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1 Introduction

In this paper we begin a systematic study of fully nonlinear integro-PDE in Hilbert spaces,

with the goal of the development of a theory of viscosity solutions for such equations. The

interest in such equations comes primarily from their connections with infinite dimensional

jump-diffusion processes, in particular with stochastic PDE (SPDE) driven by Lévy pro-

cesses [8, 42, 61]. Integro-PDE may be linear Kolmogorov equations associated with such

∗Supported by the MNiSW project N 201 419039 “Stochastic equations in infinite dimensional spaces”,

and NSF grant DMS-0856485.
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SPDE, they may be Bellman-Isaacs equations for stochastic optimal control or stochastic

differential game problems driven by SPDE with jumps, they may be infinite dimensional

versions of Black-Scholes and Black-Scholes-Barenblatt equations associated with the the-

ory of bond markets driven by jump diffusions. In a recent paper [74], viscosity solutions

of integro-PDE were used to prove large deviation results for SPDE with small Lévy

noise. There is a need to develop a general theory of such equations. In this manuscript

we introduce the notion of viscosity solution appropriate for such equations and deal with

the fundamental issue of uniqueness of viscosity solutions. Existence of viscosity solutions

and connection with stochastic optimal control problems will be the subject of a future

publication.

Linear parabolic PDE with non-local operators on Hilbert spaces have already been

a subject of several investigations. The most studied equations are of Kolmogorov’s type

corresponding to Ornstein-Uhlenbeck processes perturbed by Lévy noise, see e.g. [9, 60].

More general equations with additional first order terms were studied in [49, 64]. In

particular [64] contains the so called BEL formula for the gradient of the solutions. Non-

linear parabolic problems with non-local operators, corresponding to optimal stopping

problems were investigated in [75] using the theory of maximal monotone operators.

Uniqueness of solutions in the viscosity theory is typically a consequence of a com-

parison theorem which ensures that under certain conditions a subsolution is always less

than or equal to a supersolution. It is usually the more difficult part of the theory. In

this paper we prove a general comparison principle for equation (5.1). The proof is rather

involved and is divided into several parts. The main difficulty comes from the fact that

our integro-PDE has both an integral part and a second order PDE part. If the second

order PDE terms are absent, the proof is much easier. A standard proof of comparison for

viscosity solutions of second order equations goes through a doubling (of the number of

variables) and penalization argument. In finite dimensional spaces one than uses maximum

principle for semicontinuous functions (see for instance Theorem 3.2 of [26]) to produce

test functions whose second order derivatives have proper ordering. This technique was

recently successfully adapted to integro-PDE, see for instance [12, 17, 41, 62]). In partic-

ular, in [41] a general “non-local maximum principle for semicontinuous functions” was

established, which was later generalized in [17]. Unfortunately it is not known if maximum

principle for semicontinuous functions is true in infinite dimensions. To remedy this, for

a purely second-order PDE, P. L. Lions introduced in [50] a technique which, through a

reduction to a finite dimensional case, still allows to produce test functions whose second

order derivatives consist of two operators; infinite dimensional ones which are eventually

negligible, and finite dimensional ones which have the right ordering. This technique was

later slightly improved and generalized in [27] and became a standard tool in the theory
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of second order PDE in Hilbert spaces. Here we combine finite dimensional methods of

“non-local maximum principle” [41] with the finite dimensional reduction technique to

obtain a kind of “infinite dimensional non-local maximum principle” which is the main

tool in the proof of the comparison theorem. We focus our attention on time dependent

problems and equations of Bellman type in order to minimize the level of technical de-

tails. However, with only minor modifications, the results of this paper can be adapted

to stationary equations as well as equations with more general Hamiltonians, for instance

to integro-PDE of Isaacs type. Moreover other results typical in the viscosity theory like

consistency of viscosity solutions, similar in the spirit to these of [68], can be proved with

little effort. We leave these issues to the interested readers.

Finally we mention that the theory of fully nonlinear first and second order integro-

PDE in finite dimensional spaces is well developed by now. Papers and books [18, 32,

33, 34, 35, 36, 43, 44, 47, 48, 52, 53, 54, 55, 56, 57, 58, 63, 69] present various PDE,

analytic and probabilistic approaches and connections with stochastic optimal control.

The theory of viscosity solutions was introduced in [68, 71, 72] and its general theory

was further developed in [2, 3, 4, 11, 12, 15, 16, 17, 19, 23, 24, 25, 37, 40, 41, 70]. In

particular, papers [24, 70] contain higher order regularity results for viscosity solutions.

Papers [13, 14] treat evolution of interfaces moving with non-local velocity. Papers and

books [1, 5, 6, 7, 20, 21, 39, 51, 59, 62] are motivated by applications to finance and

control problems.

2 Preliminaries

Throughout this paper H,U will be real separable Hilbert spaces equipped with the inner

products 〈·, ·〉, 〈·, ·〉U and the norms ‖ · ‖, ‖ · ‖U , and A will be a linear, densely defined,

maximal monotone operator in H .

Let B be a bounded, linear, positive, self-adjoint operator on H such that A∗B is

bounded on H and

〈(A∗B + c0B)x, x〉 ≥ 0 for all x ∈ H (2.1)

for some c0 ≥ 0. We refer to [28, 66] for existence of such an operator B and various

examples. In particular it was shown in [66] that B = ((A+ I)(A∗ + I))−1/2 satisfies (2.1).

If A is self-adjoint we can always take B = (A + I)−1. Another example of B is given in

Example (2.1).

We define for γ > 0 the space H−γ to be the completion of H under the norm

‖x‖−γ = ‖B
γ

2x‖.
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H−γ is a Hilbert space equipped with the inner product

〈x, y〉−γ =
〈

B
γ

2x,B
γ

2 y
〉

.

We denote by L(H) the space of bounded, linear operators on H and by S(H) the space

of bounded, linear, self-adjoint operators in H .

Let {e1, e2, ...} be an orthonormal basis in H−1 made of elements of H . For N ≥ 1 we

denote HN = span{e1, ..., eN}. We define PN : H−1 → H−1 to be the orthogonal projection

onto HN and set QN := I − PN . We have PN , QN ∈ L(H) and BPN = P ∗
NBPN , BQN =

Q∗
NBQN . For x ∈ H we will write xN = PNx, x

⊥
N = QNx.

We remark that if B is compact then ‖BγQN‖ → 0 as N → +∞ for every γ > 0.

Moreover in this case we can take {e1, e2, ...} to be a properly normalized orthonormal

basis of H composed of eigenvectors of B. For such a basis we have PN = P ∗
N , QN = Q∗

N .

We say that a function u : Ω → R is B-upper-semicontinuous (respectively, B-

lower-semicontinuous) on Ω ⊂ [0, T ] × H if whenever tn → t, xn ⇀ x, Bxn → Bx,

(t, x) ∈ Ω, then lim supn→+∞ u(tn, xn) ≤ u(t, x) (respectively, lim infn→+∞ u(tn, xn) ≥

u(t, x)). The function u is B-continuous on Ω if it is B-upper-semicontinuous and B-

lower-semicontinuous on Ω.

For an open subset Z of a Hilbert space and an interval I ⊂ R, we will be using the

following function spaces.

BUC(I × Z) = {u : I × Z → R : u is uniformly continuous and bounded},

C2(Z) = {u : Z → R : u,Du,D2u are continuous},

C2
b(Z) = {u ∈ C2(Z) : u is bounded},

C1,2(I × Z) = {u : I × Z → R : u, ut, Du,D
2u are continuous},

C1,2
b (I × Z) = {u ∈ C1,2(I × Z) : u is bounded},

UC2(Z) = {u ∈ C2(Z) : Du,D2u are uniformly continuous},

UC2
b(Z) = {u ∈ UC2(Z) : u is bounded},

UC1,2(I × Z) = {u ∈ C1,2(I × Z) : ut, Du,D
2u are uniformly continuous},

UC1,2
b (I × Z) = {u ∈ UC1,2(I × Z) : u is bounded},

where Du,D2u denote the Fréchet derivatives of u with respect to the space variable.

Let Y, Z be real, separable Hilbert spaces. If C ∈ L(Z) is trace class (see e.g. [61],

Appendix A.2), its trace is defined by

Tr (C) =
∞
∑

i=0

〈Cfi, fi〉Z ,
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where {f1, f2, ...} is any orthonormal basis of Z. A bounded linear operator C : Z → Y

is Hilbert-Schmidt if
∑∞

i=0 |Cfi|
2
Y < +∞ for any orthonormal basis of Z. The space of

Hilbert-Schmidt operators from Z to Y is denoted by L2(Z, Y ). It is equipped with the

norm

‖C‖L2(Z,Y ) =
∞
∑

i=0

|Cfi|
2
Y = Tr (C∗C)

which is independent of the choice of basis. Moreover ‖C‖L2(Z,Y ) = ‖C∗‖L2(Y,Z).

Example 2.1. The setting below is needed to study a controlled hyperbolic system with

Lévy noise (see [74], Section 9) considered in Example 4.3.

Let A be a strictly positive, self-adjoint operator in H with a bounded inverse. Then

the operator

A =

(

0 −I
A 0

)

, D(A) =





D(A)
×

D(A1/2)





is maximal monotone in the Hilbert space H =





D(A1/2)
×
H



, equipped with the inner

product
〈(

u
v

)

,

(

ū
v̄

)〉

H

=
〈

A1/2u,A1/2ū
〉

H
+ 〈v, v̄〉H ,

(

u
v

)

,

(

ū
v̄

)

∈ H.

Moreover, A∗ = −A and one easily checks that the operator

B =

(

A−1/2 0
0 A−1/2

)

is bounded, positive, self-adjoint on H, A∗B is bounded, and (2.1) holds with any constant

c0 ≥ 0. Moreover
∥

∥

∥

∥

(

u
v

)∥

∥

∥

∥

−1

=
(

‖A1/4u‖2 + ‖A−1/4v‖2
)1/2

,

(

u
v

)

∈ H.

3 Optimal control problem and HJB equation

Let L be a Lévy process on [0,+∞) in U . Then

IEei〈λ,L(t)〉U = e−tψ(λ),

where for λ ∈ U ,

ψ(λ) = −i〈m,λ〉U +
1

2
〈Qλ, λ〉U +

∫

U\{0}

(

1 − ei〈λ,y〉U + 1{‖y‖U<1}i〈λ, y〉U
)

ν(dy), (3.1)
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m ∈ U , Q ≥ 0 is a bounded, self-adjoint operator on U such that Tr (Q) < +∞, and ν is

a non-negative measure on (U \ {0},B(U \ {0})), where B(U \ {0}) is the Borel σ-field,

for which
∫

0<‖y‖U<1

‖y‖2
Uν(dy) +

∫

‖y‖U≥1

ν(dy) < +∞.

The measure ν is called the Lévy measure of L or the jump intensity measure of L and

the function ψ, the Lévy exponent of L or the characteristic exponent of L . According

to formula (3.1), the process L can be represented in the form

L(t) = mt +W (t) + L0(t) + L1(t),

where W,L0, L1 are independent Lévy processes such that W is a Q-Wiener process in U

(see [30]), and

L0(t) =

∫ t

0

∫

0<‖y‖U<1

yπ̂(ds, dy), L1(t) =

∫ t

0

∫

‖y‖U≥1

yπ(ds, dy),

where π is the Poisson random measure of jumps of L and π̂ is the compensated Poisson

random measure of jumps:

π([0, t], B) =
∑

0<s≤t

1B(L(s) − L(s−)), B ∈ B(U \ {0})), L(s−) = lim
t↑s

L(t),

π̂(dt, dy) = π(dt, dy)− dt ν(dy)

(see e.g. [10, 22, 61, 67]). The process L0 is a square integrable martingale, and L1 is

a compound Poisson process. In particular, for arbitrary trace class, positive definite

operator R on U and α ∈ (0, 2), the following function

ψ(λ) = 〈Rλ, λ〉
α
2

U , λ ∈ U, (3.2)

is of the form (3.1). It corresponds to an α-stable Lévy process with the Lévy measure

ν =
Γ(1 − α)

α

∫ +∞

0

N(0, sR)
1

s1+α
ds,

where N(0, sR) is the Gaussian measure on U with mean 0 and the covariance sR.

Let T > 0. We consider a family of the following stochastic optimal control problems.

For a given t ∈ [0, T ], the set of admissible controls, denoted by Ut, will be the collection

of all 6-tuples (Ω,F ,F t
s,P, (W,L), a (·)) satisfying the following conditions:

(i) (Ω,F ,P) is a complete probability space;
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(ii) (W,L) = {(W (s), L(s)) : t ≤ s ≤ T} is a pair of an independent U -valued Q-

Wiener process W (s) (Q ∈ S(U), Q ≥ 0 and Q is trace-class), and a U -valued Lévy

process L(s) = L0(s) + L1(s) as above defined on (Ω,F ,P) beginning at t (with

W (t) = L0(t) = L1(t) = 0, P a.s.), and F t
s is the filtration generated by (W,L),

augmented by the P-null sets in F ;

(iii) a : [t, T ] × Ω → Γ, is an F t
s-adapted, cádlág (right continuous with left limits)

processes with values in a complete separable metric space Γ.

Consider a family of abstract stochastic differential equations (SDE)







dX(s) = (−AX(s) + b(X(s), a(s)))ds+ σ(X(s), a(s))dW (s)
+
∫

0<‖y‖U<1
γ(X(s−), a(s−), y)π̂(ds, dy) +

∫

‖y‖U≥1
γ(X(s−), a(s−), y)π(ds, dy)

X(t) = x ∈ H.

(3.3)

The above SDE is quite general and it includes for instance stochastic semilinear parabolic

and hyperbolic problems with Lévy noise [74] to name a few. In particular, if γ is a linear

transformation with respect to the third variable, i.e.

γ(x, a, y) = γ̄(x, a)y, (3.4)

we arrive at the equation

dX(s) = (−AX(s) + b(X(s), a(s)))ds+ σ(X(s), a(s))dW (s) + γ̄(X(s−), a(s−)dL(s).

We want to minimize a cost functional of the form

J(t, x; a(·)) = IE

{
∫ T

t

f(X(s), a(s))ds+ g(X(T ))

}

over all admissible controls in Ut. The dynamic programming equation for this problem

is an integro-PDE Hamilton-Jacobi-Bellman (HJB) equation






















ut − 〈Ax,Du〉 + infa∈Γ

{

1
2
Tr ((σ(x, a)Q

1

2 )(σ(x, a)Q
1

2 )∗D2u) + 〈b(x, a), Du〉 + f(x, a)

+
∫

U\{0}

(

u(t, x+ γ(x, a, y)) − u(t, x) − 1{‖y‖U<1}〈γ(x, a, y), Du(t, x)〉
)

ν(dy)

}

,

u(T, x) = g(x).
(3.5)

The above integro-PDE should be satisfied by the value function

V (t, x) = inf
a(·)∈Ut

J(t, x; a(·)).

The validity of this is the subject of a paper under preparation.
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4 Assumptions

For (x, p,X, v) ∈ H ×H × S(H) × UC2
b(H), we set

F (x, p,X, v) = inf
a∈Γ

{

1

2
Tr (σ(x, a)σ∗(x, a)X) + 〈b(x, a), p〉 + f(x, a)

+

∫

U\{0}

(

v(x+ γ(x, a, y)) − v(x) − 〈γ(x, a, y), Dv(x)〉1{‖y‖U<1}

)

ν(dy)

}

(4.1)

(Above σ corresponds to σ(x, a)Q
1

2 in (3.5).)

We will be making the following assumptions. Some of them can be relaxed but we do

not state them in the most general form in order not to overcomplicate the paper which

is already very technical.

(i) There exists a Borel measurable function ρ, bounded on bounded sets, such that

inf{‖z‖>r} ρ(z) > 0 for every r > 0, and

∫

H

[(ρ(z))21{‖z‖U<1} + 1{‖z‖U≥1}]ν(dz) < +∞. (4.2)

(ii) σ : H × Γ → L2(U,H), b : H × Γ → H are continuous and such that

‖b(x, a) − b(y, a)‖, ‖σ(x, a) − σ(y, a)‖L2(U,H) ≤ C‖x− y‖−1, (4.3)

γ : H × Γ × U → H is continuous in x, a, Borel measurable with respect to z and

such that

‖γ(x, a, z) − γ(y, a, z)‖ ≤ Cρ(z)‖x− y‖−1 (4.4)

for all x, y ∈ H, z ∈ U, a ∈ Γ, where Γ is a complete separable metric space.

(iii) f : H × Γ → R, g : H → R are continuous and such that

|f(x, a) − f(y, a)| + |g(x) − g(y)| ≤ ω(‖x− y‖−1) (4.5)

for all x, y ∈ H, a ∈ Γ, where ω is a modulus of continuity.

(iv)

‖σ(0, a)‖L2(U,H), ‖b(0, a)‖, |f(0, a)| ≤ C, (4.6)

‖γ(0, a, z)‖ ≤ Cρ(z) (4.7)

for all a ∈ Γ, z ∈ U .

(v)

For every x ∈ H, z ∈ U, the set {γ(x, a, z) : a ∈ Γ} is precompact in H. (4.8)
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(vi)

lim
N→+∞

sup
a∈Γ

|Tr (σ(x, a)σ∗(x, a)BQN )| = 0 (4.9)

for every x ∈ H .

We notice that under the above assumptions, the Hamiltonian F in (4.1) is well

defined. We remark that for γ as in (3.4) we have ρ(z) = ‖z‖U .

Remark 4.1. It is easy to see that (4.8) implies that

lim
N→+∞

sup
a∈Γ

‖QNγ(x, a, z)‖−1 = 0 (4.10)

for every x ∈ H, z ∈ U . Moreover, (4.8) holds if Γ is compact.

Remark 4.2. It is not difficult to notice (see for instance [45]) that if (4.3) and (4.6)

hold, then (4.9) is satisfied if B is compact, or if the control set Γ is compact. Moreover,

Tr (σ(x, a)σ∗(x, a)BQN ) ≥ 0 for every x ∈ H, a ∈ Γ.

Example 4.3. (Controlled wave equation with Lévy noise.) Consider the equation



















∂2u
∂s2

(s, ξ) = ∆u(s, ξ) + h(ξ, u(s, ξ), a(s))+ < k(ξ, u(s−, ξ), a(s−)), ∂
∂s
L(s) >U , s > t, ξ ∈ O,

u(s, ξ) = 0, s > t, ξ ∈ ∂O,
u(t, ξ) = u0(ξ), ξ ∈ O,
∂u
∂t

(t, ξ) = v0(ξ), ξ ∈ O,

(4.11)

where O a bounded regular domain in R
d, u0 ∈ H1

0 (O), v0 ∈ L2(O), and L is an α-stable

process in a Hilbert space U with the Lévy exponent (3.2). In addition h, k are mappings

from O×R1 ×Γ into respectively R1 and U . In this case we take H = L2(O) and A = ∆

with the domain D(A) = H2(O) ∩H1
0 (O). Then D(A

1

2 ) = H1
0 (O) and

H =





H1
0 (O)
×

L2(O)



 .

Moreover

A =

(

0 −I
−∆ 0

)

, D(A) =





H2(O) ∩H1
0 (O)

×
H1

0 (O)



 .

Equation (4.11) can be rewritten as an evolution equation

dX(s) = (−AX(s) + b(X(s), a(s))) dt+ γ̄(X(s−), a(s−))dL(s), X(t) = x =

(

u0

v0

)

,

(4.12)
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where

b

((

u

v

)

, a

)

=

(

0

h(·, u(·), a)

)

, γ̄

((

u

v

)

, a

)

y =

(

0

< k(·, u(·), a), y >U

)

. (4.13)

Note that (4.2) is satisfied if ρ(z) = ‖z‖U . Assume in addition that h, k are continuous

in all variables and h(ξ, ·, a), k(ξ, ·, a) are Lipschitz continuous. Denote by ch(ξ, a) and

ch(ξ, a) their Lipschitz constants. We show that if

ch = sup
ξ,a

ch(ξ, a) < +∞, ck = sup
ξ,a

ck(ξ, a) < +∞,

then the crucial assumption (ii) is satisfied. Indeed
∥

∥

∥

∥

b

((

u

v

)

, a

)

− b

((

ũ

ṽ

)

, a

)∥

∥

∥

∥

H

= ‖h(·, u(·), a) − h(·, ũ(·), a)‖L2(O)

=

(
∫

O

|h(ξ, u(ξ), a)− h(ξ, ũ(ξ), a)|2dξ

)
1

2

≤ ch

(
∫

O

|u(ξ) − ũ(ξ)|2dξ

)
1

2

= ch‖u− ũ‖H

≤ c‖A1/4(u− ũ)‖H ≤ c

∥

∥

∥

∥

(

u

v

)

−

(

ũ

ṽ

)∥

∥

∥

∥

−1

for some constant c, where we used Example 2.1 to obtain the last line above. Similar

calculations show that that (4.4) is satisfied as well.

5 Viscosity solutions

We consider second order terminal value problems for integro-PDE of the form
{

ut − 〈Ax,Du〉 + F (x, u,Du,D2u, u(t, ·)) = 0, in (0, T ) ×H,
u(T, x) = g(x),

(5.1)

where F is defined by (4.1). The definition of viscosity solution depends on the domain of

F , which is determined by the integrability condition we impose on the measure ν(dz). In

this paper we assume (4.2), i.e. we focus on bounded viscosity solutions. Our definition is

based on the notion of the so called B-continuous viscosity solution which was introduced

for first order equations in [28, 29]. The reader should not consider our choice of test

functions as a definitive one but rather as a choice which gives good theory and which

can be modified if there is a need to do so.

Definition 5.1. Let (4.2) be satisfied. We will say that a function ψ is a test function if

ψ = ϕ+ δ(t, x)h(‖x‖), where:

(i) ϕ, δ ∈ UC1,2
b ((ǫ, T − ǫ) ×H), δ ≥ 0, ϕ is B-lower-semicontinuous, δ is B-continuous,

and A∗Dϕ, A∗Dδ are uniformly continuous on (ǫ, T − ǫ) ×H for every ǫ > 0.
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(ii) h ∈ UC2
b(R), h is even, h′(r) ≥ 0 for r ∈ (0,+∞).

Definition 5.2. Let (4.2) be satisfied. A bounded B-upper semicontinuous function u :

(0, T )×H → R is a viscosity subsolution of (5.1) if whenever u−ψ has a global maximum

at a point (t, x) for a test function ψ(s, y) = ϕ(s, y) + δ(s, y)h(‖y‖) then

ψt(t, x) − 〈x,A∗Dϕ(t, x) + h(‖x‖)A∗Dδ(t, x)〉 (5.2)

+F (x,Dψ(t, x), D2ψ(t, x), ψ(t, ·)) ≥ 0. (5.3)

A bounded B-lower semicontinuous function u : (0, T ) × H → R is a viscosity su-

persolution of (5.1) if whenever u + ψ has a global minimum at a point (t, x) for a test

function ψ then

−ψt(t, x) + 〈x,A∗Dϕ(t, x) + h(‖x‖)A∗Dδ(t, x)〉 (5.4)

+F (x,−Dψ(t, x),−D2ψ(t, x),−ψ(t, ·)) ≤ 0. (5.5)

A viscosity solution of (5.1) is a function which is both a viscosity subsolution and a

viscosity supersolution.

Remark 5.3. We do not need it in this paper but sometimes it may be useful to extend

the class of test functions to be ψ(s, y) = ϕ(s, y)+
∑n

i=1 δi(s, y)hi(‖y‖), where ϕ, δi, hi are

as in Definition 5.1.

We will need a “localized” definition of viscosity solution which will allow us to

use test functions which are not necessarily bounded. Localized definitions of viscosity

solutions first appeared in [72, 68].

For 0 < r < 1, (x, p,X, v, w) ∈ H ×H × S(H) × UC2(H) ×BUC(H), we set

Fr(x, p,X, v, w) = inf
a∈Γ

{

1

2
Tr (σ(x, a)σ∗(x, a)X) + 〈b(x, a), p〉 + f(x, a)

+

∫

{0<‖y‖U<r}

(v(x+ γ(x, a, y)) − v(x) − 〈γ(x, a, y), Dv(x)〉)ν(dy) (5.6)

+

∫

{‖y‖U≥r}

(

w(x+ γ(x, a, y)) − w(x) − 〈γ(x, a, y), p〉1{‖y‖U<1}

)

ν(dy)

}

.

Definition 5.4. Let (4.2) be satisfied. We will say that a function ψ is a test function in

the sense of Definition 5.4 if ψ = ϕ+ h(‖x‖), where ϕ, h are as in Definition 5.1 without

being bounded, however ϕ must be bounded on every set (ǫ, T − ǫ) × {x : ‖x‖−1 ≤ R},

0 < ǫ < T,R > 0.

A bounded B-upper semicontinuous function u : (0, T )×H → R is a viscosity subso-

lution of (5.1) in the sense of Definition 5.4 if whenever u− ψ has a global maximum at

a point (t, x) for a test function ψ(s, y) = ϕ(s, y) + h(‖y‖) then for every r > 0

ψt(t, x) + 〈x,A∗Dϕ(t, x)〉 + Fr(x,Dψ(t, x), D2ψ(t, x), ψ(t, ·), u(t, ·)) ≥ 0.
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A bounded B-lower semicontinuous function u : (0, T )×H → R is a viscosity super-

solution of (5.1) in the sense of Definition 5.4 if whenever u + ψ has a global minimum

at a point (t, x) for a test function ψ = ϕ(s, y) + h(‖y‖) then for every r > 0

−ψt(t, x) − 〈x,A∗Dϕ(t, x)〉 + Fr(x,−Dψ(t, x),−D2ψ(t, x),−ψ(t, ·), u(t, ·)) ≤ 0.

A viscosity solution of (5.1) is a function which is both a viscosity subsolution and a

viscosity supersolution.

The additional requirement that the test function ϕ be bounded on every set (ǫ, T −

ǫ) × {‖x‖−1 ≤ R} is needed to guarantee that without loss of generality we can always

assume that the test functions ϕ and h(‖y‖) in the definition of viscosity solution are

bounded. We refer to Remark 4.3 of [73] for a simple construction on how to achieve this.

We assume in Lemma 5.5 (and similarly in Theorem 6.2) that the functions involved

are in BUC((0, T )×H−1) for simplicity. We only need that they are defined on (0, T )×H

and are uniformly continuous in the | · |×‖·‖−1 norm. However then they can be extended

naturally to functions in BUC((0, T ) ×H−1).

Lemma 5.5. Let (4.2)-(4.8) be satisfied. If a function u ∈ BUC((0, T ) × H−1) is a

viscosity subsolution (respectively, supersolution) of (5.1) then it is a viscosity subsolution

(respectively, supersolution) of (5.1) in the sense of Definition 5.4.

Proof. We notice that, by Remark 4.1, (4.10) is satisfied. Let u ∈ BUC((0, T )×H−1)

be a viscosity subsolution of (5.1) in the sense of Definition 5.2, and let u−ψ has a global

maximum at point (t, x) for a test function ψ(s, y) = ϕ(s, y)+h(‖y‖), where without loss

of generality we can assume that ϕ and h(‖y‖) are bounded, and u(t, x) = ψ(t, x). Let

r > 0. Since u ∈ BUC((0, T ) ×H−1), there exists a modulus σ such that

|u(s, y)− u(s, z)| ≤ σ(‖y − z‖−1) for s ∈ (0, T ), y, z ∈ H.

We can assume that σ(τ) ≤ 2‖u‖∞ = M , τ ≥ 0. It follows from (4.4) and (4.7) that

‖γ(x, a, y)‖ ≤ C(x)ρ(y). Set c := C(x) and let for ǫ > 0

kǫ =

∫

{ρ(y)≥ ǫ
c
}∪{‖y‖U≥r}

ν(dy)

and

δǫ =
ǫ

4(1 + kǫ)
.

For N ≥ 1 let uǫN be a smooth approximation of u|HN
such that

u|HN
≤ uǫN ≤ u|HN

+ δǫ.
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Set

ũǫN(s, y) = uǫN(s, PNy) + 2δǫ + hǫ(‖QNy‖−1),

where hǫ is a smooth bounded, non-decreasing function such that hǫ(τ) ≤ Cǫτ
2 for τ ≥

0, hǫ(τ) = 2M + 1 for τ ≥ 1, and σ(τ) ≤ δǫ + hǫ(τ). Then u ≤ ũǫN and

ũǫN(s, y) ≤ u(s, y) + 2 (2δǫ + hǫ(‖QNy‖−1)) ≤ ψ(s, y) + 2 (2δǫ + hǫ(‖QNy‖−1)) , (5.7)

which in particular imply that

|u(s, y)− ũǫN(s, y)| ≤ 2 (2δǫ + hǫ(‖QNy‖−1)) . (5.8)

Let η : [0,∞) → [0, 1] be a smooth function such that η(τ) = 1 for τ < 1, η(τ) = 0 for

τ > 2, and which is strictly decreasing on [1, 2]. We define ηǫ(τ) = η(τ/ǫ) and

ψ̃ǫN(s, y) = ψ(s, y)ηǫ(‖y − x‖−1) + ũǫN(s, y)(1− ηǫ(‖y − x‖−1)).

We notice that by (5.7) and the definition of c,

ψ̃ǫN (t, x+ γ(x, a, y)) = ψ(t, x+ γ(x, a, y)) if ρ(y) ≤ ǫ/c, a ∈ Γ, (5.9)

ψ̃ǫN (t, y) ≤ ψ(t, y) + 2 (2δǫ + hǫ(‖QNy‖−1)) . (5.10)

It is now clear that u− ψ̃ǫN has a global maximum at (t, x). Therefore, by Definition

5.2, we have

0 ≤ ψt(t, x) + 〈x,A∗Dϕ(t, x)〉 + inf
a∈Γ

{

1

2
Tr (σ(x, a)σ∗(x, a)D2ψ(t, x))

+〈b(x, a), Dψ(t, x)〉 + f(x, a) (5.11)

+

∫

U\{0}

(

ψ̃ǫN (t, x+ γ(x, a, y)) − ψ̃ǫN (t, x) − 〈γ(x, a, y), Dψ(t, x)〉1{‖y‖U<1}

)

ν(dy)

}

.

Using (5.7), (5.9), (5.10) we now estimate
∫

U\{0}

(

ψ̃ǫN(t, x+ γ(x, a, y)) − ψ̃ǫN(t, x) − 〈γ(x, a, y), Dψ(t, x)〉1{‖y‖U<1}

)

ν(dy)

≤

∫

{0<‖y‖U<r}

(ψ(t, x+ γ(x, a, y)) − ψ(t, x) − 〈γ(x, a, y), Dψ(t, x)〉) ν(dy)

+

∫

{ρ(y)≥ ǫ
c
}∪{‖y‖U≥r}

4δǫν(dy) +

∫

{ρ(y)≥ ǫ
c
}∪{‖y‖U≥r}

2hǫ(‖QN (x+ γ(x, a, y))‖−1)ν(dy)

+

∫

{‖y‖U≥r}

(

u(t, x+ γ(x, a, y)) − u(t, x) − 〈γ(x, a, y), Dψ(t, x)〉1{‖y‖U<1}

+(ψ(t, x+ γ(x, a, y)) − u(t, x+ γ(x, a, y)))ηǫ(‖γ(x, a, y)‖−1)) ν(dy).

≤

∫

{0<‖y‖U<r}

(ψ(t, x+ γ(x, a, y)) − ψ(t, x) − 〈γ(x, a, y), Dψ(t, x)〉) ν(dy) (5.12)

+

∫

{‖y‖U≥r}

(

u(t, x+ γ(x, a, y)) − u(t, x) − 〈γ(x, a, y), Dψ(t, x)〉1{‖y‖U<1}

)

ν(dy) + σ(ǫ, N),
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where

lim
ǫ→0

lim
N→+∞

σ(ǫ, N) = 0.

To obtain the last inequality we used (4.10), Lebesgue dominated convergence theorem,

and the fact that

lim
ǫ→0

∫

{‖y‖≥r}

sup
a∈Γ

{|ψ(t, x+ γ(x, a, y)) − u(t, x+ γ(x, a, y))|ηǫ(‖γ(x, a, y)‖−1)}ν(dy) = 0.

(5.13)

To see (5.13), by the dominated convergence theorem, it is enough to show that for every

y, the integrand in (5.13) converges to 0 as ǫ→ 0. Let aǫ be such that

|ψ(t, x+ γ(x, aǫ, y)) − u(t, x+ γ(x, aǫ, y))|ηǫ(‖γ(x, aǫ, y)‖−1)

≥ sup
a∈Γ

{|ψ(t, x+ γ(x, a, y)) − u(t, x+ γ(x, a, y))|ηǫ(‖γ(x, a, y)‖−1)} − ǫ.

If lim infǫ→0 ‖γ(x, aǫ, y)‖−1 > 0 we are done. If limǫn→0 ‖γ(x, aǫn, y)‖−1 = 0 then, by

precompactness of {γ(x, a, y) : a ∈ Γ} in H , there is a subsequence ǫkk
such that

γ(x, aǫnk
, y) → 0 as k → ∞. But then |ψ(t, x+ γ(x, aǫnk

, y)) − u(t, x+ γ(x, aǫnk
, y))| → 0

as k → ∞ which proves the claim.

It now remains to plug (5.12) into (5.11) and let N → +∞ and then ǫ→ 0 to obtain

ψt(t, x) + 〈x,A∗Dϕ(t, x)〉 + Fr(x,Dψ(t, x), D2ψ(t, x), ψ(t, ·), u(t, ·)) ≥ 0.

Remark 5.6. In many cases the integrability condition (4.2) can be strengthened. For

instance, for a square integrable Lévy process we have ρ(z) = ‖z‖U and
∫

H

((ρ(z))2ν(dz) < +∞. (5.14)

In such cases we can consider important problems leading to unbounded viscosity solu-

tions and the definition of viscosity solution must be modified to allow for unbounded test

functions having proper growth and infinity. We leave these extensions to the readers. In

particular, when (5.14) is satisfied, we can consider solutions which have quadratic growth

at infinity and then use test functions which grow quadratically at infinity.

6 Comparison Principle

We begin with a finite dimensional parabolic maximum principle in a version suitable for

integro-PDE. It can be deduced from basically the same arguments as the ones used in

the proofs of Lemmas 7.3, 7.4, 7.7 of [41] or directly adapting the proof of the maximum

principle for semicontinuous functions which can be found in [26].
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Lemma 6.1. Let u,−v be upper semicontinuous on (0, T )× R
N and such that u,−v are

bounded from above. Let

u(t, x) − v(s, y)−
‖x− y‖2

2ǫ
−

(t− s)2

2β

have a strict global maximum at (t̄, s̄, x̄, ȳ). Then there exist points tk, sk, xk, yk, functions

ϕk, ψk, ϕ̃k, ψ̃k ∈ UC2([0, T ]×R
N), ϕk, ϕ̃k bounded from below, ψk, ψ̃k bounded from above,

and X, Y,Xk, Yk ∈ S(N) such that

lim
k→+∞

(tk, sk, xk, yk) = (t̄, s̄, x̄, ȳ), (6.1)

lim
k→+∞

u(tk, xk) = u(t̄, x̄), lim
k→+∞

v(sk, yk) = v(s̄, ȳ),

u− ϕk has a strict global maximum at (tk, xk),

v − ψk has a strict global minimum at (sk, yk),

ϕk(tk, xk) = ϕ̃k(tk, xk), ϕk ≤ ϕ̃k,

|ϕk| + |ϕ̃k| ≤ C(1 + ‖x‖2), k ≥ 1,

(ϕk)t(tk, xk) = (ϕ̃k)t(tk, xk) →
t̄− s̄

β
as k → +∞,

Dϕk(tk, xk) = Dϕ̃k(tk, xk) →
x̄− ȳ

ǫ
as k → +∞, (6.2)

D2ϕk(tk, xk) ≤ Xk → X as k → +∞, (6.3)

ψk(sk, yk) = ψ̃k(sk, yk), ψk ≥ ψ̃k,

|ψk| + |ψ̃k| ≤ C(1 + ‖x‖2), k ≥ 1,

(ψk)t(sk, yk) = (ψ̃k)t(sk, yk) →
t̄− s̄

β
as k → +∞,

Dψk(sk, yk) = Dψ̃k(sk, yk) →
x̄− ȳ

ǫ
as k → +∞, (6.4)

D2ψk(sk, yk) ≥ Yk → Y as k → +∞, (6.5)

where

−
3

ǫ

(

I 0
0 I

)

≤

(

X 0
0 −Y

)

≤
3

ǫ

(

I −I
−I I

)

.

and

ϕ̃k →
‖ · −ȳ‖2

2ǫ
+

(· − s̄)2

2β
as k → +∞ in UC2

loc([0, T ] × R
N),

ψ̃k → −
‖x̄− ·‖2

2ǫ
−

(t̄− ·)2

2β
as k → +∞ in UC2

loc([0, T ] × R
N).
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Theorem 6.2. Let (4.2)-(4.9) be satisfied. Let u ∈ BUC([0, T ] × H−1) be a viscosity

subsolution of (5.1) and v ∈ BUC([0, T ] × H−1) be a viscosity supersolution of (5.1).

Suppose that u(T, x) ≤ v(T, x) for all x ∈ H. Then u ≤ v.

Proof. We will show that the assumption u 6≤ v leads to a contradiction.

Step 1. Define uµ(t, x) = u(t, x)− µ
t

and vµ(s, y) = v(s, y)+ µ
s

for µ > 0. For ǫ, δ, β > 0

we consider the function

Φ(t, s, x, y) = uµ(t, x) − vµ(s, y)−
‖x− y‖2

−1

2ǫ
− δ(‖x‖2 + ‖y‖2) −

(t− s)2

2β
.

Using perturbed optimization (see [31] and [29], page 424) we can find sequences an, bn ∈

R, and pn, qn ∈ H such that |an| + |bn| + ‖pn‖ + ‖qn‖ ≤ 1
n

such that

uµ(t, x)−vµ(s, y)−
‖x− y‖2

−1

2ǫ
−δ(‖x‖2 +‖y‖2)−

(t− s)2

2β
+ant+bns+ 〈Bpn, x〉+ 〈Bqn, y〉

achieves a strict global maximum at some point (t̄, s̄, x̄, ȳ) ∈ (0, T ] × (0, T ] × H × H.

Standard considerations (see for instance [38]) yield

lim
β↓0

lim sup
n→∞

1

2β
(t̄− s̄)2 = 0 for every δ, ǫ > 0, (6.6)

lim
δ↓0

lim sup
β↓0

lim sup
n→∞

δ(‖x̄‖2 + ‖ȳ‖2) = 0 for every ǫ > 0, (6.7)

lim
ǫ↓0

lim sup
δ↓0

lim sup
β↓0

lim sup
n→∞

1

2ǫ
‖x̄− ȳ‖2

−1 = 0. (6.8)

If u 6≤ v it thus follows from the above and the uniform continuity of u, v, that for

sufficiently small µ, ǫ, δ, β > 0 and n large enough, 0 < t̄, s̄ < T .

Step 2. (Reduction to finite dimensions.) For N ≥ 1 let us denote by H̃N the space

HN equipped with the ‖ · ‖−1 norm (which on HN is equivalent to ‖ · ‖). For a function

w ∈ C2(H−1) we will denote by DH−1
w,D2

H−1
w its Frechet derivatives in this space. We

now define

u1(t, x) = uµ(t, x) −
〈BQN(x̄− ȳ), x〉

ǫ
−

‖QN(x− x̄)‖2
−1

ǫ

+
‖QN(x̄− ȳ)‖2

−1

2ǫ
− δ‖x‖2 + ant+ 〈Bpn, x〉

and

v1(s, y) = vµ(s, y)−
〈BQN(x̄− ȳ), y〉

ǫ
+

‖QN (y − ȳ)‖2
−1

ǫ
+ δ‖y‖2 − bns− 〈Bqn, y〉.

Then

u1(t, x) − v1(s, y) −
1

2ǫ
‖PN(x− y)‖2

−1 −
1

2β
(t− s)2
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has a strict global maximum at (t̄, s̄, x̄, ȳ). Setting

ũ1(t, xN ) = sup
x⊥

N
∈QNH

u1(t, xN + x⊥N ),

ṽ1(s, yN) = inf
y⊥

N
∈QNH

v1(s, yN + y⊥N),

we thus see that

ũ1(t, xN ) − ṽ1(s, yN) −
1

2ǫ
‖xN − yN‖

2
−1 −

1

2β
(t− s)2 (6.9)

has a strict global maximum over [0, T ]× [0, T ]×HN ×HN at (t̄, s̄, x̄N , ȳN). Moreover we

also have ũ1(t̄, x̄N ) = u1(t̄, x̄), ṽ1(s̄, ȳN) = v1(s̄, ȳ). Since u, v ∈ BUC([0, T ] ×H−1) it also

easily follows that u, v ∈ UCloc([0, T ] × H̃N) (which here means that they are uniformly

continuous on bounded subsets). We can now use Lemma 6.1 applied to ũ1, ṽ1, in which

R
N is replaced by H̃N .

Step 3. (Non-local maximum principle.) Let then points (tk, sk, xN,k, yN,k) ∈ (0, T )×

(0, T )×HN×HN , functions ϕk, ψk, ϕ̃k, ψ̃k ∈ UC2([0, T ]× H̃N), and X, Y,Xk, Yk ∈ S(H̃N )

be as in Lemma 6.1 for our case. Setting ϕk(t, x) = ϕk(t, xN ), ψk(s, y) = ψk(s, yN), ϕ̃k(t, x) =

ϕ̃k(t, xN), ψ̃k(s, y) = ψ̃k(s, yN) we can consider them as functions in UC2([0, T ] × H−1)

and X, Y,Xk, Yk as elements of S(H−1), such that X = PNXPN , Y = PNY PN , Xk =

PNXkPN , Yk = PNYkPN as operators in L(H−1). (We remark that in (6.2)-(6.5) we now

have DH̃N
, D2

H̃N
.) Since the norm in H̃N is equivalent to the norm in H , the convergence

(6.1) holds in R × R × H × H , the convergences in (6.2), (6.4) hold in H , and the con-

vergences in (6.3), (6.5) hold in L(H). Using the fact that Dϕk = BDH−1
ϕk, D

2ϕk =

BD2
H−1

ϕk, Dψk = BDH−1
ψk, D

2ψk = BD2
H−1

ψk, and the same is also true for functions

ϕ̃k, ψ̃k, we thus have that ϕk, ψk, ϕ̃k, ψ̃k are good test functions and moreover we have

lim
k→+∞

(tk, sk, xN,k, yN,k) = (t̄, s̄, x̄N , ȳN) in R × R ×H ×H, (6.10)

lim
k→+∞

u1(tk, xN,k) = u1(t̄, x̄), lim
k→+∞

ṽ1(sk, yN,k) = v1(s̄, ȳ), (6.11)

ũ1 − ϕk has a strict global maximum over (0, T ) ×HN at (tk, xN,k), (6.12)

ṽ1 − ψk has a strict global minimum over (0, T ) ×HN at (sk, yN,k), (6.13)

ϕk(tk, xN,k) = ϕ̃k(tk, xN,k), ϕk ≤ ϕ̃k, (6.14)

|ϕk| + |ϕ̃k| ≤ C(1 + ‖x‖2), k ≥ 1 (6.15)

(ϕk)t(tk, xN,k) = (ϕ̃k)t(tk, xN,k) →
t̄− s̄

β
as k → +∞, (6.16)

B−1Dϕk(tk, xN,k) = B−1Dϕ̃k(tk, xN,k) →
x̄N − ȳN

ǫ
in H as k → +∞, (6.17)
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D2ϕk(tk, xN,k) ≤ Xk → X in L(H) as k → +∞, (6.18)

ψk(sk, yN,k) = ψ̃k(sk, yN,k), ψk ≥ ψ̃k, (6.19)

|ψk| + |ψ̃k| ≤ C(1 + ‖x‖2), k ≥ 1 (6.20)

(ψk)t(sk, yN,k) = (ψ̃k)t(sk, yN,k) →
t̄− s̄

β
as k → +∞, (6.21)

B−1Dψk(sk, yN,k) = B−1Dψ̃k(sk, yN,k) →
x̄N − ȳN

ǫ
in H as k → +∞, (6.22)

D2ψk(sk, yN,k) ≥ Yk → Y in L(H) as k → +∞, (6.23)

where

−
3

ǫ

(

B 0
0 B

)

≤

(

X 0
0 −Y

)

≤
3

ǫ

(

B −B
−B B

)

. (6.24)

as operators in L(H ×H), and

ϕ̃k →
‖(· − ȳ)N‖

2
−1

2ǫ
+

(· − s̄)2

2β
as k → +∞ in UC2

loc([0, T ] ×H), (6.25)

ψ̃k → −
‖(x̄− ·)N‖

2
−1

2ǫ
−

(t̄− ·)2

2β
as k → +∞ in UC2

loc([0, T ] ×H). (6.26)

(Convergence in UC2
loc([0, T ] × H) means convergence in UC2([0, T ] × H) on bounded

subsets of [0, T ] ×H .)

Step 4. (Back to infinite dimensions.) We now use again perturbed optimization to

obtain that for every j ≥ 1 there exist ajk, b
j
k ∈ R, and pjk, q

j
k ∈ H such that |ajk| + |bjk| +

‖pjk‖ + ‖qjk‖ ≤ 1
j

and points (tjk, s
j
k, x

j
k, y

j
k) ∈ (0, T ) × (0, T ) ×H ×H such that

u1(t, x) − ϕk(t, x) − ajkt− 〈Bpjk, x〉 has a global maximum over (0, T ) ×H at (tjk, x
j
k),

(6.27)

v1(s, y) − ψk(s, y) − bjks− 〈Bqjk, y〉 has a global minimum over (0, T ) ×H at (sjk, y
j
k).

(6.28)

Rather standard arguments (see for instance [27] or [46], page 261) allow us now to

conclude that (tjk, s
j
k, (x

j
k)N , (y

j
k)N) → (tk, sk, xN,k, yN,k) as j → +∞ and show that there

exists a subsequence jk such that (tjkk , s
jk
k , x

jk
k , y

jk
k ) → (t̄, s̄, x̄, ȳ) as k → +∞ which we

then easily can choose to satisfy

(ϕk)t(t
jk
k , x

jk
k ) →

t̄− s̄

β
as k → +∞, (6.29)

B−1Dϕk(t
jk
k , x

jk
k ) →

x̄N − ȳN
ǫ

in H as k → +∞, (6.30)

(ψk)t(s
jk
k , y

jk
k ) →

t̄− s̄

β
as k → +∞, (6.31)
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B−1Dψk(s
jk
k , y

jk
k ) →

x̄N − ȳN
ǫ

in H as k → +∞, (6.32)

D2ϕk(t
jk
k , x

jk
k ) −Xk ≤ ω(k)I, (6.33)

D2ψk(s
jk
k , y

jk
k ) − Yk ≥ −ω(k)I, (6.34)

where limk→+∞ ω(k) = 0, and, denoting x̂N,k = xN,k + (xjkk )⊥N , ŷN,k = yN,k + (yjkk )⊥N ,

sup
a∈Γ

∫

{0<‖y‖U<r}

∣

∣

∣

∣

(

ϕk(t
jk
k , x

jk
k + γ(xjkk , a, y)) − ϕk(t

jk
k , x

jk
k ) − 〈γ(xjkk , a, y), Dϕk(t

jk
k , x

jk
k )〉
)

− (ϕk(tk, x̂N,k + γ(x̂N,k, a, y)) − ϕk(tk, x̂N,k) − 〈γ(x̂N,k, a, y), Dϕk(tk, x̂N,k)〉)

∣

∣

∣

∣

ν(dy)

→ 0 as k → +∞, (6.35)

sup
a∈Γ

∫

{0<‖y‖U<r}

∣

∣

∣

∣

(

ψk(s
jk
k , y

jk
k + γ(yjkk , a, y)) − ψk(s

jk
k , y

jk
k ) − 〈γ(yjkk , a, y), Dψk(s

jk
k , y

jk
k )〉
)

− (ψk(sk, ŷN,k + γ(ŷN,k, a, y)) − ψk(sk, ŷN,k) − 〈γ(ŷN,k, a, y), Dψk(sk, ŷN,k)〉)

∣

∣

∣

∣

ν(dy)

→ 0 as k → +∞. (6.36)

(Convergences (6.35) and (6.36) follow from uniform continuity of ϕk, ψk, and its deriva-

tives, and (4.4), (4.7).)

Thus, using (4.3), (6.14), (6.15), (6.17), (6.32), (6.25) and (6.35), (recall that ϕk(tk, x̂N,k) =

ϕ̃k(tk, xN,k)) we obtain that for every a ∈ Γ and 0 < r < 1

∫

{0<‖y‖U<r}

(

ϕk(t
jk
k , x

jk
k + γ(xjkk , a, y)) − ϕk(t

jk
k , x

jk
k ) − 〈γ(xjkk , a, y), Dϕk(t

jk
k , x

jk
k )〉
)

ν(dy)

≤

∫

{0<‖y‖U<r}

(ϕk(tk, x̂N,k + γ(x̂N,k, a, y)) − ϕk(tk, x̂N,k) − 〈γ(x̂N,k, a, y), Dϕk(tk, x̂N,k)〉) ν(dy)

+ω1(k)

≤

∫

{0<‖y‖U<r}

(ϕ̃k(tk, x̂N,k + γ(x̂N,k, a, y)) − ϕ̃k(tk, x̂N,k) − 〈γ(x̂N,k, a, y), Dϕ̃k(tk, x̂N,k)〉) ν(dy)

+ω1(k)

≤

∫

{0<‖y‖U<r}

(

‖(x̄+ γ(x̄, a, y))N − ȳN‖
2
−1

2ǫ
−

‖x̄N − ȳN‖
2
−1

2ǫ
− 〈γ(x̄, a, y),

B(x̄N − ȳN)

ǫ
〉

)

ν(dy)

+ω2(k)

=

∫

{0<‖y‖U<r}

‖(γ(x̄, a, y))N‖
2
−1

2ǫ
ν(dy) + ω2(k) ≤ ω2(k) + ω3(r), (6.37)

where limk→+∞ ω2(k) = 0, limr→0 ω3(r) = 0 for fixed ǫ, δ, β, n,N , and ω2(k), ω3(r) are

independent of a ∈ Γ and ω2(k) also of 0 < r < 1.
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Similarly, for every a ∈ Γ and 0 < r < 1,
∫

{0<‖y‖U<r}

(

ψk(s
jk
k , y

jk
k + γ(yjkk , a, y)) − ψk(s

jk
k , y

jk
k ) − 〈γ(yjkk , a, y), Dψk(s

jk
k , y

jk
k )〉
)

ν(dy)

≥ −ω2(k) − ω3(r). (6.38)

Step 5. (Viscosity inequalities.) Using Definition 5.4 of viscosity subsolution (recall

(6.27) and the definition of u1), and (6.37), we thus obtain

−
µ

(tjkk )2
+ (ϕk)t(t

jk
k , x

jk
k ) − an + ajkk

−〈xjkk , A
∗(Dϕk(t

jk
k , x

jk
k ) +

BQN (x̄− ȳ)

ǫ
+

2BQN(xjkk − x̄)

ǫ
−Bpn +Bpjkk )〉

+ inf
a∈Γ

{

1

2
Tr

(

σ(xjkk , a)σ
∗(xjkk , a)(D

2ϕk(t
jk
k , x

jk
k ) + 2δI +

2BQN

ǫ
)

)

+ f(xjkk , a)

+〈b(xjkk , a), Dϕk(t
jk
k , x

jk
k ) +

BQN (x̄− ȳ)

ǫ
+ 2δxjkk +

2BQN (xjkk − x̄)

ǫ
− Bpn +Bpjkk 〉

+

∫

{0<‖y‖U<r}

(

‖QNγ(x
jk
k , a, y)‖

2
−1

ǫ
+ δ‖γ(xjkk , a, y)‖

2

)

ν(dy) + ω2(k) + ω3(r)

+

∫

{‖y‖U≥r}

(

u(tjkk , x
jk
k + γ(xjkk , a, y)) − u(tjkk , x

jk
k ) − 〈γ(xjkk , a, y),

Dϕk(t
jk
k , x

jk
k ) +

BQN (x̄− ȳ)

ǫ
+ 2δxjkk +

2BQN(xjkk − x̄)

ǫ
−Bpn +Bpjkk 〉1{‖y‖U<1}

)

ν(dy)

}

≥ 0.

Since

sup
a∈Γ,k≥1

∫

{0<‖y‖U<r}

(

‖QNγ(x
jk
k , a, y)‖

2
−1

ǫ
+ δ‖γ(xjkk , a, y)‖

2

)

ν(dy) ≤ ω4(r),

where limr→0 ω4(r) = 0 for fixed ǫ, δ, β, n,N , letting k → +∞ in (6.39) and using (6.18),

(6.29)-(6.34) we obtain

−
µ

T 2
+
t̄− s̄

β
− an

−〈x̄, A∗(
B(x̄− ȳ)

ǫ
− Bpn)〉

+ inf
a∈Γ

{

1

2
Tr

(

σ(x̄, a)σ∗(x̄, a)(X + 2δI +
2BQN

ǫ
)

)

+ f(x̄, a)

+〈b(x̄, a),
B(x̄− ȳ)

ǫ
+ 2δx̄− Bpn〉 + ω5(ǫ, δ, β, n,N ; r)

+

∫

{‖y‖≥r}

(

u(t̄, x̄+ γ(x̄, a, y)) − u(t̄, x̄) − 〈γ(x̄, a, y),

B(x̄− ȳ)

ǫ
+ 2δx̄− Bpn〉1{‖y‖U<1}

)

ν(dy)

}

≥ 0, (6.39)
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where limr→0 ω5(ǫ, δ, β, n,N ; r) = 0.

Similar computation, using Definition 5.4 of viscosity supersolution (recall (6.28) and

the definition of v1) and (6.38), gives us

µ

T 2
+
t̄− s̄

β
+ bn

−〈ȳ, A∗(
B(x̄− ȳ)

ǫ
+Bqn)〉

+ inf
a∈Γ

{

1

2
Tr

(

σ(ȳ, a)σ∗(ȳ, a)(Y − 2δI −
2BQN

ǫ
)

)

+ f(ȳ, a)

+〈b(ȳ, a),
B(x̄− ȳ)

ǫ
− 2δȳ +Bqn〉 − ω5(ǫ, δ, β, n,N ; r)

+

∫

{‖y‖U≥r}

(

v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ) − 〈γ(ȳ, a, y),

B(x̄− ȳ)

ǫ
− 2δȳ +Bqn〉1{‖y‖U<1}

)

ν(dy)

}

≤ 0. (6.40)

Step 6. (Estimates.) Now, if r ≤ ‖y‖U ,

u(t̄, x̄+ γ(x̄, a, y)) − v(s̄, ȳ + γ(ȳ, a, y))

−
‖x̄+ γ(x̄, a, y)− (ȳ + γ(ȳ, a, y))‖2

−1

2ǫ
− δ(‖x̄+ γ(x̄, a, y)‖2 + ‖ȳ + γ(ȳ, a, y)‖2)

+〈Bpn, x̄+ γ(x̄, a, y)〉+ 〈Bqn, ȳ + γ(ȳ, a, y)〉

≤ u(t̄, x̄) − v(s̄, ȳ) −
‖x̄− ȳ‖2

−1

2ǫ
− δ(‖x̄‖2 + ‖ȳ‖2) + 〈Bpn, x̄〉 + 〈Bqn, ȳ〉,

which implies, by (4.4) and (4.7), that for every a ∈ Γ, y ∈ U

u(t̄, x̄+ γ(x̄, a, y)) − u(t̄, x̄) − 〈γ(x̄, a, y),
B(x̄− ȳ)

ǫ
+ 2δx̄−Bpn〉

−

(

v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ) − 〈γ(ȳ, a, y),
B(x̄− ȳ)

ǫ
− 2δȳ +Bqn〉

)

≤
‖γ(x̄, a, y) − γ(ȳ, a, y)‖2

−1

2ǫ
+ δ(‖γ(x̄, a, y)‖2 + ‖γ(ȳ, a, y)‖2)

≤ C

(

‖x̄− ȳ‖2
−1

2ǫ
+ δ(1 + ‖x̄‖2 + ‖ȳ‖2)

)

(ρ(y))2. (6.41)

If ‖y‖U ≥ 1, (6.41) also implies that

u(t̄, x̄+ γ(x̄, a, y))− u(t̄, x̄) − (v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ))

≤

(

‖x̄− ȳ‖2
−1

2ǫ
+ δ(1 + ‖x̄‖2 + ‖ȳ‖2) +

1

n
(1 + ‖x̄‖ + ‖ȳ‖)

)

C(y) (6.42)
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for some C(y) ≥ 0. It is easy to see using (6.6)-(6.8) that we can choose a sequence

(ǫk, δk, βk, nk) such that, denoting (t̄k, s̄k, x̄k, ȳk) to be the point (t̄, s̄, x̄, ȳ) corresponding

to (ǫk, δk, βk, nk), we have

lim sup
ǫ↓0

lim sup
δ↓0

lim sup
β↓0

lim sup
n→∞

∫

{‖y‖U≥1}

sup
a∈Γ

(

u(t̄, x̄+ γ(x̄, a, y)) − u(t̄, x̄)

− (v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ))
)

ν(dy)

= lim
k→∞

∫

{‖y‖U≥1}

sup
a∈Γ

(

u(t̄k, x̄k + γ(x̄k, a, y)) − u(t̄k, x̄k) (6.43)

− (v(s̄k, ȳk + γ(ȳk, a, y)) − v(s̄k, ȳk))
)

ν(dy)

and such that

lim
k→∞

(

1

nk
(‖x̄k‖ + ‖ȳk‖) + δk(‖x̄k‖

2 + ‖ȳk‖
2) +

‖x̄k − ȳk‖
2
−1

2ǫk

)

= 0. (6.44)

Then, (6.42), (6.43), (6.44), and the Lebesgue dominated convergence theorem, imply

lim sup
ǫ↓0

lim sup
δ↓0

lim sup
β↓0

lim sup
n→∞

∫

{‖y‖U≥1}

sup
a∈Γ

(

u(t̄, x̄+ γ(x̄, a, y)) − u(t̄, x̄)

− (v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ))
)

ν(dy) ≤ 0. (6.45)

Thus, subtracting (6.40) from (6.39), using (2.1), (4.2)-(4.7), (4.9), the fact that X, Y

satisfy (6.24), and standard properties of traces, we obtain

2µ

T 2
≤ C

(

‖x̄− ȳ‖2
−1

2ǫ
+ δ(1 + ‖x̄‖2 + ‖ȳ‖2)

)

+ ω6(ǫ, δ, β;n,N, r)

+ inf
a∈Γ

{∫

{‖y‖U≥r}

(

u(t̄, x̄+ γ(x̄, a, y)) − u(t̄, x̄) − 〈γ(x̄, a, y),

B(x̄− ȳ)

ǫ
+ 2δx̄− Bpn〉1{‖y‖U<1}

)

ν(dy)

}

− inf
a∈Γ

{
∫

{‖y‖U≥r}

(

v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ) − 〈γ(ȳ, a, y),

B(x̄− ȳ)

ǫ
− 2δȳ +Bqn〉1{‖y‖U<1}

)

ν(dy)

}

,

where lim supn→∞ lim supN→∞ lim supr↓0 ω6(ǫ, δ, β;n,N, r) = 0, which, upon using (6.6)-

(6.8) (6.41) and (6.45), yields

2µ

T 2
≤ ω7(ǫ, δ, β, n,N, r)

+

∫

{‖y‖U≥1}

sup
a∈Γ

(

u(t̄, x̄+ γ(x̄, a, y)) − u(t̄, x̄) − (v(s̄, ȳ + γ(ȳ, a, y)) − v(s̄, ȳ)
)

ν(dy)

≤ ω8(ǫ, δ, β, n,N, r),
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where

lim sup
ǫ↓0

lim sup
δ↓0

lim sup
β↓0

lim sup
n→∞

lim sup
N→∞

lim sup
r↓0

ω8(ǫ, δ, β, n,N, r) = 0.

This contradiction shows that we must have u ≤ v.

Remark 6.3. If (4.3) i replaced by (5.14) in Theorem 6.2 then its proof can be made

substantially simpler. In this case there is no need to use Definition 5.4 (and thus Lemma

5.5 is not necessary), and in the proof after (6.40) there is no need to consider separately

the cases ‖y‖U < 1 and ‖y‖U ≥ 1. It is enough to use (6.41) in both cases directly after

(6.40) was subtracted from (6.39). A splitting argument to estimate the integral terms for

r ≤ ‖y‖U < 1 and ‖y‖U ≥ 1 separately in the proof of comparison theorem was used in

[41].
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to backward stochastic differential equations, Stoch. Stoch. Rep. 76 (2004), no. 2,

147–177.

23
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[10] D. Applebaum, Lévy processes and stochastic calculus, Second edition, Cambridge

Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge,

2009.

[11] M. Arisawa, A new definition of viscosity solutions for a class of second-order degen-

erate elliptic integro-differential equations, Ann. I. H. Poincaré 23 (2006), 695–711.
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[27] M. G. Crandall, M. Kocan, and A. Świe֒ch, On partial sup-convolutions, a lemma of

P.L. Lions and viscosity solutions in Hilbert spaces, Adv. Math. Sc. Appl. 3 (1993/4),

1–15.

[28] M. G. Crandall, and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations in

infinite dimensions. IV. Hamiltonians with unbounded linear terms, J. Funct. Anal.

90 (1990), 237–283.

[29] M. G. Crandall, and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations

in infinite dimensions. V. Unbounded linear terms and B-continuous solutions, J.

Funct. Anal. 97 (1991), 417–465.

[30] G. Da Prato, and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclope-

dia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge,

1992.

[31] I. Ekeland, and G. Lebourg, Generic Frechet-differentiability and perturbed optimiza-

tion problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1977), 193-216.

25



[32] M. G. Garroni, and J. L. Menaldi, Green functions for second order parabolic integro-

differential problems, Pitman Research Notes in Mathematics Series, 275. Longman

Scientific & Technical, Harlow; copublished in the United States with John Wiley &

Sons, Inc., New York, 1992.

[33] M. G. Garroni, and J. L. Menaldi, Maximum principles for integro-differential

parabolic operators, Differential Integral Equations 8 (1995), no. 1, 161–182.

[34] M. G. Garroni, and J. L. Menaldi, Second order elliptic integro-differential problems,

Chapman & Hall/CRC Research Notes in Mathematics, 430. Chapman & Hall/CRC,

Boca Raton, FL, 2002.

[35] F. Gimbert, and P. L. Lions, Existence and regularity results for solutions of second-

order, elliptic integro-differential operators, Ricerche Mat. 33 (1984), no. 2, 315–358.

[36] F. Gimbert, and P. L. Lions, On the regularity of solutions of the Dirichlet problem

for elliptic integro-differential operators: a counterexample, Ricerche Mat. 34 (1985),

no. 2, 283–288.

[37] C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations, J.

Differential Equations 211 (1) (2005) 218–246.

[38] H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces,

J. Funct. Anal. 105 (1992), 301–341.

[39] Y. Ishikawa, Optimal control problem associated with jump processes, Appl. Math.

Optim. 50 (2004), no. 1, 21–65.

[40] E. R. Jakobsen, and K. H. Karlsen, Continuous dependence estimates for viscosity

solutions of integro-PDEs, J. Differential Equations 212 (2005), no. 2, 278–318.

[41] E. R. Jakobsen, and K. H. Karlsen, A “maximum principle for semicontinuous func-

tions” applicable to integro-partial differential equations, NoDEA Nonlinear Differen-

tial Equations Appl. 13 (2006), 137–165.

[42] G. Kallianpur, and J. Xiong, Stochastic differential equations in infinite-dimensional

spaces, Institute of Mathematical Statistics Lecture Notes–Monograph Series, 26,

Institute of Mathematical Statistics, Hayward, CA, 1995.

[43] M. Kassmann, The theory of De Giorgi for non-local operators, C. R. Math. Acad.

Sci. Paris 345 (2007), no. 11, 621–624.

26



[44] M. Kassmann, A priori estimates for integro-differential operators with measurable

kernels, Calc. Var. Partial Differential Equations 34 (2009), no. 1, 1–21.

[45] D. A. Kelome, Viscosity solutions of second order equations in a separable Hilbert

space and applications to stochastic optimal control, Thesis (Ph.D.)Georgia Institute

of Technology, 2002, 106 pp.
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