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Abstract. Concerning the uniqueness and sharing values of meromorphic functions, many
results about meromorphic functions that share more than or equal to two values have been ob-
tained. In this paper, we shall study meromorphic functions that share only one value, and prove
the following result: For n ≥ 11 and two meromorphic functions f(z) and g(z) , if fnf ′ and gng′

share the same nonzero and finite value a with the same multiplicities, then f ≡ dg or g = c1e
cz

and f = c2e
−cz , where d is an (n + 1)th root of unity, c , c1 and c2 being constants. As an

application, we solve some non-linear differential equations.

1. Introduction and main result

In this paper, a meromorphic function always means a function which is mero-
morphic in the whole complex plane. Let f(z) and g(z) be nonconstant meromor-
phic functions, a ∈ C . We say that f and g share the value a CM if f(z)−a and
g(z) − a have the same zeros with the same multiplicities. We shall use the stan-
dard notations of value distribution theory, T (r, f) , m(r, f) , N(r, f) , N(r, f) ,
. . . (Hayman [6], Laine [9], Nevanlinna [11] and Yang [13]). We denote by S(r, f)
any function satisfying

S(r, f) = o{T (r, f)},

as r → +∞ , possibly outside of finite measure.
In the 1920’s, R. Nevanlinna [11] proved the following result (the Nevanlinna

four-value theorem).

Theorem A. Let f and g be two nonconstant meromorphic functions. If f
and g share four distinct values CM, then f is a Möbius transformation of g .

For instance, f = ez , g = e−z share 0, ±1, ∞ , and f = 1/g .
In this paper, we shall show that similar conclusions hold for certain types of

differential polynomials when they share only one value.
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Theorem 1. Let f and g be two nonconstant meromorphic functions, n ≥
11 an integer and a ∈ C−{0} . If fnf ′ and gng′ share the value a CM, then either

f = dg for some (n + 1)th root of unity d or g(z) = c1e
cz and f(z) = c2e

−cz ,

where c , c1 , and c2 are constants and satisfy (c1c2)
n+1c2 = −a2 .

Remark 1. The following example shows that a 6= 0 is necessary. For
f = eez

and g = ez , we see that fnf ′ and gng′ share 0 CM for any integer n ,
but f and g do not satisfy the conclusion of Theorem 1.

Remark 2. If f and g are entire, we only need to assume that n ≥ 7 in
Theorem 1. A particular result was obtained by Fang and Hua [4].

In order to prove the above result, we shall first prove the following two
theorems.

Theorem 2. Let f and g be two nonconstant meromorphic functions, n ≥ 6 .

If fnf ′gng′ = 1 , then g = c1e
cz , f = c2e

−cz , where c , c1 and c2 are constants

and (c1c2)
n+1c2 = −1 .

Theorem 3. Let f and g be two nonconstant entire functions, n ≥ 1 . If

fnf ′gng′ = 1 , then g = c1e
cz , f = c2e

−cz , where c , c1 and c2 are constants and

(c1c2)
n+1c2 = −1 .

In addition, as applications of our theorems, we present a method of solving
some non-linear differential equations in Section 6.

2. Some basic lemmas

By using Chuang’s inequality [2] and Borel’s monotone theorem we can derive
the following lemma.

Lemma 1. Suppose that f is a nonconstant meromorphic function and n ≥ 0
is an integer. Then m(r, f ′/f) = S(r, f (n)) .

The following lemma is presented in Yang [13].

Lemma 2. Let f and g be two nonconstant meromorphic functions. Then

N
(

r,
f

g

)

− N
(

r,
g

f

)

= N(r, f) + N
(

r,
1

g

)

− N(r, g)− N
(

r,
1

f

)

.

Lemma 3. Let f and g be two nonconstant meromorphic functions. If f
and g share 1 CM, one of the following three cases holds:

(i) T (r, f) ≤ N(r, f) + N (2(r, f) + N(r, g) + N (2(r, g) + N(r, 1/f)

+N (2(r, 1/f) + N(r, 1/g) + N (2(r, 1/g) + S(r, f) + S(r, g),
the same inequality holding for T (r, g);
(ii) f ≡ g;
(iii) fg ≡ 1 ,

where N (2(r, 1/f) = N(r, 1/f)−N1)(r, 1/f) and N1)(r, 1/f) is the counting func-

tion of the simple zeros of f in {z : |z| ≤ r}.
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Proof. This result has been obtained by Hua [7], Mues–Reinders [10] and
Yi–Yang [14] more or less independently. Here we present a different proof, which
is of interest in itself. Set

(1) φ =
f ′′

f ′
− 2

f ′

f − 1
−

g′′

g′
+ 2

g′

g − 1
.

Since f and g share 1 CM, a simple computation on local expansions shows
that φ(z0) = 0 if z0 is a simple zero of f − 1 and g − 1. Next we consider two
cases: φ 6≡ 0 and φ ≡ 0.

If φ(z) 6≡ 0, then

(2)
N1)

(

r,
1

f − 1

)

= N1)

(

r,
1

g − 1

)

≤ N
(

r,
1

φ

)

≤ T (r, φ) + O(1) ≤ N(r, φ) + S(r, f) + S(r, g),

where N1)

(

r, 1/(f − 1)
)

is the counting function of the simple zeros of f − 1 in
{z : |z| ≤ r} . Since f and g share 1 CM, any root of f(z) = 1 cannot be a pole
of φ(z) . In addition, we can easily see from (1) that any simple pole of f and g
is not a pole of φ . Therefore, by (1), the poles of φ only occur at zeros of f ′ and
g′ and the multiple poles of f and g . If f ′(z0) = f(z0) = 0, then z0 is a multiple
zero of f . We denote by N0(r, 1/f ′) the counting function of those zeros of f ′

but not that of f(f − 1). From (1), (2) and the above observations we deduce
that

(3)

N1)

(

r,
1

f − 1

)

≤ N (2(r, f) + N (2(r, g) + N0

(

r,
1

f ′

)

+ N0

(

r,
1

g′

)

+ N (2

(

r,
1

f

)

+ N (2

(

r,
1

g

)

+ S(r, f) + S(r, g).

On the other hand, by the second fundamental theorem we have

(4) T (r, f) ≤ N(r, f) + N
(

r,
1

f

)

+ N
(

r,
1

f − 1

)

− N0

(

r,
1

f ′

)

+ S(r, f),

and by the first fundamental theorem

N
(

r,
1

g′

)

− N
(

r,
1

g

)

+ N
(

r,
1

g

)

= N
(

r,
g

g′

)

≤ T
(

r,
g′

g

)

+ O(1)

= N(r, g) + N
(

r,
1

g

)

+ S(r, g).
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This implies that

N
(

r,
1

g′

)

≤ N(r, g) + N
(

r,
1

g

)

+ S(r, g).

It is easy to see from the definition of N0(r, 1/g′) that

N0

(

r,
1

g′

)

+ N (2

(

r,
1

g − 1

)

+ N(2

(

r,
1

g

)

− N (2

(

r,
1

g

)

≤ N
(

r,
1

g′

)

.

The above two inequalities yield

(5) N0

(

r,
1

g′

)

+ N (2

(

r,
1

g − 1

)

≤ N(r, g) + N
(

r,
1

g

)

+ S(r, g).

Since f and g share 1 CM, we have

(6) N
(

r,
1

f − 1

)

= N1)

(

r,
1

f − 1

)

+ N (2

(

r,
1

g − 1

)

.

Combining (3)–(6), we obtain (i).
If φ(z) ≡ 0, we deduce from (1) that

(7) f ≡
Ag + B

Cg + D
,

where A , B , C and D are finite complex numbers satisfying AD − BC 6= 0.
Then, by the first fundamental theorem,

(8) T (r, f) = T (r, g) + S(r, f).

Next we consider three respective subcases.

Subcase 1. AC 6= 0. Then

f −
A

C
=

B − AD/C

Cg + D
.

By the second fundamental theorem, we have

(9)

T (r, f) ≤ N(r, f) + N
(

r,
1

f − (A/C)

)

+ N
(

r,
1

f

)

+ S(r, f)

= N(r, f) + N(r, g) + N
(

r,
1

f

)

+ S(r, f).

We get (i).
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Subcase 2. A 6= 0, C = 0. Then f ≡ (Ag + B)/D . If B 6= 0, by the second
fundamental theorem

(10)

T (r, f) ≤ N(r, f) + N
(

r,
1

f

)

+ N
(

r,
1

f − B/D

)

+ S(r, f)

= N(r, f) + N
(

r,
1

f

)

+ N
(

r,
1

g

)

+ S(r, f).

We obtain (i). If B = 0, then f ≡ Ag/D . If A/D = 1, then f ≡ g ; this is (ii).
If A/D 6= 1, then by the assumption that f and g share 1 CM, it it easy to see
that f 6= 1 and g 6= 1, which yields f 6= 1, A/D . By the second fundamental
theorem we have

T (r, f) ≤ N(r, f) + S(r, f),

and (i) follows.

Subcase 3. A = 0, C 6= 0. Then f ≡ B/(Cg + D) . If D 6= 0, by the second
fundamental theorem we have

T (r, f) ≤ N(r, f) + N
(

r,
1

f

)

+ N
(

r,
1

f − B/D

)

+ S(r, f)

= N(r, f) + N
(

r,
1

f

)

+ N
(

r,
1

g

)

+ S(r, f).

Thus we get (i). If D = 0, then f = B/Cg . If B/C = 1, then fg ≡ 1 and we
obtain (iii). If B/C 6= 1, by the assumption that f and g share 1 CM, we have
f 6= 1, B/C . By the second fundamental theorem we get

T (r, f) ≤ N(r, f) + S(r, f).

This implies (i). The proof of Lemma 3 is complete.

Remark 3. In some known results such as in Brosch [1], Jank–Terglane [8],
Song–Wang [12], etc., it is assumed that the counting functions of the poles and
the zeros of f and g are S(r, f) and S(r, g) , respectively. Thus all these kinds of
theorems can be strengthened according to our result, conclusion (i).

The following lemma, called Borel’s unicity theorem, is very useful in the
study of value distribution theory and its applications such as factorizations or
uniqueness and value sharing problems (cf. Chuang and Yang [3] or Gross [5]).

Lemma 4. Let gj (j = 1, . . . , n) be entire and aj (j = 1, . . . , n) meromor-

phic functions. If

T (r, aj) = o{T (r, egi−gk)} (1 ≤ j ≤ n, i 6= k, i, k = 1, . . . , n),

the identity
∑n

j=1 aj(z)egj(z) ≡ 0 implies that aj(z) ≡ 0 (j = 1, . . . , n).

Remark 4. In fact, we only need to assume that the growth condition of
Lemma 4 holds on a set of values r of infinite linear measure.
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3. Proof of Theorem 2

We proceed in the proof step by step as follows.

Step 1. We prove that

(11) f 6= 0, g 6= 0.

In fact, suppose that f has a zero z0 with order m . Then z0 is a pole of g (with
order p , say) by

(12) fnf ′gng′ = 1.

Thus, nm + m− 1 = np + p + 1, i.e., (m− p)(n + 1) = 2. This is impossible since
n ≥ 6 and m , p are integers.

Step 2. We claim that

(13) N(r, f) + N(r, g) ≤ 2m
(

r,
1

fg

)

+ O(1).

By Step 1 and (12) we deduce that

(14) (n + 1)N(r, g) + N(r, g) = N
(

r,
1

f ′

)

.

From Lemma 2 we have

N
(

r,
f

f ′

)

− N
(

r,
f ′

f

)

= N(r, f) + N
(

r,
1

f ′

)

− N(r, f ′) − N
(

r,
1

f

)

= N
(

r,
1

f ′

)

− N(r, f).

By the first fundamental theorem, the left side is m(r, f ′/f)−m(r, f/f ′) + O(1),
so we have

(15) N
(

r,
1

f ′

)

= N(r, f) + m
(

r,
f ′

f

)

− m
(

r,
f

f ′

)

+ O(1).

Now we rewrite (12) in the form g′/g = (f/f ′)(1/fg)n+1 . Then

m
(

r,
f

f ′

)

≥ m
(

r,
g′

g

)

− (n + 1)m
(

r,
1

fg

)

− O(1).

Combining this, (14), and (15), we get

(n+1)N(r, g)+N(r, g) ≤ N(r, f)+m
(

r,
f ′

f

)

−m
(

r,
g′

g

)

+(n+1)m
(

r,
1

fg

)

+O(1).

By symmetry,

(n+1)N(r, f)+N(r, f) ≤ N(r, g)+m
(

r,
g′

g

)

−m
(

r,
f ′

f

)

+(n+1)m
(

r,
1

fg

)

+O(1).

By adding the above two inequalities we obtain (13).
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Step 3. We prove that fg is constant. Let h = 1/fg . Then h is entire by
Step 1, and (12) can be written as

(

g′

g
+

1

2

h′

h

)2

=
1

4

(

h′

h

)2

− hn+1.

Let

α =
g′

g
+

1

2

h′

h
.

The above equation becomes

(16) α2 =
1

4

(h′

h

)2

− hn+1.

If α ≡ 0, then hn+1 = 1
4 (h′/h)2 . Combining this with Step 1 we obtain T (r, h) =

m(r, h) = S(r, h) ; thus h is a constant. Next we assume that α 6≡ 0. Differenti-
ating (16) yields

2αα′ =
1

2

h′

h

(h′

h

)

′

− (n + 1)h′hn.

From this and (16) it follows that

(17) hn+1

(

(n + 1)
h′

h
− 2

α′

α

)

=
1

2

h′

h

(

(h′

h

)

′

−
h′

h

)

.

If ((n + 1)h′/h) − 2(α′/α) ≡ 0, there exists a constant c such that α2 = chn+1 .
This and (16) give

(c + 1)hn+1 =
1

4

(h′

h

)2

.

If c = −1, then h′ ≡ 0, and so h is constant. If c 6= −1, we have T (r, h) = S(r, h) ,
and h is constant. Next we suppose that

(n + 1)
h′

h
− 2

α′

α
6≡ 0.

Then, by (17) and the fact that h is entire,

(n + 1)T (r, h) = (n + 1)m(r, h)

≤ m

(

r, hn+1

(

(n + 1)
h′

h
− 2

α′

α

))

+ m

(

r,
1

(n + 1)h′/h − 2α′/α

)

+ O(1)

≤ m

(

r,
1

2

h′

h

(

(h′

h

)

′

−
h′

h

))

+ T
(

r, (n + 1)
h′

h
− 2

α′

α

)

≤ N(r, f) + N(r, g) + N
(

r,
1

α

)

+ S(r, h) + S(r, α).
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Now by (16) and (13) we have

T (r, α) ≤ 1
2 (n + 3)T (r, h) + S(r, h),

and
N(r, f) + N(r, g) ≤ 2m(r, h) + O(1).

Combining the above three inequalities we obtain

1
2 (n − 5)T (r, h) ≤ S(r, h).

Thus h must be a constant.

Step 4. We prove our conclusion. By Step 3, h is a constant. Then, by (12),

g′

g
= c, c = ih(n+1)/2.

Thus
g(z) = c1e

cz, f = c2e
cz,

where c , c1 and c2 are constants and satisfy (c1c2)
n+1c2 = −1 by (12). This

completes the proof of the theorem.

4. Proof of Theorem 3

From
fnf ′gng′ = 1

and the assumption that f and g are entire we immediately see that f and g
have no zeros. Thus there exist two entire functions α(z) and β(z) such that

f(z) = eα(z), g(z) = eβ(z).

Inserting these in the above equality, we get

α′β′e(n+1)(α+β) ≡ 1.

Thus α′ and β′ have no zeros and we may set

α′ = eδ(z), β′ = eγ(z).

The above two equalities yield

e(n+1)(α+β)+δ+γ ≡ 1.

Differentiating this gives

(n + 1)(eδ + eγ) + δ′ + γ′ ≡ 0.

By Lemma 4, δ = γ + (2m + 1)πi for some integer m . Inserting this in the above
equality we deduce that δ′ ≡ γ′ ≡ 0, and so δ and γ are constants, i.e., α′ and
β′ are constants. From this we can easily obtain the desired result.
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5. Proof of Theorem 1

Let F = fn+1/a(n + 1) and G = gn+1/a(n + 1). Then the condition that
fnf ′ and gng′ share the value a CM implies that F ′ and G′ share the value 1
CM. Obviously,

N(r, F ′) = (n + 1)N(r, f) + N(r, f),

N(r, G′) = (n + 1)N(r, g) + N(r, g),(18)

N(r, F ′) = N (2(r, F
′) = N(r, f) ≤

1

n + 2
T (r, F ′) + O(1),(19)

(20)

N
(

r,
1

F ′

)

+ N (2

(

r,
1

F ′

)

= 2N
(

r,
1

f

)

+ N
(

r,
1

f ′

)

+ N (2

(

r,
1

f ′

)

≤ 2N
(

r,
1

f

)

+ N
(

r,
1

f ′

)

≤ 2T (r, f) + N
(

r,
1

f ′

)

+ O(1).

Since

nm(r, f) = m
(

r, a
F ′

f ′

)

≤ m(r, F ′) + m
(

r,
1

f ′

)

+ O(1)

= m(r, F ′) + T (r, f ′) − N
(

r,
1

f ′

)

+ O(1)

≤ m(r, F ′) + T (r, f) + N(r, f)− N
(

r,
1

f ′

)

+ m
(

r,
f ′

f

)

+ O(1)

= m(r, F ′) + T (r, f) + N(r, f)− N
(

r,
1

f ′

)

+ m
(

r,
F ′

F

)

+ O(1),

it follows from this, (18), and Lemma 1 that

(n − 1)T (r, f) ≤ T (r, F ′) − N(r, f) − N
(

r,
1

f ′

)

+ S(r, F ′).

This and Lemma 1 imply that

2T (r, f) + N
(

r,
1

f ′

)

=
2

n − 1

{

(n − 1)T (r, f) + N
(

r,
1

f ′

)

}

+
n − 3

n − 1
N

(

r,
1

f ′

)

≤
2

n − 1
{T (r, F ′) − N(r, f)}+

n − 3

n − 1

(

T (r, f) + N(r, f)
)

+ m
(

r,
f ′

f

)

+ O(1)

≤

(

2

n − 1
+

n − 3

(n − 1)2

)

T (r, F ′)

+

(

n − 5

n − 1
−

n − 3

(n − 1)2

)

N(r, f) + S(r, F ′).
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Combining this, (19), and (20), we obtain

(21) N
(

r,
1

F ′

)

+ N (2

(

r,
1

F ′

)

≤
4n2 − 6n − 2

(n − 1)2(n + 2)
T (r, F ′) + S(r, F ′).

We similarly derive for G′ that

(22) N(r, G′) = N (2(r, G
′) = N(r, g) ≤

1

n + 2
T (r, G′) + O(1),

(23) N
(

r,
1

G′

)

+ N (2

(

r,
1

G′

)

≤
4n2 − 6n − 2

(n − 1)2(n + 2)
T (r, G′) + S(r, G′).

Without loss of generality, we suppose that there exists a set I ⊂ [0,∞) such that
T (r, G′) ≤ T (r, F ′) . Next we always let r ∈ I . If we apply Lemma 3 to F ′ and
G′ , it follows that there are three cases to be considered.

Case (i).

T (r, F ′) ≤ N(r, F ′) + N (2(r, F
′) + N(r, G′) + N (2(r, G

′) + N
(

r,
1

F ′

)

+ N (2

(

r,
1

F ′

)

+ N
(

r,
1

G′

)

+ N (2

(

r,
1

G′

)

+ S(r, F ′) + S(r, G′).

Setting (19), (21), (22), and (23) into the above inequality and keeping in mind
that T (r, G′) ≤ T (r, F ′) , we get

(24)
n3 − 12n2 + 17n + 2

(n − 1)2(n + 2)
T (r, F ′) ≤ S(r, F ′).

We denote by p(n) the numerator of the coefficient on the left-hand side above.
Then p′(n) = 3n2 − 24n + 17 > 0 for n ≥ 8. Note that p(11) = 68; thus p(n)
is positive for n ≥ 11. It follows from (24) that F ′ must be a rational function.
But then, by the above derivations, S(r, F ′) = O(1). Using (24) again, F ′ must
be a constant, which is impossible.

Case (ii). F ′ = G′ . Then we deduce that fn+1 = gn+1 + c (c ∈ C). Let
f = hg , and we have

(25) (hn+1 − 1)gn+1 = c.

If hn+1 ≡ 1, then h is an (n + 1)th unit root and we obtain the desired result. If
hn+1 6≡ 1, then by (25),

gn+1 =
c

hn+1 − 1
.

Thus h is not constant. We write this in the form

gn+1 =
c

(h − u1) · · · (h − un+1)
,

where u1, . . . , un+1 are different (n + 1)th roots of unity. Thus h has at least
n + 1 (≥ 14) multiple values. However, from Nevanlinna’s second fundamental
theorem we know that h has at most 4 multiple values, a contradiction.
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Case (iii). F ′G′ ≡ 1, i.e., a−2fnf ′gng′ ≡ 1. Let f̂ = a−1/(n+1)f and

ĝ = a−1/(n+1)g . Then f̂nf̂ ′ĝnĝ′ = 1. The conclusion follows from Theorem 2.

6. Applications

Generally speaking, solving any non-linear differential equation presents a
very difficult problem. As applications of our result, we present the derivations of
the meromorphic solutions of the following two non-linear differential equations:

(26) y′yn − 1 = eα(z)(eβ(z) − 1), n ≥ 7,

where α and β are entire functions. If eβ can be represented as g′gn for some
entire function g , we see that g has no zeros and poles. Thus we may set g = eγ

and obtain γ′ = eβ−(n+1)γ . This implies that γ′ has no zeros, and thus there exists
an entire function δ such that γ′ = eδ , which results in β = (n + 1)γ + δ + 2kπi .
Therefore

(27) β′ = (n + 1)eδ + δ′.

Now, by Remark 2 in Section 1, the possible solution for the equation (26) is either
y = dg or y = c1e

cz and g = c2e
cz , where d is an (n + 1)th root of unity and

c1 , c2 and c are constants. In the second case γ is linear, and so β′ = (n + 1)c .
Combining the above discussions, we have the following result.

Theorem 4. Suppose that for a non-linear differential equation of (26) with

n ≥ 7 , there exists an entire function δ such that (27) holds. Then every solution

of (26) is of the form

y = c exp

(
∫

eδ dz

)

or

y = c1 exp
(

−β′/(n + 1)
)

(β′ ≡ constant).

Remark 5. In particular, if β is a polynomial, then by (27), δ can only be
constant, and hence β is linear.
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