �� =

�(i), where i is the unique index such that properties (a)–(f) hold.

LEMMA 5.1. For every given a ∈ (0,1), we can find a constant a ∈ (0,1) and
another constant C, which both depend on μ,A and κ but not on the choice of
r ∈ [μ,A], such that, for every integer � ≥ 2�0,

E
[
1{Sr<1−κ}a

∑�
k=��/2� 1Ek

]≤ Ca�.

We postpone the proof of this lemma to the Appendix. One can use scaling ar-
guments to see that the probability of Ek is bounded below by a positive constant.
If the events Ek , k ≥ �0 were independent under P(·|Sr < 1 − κ), the bound of the
lemma would immediately follow. The events Ek are not independent, in particu-
lar, because of condition (d), but in some sense there is enough independence to
ensure that the bound of the lemma holds.

We now want to take advantage of the (almost sure) convergence (5) to get
that if the event E� holds, for some � ≥ �0, the discrete labeled p-trees θn satisfy
properties analogous to (a)–(f) at least for all sufficiently large values of n in the
sequence (nk)k≥0. From now on until the end of this section, we consider only

values of n in this sequence. We put rn = �r n1/4

κp
� and

σn := min
{
i ≥ 0 :	n

i = −rn
}
,

where min ∅ = ∞. On the event {Sr < ∞}, we have

lim
n→∞

σn

pn
= Sr a.s.(24)

This follows from the (easy) property minSr≤s≤Sr+ε Zs < −r , for every ε > 0, a.s.
To simplify notation, we put vn = vn

σn
. Note that we have also vn = γn(rn),

where (in agreement with previous notation) γn is the simple geodesic from the
first corner of ∅ to ∂ in Mn. We define yn,i as the (white) ancestor of vn at gener-
ation 2i, for every i ∈ {0,1, . . . , 1

2 |vn|}. For every δ ∈ (0, r) we also set

ψn,r(δ) = max
{
i :�n

yn,i
> −rn + δ

n1/4

κp

}
,



2922 J.-F. LE GALL

and we let �n,r(δ) be the index corresponding to the last visit of the vertex
yn,ψn,r (δ) by the contour sequence of τ ◦

n .
If τ is a subtree of τn branching from the right side of the ancestral line of vn,

we write z(τ ) for the root of τ (this is either a vertex of the form yn,i or a “brother”
of such a vertex) and [r(τ ), r ′(τ )] for the interval corresponding to visits of τ in
the contour sequence of τ ◦

n , and we also let �(τ) be equal to 1 minus the minimal
relative label of white vertices of τ—as previously the relative label of a white
vertex in τ is the label of this vertex minus the label of z(τ ).

Then, for every � ≥ �0, we say that the event En,� holds if σn < ∞ and if there
exists a subtree τ of τn branching from the right side of the ancestral line of vn,
such that:

(a′) ψn,r(K
−�+2) < 1

2 |z(τ )| < ψn,r(K
−�+1);

(b′) (α2 + β2)K
−� n1/4

κp
< �(τ) < (α1 + β1)K

−� n1/4

κp
;

(c′) −rn + β1K
−� n1/4

κp
< �n

z(τ) < −rn + β2K
−� n1/4

κp
;

(d′) min{�n
vn
i

: i ∈ [σn, r(τ )] ∪ [r ′(τ ),�n,r(K
−�+2)]} > −rn − α′

2K
−� n1/4

κp
;

(e′) there exists an index j ∈ {ψn,r(K
−�+2), . . . , 1

2 |z(τ )| − 1} such that �n
yn,j

<

−rn + α̃K−� n1/4

κp
;

(f′) K−4�n < |τ | < (1 + λ)K−4�n.

Of course, (a′)–(f′) are just discrete analogs of (a)–(f). The same argument as above
shows that there can be at most one subtree τ satisfying conditions (a′)–(f′). If
the event En,� holds, we denote this subtree by τn,� and we write zn,� = z(τn,�)

rn,� = r(τn,�), r ′
n,� = r ′(τn,�) and �n,� = �(τn,�) to simplify notation. Note

that (b′) and (c′) imply

min
v∈τn,�

�n
v = min

rn,�≤i≤r ′
n,�

�n
vn
i

(25)

∈
(
−rn − α1K

−� n1/4

κp

+ 1,−rn − α2K
−� n1/4

κp

+ 1
)
.

From the almost sure convergence (5) and straightforward arguments, we get
that

E� ⊂ lim inf
n→∞ En,� a.s.(26)

Hence, if E� holds (and discarding a set of probability zero), we know that En,�

also holds for all sufficiently large n and, furthermore, one has

lim
n→∞

rn,�

pn
= u�, lim

n→∞
r ′
n,�

pn
= u′

�.
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As explained in Section 2.1, we may associate with τn,� a labeled p-tree θn,�,
by renaming the vertices and subtracting the label of the root zn,� from all labels.
With this labeled p-tree we associate a DMGB, which is denoted by M̃n,�, and we
write d̃n,�

gr for the distance on this DMGB.
We denote the left and right boundary geodesics in M̃n,� by (γn,�(j),0 ≤ j ≤

�n,�) and (γ ′
n,�(j),0 ≤ j ≤ �n,�), respectively. We may now apply the results of

Section 4 to M̃n,�. To this end, we first observe that, with the exception of (b′),
which bounds the minimal label in θn,�, and (f′), which bounds the size of τn,�, the
properties (a′)–(f′) do not depend on the labeled p-tree θn,�. Hence, conditionally
on En,� and on the size |τn,�|, the labeled p-tree θn,� is uniformly distributed over
labeled p-trees with the given size, subject to the condition that the minimal label
satisfies condition (b′).

Let (δn)n≥0 be the monotone decreasing sequence converging to 0 constructed
in Lemma 4.3. To simplify notation, we set

qn,� =
⌊
(1 + λ)1/4 α

3
K−� n1/4

κp

⌋
, δ′

n,� = δ�K−4�n�.

We define Fn,� as the subset of En,� determined by the following condi-

tion: For every integer j such that qn,� < j ≤ αK−� n1/4

κp
, and for every j ′ ∈

{0,1, . . . , �αK−� n1/4

κp
�},

d̃n,�
gr
(
γ n,�(j), γ ′

n,�

(
j ′))

(27)
≥ d̃n,�

gr
(
γ n,�(qn,�), γ

′
n,�

(
j ′))+ j − qn,� − δ′

n,�n
1/4 − 2.

LEMMA 5.2. We can find a constant a1 ∈ (0,1) and another constant C1,
which both depend on μ,A and κ but not on the choice of r ∈ [μ,A], such that,
for every integer � ≥ 2�0,

lim sup
n→∞

P

[{
σn ≤ (1 − κ)pn

}∩
(

�⋂
k=��/2�

Fc
n,k

)]
≤ C1(a1)

�.

PROOF. Let �1, . . . , �m be distinct elements of {��/2�, . . . , �} for some integer
� ≥ 2�0. We first observe that conditionally on the event

A := {
σn ≤ (1 − κ)pn

}∩
( ⋂

j∈{��/2�,...,�}\{�1,...,�m}
Ec

n,j

)
∩
(

m⋂
i=1

En,�i

)

and on the variables |τn,�1 |, . . . , |τn,�m |, the labeled trees θn,�1, . . . , θn,�m are inde-
pendent and their respective conditional distributions are as described above. At
this point, we use the fact that K ≥ α1/α

′
2: Thanks to this fact and to (25), the

property (d′) written at order � = k (assuming that En,k holds) puts no additional
constraint on the labeled trees θn,k′ for values k′ �= k such that En,k′ holds.
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We now use Lemma 4.3 with α replaced by α/κp (recall that we assumed
α/κp < α0), β1 replaced by (α2 + β2)/κp and β2 by (1 + λ)−1/4(α1 + β1)/κp .
In applying Lemma 4.3, we note that the condition(

α2 + β2

κp

)
|τ |1/4 < �(τ) <

(
(1 + λ)−1/4(α1 + β1)

κp

)
|τ |1/4

together with (f′) implies that (b′) holds. Using formula (17) and supposing that n

is large enough so that we can apply the estimate of Lemma 4.3, we get the ex-
istence of a constant a1 > 0 such that, conditionally on the event A and on the
variables |τn,�1 |, . . . , |τn,�m |, the property

d̃n,�i
gr
(
γ ′

n,�i

(
j ′), γ n,�i

(j)
)≥ d̃n,�i

gr

(
γ ′

n,�i

(
j ′), γ n,�i

(⌊
α

3κp

|τn,�i
|1/4

⌋))
(28)

+ j −
⌊

α

3κp

|τn,�i
|1/4

⌋
− δ|τn,�i

||τn,�i
|1/4 − 2

holds, for every j ∈ {� α
3κp

|τn,�i
|1/4�, . . . , � α

κp
|τn,�i

|1/4�} and for every j ′ ∈
{0,1, . . . , � α

κp
|τn,�i

|1/4�}, with probability at least a1, independently for each

i = 1, . . . ,m. By (f′), we have

K−4�i n < |τn,�i
| < (1 + λ)K−4�i n

for i = 1, . . . ,m, on the event A. From this observation and using also the trivial
bound

d̃n,�i
gr
(
γ ′

n,�i

(
j ′), γ n,�i

(
q ′))− q ′ ≥ d̃n,�i

gr
(
γ ′

n,�i

(
j ′), γ n,�i

(q)
)− q

if 0 ≤ q ′ ≤ q ≤ �n,�i
, we see that, conditionally on A, the event Fn,�i

holds with
probability at least a1, independently for each i = 1, . . . ,m.

It follows that, for all sufficiently large n,

P

[{
σn ≤ (1 − κ)pn

}∩
(

�⋂
k=��/2�

Fc
n,k

)]

= ∑
{�1,...,�m}⊂{��/2�,...,�}

P

[{
σn ≤ (1 − κ)pn

}
∩
( ⋂

j∈{��/2�,...,�}\{�1,...,�m}
Ec

n,j

)

∩
(

m⋂
i=1

(
En,�i

∩ Fc
n,�i

))]
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≤ ∑
{�1,...,�m}⊂{��/2�,...,�}

(1 − a1)
mP

[{
σn ≤ (1 − κ)pn

}
∩
( ⋂

j∈{��/2�,...,�}\{�1,...,�m}
Ec

n,j

)

∩
(

m⋂
i=1

En,�i

)]

= E
[
1{σn≤(1−κ)pn}(1 − a1)

∑�
i=��/2� 1En,i

]
.

Hence, using (24) and (26),

lim sup
n→∞

P

[{
σn ≤ (1 − κ)pn

}∩
(

�⋂
k=��/2�

Fc
n,k

)]
(29)

≤ E
[
1{Sr≤1−κ}(1 − a1)

∑�
i=��/2� 1Ei

]
and the desired result follows from Lemma 5.1. �

We can now state and prove our main estimate. Set S′
r = sup{s ≥ 0 :Zs = −r}

and, for every δ ∈ (0, r],
η′

δ(r) = sup
{
s < S′

r : es = min
t∈[s,S′

r ]
et and Zs = −r + δ

}
.

We let Te(ηδ(r)), respectively Te(η
′
δ(r)), be the subtree of descendants of

pe(ηδ(r)), respectively of pe(η
′
δ(r)), in Te. We also let L(s∗) denote the ances-

tral line of pe(s∗) in Te. We then consider the event Hr,μ,κ where the following
properties hold:

(i) Sr < ∞ and κ ∨ ημ(r) < s∗ < (1 − κ) ∧ η′
μ(r);

(ii) infa∈Te(ημ(r)),b∈L(s∗) D(�(a),�(b)) > supa∈Te(ημ(r)) D(�(a),p(Sr));
(iii) infa∈Te(η′

μ(r)),b∈L(s∗) D(�(a),�(b)) > supa∈Te(η′
μ(r)) D(�(a),p(Sr)).

We will see later that if μ and κ are chosen sufficiently small, the probability of
the complement of Hr,μ,κ in {Sr < ∞} can be made arbitrarily small.

LEMMA 5.3. We can find a constant β ∈ (0,1) and another constant C, which
both depend on A, μ and κ , but not on the choice of r ∈ [μ,A], such that, for every
ε ∈ (0,1),

P
[

Hr,μ,κ ∩ {Sr+ε < ∞} ∩ {∃z ∈ p
([

ημ(r), η′
μ(r)

])
:

D
(
z,�(r)

)
< D

(
z,�(r + ε)

)+ ε and(30)

D
(
z,�(r)

)
< D

(
z,�(r − ε)

)+ ε
}]≤ Cεβ.
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PROOF. Clearly, we may assume that ε is small enough so that
√

ε < μ/2.
Consider the event

Aε
0 = {Sr+ε < ∞} ∩

{
sup

s∈[Sr−ε,Sr+ε]
Zs < −r + √

ε, sup
s∈[S′

r+ε,S
′
r−ε]

Zs < −r + √
ε
}
.

By Lemma 2.2, the probability of {Sr+ε < ∞}\ Aε
0 is bounded above by a constant

times εβ0 . If Aε
0 holds, both pe(Sr−ε) and pe(Sr+ε) belong to Te(η

√
ε(r)) and a for-

tiori to Te(ημ(r)), and a similar statement holds for pe(S
′
r−ε) and pe(S

′
r+ε). This

implies, in particular, that pe([Sr−ε, Sr+ε]) ⊂ Te(η
√

ε(r)) and pe([S′
r+ε, S

′
r−ε]) ⊂

Te(η
′√

ε
(r)).

In the first part of the proof, we assume that both Aε
0 and the event considered in

the lemma hold. Then there exists a point z satisfying the conditions given in (30).
Let ω be a geodesic path from z to �(r) in m∞. If ω hits the range of � before
arriving at �(r), then clearly it must stay on that range [we use the fact that � is
the unique geodesic from p(0) to p(s∗)].

Next suppose that we have ω(t0) ∈ p([0, Sr ]), for some t0 ∈ [0,D(z,�(r))].
We claim that necessarily ω(t0) ∈ �(Te(η

√
ε(r))). To see this, write ω(t0) = p(s0)

with s0 ∈ [0, Sr ], and observe that it is enough to verify that s0 ≥ Sr−ε . How-
ever, if s0 < Sr−ε , by concatenating (ω(t),0 ≤ t ≤ t0) with the simple geodesic
(�s0(t),0 ≤ t ≤ r + Zs0), we get a geodesic from z to �(r) that visits �(r − ε).
This implies that D(z,�(r)) = D(z,�(r − ε)) + ε, which contradicts our as-
sumptions on z. This contradiction proves our claim and, similarly, we get that
if ω(t0) ∈ p([S′

r ,1]), then necessarily ω(t0) ∈ �(Te(η
′√

ε
(r))).

Note that �(r) /∈ p([ημ(r), η′
μ(r)]) and set

T = inf
{
t ≥ 0 :ω(t) /∈ p

([
ημ(r), η′

μ(r)
])}

.

If ω(T ) ∈ p([0, Sr ]) ∪ p([S′
r ,1]), the preceding observations imply that ω(T ) ∈

�(Te(η
√

ε(r))) ∪ �(Te(η
′√

ε
(r))). If ω(T ) /∈ p([0, Sr ]) ∪ p([S′

r ,1]), then ω(T ) ∈
p([Sr, ημ(r)])∪p([η′

μ(r), Sr ]). Since we have p([Sr, ημ(r)]) ⊂ �(Te(ημ(r))) and
p([η′

μ(r), Sr ]) ⊂ �(Te(η
′
μ(r))), we get in both cases that

ω(T ) ∈ �
(

Te
(
ημ(r)

))∪ �
(

Te
(
η′

μ(r)
))

.

From the fact that z satisfies the conditions in (30), we immediately get that

D
(
ω(T ),�(r)

)
< D

(
ω(T ),�(r + ε)

)+ ε,

D
(
ω(T ),�(r)

)
< D

(
ω(T ),�(r − ε)

)+ ε.

Replacing z by ω(T ), we see that the event considered in the lemma is a.s. con-
tained in the union of {Sr+ε < ∞} \ Aε

0 and of the events Aε
0 ∩ Aε

1 and Aε
0 ∩ Aε

2,
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where

Aε
1 := Hr,μ,κ ∩ {Sr+ε < ∞}

∩ {∃z ∈ p
([

ημ(r), η′
μ(r)

])∩ �
(

Te
(
ημ(r)

))
:

D
(
z,�(r)

)
< D

(
z,�(r + ε)

)+ ε and

D
(
z,�(r)

)
< D

(
z,�(r − ε)

)+ ε
}

and Aε
2 is the analogous event with �(Te(ημ(r))) replaced by �(Te(η

′
μ(r))).

Let � = �(ε) be such that K−�−1 <
√

ε ≤ K−�. We assume that ε is small
enough so that �(ε) > 2�0. We claim that

(
Aε

0 ∩ Aε
1
)⊂ lim inf

n→∞

({
σn ≤ (1 − κ)pn

}∩
(

�⋂
k=��/2�

Fc
n,k

))
a.s.(31)

By Lemma 5.2, the probability of the set in the right-hand side is bounded above by
C1a

�(ε)
1 with a constant a1 < 1. This gives the desired estimate for the probability

of Aε
0 ∩ Aε

1. An analogous argument gives a similar estimate for the probability of
Aε

0 ∩ Aε
2. Since we have already obtained the desired bound for the probability of

{Sr+ε < ∞} \ Aε
0, the proof of Lemma 5.3 will be complete.

To establish (31), we observe that, since Aε
1 ⊂ {Sr+ε ≤ s∗ < 1 − κ}, we have

Aε
1 ⊂ lim inf

n→∞
{
σn ≤ (1 − κ)pn

}
a.s.(32)

Consider the event

Bε = lim sup
n→∞

({
σn ≤ (1 − κ)pn

}∩
(

�⋃
k=��/2�

Fn,k

))
.

We will prove that (
Aε

0 ∩ Aε
1
)⊂ (

Bε)c a.s.(33)

Our claim (31) follows from (32) and (33).
It remains to prove (33). To this end, we assume that both Aε

0 ∩ Aε
1 and Bε

hold, and we will see that this leads to a contradiction (except maybe on a set of
probability zero). We first choose z ∈ p([ημ(r), η′

μ(r)]) ∩ �(Te(ημ(r))) such that
the property stated in the definition of Aε

1 holds, and we let ω be a geodesic from
z to �(r). Note that �(Te(ημ(r))) is contained in p([0, s∗]) by condition (i) in
the definition of Hr,μ,κ . Then, from condition (ii) in the definition of Hr,μ,κ and
the fact that z ∈ �(Te(ημ(r))), we get that ω does not visit �(L(s∗)). Next we
observe that the boundary of p([0, s∗]) is the union of the range of � and the set
�(L(s∗)), and we already noticed that if ω hits the range of �, it then stays on this
range. From these observations, we get that ω stays in the set p([0, s∗])\�(L(s∗)).
Moreover, as noted at the beginning of the proof, we know that ω does not visit
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p([0, Sr ]) strictly before entering �(Te(η
√

ε(r))). We choose s1 ∈ (ημ(r), s∗) such
that z = p(s1). This choice is possible since we know that z ∈ p([ημ(r), η′

μ(r)])
and the cases z = p(ημ(r)) and z ∈ p([s∗, η′

μ(r)]) are excluded by the preceding
discussion.

We will now argue that similar properties hold for the approximating discrete
models. Recall the notation introduced after the statement of Lemma 5.1. In par-
ticular, yn,0, yn,1, . . . are the (white) vertices of the ancestral line of vn = vn

σn
, and

yn,ψn,r (
√

ε) is the last vertex on this ancestral line with label strictly larger than

−rn + √
ε n1/4

κp
. We denote the subtree of descendants of the vertex yn,ψn,r (

√
ε) by

τn,(
√

ε). We also set

rn,ε = rn +
⌊
ε
n1/4

κp

⌋
, r ′

n,ε = rn −
⌊
ε
n1/4

κp

⌋
.

Our assumption that Aε
0 holds ensures that, for n large enough, γn(rn,ε) and

γn(r
′
n,ε) both belong to the subtree τn,(

√
ε).

We also let in,∗ := min{i :�n
i = min0≤j≤pn �n

j }. Notice that in,∗/pn converges
to s∗ as n → ∞, a.s. Recall our notation �n,r(μ) for the index corresponding
to the last visit of the vertex yn,ψn,r (μ) by the contour sequence of τ ◦

n . Then the
convergence (5) entails that

lim
n→∞

�n,r(μ)

pn
= ημ(r).

We choose a sequence (jn) of integers, with jn ∈ {0,1, . . . , pn − 1}, such that
�n,r(μ) < jn < in,∗ and jn

pn
converges to s1 as n → ∞. We set zn = vn

jn
.

Consider then, for every n, a geodesic ωn from zn to vn
σn

in Mn, and recall that
we have vn = γn(rn), where γn is the simple geodesic from (the first corner of) ∅

to ∂ . We may and will assume that if ωn hits the range of the simple geodesic γn

it stays on that range. We first observe that, for n large enough, ωn must stay in
the set {vn

i : 0 ≤ i < in,∗}. Indeed, the path ωn starts from a point belonging to this
set and can exit it only if it visits the range of the simple geodesic γn (but in that
case ωn will stay on this range as already mentioned) or if it visits the ancestral
line of the minimizing vertex vn

in,∗ . The latter case is also excluded since if it holds
for infinitely many values of n, it follows by an easy compactness argument that
there is a point y ∈ �(L(s∗)) such that D(z,�(r)) = D(z, y)+D(y,�(r)), which
contradicts the fact that geodesics from z to �(r) do not visit �(L(s∗)).

Let Hε
n denote the first hitting time of τn,(

√
ε) by the path ωn. We then claim

that, again if n is large enough, ωn does not visit {vn
i : 0 ≤ i ≤ σn} strictly be-

fore Hε
n . Indeed, if this occurs for infinitely many values of n, a discrete version of

the arguments of the beginning of the proof (using simple geodesics) shows that
dgr(zn, γn(rn)) = dgr(zn, γn(r

′
n,ε))+dgr(γn(r

′
n,ε), γn(rn)) for these values of n, and
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a passage to the limit n → ∞ gives D(z,�(r)) = D(z,�(r −ε))+ε, contradicting
our assumption on z. It follows that, for all large enough n,{

ωn(j) : 0 ≤ j ≤ Hε
n

}⊂ {
vn
i :σn ≤ i < i∗,n

}
.(34)

For j < Hε
n , this is obvious from the preceding remark, and for j = Hε

n , we just
note that a point of {vn

i : 0 ≤ i ≤ σn} \ {vn
i :σn ≤ i < in,∗} can be connected to a

point of {vn
i :σn ≤ i < in,∗} only if the latter belongs to the ancestral line of vn

σn
,

which is again excluded by the same argument as above.
We now choose a sufficiently large value of n, such that (34) holds and the event

Fn,k holds for some k ∈ {��/2�, . . . , �} (recall that we assume that Bε holds). Re-
call that the definition of Fn,k (or rather of En,k ⊃ Fn,k) involves a subtree τn,k

branching from the right side of the ancestral line of vn, and that [rn,k, r
′
n,k] is the

interval corresponding to visits of vertices of τn,k in the contour sequence of τ ◦
n .

Also recall properties (a′)–(f′) listed after the statement of Lemma 5.1. Note that
since K−�0+2 < μ, property (a′) implies jn > �n,r(μ) ≥ �n,r(K

−k+2) ≥ r ′
n,k .

On the other hand, property (a′) and the fact that
√

ε < K−� ensure that rn,k >

�n,r(
√

ε).
We then set T ′

n,k = 1 + max{j :ωn(j) ∈ {vn
i : i > r ′

n,k}} ≤ Hε
n . We observe that

ωn(T
′
n,k) must belong to the subtree τn,k . Indeed, from properties (b′), (c′) and (d′)

we see that the minimal label on τn,k is strictly smaller than the minimal label in
{σn, . . . , rn,k} and, thus, a vertex of {vn

i :σn ≤ i < rn,k} cannot be connected by an
edge to a vertex of {vn

i : r ′
n,k < i < in,∗}. The fact that ωn(T

′
n,k) ∈ τn,k implies that

T ′
n,k < Hε

n .
We also set Tn,k = min{j > T ′

n,k :ωn(j) ∈ {vn
i :σn ≤ i < rn,k}} ≤ Hε

n . Infor-
mally, we may say that ωn(T

′
n,k) is an entrance point “from the right” for the tree

τn,k and ωn(Tn,k −1) is an exit point “from the left” for this tree. More precisely, in
the DMGB M̃n,k associated with τn,k , the vertex corresponding to ωn(T

′
n,k) is con-

nected by an edge to a vertex in the range of the right boundary geodesic, namely,
to the point γ ′

n,k(A
′
n), with

A′
n = �n

ωn(T ′
n,k)

− min
{
�n
v :v ∈ τn,k

}
,

and ωn(Tn,k − 1) corresponds to a point of the left boundary geodesic, namely, to
the point γ n,k(An), with

An = �n
ωn(Tn,k−1) − min

{
�n
v :v ∈ τn,k

}+ 1.

See Figure 5 for an illustration of the preceding definitions.
We next observe that

A′
n ≤ (2α1 + α̃)K−k n1/4

κp

.(35)

To see this, we use condition (e′) to select an index j0 such that

ψn,r

(
K−k+2)≤ j0 ≤ 1

2 |zn,k| − 1
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FIG. 5. Illustration of the proof. The thick curve represents the evolution of labels along the an-
cestral line of γn(rn) (going backward to the root). The subtrees are those branching from the right
side of this ancestral line. The small black disks correspond to points of the simple geodesic γn. The
traversal lemma makes it possible to force the geodesic ωn to visit a point of the range of γn between
times T ′

n,k and Tn,k − 1, without increasing too much its length.

and �n
yn,j0

< −rn + α̃K−k n1/4

κp
. Notice that ω(T ′

n,k) belongs to the subtree of
descendants of yn,j0 , but ωn(0) = zn does not belong to this subtree [because
jn > �n,r(μ) and K−k+2 ≤ K−�0+2 < μ]. Then, from the construction of edges
in the BDG bijection, we get that the first vertex on the path ωn that belongs to the
latter subtree must have a label smaller than or equal to the label of yn,j0 . If wn

denotes this vertex, we have thus

�n
wn

≤ �n
yn,j0

< −rn + α̃K−k n1/4

κp

.(36)

Then, using the bound (4), and (d′) and (25) to bound the minimal label between
σn and �n,r(K

−k+2), we have

dgr(vn,wn) ≤ �n
wn

+ �n
vn

− 2 min
σn≤i≤�n,r (K−k+2)

�n
vn
i
+ 2 ≤ (2α1 + α̃)K−k n1/4

κp

.

On the other hand, since the points wn, ωn(T
′
n,k) and vn come in that order on the

geodesic ωn, we have also

dgr(vn,wn) = dgr
(
vn,ωn

(
T ′

n,k

))+ dgr
(
ωn

(
T ′

n,k

)
,wn

)
≥ (

�n
ω(T ′

n,k)
− �n

vn

)+ (�n
ω(T ′

n,k)
− �n

wn

)
≥ 2A′

n + 2
(
−rn − α1K

−k n1/4

κp

+ 1
)

+ rn −
(
−rn + α̃K−k n1/4

κp

)

= 2A′
n − (2α1 + α̃)K−k n1/4

κp

+ 2.
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In the second inequality, we used (36) and (25), which gives a lower bound on
the minimal label in τn,k . Our claim (35) follows by combining the last two dis-
plays.

The same argument shows that (35) still holds if we replace A′
n by An − 1 (in

fact, the same bound holds for the difference between the label of any vertex of
τn,k that is visited by the path ωn and the minimal label on τn,k).

The crucial observation now is the lower bound

Tn,k − T ′
n,k ≥ d̃n,k

gr
(
γ ′

n,k

(
A′

n

)
, γ n,k(An)

)
.

This is clear since between T ′
n,k and Tn,k − 1 the path ωn stays in the tree τn,k

and uses only edges that are present in the associated DMGB Mn,k . Recalling that
2α1 + α̃ < α, we can then use the bound (27) to estimate d̃n,k

gr (γ ′
n,k(A

′
n), γ n,k(An)).

Suppose first that An ≥ (α2 −α′
2)K

−k n1/4

κp
(the other case, which is simpler, will

be considered next). We use the fact that Fn,k holds. Since α2 − α′
2 > (1 + λ)1/4 α

3 ,
we can apply (27) with j = An and j ′ = A′

n, and we get

d̃n,k
gr
(
γ n,k(An), γ

′
n,k

(
A′

n

))
≥ d̃n,k

gr
(
γ n,k(qn,k), γ

′
n,k

(
A′

n

))+ An − qn,k − δ′
n,kn

1/4.

It follows that we can modify the part of the path ωn between times T ′
n,k and

Tn,k − 1 in such a way that the new path goes through the vertex v(n) = γ n,k(qn,k),
and the length of ωn is increased by at most δ′

n,kn
1/4 ≤ δ′

n,�n
1/4. Write ω′

n for the
new path obtained after this modification. Now notice that

�n
v(n)

=
(
�n
v(n)

− min
v∈τn,k

�n
v

)
+ min

v∈τn,k
�n
v

≤ qn,k − rn − α2K
−k n1/4

κp

≤ −rn − α′
2K

−k n1/4

κp

using (25) in the first inequality, and then the bound α2 − α′
2 > (1 + λ)1/4 α

3 . How-
ever, by property (d′), the right-hand side of the last display is strictly smaller than
min{�n

i : i ∈ [σn, rn,k]}. This implies that the simple geodesic ω(σn) starting from
vn = vn

σn
will visit the vertex v(n). Hence, we can modify the path ω′

n without in-
creasing its length, in such a way that it coalesces with the (time-reversed) simple
geodesic γn before entering the subtree τn,(

√
ε). In particular, the modified path ω′

n

will visit the vertex γn(rn,ε), which belongs to the subtree τn,(
√

ε), and we have
obtained

dgr(zn, vn) ≥ dgr
(
zn, γn(rn,ε)

)+ (rn,ε − rn) − δ′
n,�n

1/4.(37)
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If An ≤ (α2 − α′
2)K

−k n1/4

κp
, we get the same bound (37) without the term

δ′
n,�n

1/4 in a much simpler way, since the same arguments as above directly
show that the simple geodesic ω(σn) starting from vn visits the point γ n,k(An) =
ωn(Tn,k − 1) after visiting γn(rn,ε).

Finally, the lower bound (37) holds for any (sufficiently large) n such that Fn,k

holds for some k ∈ ��/2, ��. We are assuming that there are infinitely many such
values of n, and so we can pass to the limit n → ∞ in (37) after multiplying by
κpn−1/4 to get

D
(
z,�(r)

)≥ D
(
z,�(r + ε)

)+ ε.

This contradicts the fact that z satisfies the property given in the definition of Aε
1.

This contradiction completes the proof of (33) and of Lemma 5.3. �

6. A preliminary bound on distances. The proof of our main theorem uses
a preliminary estimate, which we state in the following proposition.

PROPOSITION 6.1. Let δ ∈ (0,1). There exists a (random) constant Cδ such
that, for every x, y ∈ m∞,

D∗(x, y) ≤ CδD(x, y)1−δ.

PROOF. We write BD(x,h), respectively BD∗(x,h), for the open ball of ra-
dius h centered at x in (m∞,D), respectively in (m∞,D∗). As usual, the corre-
sponding closed balls are denoted by BD(x,h) and BD∗(x,h). Recall from Sec-
tion 2.5 the definition of the volume measure Vol on m∞. From Corollary 6.2
in [16], there exists a (random) constant cδ such that, for every h ∈ (0,1),

sup
x∈m∞

Vol
(
BD(x,h)

)≤ cδh
4−δ.(38)

On the other hand, it is also easy to verify that, for every h ∈ (0,1),

inf
x∈m∞

Vol
(
BD∗(x,h)

)≥ c′
δh

4+δ(39)

for some other (random) constant c′
δ > 0. To obtain this estimate, just use the bound

D∗(a, b) ≤ D◦(a, b) for a, b ∈ Te, and the fact that the process (Zt )0≤t≤1 is Hölder
continuous with exponent 1

4 − ε, for every ε > 0.
Let x, y ∈ m∞, and let ω = (ω(t),0 ≤ t ≤ D(x,y)) be a geodesic from x to y

with respect to the metric D. To get the bound of the proposition, we may assume
that 0 < D(x, y) < 1/2. Put t0 = 0 and set

t1 = sup
{
t ≥ 0 :ω(t) ∈ BD∗

(
x,D(x, y)

)}
.

If t1 = D(x,y), we stop the construction. Otherwise we proceed by induction. For
every integer n ≥ 1 such that tn has been defined and tn < D(x, y), we set

tn+1 = sup
{
t ≥ tn :ω(t) ∈ BD∗

(
ω(tn),D(x, y)

)}
.
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A simple argument, using the fact that the topologies induced by D and D∗
coincide, shows that the construction stops after a finite number nmax of steps,
such that tnmax = D(x,y). The key point now is to observe that the balls
BD∗(ω(ti),

1
2D(x,y)) and BD∗(ω(tj ),

1
2D(x,y)) are disjoint if 0 ≤ i < j < nmax.

Indeed, if this is not the case, we get ω(tj ) ∈ BD∗(ω(ti),D(x, y)) and thus
tj < ti+1, which is absurd. Using (39) and the bound D ≤ D∗, it follows that

nmax × c′
δ

(
D(x,y)

2

)4+δ

≤ Vol
(
BD

(
x,2D(x,y)

))
.

On the other hand, (38) gives

Vol
(
BD

(
x,2D(x,y)

))≤ cδ24−δD(x, y)4−δ.

By combining the last two bounds, we get nmax ≤ cδ

c′
δ
28D(x,y)−2δ. Since

D∗(x, y) ≤ D∗(ω(0),ω(t1)
)+ · · · + D∗(ω(tnmax−1),ω(tnmax)

)≤ nmaxD(x,y),

the proof of the proposition is complete. �

7. Proof of the main result. In this section we suppose that z is a random
point of m∞ distributed according to the uniform measure Vol. We may define
z = p(U) where U is uniformly distributed over [0,1] and independent of all other
random quantities. Recall the constant β from Lemma 5.3.

LEMMA 7.1. Let u > 0 and A > u, and, for every integer k ≥ 1, let Hk(z) be
the collection of all integers i with �2ku� < i < �2k(� ∧ A)�, such that we have
both

D
(
z,�

(
i2−k))< D

(
z,�

(
(i + 1)2−k))+ 2−k

and

D
(
z,�

(
i2−k))< D

(
z,�

(
(i − 1)2−k))+ 2−k.

Then, for every β ′ ∈ (0, β),

2−(1−β ′)k#Hk(z)
a.s.−→

k→∞ 0.

REMARK. Since � is a geodesic, it is obvious that the weak inequality ≤ holds
instead of < in both displayed inequalities of the lemma. The point is that for most
values of i one of these two weak inequalities can be replaced by an equality.

PROOF. We fix a constant κ ∈ (0,1/4) and μ ∈ (0, u]. Recall the no-
tation ηδ(r) and η′

δ(r) introduced in the previous section. We consider the
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subset H′
k(z) of Hk(z) that consists of all integers i ∈ Hk(z) such that z ∈

p([ημ(i2−k), η′
μ(i2−k)]),

κ ∨ ημ

(
i2−k)< s∗ < (1 − κ) ∧ η′

μ

(
i2−k)

and

inf
a∈Te(ημ(i2−k)),b∈L(s∗)

D
(
�(a),�(b)

)
> sup

a∈Te(ημ(i2−k))

D
(
�(a),p(Si2−k )

)
,(40)

inf
a∈Te(η′

μ(i2−k)),b∈L(s∗)
D
(
�(a),�(b)

)
> sup

a∈Te(η′
μ(i2−k))

D
(
�(a),p(Si2−k )

)
.(41)

By Lemma 5.3, we have for every i such that �2ku� < i < �2kA�,

P
[
i ∈ H′

k(z)
]≤ C2−kβ.

From this bound, it immediately follows that, if 0 < β ′ < β ,

2−(1−β ′)k#H′
k(z)

a.s.−→
k→∞ 0.(42)

To complete the proof, we need to control #(Hk(z) \ H′
k(z)). We first note that

the property κ < s∗ < 1 − κ holds on an event of probability arbitrarily close to 1,
if κ is chosen small enough. Furthermore, on the event {κ < s∗ < 1 − κ}, we have

Hk(z) \ H′
k(z) ⊂ (

H(1)
k (z) ∪ H(2)

k (z) ∪ H(3)
k (z) ∪ H(4)

k (z) ∪ H(5)
k (z) ∪ H(6)

k (z)
)
,

where H(1)
k (z), . . . , H(6)

k (z) are the subsets of {�2ku� + 1, . . . , �2kA� − 1} defined
by

H(1)
k (z) = {

i :Si2−k < ∞, z ∈ p
([

Si2−k , S
′
i2−k

])
and s∗ ≤ ημ

(
i2−k)},

H(2)
k (z) = {

i :Si2−k < ∞, z ∈ p
([

Si2−k , S
′
i2−k

])
and s∗ ≥ η′

μ

(
i2−k)},

H(3)
k (z) = {

i :Si2−k < ∞ and z ∈ p
([

S(i−1)2−k , ημ

(
i2−k)])},

H(4)
k (z) = {

i :Si2−k < ∞ and z ∈ p
([

η′
μ

(
i2−k), S′

(i−1)2−k

])}
,

H(5)
k (z) = {

i :Si2−k < ∞, z ∈ p
([

S(i−1)2−k , S
′
(i−1)2−k

])
and (40) fails

}
,

H(6)
k (z) = {

i :Si2−k < ∞, z ∈ p
([

S(i−1)2−k , S
′
(i−1)2−k

])
and (41) fails

}
[notice that if z ∈ p([0, S(i−1)2−k ]) or if z ∈ p([S′

(i−1)2−k ,1]), by considering a sim-

ple geodesic starting from z, we get automatically D(z,�(i2−k)) = D(z,�((i −
1)2−k)) + 2−k , so that i cannot belong to Hk(z)].

Then, if H(1)
k (z) �= ∅, we can find r ≥ u such that Sr < ∞, s∗ ≤ ημ(r) and

z ∈ p([Sr, S
′
r ]). Hence, if we define, on the event {� > u},

rμ = inf
{
r > u :Sr < ∞ and s∗ ≤ ημ(r)

}
,
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we have ( ∞⋃
k=1

{
H(1)

k (z) �= ∅
})⊂ {

� > u,z ∈ p
([

Srμ, S′
rμ

])}
.

Then

P
(
� > u,z ∈ p

([
Srμ, S′

rμ

]))= E
[
1{�>u}

(
S′

rμ
− Srμ

)]
.(43)

We claim that rμ −→ � as μ ↓ 0, a.s. on the event {� > u}. To see this, we
observe that on the latter event we have for every ε ∈ (0,� − u),

inf
u≤r≤�−ε

(r − Zpe(Sr )∧pe(s∗)) > 0.(44)

Indeed, if the infimum in (44) vanishes, a compactness argument gives r0 ∈ [0,�−
u] such that either Zpe(Sr0 )∧pe(s∗) = r0 or Zpe(Sr0+)∧pe(s∗) = r0 (here Sr0+ stands for
the right limit of r → Sr at r = r0). However, this implies that pe(Sr0) = pe(Sr0)∧
pe(s∗), or pe(Sr0+) = pe(Sr0+) ∧ pe(s∗), is an ancestor of pe(s∗) in Te, which is
impossible since Lemma 2.1 shows that all vertices of the form pe(Sr) or pe(Sr+)

are leaves of Te.
Then (44) implies that rμ > � − ε if μ is small enough, and gives our claim.

Once we know that rμ −→ � as μ ↓ 0, dominated convergence entails that the
left-hand side of (43) tends to 0 as μ → 0. So by choosing μ small enough, we get
that all sets H(1)

k (z) are empty, except on a set of arbitrarily small probability. The

same argument applies to the sets H(2)
k (z).

To deal with H(3)
k (z), we first observe that, a.s., for each fixed k, there is at most

one value of i such that z ∈ p([S(i−1)2−k , Si2−k ]). Hence,( ∞⋃
k=1

{
#H(3)

k (z) > 1
})⊂

{
z ∈ p

( ⋃
r≥u,Sr<∞

[
Sr, ημ(r)

])}
.(45)

Using again the fact that the vertices pe(Sr) are leaves of Te, one easily verifies
that the sets

p
( ⋃

r≥u,Sr<∞

[
Sr, ημ(r)

])
decrease when μ ↓ 0 to the set {�(r) :u ≤ r ≤ �}. Since the latter set has zero
volume, we get that the probability of the event in the right-hand side of (45) tends
to 0 as μ ↓ 0. So we can choose μ > 0 sufficiently small so that all sets H(3)

k (z)

have cardinality at most 1, except on a set of arbitrarily small probability. The same
argument applies to the sets H(4)

k (z).

Finally, we consider H(5)
k (z). Let δ > 0. We observe that⋃

�2ku�<i≤�2k(�−δ)�
�
(

Te
(
ημ

(
i2−k)))⊂ ⋃

u≤r≤�−δ

�
(

Te
(
ημ(r)

))
.
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In a way similar to the previous step of the proof, we can check that the sets⋃
u≤r≤�−δ

�
(

Te
(
ημ(r)

))
are closed and decrease a.s. to {�(r) :u ≤ r ≤ � − δ} when μ ↓ 0. Furthermore, it
is not hard to verify, again by a compactness argument, that

sup
u≤r≤�

(
sup

x,y∈�(Te(ημ(r)))

D(x, y)
) a.s.−→

μ→0
0.

Since

inf
u≤r≤�−δ,b∈L(s∗)

D
(
�(r),�(b)

)
> 0 a.s.

it follows from the preceding considerations that, for any given δ > 0, we can
choose μ > 0 sufficiently small so that the property

sup
u≤r≤�

(
sup

x,y∈�(Te(ημ(r)))

D(x, y)
)

< inf
u≤r≤�−δ

(
inf

a∈Te(ημ(r)),b∈L(s∗)
D
(
�(a),�(b)

))
holds with a probability arbitrarily close to 1. If the latter property holds, this
means that the only indices i for which (40) may fail are those such that i2−k >

� − δ. For such indices i the property z ∈ p([S(i−1)2−k , S′
(i−1)2−k ]) implies that

z ∈ p([S�−δ, S
′
�−δ]) and if δ has been chosen small enough, this also occurs with

a small probability. So again we can choose μ > 0 sufficiently small so that all
sets H(5)

k (z) are empty, except on a set of arbitrarily small probability. The same

argument applies to the sets H(6)
k (z).

From the preceding arguments, we can fix κ and μ sufficiently small so that
outside a set of small probability we have #(Hk(z)\H′

k(z)) ≤ 1 for every k. The
conclusion of Lemma 7.1 now follows from (42). �

THEOREM 7.2. We have D(y,y′) = D∗(y, y′) for every y, y′ ∈ m∞, almost
surely.

As was already explained at the end of Section 2.5, Theorem 1.1 (in the bipartite
case) readily follows from Theorem 7.2.

PROOF. It is sufficient to verify that the identity of the theorem holds when y

and y′ are independently distributed according to the volume measure on m∞
[indeed, if D(y0, y

′
0) < D∗(y0, y

′
0) for some y0, y

′
0 ∈ m∞, then the same strict

inequality holds for every y and y′ sufficiently close to y0 and y′
0, respectively,

and we use the fact that the volume measure has full support in m∞]. Let z be
as in Lemma 7.1. Since the distinguished point in a uniformly distributed rooted
and pointed 2p-angulation is chosen uniformly at random among the vertices, it
is easy to verify that the random triply pointed metric spaces (m∞,�(ρ), x∗, z)
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and (m∞,�(ρ), y, y′) have the same distribution. A simple application of Theo-
rem 8.1 in [16] then gives the following identity in distribution:(

m∞,�(ρ), x∗, z
) (d)= (

m∞, y, y′, x∗
)
.(46)

Let �̃ = (�̃(t),0 ≤ t ≤ D(y,y′)) be the almost surely unique geodesic from
y to y′ in (m∞,D). The almost sure uniqueness of this geodesic follows from
Corollary 8.3(i) in [16]. Fix u > 0 and, for every integer k ≥ 1, let Hk(y, y′) stand
for the set of all integers i, with �2ku� ≤ i < �2kD(y, y′)�, such that we have both

D
(
x∗, �̃

(
i2−k))< D

(
x∗, �̃

(
(i + 1)2−k))+ 2−k

and

D
(
x∗, �̃

(
i2−k))< D

(
x∗, �̃

(
(i − 1)2−k))+ 2−k.

By Lemma 7.1 and the identity in distribution (46), we have, for every β ′ ∈ (0, β),

2−(1−β ′)k#Hk

(
y, y′) a.s.−→

k→∞ 0.(47)

Then let H•
k(y, y′) stand for the set of all integers i, with �2ku� ≤ i <

�2kD(y, y′)�, such that∣∣D(x∗, �̃
(
i2−k))− D

(
x∗, �̃

(
(i + 1)2−k))∣∣< 2−k.

If i /∈ H•
k(y, y′), then we have either

D
(
x∗, �̃

(
i2−k))= D

(
x∗, �̃

(
(i + 1)2−k))+ 2−k

or

D
(
x∗, �̃

(
i2−k))= D

(
x∗, �̃

(
(i + 1)2−k))− 2−k.

An elementary argument shows that if i ∈ H•
k(y, y′) and i′ = max{j ≤ i : j ∈

Hk(y, y′)}, with the convention max ∅ = �2ku�, then, for every integer j such
that i′ ≤ j < i, we have j /∈ H•

k(y, y′). It follows that #H•
k(y, y′) ≤ #Hk(y, y′)+1,

and, in particular, (47) implies also, for every β ′ ∈ (0, β),

2−(1−β ′)k#H•
k

(
y, y′) a.s.−→

k→∞ 0.(48)

Now suppose that i ∈ {�2ku�, . . . , �2kD(y, y′)� − 1} is not in H•
k(y, y′). Then

either �̃(i2−k) lies on a geodesic path from �̃((i + 1)2−k) to x∗ or, conversely,
�̃((i + 1)2−k) lies on a geodesic path from �̃(i2−k) to x∗. By Theorem 2.4, any of
these geodesic paths is a simple geodesic, and is also a geodesic in (m∞,D∗), so
that, using (6), we have D∗(�̃(i2−k), �̃((i + 1)2−k)) = 2−k .
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To conclude, we write, for u < D(z, z′),

D∗(y, y′)≤ D∗(y, �̃
(
2−k⌊2ku

⌋))
+

�2kD(y,y′)�−1∑
i=�2ku�

D∗(�̃(i2−k), �̃((i + 1)2−k))(49)

+ D∗(�̃(2−k⌊2kD
(
y, y′)⌋), y′).

By previous observations,

�2kD(y,y′)�−1∑
i=�2ku�

D∗(�̃(i2−k), �̃((i + 1)2−k))
≤ 2−k⌊2kD

(
y, y′)⌋

+ (#H•
k

(
y, y′)) sup

0≤i<�2kD(y,y′)�
D∗(�̃(i2−k), �̃((i + 1)2−k)).

Proposition 6.1 implies that, for every δ ∈ (0,1), there exists a (random) constant
cδ such that

sup
0≤i<�2kD(y,y′)�

D∗(�̃(i2−k), �̃((i + 1)2−k))≤ cδ2−k(1−δ).

Applying this bound with δ < β and using (48), we get(
#H•

k

(
y, y′))× sup

0≤i<�2kD(y,y′)�
D∗(�̃(i2−k), �̃((i + 1)2−k)) a.s.−→

k→∞ 0.

We can now pass to the limit k → ∞ in (49), using the fact that the topologies
induced by D and D∗ are the same, and we get

D∗(y, y′)≤ D∗(y, �̃(u)
)+ D

(
y, y′).

This holds for any u > 0. Letting u → 0, we obtain D∗(y, y′) ≤ D(y,y′). This
completes the proof since we already know that D(y,y′) ≤ D∗(y, y′). �

Let us state a corollary that will be useful when we deal with the case of trian-
gulations.

COROLLARY 7.3. Let U and V be two independent random variables uni-
formly distributed over [0,1] and such that the pair (U,V ) is independent of
(e,Z). Then,

D∗(U,V )
(d)= D∗(s∗,U) = ZU + �

(d)= �.
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PROOF. The second equality is easy from the definition of D∗. The last iden-
tity in distribution is a consequence of the invariance of the CRT under uniform
re-rooting; see, in particular, [19], Section 2.3. Let us prove the first identity in
distribution. We consider the setting of Theorem 2.3, and we take p = 2, as this
simplifies the argument a little and suffices for our purposes. Let 0 = i(0) < i(1) <

· · · < i(n) be the indices corresponding to the first visits of vertices of τ ◦
n by the

white contour sequence. Then, we have

sup
0≤t<1

∣∣∣∣ i(�(n + 1)t�)
2n

− t

∣∣∣∣ (P)−→
n→∞ 0,(50)

where the notation
(P)−→ indicates convergence in probability. Noting that 2-trees

are naturally identified with ordinary plane trees (by removing all black vertices
and putting an edge between two white vertices if they were adjacent to the same
black vertex), the preceding convergence follows from the standard arguments
used to compare the contour function of a plane tree with its so-called height
function; see, for example, the proof of Theorem 1.17 in [14]. From (50) and the
convergence (5), it is a simple matter to obtain that D∗(U,V ) = D(U,V ) is the
limit in distribution of κpn−1/4dgr(Xn,Yn) where Xn and Yn are independently
and uniformly distributed over mn. However, this is also the limiting distribution
of κpn−1/4dgr(Xn, ∂), which by (5) and (50) again is the distribution of D(s∗,U).

�

8. The case of triangulations.

8.1. Coding triangulations with trees. In this section we prove Theorem 1.1 in
the case q = 3. Similarly as in the bipartite case, we will rely on certain bijections
between triangulations and trees, which we now describe. These bijections can be
found in [4], and we follow the presentation of [8], to which we refer for more
details.

Recall the definition of plane trees in Section 2.1. We will need to consider 4-
type plane trees. A 4-type plane tree is just a pair (τ, (typ(u))u∈τ ) consisting of a
plane tree τ and for every u ∈ τ of a type typ(u) ∈ {1,2,3,4}. To simplify notation,
we systematically write τ instead of (τ, (typ(u))u∈τ ) in what follows, as we will
only be considering 4-type plane trees. A T -tree is a 4-type plane tree that satisfies
the following properties:

(i) The root vertex ∅ is of type 1 or of type 2.
(ii) The children of a vertex of type 1 are of type 3.

(iii) Each vertex of type 2 and which is not the root ∅ has exactly one child of
type 4, and no other child. If the root ∅ is of type 2, it has two children, both of
type 4.

(iv) Each vertex of type 3 has exactly one child, which is of type 2.
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(v) Each vertex of type 4 has either one child of type 1 or two children of
type 2, and no other child.

If τ is a T -tree, we write τ ◦ for the set of all vertices of τ at even generation.
Clearly, this is also the set of all vertices of type 1 or 2 in τ . By analogy with the
bipartite case, we call the elements of τ ◦ the white vertices of τ .

Let τ be a T -tree. An admissible labeling of τ is a collection of labels assigned
to the white vertices of τ , such that the following properties hold:

(a) �∅ = 0 and �v ∈ Z for each v ∈ τ ◦.
(b) Let v ∈ τ \ τ ◦, let v(0) be the parent of v and let v(j) = vj , 1 ≤ j ≤ k, be

the children of v. Then for every j ∈ {0,1, . . . , k}, �v(j+1)
≥ �v(j)

− 1, where by
convention v(k+1) = v(0). Furthermore, if j ∈ {0,1, . . . , k} is such that v(j+1) is of
type 2, we have �v(j+1)

≥ �v(j)
.

Note the slight difference with the analogous definition in Section 2.1. As a con-
sequence of property (b), we observe that if a vertex v of type 4 has two children,
v1 and v2 in our formalism, and if u is the parent of v (necessarily of type 2), we
have �u = �v1 = �v2.

A labeled T -tree is a pair consisting of a T -tree τ and an admissible labeling
(�u)u∈τ ◦ of τ . For every integer n ≥ 3, we write Tn for the set of all labeled T -
trees with n − 1 vertices of type 1. It will be convenient to write Tn = T

(1)
n ∪ T

(2)
n ,

where T
(1)
n , respectively T

(2)
n , corresponds to labeled T -trees whose root vertex is

of type 1, respectively of type 2.
Let Tn denote the set of all rooted and pointed triangulations with n vertices

[or, equivalently, 2(n − 2) faces]. Let M ∈ Tn, let ∂ be the distinguished vertex
of M , and let e− and e+ be, respectively, the origin and the target of the root
edge. As previously, write dgr for the graph distance on the vertex set of M . The
triangulation M is said to be positive, respectively null, respectively negative, if

dgr(∂, e+) = dgr(∂, e−) + 1,

respectively dgr(∂, e+) = dgr(∂, e−), respectively dgr(∂, e+) = dgr(∂, e−) − 1.

With an obvious notation, we can thus write Tn = T +
n ∪ T 0

n ∪ T −
n . Note that

reversing the orientation of the root edge gives an obvious bijection between T +
n

and T −
n .

A special case of the results in [4] yields bijections between T
(1)
n and T +

n on
the one hand, and between T

(2)
n and T 0

n on the other hand. Let us describe the
first of these bijections in some detail (see Figure 6 for an example). We start
from a labeled T -tree (τ, (�u)u∈τ ◦) ∈ T

(1)
n , and let k be the number of edges of τ .

The white contour sequence of τ is the finite sequence (v0, v1, . . . , vk) defined
exactly as in Section 2.1, and we set vk+i = vi for 1 ≤ i ≤ k. Note that every corner
of a white vertex v of τ corresponds exactly to one index i ∈ {0,1, . . . , k − 1},
such that vi = v, and we call this corner the corner vi as we did previously. We
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FIG. 6. A labeled T -tree in T
(1)
n and the associated rooted and pointed triangulation. Vertices of

type 1 are represented by big black disks, vertices of type 2 by big black squares, vertices of type 3
by small black disks and vertices of type 4 by small black squares.

assume that the tree τ is drawn on the sphere, and as in Section 2.2 we add an
extra vertex ∂ , which is of type 1 by convention. We then draw edges of the map
according to the very same rules as in Section 2.2: If i ∈ {0,1, . . . , k − 1} is such
that �vi

= min{�v, v ∈ τ ◦}, we draw an edge between the corner vi and ∂ , and, on
the other hand, if i is such that �vi

> min{�v, v ∈ τ ◦}, we draw an edge between
the corner vi and the corner vj , where j is the successor of i. Note that in the latter
case the vertex vj is of type 1. This follows from the fact that if the vertex vm is of
type 2, we have always �vm ≥ �vm−1 by our labeling rules.

By property (iii) in the definition of a T -tree, each vertex v of type 2 in τ has ex-
actly two corners and, therefore, the preceding device will give exactly two edges
connecting v to vertices of type 1. To complete the construction, we erase all ver-
tices of type 2 and for each such vertex v, we merge the two edges incident to v

into a single edge connecting two vertices of type 1 (which may be the same). In
this way, we obtain a planar map M whose vertex set consists of all vertices of
type 1 (including ∂), which is easily checked to be a triangulation. This triangu-
lation is pointed at ∂ and rooted at the edge generated by the case i = 0 of the
construction. This edge is oriented so that its target is the vertex ∅. The mapping(

τ, (�u)u∈τ ◦
)−→ M

that we have just described is a bijection from T
(1)
n onto T +

n .
A minor modification of this construction yields a bijection from T

(2)
n onto T 0

n .
Edges of the map are generated in the same way, but the root edge of the map is
now obtained as the edge resulting of the merging of the two edges incident to ∅

[recall that for a tree in T
(2)
n the root ∅ is a vertex of type 2 that has exactly two
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children, hence also two corners]. The orientation of the root edge is chosen by
deciding that the “half-edge” coming from the first corner of ∅ corresponds to the
origin of the root edge.

In both cases, distances in the planar map M satisfy the following analog of (3):
For every vertex v of type 1 in τ , we have

dgr(∂, v) = �v − min� + 1,(51)

where min� denotes the minimal label on the tree τ . In the left-hand side v is
viewed as a vertex of the map M , in agreement with the preceding construction.

An analog of (4) also holds (again with a proof very similar to that of [15],
Lemma 3.1). If v and v′ are two vertices of type 1 of τ , such that v = vi and
v′ = vj for some i, j ∈ {0,1, . . . , k} with i < j , we have

dgr
(
v, v′)≤ �vi

+ �vj
− 2 max

(
min

i≤m≤j
�vm, min

j≤m≤i+k
�vm

)
+ 2.(52)

8.2. Random triangulations. Following [23], we now want to interpret a ran-
dom labeled T -tree uniformly distributed over T

(1)
n as a conditioned multitype

Galton–Watson tree (a similar interpretation will hold for a T -tree uniformly dis-
tributed over T

(2)
n ). We set

β = 1 −
√

3
3 , α = 1

2 +
√

3
6

and we let μ be the geometric distribution with parameter β:

μ(k) = (1 − β)βk

for k = 0,1, . . . . We let t be a random T -tree satisfying the following prescriptions:

• the root vertex is of type 1;
• each vertex of type 1 has, independently of the other vertices, a random number

of children distributed according to μ;
• each vertex of type 4 has, independently of the other vertices, either one child

of type 1 with probability α or two children of type 2 with probability 1 − α.

Recalling the properties of the definition of a T -tree, one sees that the preced-
ing prescriptions completely characterize the distribution of t. The random tree t
can be viewed as a 4-type Galton–Watson tree in the sense of [24]. Note that this
Galton–Watson tree is critical, meaning that the spectral radius of the mean ma-
trix of offspring distributions is equal to 1. This property ensures that the 4-type
Galton–Watson tree with these offspring distributions is finite a.s., a fact that is
needed for the existence of t as above (our T -trees are finite by definition). We
write t(1) for the set of all vertices of type 1 of t.

Let T be a random labeled T -tree obtained by assigning an admissible labeling
to t, uniformly at random over all possibilities.
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LEMMA 8.1. Let n ≥ 3. The conditional distribution of T knowing that #t(1) =
n − 1 is uniform over T

(1)
n .

This lemma is a very special case of Proposition 3 in [23], but it is also easy to
give a direct proof. Note that the values of β and α are chosen (in a unique way)
so that the tree t is critical and the result of the lemma holds.

Using Lemma 8.1, we can now apply the invariance principles of [24] to study
the asymptotics of the contour and label processes of a tree uniformly distributed
over T

(1)
n . So let (τn, (�

n
v)v∈τ ◦

n
) be a random labeled T -tree uniformly distributed

over T
(1)
n and let kn be the number of edges of τn. If vn

0 , vn
1 , . . . , vn

kn
is the white

contour sequence of τn, the contour process (Cn
i )0≤i≤kn and the label process

(	n
i )0≤i≤kn are defined by Cn

i = 1
2 |vn

i | and 	n
i = �n

vn
i

as in the bipartite case, and
they are extended to the real interval [0, kn] by linear interpolation. It is also useful
to define Ln

j , for 0 ≤ j ≤ kn, as the number of distinct vertices of type 1 among
vn

0 , vn
1 , . . . , vn

j .

PROPOSITION 8.2. Set λ3/2 = 1
4(3 − √

3) and κ3/2 = 31/4. We have

(
λ3/2n

−1/2Cn
knt , κ3/2n

−1/4	n
knt

)
0≤t≤1

(d)−→
n→∞ (et ,Zt )0≤t≤1.(53)

Furthermore,

sup
0≤t≤1

∣∣n−1Ln�knt� − t
∣∣ (P)−→
n→∞ 0.(54)

Using Lemma 8.1, Proposition 8.2 can be derived as a special case of Theo-
rems 2 and 4 in [24]. In order to apply these results, we need labels to be assigned
to every vertex of τn, and not only to white vertices, but we can just decide that ev-
ery vertex of type 3 or 4 is assigned the label of its parent. Moreover, it is assumed
in [24] that the vectors of label increments (meaning the vectors obtained by con-
sidering the differences between the labels of the children of a vertex and the label
of this vertex) are centered, which is not true here. However, as pointed out in [23]
in a more general setting, a very minor modification makes the vectors of label
increments centered: Just subtract 1

2 from the label of every vertex of type 2 (and
from the label of its unique child of type 4). Obviously this modification has no
effect on the validity of the convergence in the proposition.

We also note that [24] considers the so-called height process, rather than the
contour process, and the corresponding variant of the label process. However, as
we already mentioned in the proof of Theorem 2.3, limit theorems for the height
process can be translated easily in terms of the contour process (see, e.g., Sec-
tion 1.6 in [14]).
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At this point, it is appropriate to comment on the value of the constants λ3/2 and
κ3/2, since the corresponding discussion in [23] seems to contain a miscalculation.
We use the notation of [24]. The mean matrix of the offspring distributions is⎛⎜⎜⎜⎝

0 0
√

3 − 1 0
0 0 0 1
0 1 0 0

1
2 +

√
3

6 1 −
√

3
3 0 0

⎞⎟⎟⎟⎠ ,

and the associated left and right eigenvectors are

a = 1
6−√

3
(1,3 − √

3,
√

3 − 1,3 − √
3), b = 6−√

3
4 (

√
3 − 1,1,1,1).

The quadratic forms Q(i), for i = 1,2,3,4, are easily computed as

Q(1)(s1, s2, s3, s4) = 2(
√

3 − 1)2s2
3 , Q(2) = Q(3) = 0,

Q(4)(s1, s2, s3, s4) = (
1 −

√
3

3

)
s2

2 .

A simple calculation gives

a · Q(b) =
4∑

i=1

aiQ
(i)(b) = 1

8
(6 − 3

√
3)(6 − √

3),

and it follows that

λ3/2 =√
a · Q(b) × √

a1 =
√

6−3
√

3
8 = 1

4(3 − √
3)

(comparing with Theorem 2 in [24], the formula for λ3/2 has an extra multiplicative
factor 2 corresponding to the factor 1

2 in the definition of the contour process).
To compute κ3/2, we then need to evaluate the quantity � in Theorem 4 of [23].

We note that the only label increments having nonzero variance correspond either
to a vertex of type 3 (having automatically one child of type 2) or to a vertex
of type 4 having only one child of type 1, with probability α. In both cases the
variance is 1

4 . It follows that

�2 = a3 × b2 × 1
4 + αa4 × b1 × 1

4

= 1
16

(
(
√

3 − 1) + (1
2 +

√
3

6

)
(3 − √

3)(
√

3 − 1)
)= 1

8(
√

3 − 1)

and

κ3/2 = 1

�
×
√

λ3/2

2
= 31/4.
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REMARK. There are more direct ways of computing the constant κ3/2, for
instance, by considering the genealogical tree associated with vertices of type 1
(say that a vertex u of type 1 is a child of another vertex v of type 1 if v is the
last vertex of type 1 that is an ancestor of u distinct from u). It turns out that this
tree is also a conditioned Galton–Watson tree, whose offspring distribution can be
computed easily.

In this subsection we concentrated on the case of a labeled T -tree uniformly
distributed over T

(1)
n . However, Proposition 8.2 remains valid if we replace

(τn, (�
n
v)v∈τ ◦

n
) by a random labeled T -tree uniformly distributed over T

(2)
n . The

proof is the same up to minor modifications.

8.3. Convergence of rescaled triangulations to the Brownian map. We will
now prove the case q = 3 of Theorem 1.1. We consider a random triangulation Mn

uniformly distributed over T +
n , and write mn for the vertex set of Mn. We will

prove that (
mn, κ3/2n

−1/4dgr
) (d)−→

n→∞
(
m∞,D∗).(55)

Obviously the same result holds if Mn is uniformly distributed over T −
n , and only

minor modifications would be needed to handle the case when Mn is uniformly
distributed over T 0

n . Combining all three cases, and using the fact that a triangu-
lation with n faces has n

2 + 2 vertices, we obtain the case q = 3 of Theorem 1.1.
In order to prove (55), we may assume that Mn is the image of a random labeled

T -tree (τn, (�
n
v)v∈τ ◦

n
) uniformly distributed over T

(1)
n under the bijection described

in Section 8.1. We will rely on Proposition 8.2, and we use the notation intro-
duced before this proposition. Recall from Section 8.1 that the bijection between
triangulations and labeled T -trees allows us to identify

mn = τ (1)
n ∪ {∂},

where τ
(1)
n is the set of all vertices of type 1 in τn. We also set

m′
n = τ ◦

n ∪ {∂}
and we note that the graph distance on mn can be extended to m′

n in the following
way. Let u ∈ m′

n \ mn, then u is a vertex of type 2 in τn and, as already mentioned,
u has two successors u′ and u′′ (possibly such that u′ = u′′), which are vertices of
type 1. If v ∈ mn, we set

dgr(v, u) = dgr(u, v) = 1
2 + min

(
dgr
(
u′, v

)
, dgr

(
u′′, v

))
.

If v ∈ m′
n \ mn and v �= u, we put

dgr(u, v) = 1 + min
(
dgr
(
u′, v′), dgr

(
u′, v′′), dgr

(
u′′, v′), dgr

(
u′′, v′′)),
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where v′ and v′′ are the two successors of v. It is straightforward to verify that
dgr thus extended is a distance on m′

n. Informally, we may interpret the preceding
definition by saying that in the triangulation Mn we have added a new vertex at the
middle of each edge connecting two vertices at the same distance from ∂ , and we
agree that this new vertex is at distance 1

2 from both ends of the edge where it has
been created.

Clearly, it is enough to prove that (55) holds when mn is replaced by m′
n or even

by m′′
n := m′

n \ {∂}. Let u, v ∈ m′′
n, and suppose that u = vn

i and v = vn
j for some

i, j ∈ {0,1, . . . , kn} with i ≤ j . Then, we get from (52) that

dgr(u, v) ≤ d◦
n(i, j),(56)

where

d◦
n(i, j) = d◦

n(j, i) = 	n
i + 	n

j − 2 max
(

min
k∈{i,...,j}	

n
k, min

k∈{j,...,kn}∪{0,...,i}	
n
k

)
+ 2.

We also set dn(i, j) = dgr(v
n
i , vn

j ) for every i, j ∈ {0,1, . . . , kn}, and we extend the
definition of both dn and d◦

n to [0,pn] × [0,pn] by linear interpolation. By (56),
we have dn ≤ d◦

n . On the other hand, it immediately follows from Proposition 8.2
that (

κ3/2n
−1/4d◦

n(kns, knt)
)
0≤s≤1,0≤t≤1

(d)−→
n→∞

(
D◦(s, t)

)
0≤s≤1,0≤t≤1,(57)

where D◦ is as in Section 2.4, and this convergence holds jointly with (53). From
the convergence (57) and the bound dn ≤ d◦

n , the same argument as in the proof of
Proposition 3.2 in [15] shows that the sequence of the laws of the processes(

n−1/4dn(kns, knt)
)
0≤s≤1,0≤t≤1

is tight in the space of probability measures on C([0,1]2,R). Hence, from any
monotone increasing sequence of positive integers, we can extract a subsequence
(nj )j≥1 along which we have the convergence in distribution(

λ3/2n
−1/2Cn

knt , κ3/2n
−1/4	n

knt , κ3/2n
−1/4d◦

n(kns, knt), κ3/2n
−1/4dn(kns, knt)

)
(58)

(d)−→
n→∞

(
et ,Zt ,D

◦(s, t),D′(s, t)
)
,

where (D′(s, t))0≤s≤1,0≤t≤1 is a random process such that D′ ≤ D◦. Using the
Skorokhod representation theorem, we may and will assume that the conver-
gence (58) holds a.s., uniformly on [0,1]2, along the sequence (nj )j≥1. Since dn

is symmetric and satisfies the triangle inequality, one immediately obtains that D′
is a (random) pseudometric on [0,1].

We claim that

D′(s, t) = D∗(s, t) for every s, t ∈ [0,1] a.s.(59)
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To prove this, we start by observing that we have D′(s, t) = 0 for every s, t ∈ [0,1]
such that pe(s) = pe(t), a.s. This follows by exactly the same argument as in the
proof of [15], Proposition 3.3(iii). Recalling the definition of D∗ in Section 2.4,
and using the fact that D′ satisfies the triangle inequality, we see that the property
D′ ≤ D◦ implies D′(s, t) ≤ D∗(s, t) for every s, t ∈ [0,1].

Then let U and V be two independent random variables uniformly distributed
over [0,1] and such that the pair (U,V ) is independent of all other random quan-
tities. By a continuity argument, our claim (59) will follow if we can verify that
D′(U,V ) = D∗(U,V ) a.s. Since D′(U,V ) ≤ D∗(U,V ), it will be sufficient to
verify that D′(U,V ) and D∗(U,V ) have the same distribution. To see this, let
0 = i(1) < i(2) < · · · < i(n−1) be the first visits by the white contour sequence of
τn of the vertices of type 1 in τn. Also set Un = �(n − 1)U� and Vn = �(n − 1)V �,
which are both uniformly distributed over {1,2, . . . , n − 1}. It follows from (54)
that

i(Un)

kn

(P)−→
n→∞ U,

i(Vn)

kn

(P)−→
n→∞ V.

Together with (58), this now implies that

κ3/2n
−1/4dgr

(
vn
i(Un), v

n
i(Vn)

) (P)−→
n→∞ D′(U,V )

as n → ∞ along the sequence (nj )j≥1. Hence, the distribution of D′(U,V ) is
the limiting distribution [along (nj )j≥1] of κ3/2n

−1/4dgr(Xn,Yn), where Xn and
Yn are independently uniformly distributed over mn. Obviously, this is also the
limiting distribution of

κ3/2n
−1/4dgr

(
∂, vn

i(Un)

)= κ3/2n
−1/4(	n

i(Un) − min
{
	n

i : 0 ≤ i ≤ kn

}+ 1
)

using (51) in the last equality. From (58), we now get that D′(U,V ) has the same
distribution as ZU +�. Corollary 7.3 shows that this is the same as the distribution
of D∗(U,V ), thus completing the proof of (59).

Recall from Theorem 2.3 that s ≈ t if and only if D∗(s, t) = 0, and that m∞ is
the quotient space [0,1]/ ≈. Once we know that D′ = D∗, it is an easy matter to
deduce from the (almost sure) convergence (58) that we have, along the sequence
(nj )j≥1, (

m′′
n, κ3/2n

−1/4dgr
) a.s.−→

n→∞
(
m∞,D∗)

in the Gromov–Hausdorff sense. To see this, define a correspondence between the
metric spaces (m′′

n, κ3/2n
−1/4dgr) and (m∞,D∗) by saying that a vertex v ∈ m′′

n

is in correspondence with the equivalence class of s ∈ [0,1] if and only if v =
vn
i , where i = �kns�. From (58), the distortion of this correspondence tends to 0

along the sequence (nj )j≥1, a.s., and this gives the desired Gromov–Hausdorff
convergence.
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Consequently, we have obtained that from any monotone increasing sequence
of positive integers one can extract a subsequence along which (55) holds. This
suffices for the desired result.

REMARK. The argument of the preceding proof could also be used to deduce
the convergence of Theorem 1.1 for all even values of q ≥ 4 from the special case
q = 4 (note that the statement of Corollary 7.3 already follows from this special
case). We have chosen not to do so because restricting ourselves to quadrangula-
tions would not simplify much the proof in the bipartite case and because some
of the intermediate results that we derive for 2p-angulations are of independent
interest.

9. Extensions and problems.

9.1. Boltzmann weights on bipartite planar maps. The argument we have used
to handle triangulations can be applied to other classes of random planar maps. In
this paragraph we briefly discuss Boltzmann distributions on bipartite planar maps,
which have been studied by Marckert and Miermont [20]. We consider a sequence
w = (wi)i≥1 of nonnegative real numbers, such that there exists at least one integer
i ≥ 2 such that wi > 0. We assume that the sequence w is regular critical in the
sense of [20].

For every integer n ≥ 2, we let Bn stand for the set of all rooted bipartite planar
maps with n vertices. Recall that a planar map is bipartite if and only if all its faces
have even degree. If M is a planar map, we denote the set of all its faces by F(M),
and for every face f of M we write deg(f ) for the degree of the face f .

THEOREM 9.1. For every large enough integer n, let P w
n denote the unique

probability measure on Bn such that, for every M ∈ Bn,

P w
n (M) = cw,n

∏
f ∈F(M)

wdeg(f )/2,

where cw,n is a constant depending only on w and n. Let Mn be a random planar
map distributed according to P w

n . Then, if V (Mn) stands for the vertex set of Mn

and dgr is the graph distance on V (Mn), there exists a constant aw > 0 such that(
V (Mn), awn−1/4dgr

) (d)−→
n→∞

(
m∞,D∗)

in the Gromov–Hausdorff sense.

This theorem can be proved along the lines of Section 8.3. The main technical
tool is the BDG bijection for bipartite planar maps, as described in Section 2.3
of [20] (this is very close to the BDG bijection for 2p-angulations described
above). Analogously to Lemma 8.1, [20], Proposition 7, allows us to interpret the
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tree associated with Mn as a conditioned 2-type Galton–Watson tree. Then [20],
Theorem 8, yields an analog of Proposition 8.2. The remaining part of the proof
is similar to Section 8.3, and we will leave the details to the reader. In contrast
with Theorem 1.1, there is in general no explicit formula for the constant aw; see,
however, the discussion in Section 3.2 of [20].

REMARK. In Theorem 9.1 we consider random planar maps having a fixed
large number of vertices. In the case of q-angulations treated in Theorem 1.1,
Euler’s relation shows that conditioning on the number of vertices is equivalent to
conditioning on the number of faces. This is no longer true for general Boltzmann
weights. The results of [20] are stated for both kinds of conditionings, but they
are concerned with rooted and pointed planar maps. In proving Theorem 9.1 one
implicitly uses the (obvious) fact that for a planar map in Bn there are exactly n

possibilities of choosing a distinguished vertex in order to get a rooted and pointed
planar map.

9.2. Brownian maps with geodesic boundaries. In Proposition 3.1 we saw
that, along a suitable sequence (nk)k≥1, the rescaled DMGBs associated with uni-
formly distributed 2p-angulations with n edges converge to a limiting random
metric space, which was identified in Proposition 3.3. We may now remove the
restriction to a subsequence.

We keep the setting of Section 3.2. In particular, Mn is a rooted 2p-angulation
uniformly distributed over Mp

n , M̃n is the associated DMGB as defined in Section
3.1, m̃n is the vertex set of M̃n and d̃gr is the graph distance on m̃n. We also let
(m•∞,D•) be the random metric space obtained via the construction of the end of
Section 3.2 with D = D∗.

PROPOSITION 9.2. We have(
m̃n, κpn−1/4d̃gr

) (d)−→
n→∞

(
m•∞,D•)

in the Gromov–Hausdorff sense.

PROOF. This readily follows from Propositions 3.1 and 3.3 once we know
that D = D∗ in these statements. Indeed, Proposition 3.1 shows that from any
monotone increasing sequence of integers, we can extract a subsequence along
which the convergence of the proposition holds, and Proposition 3.3 shows that
the limiting law is uniquely determined as the law of (m•∞,D•). �

The limiting random metric space in Proposition 9.2 may be called the Brow-
nian map with geodesic boundaries. As a motivation for the preceding statement,
we expect that this random metric space will play a significant role in the study of
further properties of the Brownian map.
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REMARK. A result analogous to Proposition 9.2 holds for uniformly dis-
tributed triangulations. Since we did not introduce DMGBs in the setting of tri-
angulations, we will leave this statement to the reader.

9.3. Questions. It is very plausible that Theorem 1.1 holds for uniformly dis-
tributed q-angulations for any choice of the integer q (and even for nonbipartite
planar maps distributed according to Boltzmann weights satisfying suitable con-
ditions). Extending the proof we gave in the case of triangulations would require
an analog of Proposition 8.2 for the random trees associated with uniformly dis-
tributed q-angulations. As observed by Miermont [23], such an analog holds, but
only for a “shuffled” version of the trees, and this is not sufficient for our purposes.
The reason why a shuffling operation is needed is the fact that the vectors of la-
bel increments in the trees associated with q-angulations are no longer centered
when q is odd and q ≥ 5. Nonetheless, it is likely that one can avoid the shuffling
operation and get a full analog of Proposition 8.2.

Another interesting question is to extend Theorem 1.1 to triangulations satis-
fying additional connectedness properties (and, in particular, to type-II or type-III
triangulations in the terminology of [3]). Via the BDG bijections, this would lead
to analyzing labeled T -trees with extra constraints, for which it is again plausible
but not obvious that an analog of Proposition 8.2 holds.

Finally, our results raise a number of interesting questions about Brownian mo-
tion indexed by the CRT. Note that the functions D◦ and D∗ are defined in terms
of the pair (e,Z). Two crucial properties of these random functions are

D∗(a, b) = 0 if and only if D◦(a, b) = 0 for every a, b ∈ Te a.s.(60)

and

D∗(U,V )
(d)= D∗(s∗,U),(61)

where U and V are independent and uniformly distributed over [0,1] and inde-
pendent of the pair (e,U). The equivalence (60) is proved in [15], Theorem 3.4,
and (61) appears in Corollary 7.3 above. In both cases, the proof relies on the use
of approximating labeled trees and the associated random planar maps. Since (60)
and (61) are properties of the pair (e,Z), it would seem desirable to have a more
direct argument for these statements. A direct proof of (61), in particular, would
yield a simpler approach to our main result Theorem 1.1 along the lines of Sec-
tion 8.3.

APPENDIX

In this appendix we prove Lemmas 2.2 and 5.1, which are both concerned with
properties of the Brownian snake. It will be convenient to argue under the ex-
cursion measure N0 of the one-dimensional Brownian snake (see [13]). Recall
that the Brownian snake (Ws)s≥0 is a strong Markov process taking values in the
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space W of all stopped paths. Here a stopped path is simply a continuous map
w : [0, ζ ] −→ R, where ζ = ζ(w) is called the lifetime of w. We write ŵ = w(ζ(w))

for the endpoint of the path w. We may and will assume that (Ws)s≥0 is defined
on the canonical space C(R+, W) of continuous functions from R+ into W , and
we write ζs := ζ(Ws) for the lifetime of Ws . Under N0, the lifetime process (ζs)s≥0
is distributed according to Itô’s measure of positive excursions of linear Brownian
motion [normalized so that N0(sup{ζs : s ≥ 0} > ε) = (2ε)−1, for every ε > 0]. We
use the notation σ = sup{s ≥ 0 : ζs > 0} for the duration of the excursion and, for
every r > 0, we set Sr = inf{s ≥ 0 : Ŵs = −r}. This is consistent with our previous
notation since under the conditional measure N0(·|σ = 1) the pair (ζs, Ŵs)0≤s≤1
has the same distribution as the process (es,Zs)0≤s≤1 of the preceding sections.
For every t ≥ 0, Gt denotes the σ -field generated by (Ws,0 ≤ s ≤ t). We will
use the explicit form of the distribution of WSr under N0, which follows from the
results of [11], Section 4.6. We first recall [13], page 91, that

N0(Sr < ∞) = N0

(
inf
s≥0

Ŵs ≤ −r
)

= 3

2r2 .(62)

If (Bt )t≥0 denotes a standard linear Brownian motion, the random path
(WSr (t),0 ≤ t ≤ ζSr ) is distributed under N0(·|Sr < ∞) as the solution of the
stochastic differential equation⎧⎨⎩dXt = dBt − 2

r + Xt

dt,

X0 = 0,

stopped when it first hits −r . Equivalently, (r + WSr (t),0 ≤ t ≤ ζSr ) is a Bessel
process with index −5

2 started from r and stopped when it hits 0. By a classical
reversal theorem of Williams [29], Theorem 2.5, the reversed path (r + WSr (ζSr −
t),0 ≤ t ≤ ζSr ) is distributed as a Bessel process with index 5

2 , or equivalently
with dimension 7, started from 0 and stopped at its last passage time at level r . To
simplify notation, we will set

Y
(r)
t := r + WSr (ζSr − t), 0 ≤ t ≤ ζSr .

The definition of Y (r) makes sense under N0(·|Sr < ∞).
Applying the strong Markov property at Sr will lead us to consider the Brownian

snake “subexcursions” branching from WSr after time Sr [this really corresponds
to the subtrees branching from the right side of the ancestral line of pe(Sr) that
were discussed at the beginning of Section 5, with the difference that we now
argue under the excursion measure]. We consider all nontrivial subintervals (v, v′)
of [Sr, σ ] such that

ζv = ζv′ = min
s∈[Sr ,v′] ζs.
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We let (vi, v
′
i)i∈I be the collection of all these intervals. For every i ∈ I we define

a path-valued process (Wi
s )s≥0 by setting

Wi
s (t) = W(vi+s)∧v′

i
(ζvi

+ t) − Wvi
(ζvi

), 0 ≤ t ≤ ζ i
s := ζ(vi+s)∧v′

i
− ζvi

.

Then, under the probability measure N0(·|Sr < ∞), conditionally on GSr , the point
measure

N =∑
i∈I

δ(ζvi
,Wi)(dt dω)

is Poisson with intensity 21[0,ζSr ](t) dtN0(dω). This follows from Lemma V.5
in [13] after applying the strong Markov property of the Brownian snake [13],
Theorem IV.6, at time Sr .

PROOF OF LEMMA 2.2. We start by explaining how the bound of the lemma
can be reduced to an estimate under the excursion measure. We write P for the
probability measure N0(·|σ = 1). For every t < 1, the restriction of P to Gt is ab-
solutely continuous with respect to the restriction of N0 to the same σ -field. This
readily follows from the analogous property for the law of the normalized Brow-
nian excursion and the Itô measure. Moreover, the Radon–Nikodym derivative of
P|Gt with respect to N0|Gt

is bounded above by a constant depending only on t .
We then observe that the event

{Sr ≤ 1 − κ} ∩
{

sup
s∈[Sr−ε,Sr ]

Ŵs ≥ −r + √
ε
}

is measurable with respect to G1−κ . If we are able to bound the N0-measure of this
event, we will immediately get the same bound for its P -measure, up to a multi-
plicative constant depending on κ . So, using the above-mentioned fact that the law
of (ζs, Ŵs)0≤s≤1 under P is the same as the law of the process (es,Zs)0≤s≤1 of
the preceding sections, it suffices to verify that the N0-measure of the latter event
satisfies the bound of Lemma 2.2.

To this end, it is enough to prove that for r ∈ [μ,A] and ε ∈ (0,μ/2),

N0

(
Sr+ε < ∞, sup

s∈[Sr ,Sr+ε]
Ŵs ≥ −r + √

ε
)

≤ CA,μεβ(63)

with β ∈ (0,1) and a constant CA,μ depending only on A and μ. We use the
notation introduced at the beginning of this Appendix, and we also set (in this
proof only)

T
(r)
� = inf

{
t ≥ 0 :Y (r)

t = 2−�}
for every integer � ≥ 0 such that 2−� ≤ r .
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For every ε ∈ (0,1), let �0(ε) and �1(ε) be the nonnegative integers such that

2−�0(ε)−1 < ε ≤ 2−�0(ε),2−�1(ε) < ε3/4 ≤ 2−�1(ε)+1.

Define two events A(ε) and B(ε) by

A(ε) = {Sr < ∞} ∩
(

�0(ε)⋃
�=�1(ε)

{
inf

{j∈I : T
(r)
�+1<ζSr −ζvj

<T
(r)
� }

(
inf
s≥0

Ŵ j
s

)
< −2 · 2−�

})
,

B(ε) = {Sr < ∞} ∩
{

sup
{j∈I : ζSr −ζvj

<T
(r)
�1(ε)}

(
sup
s≥0

Ŵ j
s

)
<

1

2

√
ε

}
.

We may assume that ε is small enough so that ε3/4 ≤ 1
2

√
ε. Then if B(ε) holds, one

immediately checks that Ŵs < −r +√
ε for Sr ≤ s ≤ inf{t ≥ Sr : ζt = ζSr −T

(r)
�1(ε)

}.
On the other hand, if A(ε) holds, there is a value of s in the same interval such that
Ŵs < −r − ε. By combining these observations, we get

(A(ε) ∩ B(ε)) ⊂
{
Sr+ε < ∞, sup

s∈[Sr ,Sr+ε]
Ŵs < −r + √

ε
}

and, therefore,{
Sr+ε < ∞, sup

s∈[Sr ,Sr+ε]
Ŵs ≥ −r + √

ε
}

⊂ ({Sr < ∞} \ A(ε)

)∪ ({Sr < ∞} \ B(ε)

)
.

In view of proving (63), we bound separately N0({Sr < ∞} \ A(ε)) and N0({Sr <

∞} \ B(ε)).
From the exponential formula for Poisson measures, and formula (62), we have

first

N0
({Sr < ∞} \ B(ε)

)
= N0(Sr < ∞)N0

(
1 − exp

(−3(
√

ε/2)−2T
(r)
�1(ε)

)|Sr < ∞)
= N0(Sr < ∞)E

[
1 − exp

(−12ε−12−2�1(ε)T(1)

)]
≤ N0(Sr < ∞)E

[
1 − exp

(−12ε1/2T(1)

)]
,

where, for every u > 0, T(u) stands for the hitting time of u by a seven-dimensional

Bessel process started from 0, and we used the scaling property T(u)
(d)= u2T(1).

Clearly, the right-hand side is bounded above by a constant times ε1/2 (we use the
fact that T(1) has moments of any order).

Then,

N0
({Sr < ∞} \ A(ε)

)
= N0(Sr < ∞)N0

(
�0(ε)∏

�=�1(ε)

exp
(−3

(
T

(r)
� − T

(r)
�+1

)(
2 · 2−�)−2)∣∣∣Sr < ∞

)
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= N0(Sr < ∞)

�0(ε)∏
�=�1(ε)

E

[
exp

(
−3

4
22�(T(2−�) − T(2−�−1))

)]

= N0(Sr < ∞)E

[
exp

(
−3

4
(T(1) − T(1/2))

)]�0(ε)−�1(ε)+1

using the strong Markov property and the scaling property of the Bessel process.
Since E[exp(−3

4(T(1) − T(1/2))] < 1 and since �0(ε) − �1(ε) behaves like a con-
stant times log(1/ε) when ε is small, we arrive at the desired bound. This com-
pletes the proof. �

PROOF OF LEMMA 5.1. In this proof C will denote a constant (which may
depend on μ,A and κ , but not on r) that may vary from line to line. As explained
previously, we can assume that es = ζs and Zs = Ŵs , under the probability mea-
sure P = N0(·|σ = 1). We then observe that, for every integer � ≥ �0, the event
E� is measurable with respect to G1−κ/2. Thanks to this observation, it will suffice
to prove the bound of Lemma 5.1 when the expectation is replaced by an integral
under N0. We use the notation introduced at the beginning of the Appendix, and
we now set

T
(r)
� = inf

{
t ≥ 0 :Y (r)

t = K−�}
for every integer � ≥ 0 such that K−� ≤ r . By convention, we also put T

(r)∞ = 0.
Finally, for every choice of the integers k ≤ k′ ≤ ∞, such that K−k ≤ r , we put

I
(
k, k′) := {

i ∈ I :T (r)
k′ < ζSr − ζvi

< T
(r)
k

}
.

If we view (ζs)0≤s≤σ as coding a real tree, the indices i ∈ I (k, k′) correspond to
the “subtrees” that branch from the ancestral line of the vertex corresponding to Sr

at a distance between T
(r)
k′ and T

(r)
k from this vertex.

Let E′
� be the event defined by the same properties as E�, except that we remove

the bound ηK−�+2(r) < 1 − κ
2 in (a). Then of course E� ⊂ E′

�, and{
�∑

k=��/2�
1E′

k
�=

�∑
k=��/2�

1Ek

}
⊂
(
{Sr < 1 − κ} ∩

{
ηK−��/2�+2(r) − Sr >

κ

2

})
.

From the strong Markov property at time Sr , we get that the distribution of
ηK−��/2�+2(r) − Sr under N0(·|Sr < ∞) coincides with the distribution of the hit-
ting time of T

(r)
��/2�−2 by an independent linear Brownian motion starting from 0.

Straightforward estimates now give the bound

N0

(
{Sr < 1 − κ} ∩

{
ηK−��/2�+2(r) − Sr >

κ

2

})
≤ Cb�,
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where the constant b ∈ (0,1) does not depend on � or on r . Hence, the proof of the
lemma reduces to checking the existence of a′ ∈ (0,1) such that, for � ≥ 2�0,

N0
(
1{Sr<1−κ}a

∑�
k=��/2� 1E′

k
)≤ Ca′�.

Finally, thanks to the presence of the indicator function 1{Sr<1−κ}, we may also re-
place E′

k by the event Gk , which is defined by the same properties (a)–(f) [without
the bound ηK−�+2(r) < 1 − κ

2 in (a)] but without imposing that Sr ≤ 1 − κ . Then it
will be enough to get the bound

N0
(
1{Sr<∞}a

∑�
k=��/2� 1Gk

)≤ Ca′�.(64)

For every integer � ≥ �0, let A� be the event where the following holds: There
exists an excursion interval (vi, v

′
i ) such that

(α) i ∈ I (� − 2, � − 1) [or equivalently T
(r)
�−1 < ζSr − ζvi

< T
(r)
�−2];

(β) −(α1 + β1)K
−� < inf{Ŵ i

s : s ≥ 0} < −(α2 + β2)K
−�;

(γ ) −r + β1K
−� < Ŵvi

< −r + β2K
−�;

(δ) infj∈I (�−2,�−1)\{i}(infs≥0 Ŵ
j
s ) > −α′

2K
−�;

(ε) there exists t ∈ [ζSr − ζvi
, T

(r)
�−2] such that Y

(r)
t < α̃K−�;

(ϕ) K−4� < v′
i − vi < (1 + λ)K−4�.

Then the events A�, � ≥ �0 are independent under N0(·|Sr < ∞). If we condi-
tion on WSr or, equivalently, on the random path Y (r), this independence property
follows from the independence properties of Poisson measures, and we can then
use the fact that the processes (Y

(r)

(T
(r)
�−1+t)∧T

(r)
�

)t≥0, � ≥ �0 are independent, by the

strong Markov property of the Bessel process. Furthermore, a scaling argument
shows that N0(A�|Sr < ∞) = c, where c > 0 is a constant that does not depend
on � [notice that the property β1 < β2 < 4 ≤ K2 ensures that (α) and (γ ) are not
incompatible].

We also set

B� =
{

inf
j∈I (�−1,∞)

(
inf
s≥0

Ŵ j
s

)
> −α′

2K
−�
}

and we observe that A� ∩ B� ⊂ G� by construction. So the bound (64) will follow
if we can verify that

N0
(
1{Sr<∞}a

∑�
k=��/2� 1Ak∩Bk

)≤ Ca′�.(65)

If we had 1Ak
instead of 1Ak∩Bk

in (65), this bound would immediately follow
from the independence properties mentioned above. The events Ak ∩ Bk are not
independent, because B� involves all “subtrees” branching above level ζSr −T

(r)
�−1,

but still we will prove that there is enough independence to give a bound of the
form (65).



2956 J.-F. LE GALL

To this end, it will be convenient to modify slightly the definition of A� and B�.
We fix an integer q ≥ 1, whose choice will be made precise later, and we restrict
our attention to integers that are multiples of q . Precisely, for every k ≥ � �0

q
� + 1,

we let Ãk be defined by the same properties as Aqk , with the difference that in (δ)

we require

inf
j∈I (qk−2,q(k+1)−2)\{i}

(
inf
s≥0

Ŵ j
s

)
> −α′

2K
−qk.

For the same values of k, we put

B̃k =
{

inf
j∈I (q(k+1)−2,∞)

(
inf
s≥0

Ŵ j
s

)
> −α′

2K
−qk

}
.

It is then immediate that Ãk ∩ B̃k = Aqk ∩ Bqk and so if we can prove that, for a
suitable choice of q and for every � ≥ 2(� �0

q
� + 1),

N0
(
1{Sr<∞}a

∑�
k=��/2� 1Ãk∩B̃k

)≤ Ca′�,(66)

the bound (65) will follow (with a different value of a′).
The events Ãk are again independent, and (by scaling) they have the same prob-

ability c(q) > 0 under N0(·|Sr < ∞). From a standard large deviation estimate, we
get

N0

(
�∑

k=��/2�
1Ãk

<
c(q)

4
�
∣∣∣Sr < ∞

)
≤ Cθ�

(q)

with some constant θ(q) ∈ (0,1). On the other hand, write H� for the event where
we have both

�∑
k=��/2�

1Ãk
≥ c(q)

4
�

and

�∑
k=��/2�

1B̃k
≥ � − ��/2� − c(q)

8
�.

On the event H�, we have obviously

�∑
k=��/2�

1Ãk∩B̃k
≥ c(q)

8
�

and, therefore,

N0
(
1H�

a
∑�

k=��/2� 1Ãk∩B̃k |Sr < ∞)≤ ac(q)�/8.
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Therefore, the proof of (66) will be complete if we can verify that, for a suitable
choice of q ,

N0

(
{Sr < ∞} ∩

{
�∑

k=��/2�
1B̃c

k
≥ c(q)

8
�

})
≤ Ca′′�(67)

with some a′′ ∈ (0,1).
To simplify notation, we write P(r) instead of N0(·|Sr < ∞) and E(r) for the

associated expectation in what follows. We start by observing that c(q) is bounded
below by a positive constant c′ that does not depend on q . Indeed, it follows from
independence properties of Poisson measures that, for every k ≥ � �0

q
� + 1,

c(q) = P(r)(Ãk)

= P(r)(Aqk) × E(r)

[
exp−2

∫ T
(r)
qk−1

T
(r)
q(k+1)−2

dtN0

(
inf
s≥0

Ŵs > −α′
2K

−qk
)]

= cE(r)

[
exp

(
−2
(
T

(r)
qk−1 − T

(r)
q(k+1)−2

) 3

2α′
2

2 K2qk

)]

≥ cE(r)

[
exp

(
− 3

α′
2

2 K2qkT
(r)
qk−1

)]

= cE

[
exp

(
−3K2

α′
2

2 T(1)

)]
,

where as above T(1) stands for the hitting time of 1 by a seven-dimensional Bessel
process started from 0, and we used (62) in the second equality. We conclude
that c(q) ≥ c′ := cE[exp(−3K2(α′

2)
−2T(1))]. Obviously, it is enough to prove (67)

with c(q) replaced by c′.
We now specify the choice of q . To this end, we first note that, for any choice

of �0 ≤ k < k′ ≤ ∞ and x > 0, we have, with the convention T
(r)∞ = 0,

P(r)

(
inf

j∈I (k,k′)

(
inf
s≥0

Ŵ j
s

)
≤ −x

)
= 1 − E(r)

[
exp−2

∫ T
(r)
k

T
(r)

k′

3

2x2 dt

]

≤ 1 − E(r)

[
exp

(
−3T

(r)
k

x2

)]
(68)

= 1 − E

[
exp

(
−3 · K−2k

x2 T(1)

)]

≤ M
K−2k

x2 ,
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where M is a constant. We choose the integer q ≥ 2 sufficiently large so that

M
K−q+4

(α′
2)

2 ≤ 1

2
and q

c′

8
> 1.

Let � ≥ �2�0
q

� + 1. We have

P(r)

(
�∑

k=��/2�
1B̃c

k
≥ c′

8
�

)
≤ ∑

k1,...,km

P(r)

(
B̃c

k1
∩ · · · ∩ B̃c

km

)
,

where m = � c′
8 ��, and the sum in the right-hand side is over all choices of

k1, . . . , km such that ��/2� ≤ k1 < k2 < · · · < km ≤ �. Obviously, the number of
such choices is bounded above by 2�, and so the proof of (67) will be complete if
we can verify that, for any choice of k1, . . . , km as above, we have

P(r)

(
B̃c

k1
∩ · · · ∩ B̃c

km

)≤ K−qm(69)

(recall that K ≥ 2 and q c′
8 > 1). We prove by induction that the bound (69) holds

for any m ≥ 1. If m = 1, we use the bound (68) with k′ = ∞, k replaced by q(k +
1) − 2 and x = α′

2K
−qk to get

P(r)

(
B̃c

k

)≤ M
K−2q+4

(α′
2)

2 ≤ K−q.

Then, if m ≥ 2,

P(r)

(
B̃c

k1
∩ · · · ∩ B̃c

km

)
≤ P(r)

(
inf

j∈I (q(k1+1)−2,q(k2+1)−2)

(
inf
s≥0

Ŵ j
s

)
≤ −α′

2K
−qk1

)
(70)

× P(r)

(
B̃c

k2
∩ · · · ∩ B̃c

km

)
+ P(r)

(
B

(k1)
k2

∩ B̃c
k3

∩ · · · ∩ B̃c
km

)
,

where, for ��/2� ≤ k < k′, we use the notation

B
(k)
k′ =

{
inf

j∈I (q(k′+1)−2,∞)

(
inf
s≥0

Ŵ j
s

)
≤ −α′

2K
−qk

}
.

The first term in the right-hand side of (70) is bounded by the quantity
P(r)(B

(k1)
k1

)P(r)(B̃
c
k2

∩ · · · ∩ B̃c
km

). By iterating the argument, we obtain

P(r)

(
B̃c

k1
∩ · · · ∩ B̃c

km

)≤ m∑
j=1

P(r)

(
B

(k1)
kj

)
P(r)

(
B̃c

kj+1
∩ · · · ∩ B̃c

km

)

≤
m∑

j=1

K−q(m−j)P(r)

(
B

(k1)
kj

)
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using the induction hypothesis. On the other hand, the bound (68) gives for k ≤ k′

P(r)

(
B

(k)
k′
)≤ M

K−2q(k′+1)+4

(α′
2)

2K−2qk
≤ 1

2
K−2q(k′−k)−q

by our choice of q . We thus obtain

P(r)

(
B̃c

k1
∩ · · · ∩ B̃c

km

)≤ 1

2

m∑
j=1

K−q(m−j)K−2q(kj−k1)−q

≤ 1

2
K−qm

m∑
j=1

K−q(j−1) ≤ K−qm.

This completes the proof of (69) and of Lemma 5.1. �
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