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INTRODUCTION

SEEEREEREREE EE

Triangulated categories were invented about 50 years ago as a convenient tool
to do homological algebra. Yet it has been known for some time now that the
notion of a triangulated category is not satisfactory: morphisms between objects
in such a category are usually given by cohomology groups of certain complexes,
and you forget too much by passing to cohomology. The problem is that the cone
of a morphism is not functorial in triangulated categories. Let us give a couple of
“frustrating” examples.

Given a triangulated category 7 we can consider the category 7 of all coho-
mological functors from 7 to the category of abelian groups. We “know” that 7
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should also be a triangulated category, which one might call the dual of 7. However
one cannot prove that 7 is indeed triangulated.

Another example is the operation of the tensor product of two triangulated
categories (which should also be a triangulated category) that cannot be performed
without an extra data [BLLJ.

Thus we like to consider a triangulated category T together with an enhancement
B, which has the same objects as T and the set of morphisms between two objects
in B is a complex. One recovers morphisms in 7 by taking the cohomology H°
of the corresponding morphism complex in B. Thus B is a DG category and T is
its homotopy category H°(B). The notion of a triangulated category lifts to the
DG world [BK]: one has pretriangulated DG categories, in which the cone of a
morphism is functorial!

Let 7 be a triangulated category. An enhancement of T is a pair (B, €), where B
is a pretriangulated DG category and ¢ : H°(B) — T is an equivalence of triangu-
lated categories. There are questions of existence and uniqueness of enhancement
for a given triangulated category.

The category 7 has a unique enhancement if it has one and for any two enhance-
ments (B,¢) and (B,&") of T the DG categories B and B’ are quasi-equivalent; i.e.,
there exists a quasi-functor ¢ : B — B’ which induces an equivalence H°(¢) :
HY(B) = H°(B'). In this case the enhancements (B,¢) and (B',¢’) are called
equivalent.

Enhancements (B,¢) and (B',£") of T are called strongly equivalent if there exists
a quasi-functor ¢ : B — B’ such that the functors &’ - H(¢)) and € are isomorphic.

It is important to know that an enhancement exists and is unique for a given
triangulated category T, because then its choice is not considered as an extra
data. For example, in string theory, categories of D-branes arise as DG categories
(actually A, -categories), homotopy categories of which are equivalent to derived
categories of coherent sheaves on some projective varieties. It is very useful to know
that these equivalences can be lifted to the “DG level” as well; i.e., DG categories
of D-branes are quasi-equivalent to natural enhancements of the derived categories
of coherent sheaves.

We fix a field k& and all our categories are k-linear. Our main results are the
following.

Theorem 1 (= Theorem 7). Let A be a small category which we consider as a
DG category and let L C D(A) be a localizing subcategory with the quotient functor
7w : D(A) — D(A)/L that has a right adjoint (Bousfield localization) u. Assume
that the following conditions hold:

a) for every Y € A the object 1(hY) € D(A)/L is compact;

b) for every Y, Z € A we have Hom(w(hY), w(h%)[i]) = 0 when i < 0.

Then the triangulated category D(A)/L has a unique enhancement.

Theorem 2 (= Theorem 2.8). Let A be a small category which we consider as a
DG category and L C D(A) be a localizing subcategory that is generated by compact
objects L* = LN D(A)°. Assume that for the quotient functor m : D(A) — D(A)/L
the following condition holds:

for every Y, Z € A we have Hom(w(hY), w(h%)[i]) = 0 when i < 0.
Then the triangulated subcategory of compact objects (D(A)/L)¢ has a unique en-
hancement.
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Our main tool in the proof of Theorems [I] and [ is the Drinfeld construction of
a DG quotient of a DG category with its universal property [Dr].

For convenience, in Section 2 we collect all our results together. Sections 3-6
are devoted to proofs of two main Theorems [I] and 2l First, we give some pre-
liminary lemmas and present the main technical tool for the next sections, which
is Proposition B4l Secondly, in Section [ we construct a quasi-functor g (formula
([#2)) which is a central object for all our considerations. After that in Sections
5 and 6 we prove the main theorems; we show how to apply Drinfeld Theorem
[[3l to the quasi-functor p and argue that the induced quasi-functor p is actually
a quasi-equivalence between different enhancements. In the end of Sections [Bl and
we give more advanced and precise versions of Theorems [Tl and 2] (see Theorems
B4 and 6.4]).

In Section [ as a consequence of Theorem [I] we deduce the uniqueness of an
enhancement for an unbounded derived category of an abelian Grothendieck cate-
gory C under mild additional conditions on it (see Theorem [(.5]). More precisely, we
prove that the derived category D(C) has a unique enhancement if the Grothendieck
category C has a set of small generators which are compact objects in the derived
category D(C).

This result can be applied to the category of quasi-coherent sheaves on a quasi-
compact and quasi-separated scheme. We say that a quasi-compact and quasi-
separated scheme X has enough locally free sheaves if for any finitely presented sheaf
F there is an epimorphism & — F with a locally free sheaf £ of finite type. The-
orem immediately implies that the derived category of quasi-coherent sheaves
D(Qcoh X) has a unique enhancement if the quasi-compact and separated scheme
X has enough locally free sheaves (Theorem [T.6]). In particular, this statement can
be applied for any quasi-projective scheme (Corollary [(.8]).

In Section [ we show how to apply Theorem [ to the subcategories of per-
fect complexes Perf(X). We proved that for any quasi-projective scheme X over k
the triangulated category of perfect complexes Perf(X) has a unique enhancement
(Theorem [79).

In Section [ we introduce a notion of compactly approximated objects in a

triangulated category and we prove that the triangulated category of compactly
approximated objects (D(A)/L)® has a unique enhancement (Theorem Bg]). This
result allows us to deduce the uniqueness of an enhancement for the bounded derived
category of coherent sheaves D’(coh X) on a quasi-projective scheme X (Theorem
E13).
In the case of projective varieties using results of [OT],[02] we can prove stronger
results. If X is a projective scheme over k, then the bounded derived category
DP®(coh X) and the triangulated category of perfect complexes Perf(X) have strongly
unique enhancements (Theorem[@9). This result is a consequence of a general state-
ment about the bounded derived category of an exact category possessing an ample
sequence of objects (Theorem [O.§]).

As corollaries of these results we obtain a representation of fully faithful functors
from categories of perfect complexes and bounded derived categories of coherent
sheaves. Any complex of quasi-coherent sheaves £ on the product X xY determines
a functor

B (=) = Rpo (€ & pl(—)) : D(Qeoh X) — D(QeohY).
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We show that our theorems on uniqueness of enhancements imply that if there
is a fully faithful functor K : Perf(X) — D(Qcoh(Y")) for a quasi-projective scheme
X and a quasi-compact and separated scheme Y, then we can find an object £ €
D(Qcoh(X x Y)) such that the restriction of the functor ®g¢. : D(Qcoh X) —
D(QcohY') on Perf(X) is fully faithful too and ®g-(P') = K(P') for every P €
Perf(X). If, in addition, the functor K sends Perf(X) to Perf(Y'), then the functor
O is fully faithful, sends Perf(X) to Perf(Y), and £ is isomorphic to an object
of Db(coh(X x Y)). Finally, if X is a projective scheme such that the maximal
torsion subsheaf Tp(Ox) C Ox of dimension 0 is trivial, we show that the functor
e |pers(x) is isomorphic to K (Corollary @.13). For a projective scheme X with
To(Ox) = 0 and the bounded derived category of coherent sheaves D’(coh X) we
also proved that a fully faithful functor K from D®(coh X) to D(QcohY) has the
form ®¢. if K commutes with homotopy limits (see Corollaries and [@.17).

1. DG CATEGORIES, QUASI-FUNCTORS, AND QUOTIENTS OF DG CATEGORIES

Our main reference for DG categories is [K1, [Dr]. Here we only recall a few
points and introduce notation. Let k be an arbitrary field. We will write ® for the
tensor product over k. All categories, DG categories, functors, DG functors, etc.
are assumed to be k-linear.

A DG category is a k-linear category A whose morphism spaces Hom(X,Y") are
provided with a structure of a Z-graded k-module and a differential d : Hom(X,Y) —
Hom(X,Y) of degree 1, so that for every X,Y, Z € Ob A the composition Hom(Y, Z)
® Hom(X,Y) — Hom(X, Z) is the morphism of DG k-modules. The identity mor-
phism 1x € Hom(X, X) is closed of degree zero.

Using the supercommutativity isomorphism S ® T'~ T ® S in the category of
DG k-modules one defines for every DG category A the opposite DG category A°P
with Ob A°? = Ob A and Hom 40» (X,Y) = Homy (Y, X).

For a DG category A we denote by H°(A) and H*(A) its homotopy and graded
homotopy categories, respectively. The homotopy category HY(A) has the same
objects as the DG category A and its morphisms are defined by taking the 0-th
cohomology HY(Hom4(X,Y)) of the complex Hom 4(X,Y). The graded homotopy
category H*(A) is defined by replacing each Hom complex in A by the direct sum
of its cohomology groups.

As usual a DG functor F : A — A’ is given by a map F : Ob(A) — Ob(A’) and
by morphisms of DG k-modules

F(X,Y) : Homy(X,Y) = Homu(FX, FY), X,Y € Ob(A)

compatible with the composition and the units.

A DG functor F : A — B is called a quasi-equivalence if F(X,Y) is a quasi-
isomorphism for all objects X,Y of A and the induced functor H°(F) : H°(A) —
H°(B) is an equivalence. DG categories A and B are called quasi-equivalent if there
exist DG categories Cy,...,C, and a chain of quasi-equivalences A < C; — -+
C, — B.

Given a small DG category A we define a right DG A-module as a DG functor
M : A? — Mod-k, where Mod-k is the DG category of DG k-modules. We
denote by Mod- A the DG category of right DG A-modules.

Denote by Ac(A) the full DG subcategory of Mod- A consisting of all acyclic DG
modules. It is well known that the homotopy category of DG modules H(Mod- A)
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has a natural structure of a triangulated category and the homotopy category of
acyclic complexes H?(Ac(A)) forms a full triangulated subcategory in it. The
derived category D(A) is the Verdier quotient of H°(Mod-.A) by the subcategory
HO(Ac(A)).
For each object Y of A we have the right module represented by Y,
hY (=) := Homu(—,Y),

which is called a representable DG module. This gives the Yoneda DG functor
h® : A — Mod- A that is full and faithful.

The DG A-module is called free if it is isomorphic to a direct sum of DG modules
of the form hY[n], where Y € A, n € Z. A DG A-module P is called semi-free if
it has a filtration 0 = &y C ®; C ... = P such that each quotient ®;41/P; is
free. The full DG subcategory of semi-free DG modules is denoted by SF(A). We
denote by SFs4(A) C SF(A) the full DG subcategory of finitely generated semi-
free DG modules i.e. ®,, = P for some n and ®,,1/P; is a finite direct sum of
DG modules of the form hY [n]. We also denote by Perf(A) the DG category of
perfect DG modules, i.e. the full DG subcategory of SF(A) consisting of all DG
modules which are homotopy equivalent to a direct summand of a finitely generated
semi-free DG module.

It is also natural to consider the category of h-projective DG modules. We call
a DG A-module P h-projective (homotopically projective) if

HomHO(Mod—A) (P7 N) =0

for every acyclic DG module N (by duality, we can define h-injective DG modules).
Let P(A) C Mod- A denote the full subcategory of h-projective objects. It can
be easily checked that a semi-free DG-module is h-projective. For every DG .A-
module M there is a quasi-isomorphism pM — M such that pM is a semi-free DG
A-module. Thus we obtain that the canonical DG functors SF(A) — P(A) —
Mod- A induce equivalences HY(SF(A)) = H°(P(A)) = D(A) of the triangulated
categories (see [K1] 3.1, [Hi] 2.2, [D1] 13.2).

Let F : A — B be a DG functor between DG categories. It induces the DG
functors of restriction and extension of scalars

Fie: Mod-B — Mod-A, F*: Mod-A— Mod-B.

The DG functor F* is an extension of F on the category of DG modules; i.e., the
following diagram commutes:

A —"y Mod-A

|l
B —"— Mod-B,

where the horizontal arrows are the Yoneda embeddings. The DG functors (F*, F)
are adjoint: for M € Mod-A and N € Mod- B there are functorial isomorphisms

HOInMOd_B(]:*(M),N) = HOHlMod-A(M7 f*(N))

The DG functor F* preserves semi-free DG modules and F* : SF(A) — SF(B) is
a quasi-equivalence if F is such. The DG functor F, preserves acyclic DG modules.
The DG functors F, and F* induce the corresponding derived functors

F, : D(B) — D(A), LF*:D(A) = D(B).
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There is a third DG functor F' : Mod- A — Mod- B, which is a right adjoint to
F. and preserves h-injectives (see [ELOI]). It is defined by the following formula:

FY(M)(X) :=Hompgoq- o(Fu(h™X), M), where X € Band M € Mod- A.

The DG functor F* induces the derived functor RF' : D(A) — D(B) which is right
adjoint to F.

Let A and B be two small DG categories. Let X be an .4 — B-bimodule, i.e.
a DG A° ® B-module X. For each DG A-module M, we obtain a DG B-module
M ®4 X. The DG functor (—) ® 4 X : Mod- A — Mod- B admits a right adjoint
Homp (X, —). These functors do not respect quasi-isomorphisms in general, but they

form a Quillen adjunction and the derived functors (—) @Ié 4 X and RHomp(X, —)
form an adjoint pair of functors between derived categories D(A) and D(B).

Let DGeaty be the category of small DG k-linear categories. It is known [Ta]
that it admits a structure of a cofibrantly generated model category whose weak
equivalences are the quasi-equivalences. This shows in particular that the local-
ization Hge of DGcaty, with respect to the quasi-equivalences has small Hom-sets.
This also gives that a morphism from A to B in the localization can be represented
as A < Acor — B, where A <— A.y¢ is a cofibrant replacement.

The morphism sets in the localization are much better described in terms of
quasi-functors. Consider two DG categories A and B. Denote by rep(A, B) the full
subcategory of the derived category D(A° & B) of A — B-bimodules formed by all
bimodules X such that the tensor functor

(=) 4 X : D(A) — D(B)

takes every representable 4-module to an object which is isomorphic to a repre-
sentable B-module. We call such a bimodule a quasi-functor from A to B. In other
words, a quasi-functor is represented by a DG functor A4 — Mod - B whose essential
image consists of quasi-representable DG B-modules (“quasi-representable” means
quasi-isomorphic to a representable DG module). Since the category of quasi-
representable DG B-modules is equivalent to H°(B) a quasi-functor F € rep(A, B)
defines a functor H°(F) : H°(A) — H°(B).

It is known (see [To]) that the morphisms from A to B in the localization of
DGcaty, with respect to the quasi-equivalences are in natural bijection with the
isomorphism classes of rep(A, B). Denote by DGcat a 2-category of DG cate-
gories with objects being small DG categories, 1-morphisms being quasi-functors,
2-morphisms being morphisms of quasi-functors, i.e. morphisms in D(A ® B).

Example 1.1. Let A and B be two DG categories and @ : A — Mod- B be a DG
functor. Then @ induces a quasi-functor from A to SF(B). Indeed, every Y € A
defines a DG SF(B)-module by the formula:

P — Hompqoq-p(P, F(Y)), forany P e SF(A).

If Q@ € SF(B) is quasi-isomorphic to F(Y'), then this DG SF(B)-module is quasi-
isomorphic to h? € Mod-SF(B). We will denote this quasi-functor by ¢ : A —
SF(B).

For any DG category A there exist a DG category AP™ ' that is called a pretri-
angulated hull and a canonical fully faithful DG functor A — AP The idea of
the definition of AP™ " is to formally add to A all shifts, all cones, cones of mor-
phisms between cones, etc. The objects of this DG category are ‘one-sided twisted
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UNIQUENESS OF ENHANCEMENT FOR TRIANGULATED CATEGORIES 859

complexes’ (see [BK]). There is a canonical fully faithful DG functor (the Yoneda
embedding) AP™' — Mod- A, and under this embedding AP* % is DG-equivalent
to a DG category of finitely generated semi-free DG modules, which we denote by
SFig(A).

Definition 1.2. We say that A is pretriangulated if for every object X € A the
object X[n] € AP**" is homotopy equivalent to an object of A and for every closed
morphism f in A of degree 0 the cone Cone(f) € AP is homotopy equivalent to
an object of A. In other words A is pretriangulated if and only if the DG functor
A — AP g 3 quasi-equivalence.

Thus if A is pretriangulated the homotopy category HY(A) is triangulated. The
DG category AP™' is always pretriangulated, so HY(AP™ ') is a triangulated
category. We denote A' := HO(APTtr),

Notice that a quasi-functor F € rep(A, B) defines a functor A" — B'. Let us
recall the main theorem in [Dr].

Theorem 1.3 ([D1]). Let A be a small DG category and B C A be a full DG
subcategory. For all pairs (C, &), where C is a DG category and & € rep(A,C), the
following properties are equivalent:

(i) the functor HO(¢) : HY(A) — H°(C) is essentially surjective, and the func-
tor A™ — C% corresponding to & induces an equivalence A" /B™ — C*;

(ii) for every DG category K the functor rep(C,K) — rep(A, K) corresponding
to € is fully faithful and @ € rep(A, K) belongs to its essential image if and
only if the image of ® in rep(B, K) is zero.

A pair (C,&) satisfying (i),(ii) exists and is unique in the sense of DGcat: given
another such pair (C',&') there exists a quasi-functor 6 € rep(C,C’) inducing an
equivalence H°(8) : H°(C) — H°(C') and such that the quasi-functors £’ and § - £
are isomorphic.

Remark 1.4. Although the above theorem is stated in the language of quasi-functors,
it is important for us that one can choose a pair (C,§), where £ : A — C is a DG
functor and not just a quasi-functor. Indeed, recall Drinfeld’s construction of the
DG quotient A/B: it is obtained from .4 by adding for every object U € B a mor-
phism ey : U — U of degree —1 such that d(ey) = idy (no new objects and no new
relations between morphisms are added). Thus in particular A is a DG subcategory
of A/B and & : A — A/B is the inclusion DG functor.

Lemma 1.5. Let A be a small DG category and let B C A be a full DG subcategory.
Assume that A is pretriangulated. Then the Drinfeld DG quotient A/B is also
pretriangulated.

Proof. The canonical embedding H°(A/B) — (A/B)' is full and faithful. We need
to prove that it is essentially surjective. The quotient DG functor £ : A — A/B
induces the DG functor &Pt ; APretr — (A /B)Pre ™ g0 that the natural diagram

A% Apre-tr

fl \Lgpre»tr

A/ B (A/B)Pre-ts
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commutes. It induces the commutative diagram

H°(A) Atr

HO(&)l l&“

H°(A/B) — (A/B)",

where the upper horizontal arrow is an equivalence by our assumption and the right
vertical arrow identifies (A/B)' with the Verdier quotient of A" by B'" according to
Theorem [[L3l Hence the composition of these two functors is essentially surjective,
which proves the lemma. ([

Definition 1.6. Let 7 be a category. An object Y € T is called compact (in T)
if Hom7(Y, —) commutes with arbitrary (existing in 7") direct sums; i.e., for each
family of objects {X;} C 7T such that €, X; exists the canonical map

P Hom(Y, X;)— Hom(Y, P X:)

is an isomorphism.
Denote by 7¢ C T the full subcategory consisting of all compact objects in 7.

Definition 1.7. Let T be a triangulated category that admits arbitrary direct
sums. A set S C T is called a set of compact generators if any object X € T such
that Hom(Y, X[n]) =0 for all Y € S and all n € Z is a zero object.

Remark 1.8. Since T admits arbitrary direct sums it can be proved that the prop-
erty that S C T°¢ is a set of compact generators is equivalent to the following
property: the category T coincides with the smallest full triangulated subcategory
containing S and closed under direct sums.

Example 1.9. Let A be a small DG category. The set {hY }y-c 4 is a set of compact
generators of D(A) and the subcategory of compact objects D(A)¢ coincides with
the subcategory of perfect DG modules Perf(A).

There is another notion of a set of generators. It is called a set of classical
generators.

Definition 1.10. Let 7 be a triangulated category. We say that a set S C T is a
set of classical generators for 7 if the category 7 coincides with the smallest trian-
gulated subcategory of 7 which contains S and is closed under direct summands.

Remark 1.11. These two definitions of a set of generators are closely related to
each other. Assume that a triangulated category 7T, which admits arbitrary direct
sums, is compactly generated by the set of compact objects 7°. In this situation
a set S C T¢is a set of compact generators of T if and only if this set S is a set
of classical generators of the subcategory of compact objects 7°¢. This is proved in
[NT]. Thus the set {hY}yea from Example is a set of classical generators of
the subcategory of compact objects D(A)° = Perf(A).

We will recall the definition of homotopy colimits in triangulated categories.
Namely, let 7 be a triangulated category and

Xo 5 X, 5o — X, S X —

be a sequence of morphisms in 7.
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UNIQUENESS OF ENHANCEMENT FOR TRIANGULATED CATEGORIES 861

Definition 1.12. Assume that the direct sum €, X,, exists in 7. The homotopy
limit of this sequence hocoli@) X, € T is by definition given, up to noncanonical
isomorphism, by a triangle

@D, X, M b, X, — hocolig Xn —— (D, Xn) [1]-

If Ais a DG category and maps i,, : X,, = X, 41 are closed morphisms of degree
zero in Mod- A, then one has the usual colim Xy, in the category Z%(Mod- A)
which is isomorphic to hocolim X;, in D(A). The category Z%(Mod- A) has the
same object as Mod- A and morphisms are closed morphisms of degree 0 (it is an
abelian category).

Definition 1.13. Let 7 be a triangulated category with arbitrary direct sums. A
strictly full triangulated subcategory & C 7T is called localizing if it is closed under
arbitrary direct sums.

Remark 1.14. If a subcategory S is localizing it is known that the quotient triangu-
lated category 7 /S has arbitrary direct sums and the quotient functor 7 — 7 /S
preserves direct sums (see [N3], Cor. 3.2.11). For example, the triangulated cate-
gory H°(Mod- A) has arbitrary direct sums and H°(Ac(A)) is a localizing subcat-
egory in H%(Mod- A). Hence, the derived category D(A) also has arbitrary direct
sums.

The following propositions (and their proofs) are essentially equal to Lemma 4.2
in [K1].

Proposition 1.15. Let F : B — C be a full embedding of DG categories. and
let 7* : SF(B) — SF(C) be the extension DG functor. Then the induced derived
functor LF* = HY(F*) : D(B) — D(C) is fully faithful. If, in addition, the category
HO(C) is classically generated by Ob B, then LF* is an equivalence.

Proof. The functor LF* commutes with direct sums and on B C D(B) coincides
with the functor H°(F) that is fully faithful.
Let Y € B. The objects X € D(B) for which the map

Homp (Y, X[n]) — Homp)(LF*(Y), LF*(X)[n])

is bijective for all n form a triangulated subcategory of D(B) which contains the
generating set Ob B and is closed under direct sums (since Y and LF*(Y) are
compact and LF* commutes with direct sums). So this subcategory coincides with
the whole D(B). The same argument shows that for a fixed X € D(B) the map

Homp gy (X', X) — Homp ) (LF*(X'),LF*(X))

is bijective for all X’ € D(B). Hence LF* is fully faithful.

If now the category H°(C) is classically generated by Ob B3, then it is contained in
the essential image of LF*. On the other hand, the set ObC compactly generates
D(C). Hence the whole category D(C) is in the essential image of LF*, because
D(B) contains arbitrary direct sums and LF* commutes with direct sums. g

Let C be a pretriangulated DG category and B C C be a full DG subcategory.
Consider the canonical DG functor

(1.1)  &:C — Mod-B, where (X)(B)=Home(B,X) for Be B, X €C.
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862 VALERY A. LUNTS AND DMITRI O. ORLOV

If we denote by J the full embedding of B to C, then the DG functor @ is the
composition of the Yoneda DG functor h® : C — Mod-C and the restriction functor
J« : Mod-C — Mod- B.

The DG functor ¢ induces a quasi-functor ¢ : C — SF(B) (see Remark [L1])
and the functor H(®) : H°(C) — H°(Mod-B). The homotopy functor H°(¢) :
H°(C) — D(B) is the composition of HY(®) with the localization functor @ :
H°(Mod-B) — D(B).

Proposition 1.16. Let B C C and ¢ : C — SF(B) be as above. Assume that the
triangulated category H°(C) is idempotent complete and is classically generated by
the set ObB. Then the functor H°(¢) induces an equivalence between H°(C) and
the subcategory of compact objects D(B)¢ = Perf(B).

Proof. Indeed, if Y, Z € B C C, then
Hom pro(wmod-5) (H(9)(Y), H'()(Z)[n]) = Homproc) (Y, Z[n])
by Yoneda. Now, since ®(Y) = hY € H°(Mod- B) is h-projective we have
Hom o (o~ ) (H" (@) (Y), H(9)(Z)[n]) = Homps) (H°(¢)(Y), H'(¢)(Z)[n]).

Since the category H°(C) is classically generated by Ob B we get that the functor
HO(¢) is fully faithful. Since H°(C) is idempotent complete and D(B)€ is classically
generated by Ob B we obtain that the subcategory D(B)° is the essential image of
the functor H°(¢). O

Proposition 1.17. Let B C C, and ¢ : C — SF(B) be as above. Assume that
HO(C) contains arbitrary direct sums and Ob B forms a set of compact generators
of H°(C). Then the functor H°(¢) : H°(C) = D(B) is an equivalence of triangulated
categories.

Proof. First notice that the functor H%(¢) commutes with direct sums. Indeed,
since @ commutes with direct sums (see Remark [[T4) it suffices to prove that
HO(®) does. Fix Y € B and a set {X;} C C. Since Y is compact in H°(C) we have
the following isomorphisms, which are functorial in Y:

HO(&) (EB Xi) (Y) = H® Home (Y, P X,)

= @HO Home (Y, X;) = @HO@)(Xi)(Y)‘

Hence HO(®)(P X;) = P HO(P)(X;).

Note that the exact functor H°(¢) maps the set ObB of compact generators
of HY(C) to the set {hY}yep of compact generators of D(B). By Remark [[T1]
and Proposition it induces an equivalence between subcategories of compact
objects H°(C)¢ and D(B)°.

The same argument as in the proof of Proposition gives us that the functor
HO(¢) is fully faithful. Since, in addition, H°(C) contains arbitrary direct sums and
H°(¢) commutes with direct sums it follows that H(¢) is essentially surjective. [

Let T be a triangulated category with small Hom-sets; i.e., Hom between any
two objects should be a set. Assume that 7 admits arbitrary direct sums and
let S C T be a localizing triangulated subcategory. We can consider the Verdier
quotient 7 /S with a natural localization map 7 : T — T /S. Notice however that
Hom-sets in 7 /S need not be small. It is known (Remark [[T4) that the category
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T /S also has arbitrary direct sums and, moreover, the functor 7 preserves direct
sums.

Assume that the Verdier quotient 7/S is a category with small Hom-sets. If
the triangulated category T has a set of compact generators, then the Brown rep-
resentability theorem holds for 7 and the quotient functor = : 7 — T /S has a
right adjoint p : 7/S — T (see [N3], Ex.8.4.5). This adjoint is called the Bousfield
localization functor.

Definition 1.18. Let 7 be a triangulated category with small Hom-sets. Let S
be a thick subcategory. We say that a Bousfield localization functor exists for the
pair § C T when there is a right adjoint to the natural functor = : T — T /S. We
will call the adjoint the Bousfield localization functor, and denote it p: 7/S — T.

Let us summarize the facts about Bousfield localization we will need in the
following proposition.

Proposition 1.19. Let T be a compactly generated triangulated category with small
Hom-sets that admits arbitrary direct sums. Let S C T be a localizing triangulated
subcategory and 7 : T — T /S be the quotient functor. Assume that the quotient
T/S is a category with small Hom-sets. Then
a) there is a right adjoint functor p: T /S — T;
b) the functor u is full and faithful;
c) if for every compact object Y € T, the object w(Y') is compact in T /S, then
the functor p preserves direct sums;
d) if for every compact object Y € T, the object w(Y') is compact in T /S and
T is compactly generated by a set R C T€, then T/S is also compactly
generated by w(R).

Proof. a) This is a consequence of the Brown representability theorem ([N3], Th.
8.4.4).

b) This is also a general statement which says that if the right adjoint functor
to a localization exists, then it is fully faithful (N3], Lemma 9.1.7).

¢) If the object 7(Y) is compact, then

Hom (Y, (€D X:)) = Hom (m(Y), @D X;) = @ Hom(w(Y), X;)
= (P Hom (Y, u(X,)) = Hom (Y, ) u(X,))

for every Y € T¢°. Since T is compactly generated we obtain that @ u(X;) —
w(E X;) is an isomorphism.

d) If Hom(7(Y), X[n]) =0 for all Y € R and all n € Z, then Hom(Y, u(X)[n]) =
0. Since R C T¢ is a set of compact generators, then u(X) = 0. Hence X =
0, because p is fully faithful. Therefore m(R) is a set of compact generators for

T/S. 0

Remark 1.20. Let A be a DG category. The objects {hY }y ¢4 form a set of compact
generators of D(A). Let L C D(A) be a localizing subcategory, and 7 : D(A) —
D(A)/L be the quotient functor. Assume that the Verdier quotient D(A)/L is
a category with small Hom-sets. Then we can apply Proposition and get a
Bousfield localization functor p : D(A)/L — D(A), which is fully faithful. If for
every Y € A the object 7(hY) is compact in D(.A)/L, then the objects {m(hY)}yeca
compactly generate the category D(A)/L and the functor u preserves direct sums.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



864 VALERY A. LUNTS AND DMITRI O. ORLOV

If a localizing subcategory & C T is compactly generated by the set of objects
SN Te, then the quotient category 7 /S has small Hom-sets ([N3], Cor.4.4.3) and
we can say even more ([N1], Th.2.1, and N3], Th.4.4.9).

Theorem 1.21 ([N1]). Let T be a compactly generated triangulated category ad-
mitting arbitrary direct sums and let S be a localizing triangulated subcategory which
is generated by a subset S C T° of compact objects. Then

(1) T/S has small Hom-sets and is compactly generated;
(2) T°¢ maps to (T/S)® under the quotient functor;
(3) the induced functor T¢/S¢ — (T/S)° is fully faithful;
(4) (T/S)¢ is the idempotent completion of T°/S°.

Remark 1.22. One of our main tools will be Theorem [I.3] above, which assumes
that we work with small categories. More precisely, we will need to apply the DG
localization to the DG category Mod- A, where A is a small category. Thus we
will choose universes U € V € ... | assume that the category A is a U-small U-
category and will consider the DG category Mody-.A of U-small DG A-modules.
Thus Mody - A is a DG U-category, and we explain in the Appendix that it is DG
equivalent to a V-small DG category Mod§* - A of strict U-small DG A-modules.
So we may apply the DG localization to Mod§f* - A instead of Mody - A.

However we decided not to mention explicitly the U-smallness issue in the main
body of the text. Therefore we add an appendix which contains all the relevant
statements and in particular it has the U-small version of the Brown representability
theorem, etc.

2. ENHANCEMENTS OF TRIANGULATED CATEGORIES
AND FORMULATION OF MAIN RESULTS

Definition 2.1. Let 7 be a triangulated category. An enhancement of T is a
pair (B,¢), where B is a pretriangulated DG category and e : HY(B) = T is an
equivalence of triangulated categories.

Definition 2.2. The category 7 has a unique enhancement if it has one and for
any two enhancements (B,¢) and (B',&’) of T there exists a quasi-functor ¢ :
B — B’ which induces an equivalence H°(¢) : H°(B) — H°(B’). In this case the
enhancements (B,¢) and (B',¢’) are called equivalent.

Definition 2.3. Enhancements (B, ¢) and (B’,&’) of T are called strongly equiva-
lent if there exists a quasi-functor ¢ : B — B’ such that the functors &’ - H%(¢) and
€ are isomorphic.

Here are some examples of existence of canonical enhancements.

Example 2.4. Let 2 be an abelian category. Denote by C4y(2) the DG category
of complexes over 2, and by D(2) the derived category of 2. Let L C D(2) be a lo-
calizing subcategory. Consider the full pretriangulated DG subcategory £ C Cyq(21)
such that Ob £ = Ob L. Let Cq44(2)/L be the corresponding DG quotient. Then by
Theorem [[3] above there is a natural equivalence F : H%(Cqy(2)/L) — D(A)/L
of triangulated categories. Hence (Cqq(A)/L,F) is a canonical enhancement of
D)/ L.

We also can consider a slight variation.
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Example 2.5. Let A be a DG category. If L C D(A) is a localizing subcate-
gory, the quotient category D(A)/L has a canonical enhancement. Namely, let
L C Mod-A be the full DG subcategory which has the same objects as L. Let
Mod-A/L be the DG quotient category. Then there is a natural equivalence
F : H'(Mod-A/L) = D(A)/L of triangulated categories; i.e., (Mod-.A/L, F)
is an enhancement of D(A)/L. Consider the DG subcategories SF(A) C P(A) C
Mod- A of semi-free and h-projective DG modules, respectively. Then the natural
DG functors

SF(A)/LNSF(A) — P(A)/LNP(A) — Mod- AL

are quasi-equivalences, so that SF(A)/LNSF(A) and P(A)/LNP(A) are other
enhancements of D(A)/L that are equivalent to Mod-.A/L.

For a triangulated category it is natural to ask if it has an enhancement. Next
is the question of uniqueness.
First, let us prove the following not difficult and very natural proposition.

Proposition 2.6. Let A be a small category which we consider as a DG category
and D(A) and Perf(A) = D(A)¢ be the derived category of DG A-modules and its
subcategory of perfect DG modules, respectively. Then each of them has a unique
enhancement.

Proof. The canonical DG functors SF'(A) — P(A) — Mod- A/Ac(A) are quasi-
isomorphisms and gives equivalent enhancements of the derived category D(A).

Let D be a pretriangulated DG category and € : D(A) = H°(D) be an equiv-
alence of triangulated categories. Denote by B C D the full DG subcategory with
the set of objects {e(hY)}yea.

Denote by 7<oB the DG subcategory with the same objects as B and morphisms

Hom,_,5(M, N) = <o Homp (M, N),
where 7<( is the usual truncation of complexes:
(2.1)
0

reo{ o — 0t — 0" L0t — o ={ — 0! — Ker(d’) — 0}.

We have the obvious diagram of DG categories and DG functors
A= H(B) <% 7B - B,

which are quasi-equivalences, because ¢ : D(A) = H°(D) is an equivalence of
triangulated categories. They induce DG functors

SF(A) &= SF(r<oB) -5 SF(B)

that are quasi-equivalences as well. We also have a DG functor @ : D — Mod- B
defined by the rule ¢(X)(B) := Hompg(B,X), where B € B and X € D. The
DG functor induces a quasi-functor ¢ : D — SF(B) (see Remark [[)). Since, by
construction, objects of B form a set of compact generators of H%(D) = D(A),
Proposition [[I7 implies that ¢ is a quasi-equivalence too. Thus, we get the follow-
ing chain of quasi-equivalences:

SF(A) &= SF(r<oB) - SF(B) «- D,

and the enhancement D of D(.A) is equivalent to the standard enhancement SF(.A).
The case of the subcategory of perfect DG modules can be considered similarly. [
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The following theorems are our main results.

Theorem 2.7. Let A be a small category which we consider as a DG category and
L C D(A) be a localizing subcategory with the quotient functor m : D(A) — D(A)/L
that has a right adjoint (Bousfield localization) u. Assume that the following con-
ditions hold:

a) for every Y € A the object m(hY') € D(A)/L is compact;

b) for every Y, Z € A we have Hom(n(hY),n(h?)[i]) =0 when i < 0.

Then the triangulated category D(A)/L has a unique enhancement.

As we mentioned in Remark in the above theorem we actually work with
a small version of D(A); i.e., the category D(A) stands for Dy(A) for a chosen
universe U (see the Appendix).

Theorem 2.8. Let A be a small category which we consider as a DG category
and L C D(A) be a localizing subcategory that is generated by compact objects
Le := LN D(A)°. Assume that for the quotient functor = : D(A) — D(A)/L the
following condition holds:

for every Y, Z € A we have Hom(m(hY), 7(h%)[i]) =0 when i < 0.

Then the triangulated subcategory of compact objects (D(A)/L)¢ has a unique en-
hancement.

Note that under the condition that subcategory L is generated by compact ob-
jects L¢:= L N D(A)¢, the quotient D(A)/L has small Hom-sets by Theorem [[.2T]
(1) and, hence, the Bousfield localization functor u : D(A)/L — D(A) exists by
Proposition [T a). In addition, in this case, property a) of Theorem [27] automat-
ically holds by Theorem [[21] (2); i.e., for all Y € A the objects w(hY) € D(A)/L
are compact. We also note that Theorems 2.7 and 2.8 have more advanced and
precise versions (see Theorems [5:4] and [6.7)).

It will be shown in Section [ that Theorem [27] implies the following corollary.

Theorem 2.9. Let C be a Grothendieck category. Assume that it has a set of small
generators which are compact objects in the derived category D(C). Then the derived
category D(C) has a unique enhancement.

This result can be applied to the category of quasi-coherent sheaves on a quasi-
compact and quasi-separated scheme. Let X be a a quasi-compact and quasi-
separated scheme over k. Denote by Qcoh X the abelian categories of quasi-coherent
sheaves on X. We say that the scheme X has enough locally free sheaves if for any
finitely presented sheaf F there is an epimorphism & — F with a locally free sheaf
& of finite type.

Theorem 2.10. Let X be a quasi-compact and separated scheme that has enough
locally free sheaves. Then the derived category of quasi-coherent sheaves D(Qcoh X))
has a unique enhancement.

For the particular case of quasi-projective schemes we obtain

Corollary 2.11. Let X be a quasi-projective scheme over k. Then the derived
category of quasi-coherent sheaves D(Qcoh X) has a unique enhancement.

Denote by Perf(X) C D(Qcoh X) the full subcategory of perfect complexes
which coincides with the subcategory of compact objects there (see [N2, [BvB]). In
Section [Mlwe also show that the above Theorem 2.8 implies the following statement.
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Theorem 2.12. Let X be a quasi-projective scheme over k. Then the triangulated
category of perfect compleres Perf(X) = D(Qcoh X )¢ has a unique enhancement.

In Section [§] we introduce a notion of compactly approximated objects in a
triangulated category and we prove that the triangulated category of compactly
approximated objects (D(A)/L)“® has a unique enhancement (Theorem Bg]). This
result allows us to deduce the uniqueness of enhancement for the bounded derived
category of coherent sheaves on a quasi-projective scheme.

Theorem 2.13. The bounded derived category of coherent sheaves D’(coh X) on
a quasi-projective scheme X has a unique enhancement.

In the case of projective varieties using results of [O1],[02] we can prove a stronger
result.

Theorem 2.14. Let X be a projective scheme over k such that the mazimal torsion
subsheaf Ty(Ox) C Ox of dimension 0 is trivial. Then the triangulated categories
D®(coh X) and Perf(X) have strongly unique enhancements.

These results on uniqueness of enhancements also allow us to obtain some corol-
laries on the representation of fully faithful functors between derived categories of
(quasi)-coherent sheaves.

Corollary 2.15. Let X and Y be quasi-compact separated schemes over a field k.
Assume that X has enough locally free sheaves. Let F': D(Qcoh X) — D(QcohY)
be a fully faithful functor that commutes with direct sums. Then there is an object
E € D(Qcoh(X x Y)) such that the functor @g. is fully faithful and ®g-(C") =
F(C") for any C" € D(Qcoh X).

Corollary 2.16. Let X be a quasi-projective scheme and Y be a quasi-compact
and separated scheme. Let K : Perf(X) — D(QcohY) be a fully faithful functor.
Then there is an object £ € D(Qcoh(X x Y)) such that
(1) the functor ®g |pers(x) : Perf(X) — D(QcohY') is fully faithful and ®¢- (P")
=~ K(P) for any P € Perf(X);
(2) if X is projective with To(Ox) = 0, then ®¢-|pere(x) = K
(3) if K sends Perf(X) to Perf(Y), then the functor ®g. : D(Qcoh X) —
D(QcohY) is fully faithful and also sends Perf(X) to Perf(Y);
(4) if Y is Noetherian and K sends Perf(X) to D’(QcohY )eon, then the object
& is isomorphic to an object of D?(coh(X x Y)).

Corollary 2.17. Let X be a projective scheme with To(Ox) = 0 and Y be a
quasi-compact and separated scheme. Let K : D’(coh X) — D(QcohY) be a fully
faithful functor that commutes with homotopy limits. Then there is an object £ €
D(Qcoh(X x Y')) such that ®¢-|pb(con x) = K.

3. PRELIMINARY LEMMAS AND PROPOSITIONS

The following four Sections 3-6 are devoted to proofs of two main Theorems
27 and 2.8 In this section we give some preliminary lemmas and present the
main technical tool for the next sections, which is Proposition 3.4l In Section E
we construct a quasi-functor p (formula ([£2])) which is a central object for all our
considerations. In Sections 5 and 6 we give proofs of our main theorems. We
show that we can apply the Drinfeld Theorem [[.3] to the quasi-functor p and argue
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that the induced quasi-functor p is actually a quasi-equivalence between different
enhancements.

Let A be a small category which we consider as a DG category. As above we
denote by Mod- A the DG category of DG A-modules. Let us consider the full DG
subcategory SF(A) C Mod- A of semi-free DG modules. Since A is an ordinary
category, any semi-free DG module P € SF(A) is actually a complex

P={..—Pvl pr ..}

where any P" = @ hY is a free A-module P. Of course, not any such complex is a
semi-free DG module. By definition, it is semi-free if it also has a filtration 0 = &y C
®; C ... = P such that each quotient ®;11/®; is a free DG .A-module. On the other
hand, any bounded above such complex is semi-free. We denote by SF~ (A) the DG
category of bounded above complexes of free A-modules and denote by SF,(A)
the DG category of finitely generated semi-free DG modules, which is actually DG
equivalent to the pretriangulated hull AP™* of A. We also denote by Perf(.A)
the DG category of perfect DG modules, i.e. the full DG subcategory of SF(A)
consisting of all DG modules which are homotopy equivalent to a direct summand
of a finitely generated semi-free DG module. Since any cohomologically bounded
complex has a bounded above free resolution, the DG subcategory Perf(A) N
SF~(A) is DG equivalent to Perf(A). So we will consider Perf(A) as a full DG
subcategory of SF~(A).

For any semi-free DG module P we can consider the “stupid” truncations of P
that by definition are complexes of the form

ocmP={+— P" 1 — P" — 0},
ospP={0— P" — Pt — ...}
We also put
Pl =6y 0cp P ={0 — P" — ... — P™ — 0}.

The DG A-modules o<, P, 0>, P, P (7] are also semi-free. For every n there is
an exact sequence in Z%(SF(A)),

00— 02(n+1)P — P — UgnP — 0.

For a fixed m we also have o<, P & mnp[”’m] in Z°(SF~(A)) and hence
o <m P = hocolim WP in HO(SF~(A)).

Let U C SF(A) be a full pretriangulated DG subcategory that contains A and
if P € U, then U contains all stupid truncations o<, P and o>, P as well. Denote
by h* : A — H°(U) the natural fully faithful functor.

Let F : H°(U) — T be an exact functor to a triangulated category 7 that has
the following properties:

1) F preserves all direct sums that exist in H°(U);
(x) 2) F(hY)is compact in T for every Y € A;
3) Hom(F(hY), F(h%)[s]) =0 for every Y, Z € A when s < 0.

Remark 3.1. Since F' commutes with all direct sums that exist in H%(U), then it
also commutes with any homotopy colimits that exist in H°(U).

Lemma 3.2. LetU be either SF(A) or SFry(A), let T be a triangulated category
and let F : HYU) — T be an exact functor. Assume that F has the properties
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1), 2), 3) of (x) above. Then for any Y € A and for any semi-free DG A-module
P €U we have

Hom(F(hY ), F(o50P)[i]) = 0
when i < n.
Proof. The filtration on the semi-free DG module P induces a filtration <I>;- =
®; No>pP on 05, P and each quotient ', /®’ is isomorphic to a direct sum of
objects h?[s] with s < —n. The assumptions 1), 2), and 3) imply that

Hom(F(hY), F(®},/®})[i]) = Hom(F(h"), F(ED h”[s))[i])
= Hom(F(h"), P F(h”[s + i]))
=~ B Hom(F(hY), F(h?)[s + i]) = 0.

Hence, by induction, Hom(F(hY), F(®/)[i]) = 0 for all j.
In the case U = SFyq4(A) everything is proved, because o>, P = <I>; for some j.
In the case Y = SF(A) the object 0>,P is isomorphic to hocolim ®’ in

HO(SF(A)). The functor F preserves all direct sums; hence it preserves homotopy
colimits and we get

F(0>yP) = hocolim F/(®7).
Since the object F(hY) is compact, the functor Hom(F (hY), —) commutes with

direct sums and carries homotopy colimits to colimits of abelian groups (see [N1],
Lemma 1.5). Thus

Hom(F(hY), F(0>nP)[i]) = colim Hom(F(h"), F(®)[i]) = 0. O

Corollary 3.3. Under the assumptions of Lemma B2 for every Y € A and every

m > 0 we have an injection

Hom(F(hY), F(P)) = Hom(F(hY), F(0<mP)) 2 colim , Hom(F(h¥), F(PI™™)),

which is a bijection when m > 0.

Proof. The isomorphism is a consequence of the facts that F preserves homotopy

colimits and F(hY) is compact. The injection follows from the exact triangle
Uz(m+1)P — P — Ung

and the last lemma which gives that Hom(F(hY), F(0>(m+1)P)) = 0 for m > 0. If

m > 0 we immediately obtain that the injection is also a bijection. (Il

Proposition 3.4. Let U be either SF~(A) or Perf(A) or SF;q4(A) and let T be
a triangulated category. Let Fy, Fy : HO(U) — T be two exact functors that satisfy
conditions (x). Assume that there is an isomorphism of functors 6 : Fy-h® = Fy-h®

~

from A to T. Then for every P € U there exists an isomorphism 0p : Fy(P) —
F5(P) such that for any Y € A and every f € Hompo (kY [<k], P) where k € Z
the diagram

(3.1) oxt-Hl | [or

commutes in T .
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Proof. We will construct fp in a few steps.

Step 1. Denote by h*(A)® C H°(U) the full subcategory of HY(U/) which is obtained
from h*(A) by adding arbitrary (existing in H°(U/)) direct sums of objects of h®(A).

Since the functors F; commute with direct sums we can extend our trans-
formation § onto the whole subcategory h*(A)®. Indeed, for any P = @hY

~

the canonical isomorphisms @ F;(hY) = F;(@ hY) allow us to define an isomor-
phism 0p : Fi(@hY) — F(@hY) as the product of the canonical morphisms

Fi(hY) S By(hY) — B (@ hY).

Step 2. Now consider a semi-free DG module P = {--- — P™~1 — P™} which
by assumption is bounded above. For every n < m we have the exact triangle in
HOU):

Pnil[—n] — O'an — aZ(nfl)P~

For all P* we have the isomorphisms 6% : Fy (P*) = Fy(P*) constructed in Step 1.
In Step 2 by descending induction on n < m we will construct isomorphisms
O>p 2 Fi(o5nP) = Fy(0>,P) such that there is an isomorphism of triangles

Fy(P"Y)[—n] — Fi(0>nP) — Fi(o>@pu-nP) — Fi(P" Y)[—n+1]
0"*1[—n]l Gznl lezwm le" H=n+1]
Fy(P*Y)[—n] — Fy(05nP) — Fy(0s(m—1)P) — Fp(P" )[—n+1]
for all n < m.

We start with the diagram

(Pt =m]) —— Fi(P"[-m]) —— Fi(0>@m-1)P)

em—l[fm]l P’"[—m]
B(P"t=m]) —— F(P"[-m]) —— F(05@m-1)P),

where the square is commutative. Hence, there exists an isomorphism 6>, 1) :
Fi(0>(m-1)P) = F2(0>(m—1)P) which completes the above diagram to a morphism
of triangles:

Fi(P™ 1 [=m]) — F(P™[-m]) — Fi(05@m-1)P) — Fi(P" '[-m+1])
9’"—1[*m]l l9m[*m] le(mfn lem—1[7m+1]
Fy(Pm=m]) — F(P"[-m]) — F3(05@m-1)P) — Fp(P" '[=m+1]).

This provides the base of induction.
Assume by induction that we have defined isomorphisms 60> (,,11), 0>, so that
the diagram

Fl(az(n—i-l)P) —_— Fl(UZnP) EE—— Fl(P")[—n]
(3.2) 9z<n+1>l eznl l9"[*n]

Fy(05(miyP) — Fa(0>nP) —— Fa(P")[-n]
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is a morphism of triangles. Then we claim that the natural diagram
Fl(Pnil)[—n] Em— Fl(O'ZnP)

0"*[—% l%n
Fy(P*1)[=n] —— Fiy(0>nP)

commutes. Indeed, complete it to a diagram
F (P Y[-n] —— Fi(0>,P) —— F1(P")][-n]

e"‘l[w]l 027{ lf?"[—n]
FQ(Pn_l)[—TL] E— FQ(O’ZHP) —_— FQ(P”)[—H],
where the right square and the outside square commute. By Corollary B3 the
natural map
Hom(F, (P ")[-n], Fi(0>,P)) — Hom(F,(P""")[-n], F{(P")[-n])
is injective. Using the compositions with the isomorphisms 6>, and 6"[—n] we
conclude that the natural map

Hom(Fy(P" 1) [~n], Fa(05,P)) — Hom(Fy(P™"1)[—n], Fo(P™)[-n])

is also injective. Therefore the left square in the above diagram commutes too.
Hence, there is an isomorphism 6> (,,—1) : F1(0>(n—1)P) = F2(0>(n—1)P) such that
the diagram

Fl(P"_l)[—n] — Fl(O—ZnP) — Fl(az(n—l)P) — Fl(P"_l)[—n—i—l]

9"_1[*n]l Gznl lOZ(nfl) en_l[fn‘kl]
Fg(P"il)[—n] — FQ(O—ZHP) — F2(0-2(?’L—1)P) — FQ(P”*I)[—n—i—l]

is an isomorphism of triangles. This completes the induction step.
If U = SFy4(A), the construction of isomorphisms p is finished.

Step 3. Let us now consider the case Y = SF~(A). Since P is bounded above we
have a natural isomorphism colim (0>, P) 5 Pin Z%(SF~(A)) and hence P is
isomorphic to hocolim n(o>nP) in H*(SF~(A)). The canonical sequence

P (e2nP) — P onP) — P

n<m n<m

gives an exact triangle in H°(SF(A)).
Since the functors F; commute with direct sums we can extend our isomor-
phisms 6>, on the direct sum. Indeed, for the object @(o>,P) the canonical

isomorphism @ F;(0>,P) = F;(Qo>,P) allows us to define an isomorphism
O : Fi(@o>nP) = Fo(Po>nP) as the product of the canonical morphisms

0 n an . . .
Fi(o5nP) =5 Fy(o5,P) <5 Fy(@ 0>, P). Now there is an isomorphism fp :
Fy(P) 5 Fy(P) that gives an isomorphism of triangles

(D, (02nP) —— F(D,(02nP)) —— F(P)

% | % | [or

(D, (05nP)) —— F(DB(o>m-1P)) —— F(P).
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It is easy to see that the isomorphism 0p : F;(P) = Fy(P) makes the following
diagrams commutative for each n:

FI(UZnP) —_— Fl(P)

GEHJ/ J/HP

FQ(UZnP) e FQ(P)

Step 4. Let us now consider the case U = Perf(A) C SF (A). By definition,
the object P € Perf(A) is a direct summand of a finitely generated object @ €
SFf4(A) in the triangulated category HO(U) C D(A). Take a sufficiently negative
n < 0. The object 0>, P is finitely generated semi-free and, hence, the object
0<(m—1)P is a perfect DG module as well. Thus it is homotopy equivalent to a
direct summand of a finitely generated semi-free DG module R. It is easy to see
that the object o<(,—1)P is also a direct summand of the finitely generated DG
module o<(,_1)R. Let us consider a diagram

(3.3)

Fl(ag(nfl)P)[_l} E— Fl(UZnP) E— Fl(P) E— Fl(ag(nfl)P)

Qzﬂ,ll
FQ(O’S(nfl)P)[—l} e FQ(UZnP) —_— FQ(P) —_— FQ(O'S(TL,UP),

where 0>,, was constructed in Step 2. Since n < 0 and o<(,,—1)R, Q € SFy,4(A) we
obtain that

Hom(Fj(o<(n-1)R)[i], F1(Q)) =0 forall i>-1, and jk=1,2

by Lemma This implies that for their direct summands o<(,—1)P and P we
also have

(3.4) Hom(Fj(o<(n—1)P)[~1], Fx(P))=0 forall ¢>-1, and jk=1,2.
Therefore, there are unique morphisms
Op : Fi(P)—=F(P) and O<(u-1) : Fi(o<m-1)P) = Fa(0<(n-1)P)

that complete the diagram (B.3]) to a morphism of triangles. Since 6>, is an isomor-
phism, the cones C(6p) and C(6<(,—1)) are isomorphic. The vanishing conditions

B4) imply that
HOHI(FQ(O’S(nfl)P), C(ep)) =0 and HOIIl(F1(O’S(n,1)P)[1], C(ep)) =0.

Hence, the cone C(f<(,—1)) = C(fp) is trivial and fp is an isomorphism.

Finally, since for any n < 0 the isomorphism 6p is unique, it does not depend
on n. More precisely, for any n < 0 and each k > n the right and the left squares
in the diagram

Fl(UZkP) e Fl(UZnP) e FI(P)

92,{ lezn lep

FQ(UZkP) e F2(UZnP) e FQ(P)

are commutative. Hence the outside square is also commutative for each k € Z.
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Step 5. Now we should check that the diagram (B.1])

()K= py(p)

9Y[—k]l lep
R(h)[-k] 2 py(p)

commutes for any Y € A and every f € HOmHO(u)(hY[—k], pP).
The map f is represented by a morphism of the complexes f : hY [~k] — P. It
is decomposed as

hY [~k] = o>, P — P.
In the diagram

Fl(hy)[—k] —_— FI(UZkP) —_— Fl(P)

QY[_k]l lezk lep
F(hY)[-k] —— F(osxP) —— Fa(P)

the right square commutes for any k& € Z by the construction of #p. Thus it is
sufficient to prove that the first square commutes too. The map hY [—k] = o5, P —
P is induced by a map f; : h¥Y — P*. Consider the diagram

Fi(hY)[-k] —— Fi(osxP) —— F1(P*)[—k]

ey[—k]l lezk le’%k}

Fg(hy)[—k’] e FQ(UZkP) e FQ(Pk)[_k]
The right square commutes by ([B2)) and the outside square commutes by Step 1.
By Corollary B.3] the natural map
Hom(Fy(hY)[~k], Fi(0>xP)) — Hom(F1(h")[~k], F1(P*)[~K])

is injective. Using the compositions with the isomorphisms 6>; and OF[—k] we
conclude that the natural map

Hom(Fy(hY)[~k], Fy(0>1P)) — Hom(Fy(h")[~k], F2(P")[~k])

is also injective. Therefore the left square in the above diagram commutes too. [

4. PRELIMINARY CONSTRUCTIONS

Let A be a small category which we consider as a DG category and L C D(A)
be a localizing subcategory with the quotient functor = : D(A) — D(A)/L.

As above we denote by Mod- A the DG category of DG A-modules. Consider
the DG subcategories SF(A) C P(A) C Mod- A of semi-free and h-projective DG
modules, respectively. The canonical DG functors SF(A) — P(A) — Mod- A/
Ac(A) are quasi-equivalences and give equivalent enhancements of the derived cat-
egory D(A) (see Example2H]). As a consequence, the category D(A)/L has canon-
ical enhancements. Namely, if £ C Mod- A is the full DG subcategory having the
same objects as L, then the natural DG functors

SF(A)/LNSF(A) —s P(A)/LNAPA) —s Mod-A/L
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are quasi-equivalences; i.e., the canonical functors
HY(SF(A)/LNSF(A) == HY(P(A)/LNP(A) = H'(Mod-.A/L) = D(A)/L

are equivalences.

Denote by 7 the quotient DG functor 7 : SF(A) — SF(A)/L N SF(A). We
denote the composition of the functor H°(h®) : A—H"(Mod- A) with the localiza-
tion H°(Mod-.A) — D(A) simply by h®. Note that this functor h® : A — D(A) is
full and faithful.

Consider an enhancement of the triangulated category of compact objects
(D(A)/L)°. This means that there are given a pretriangulated DG category C and
an equivalence of triangulated categories € : (D(A)/L)¢ = H°(C). Denote by B C C
the full DG subcategory with the set of objects {er(hY)}yca. As in formula (1)
before Proposition there is the canonical DG functor

U:C— Mod-B, where ¥(X)(B)=Hom¢(Y,X) for BeB, X eC.
In composition with the DG functor Mod-B — Mod- B/Ac(B) it induces (as in
Remark [[T]) a quasi-functor

Y :C— SF(B), HO(y) : H°(C) — H°(SF(B)) = D(B).
Since the objects {m(hY)}ye4 are compact in D(A)/L we have the following com-
position:
. 0
A ™S (D(A)/L)° - HO(0) =X D(B).
By construction it factors through the canonical embedding H°(B) < D(B) and
we denote by a the corresponding functor a : A — H°(B).
Denote by 7<oB the DG subcategory with the same objects as B and morphisms
HostoB(M, N) = 7<oHompg(M, N),

where 7<¢ is the usual truncation of complexes as in (2.).
We have the obvious diagram of DG categories and DG functors

A% HOB) <& 7<0B -5 B,

where the functor p : 7<oBB — H°(B) is a quasi-equivalence by condition b) in
the assumptions of Theorem 27 They induce DG functors between semi-free DG
modules, and we obtain a commutative diagram

A —*s HYB) '~ 1B —— B

d d [ [
SF(A) —“— SF(H'(B)) «X— SF(r<B) ——— SF(B).
Passing to homotopy categories we get the following commutative diagram:
(4.1)
A L) HO(B) P— HO(B) P— HO(B)
d :| K [

HOSFA) 2 o sFmOB) YL HOSF(roB) 22 HO(SF(B)

D(A) 2 DHB) < DB —Es D(B).
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The DG functor p and, hence, the DG functor p* are quasi-equivalences. This gives
us a quasi-functor p, : SF(H?(B)) — SF(r<oB). This also implies that the functor
H°(p*) = Lp* is an equivalence and the right adjoint functor p, : D(H°(B)) —
D(7<oB) is its quasi-inverse.

We denote by p the quasi-functor that is the composition

(4.2) 5 SF(A) %5 SF(HY(B)) 25 SF(r<oB) ~— SF(B)
and denote by Fj the induced functor
(4.3) Fy = H(5) : D(A) X% D(HO(B)) 2= D(r<oB) X5 D(B).

The functor F; evidently preserves direct sums.

5. PROOF OoF THEOREM [2.7]

Let D be a pretriangulated DG category and ¢ : D(A)/L = HY(D) be an
equivalence of triangulated categories. Denote by C C D the full DG subcat-
egory of compact objects in H°(D). The equivalence ¢ induces an equivalence
e: (D(A)/L)¢ = HY(C). Thus we can apply the construction from the previous
section.

As above denote by B C C C D the full DG subcategory with the set of objects
{en(hY)}yea. By construction in the previous section, formulas ([2)) and (&3] give
a quasi-functor

p:SF(A) — SF(B)
and the corresponding functor Fy = H%(p) : D(A) — D(B).

Notice that, by assumption, the objects {em(hY)}yec4 are compact and by Re-
mark [[20 they compactly generate the category H®(D). Therefore, by Proposition
17 the canonical DG functor @ : D — Mod - B, which is defined by formula (1))
&(X)(B) = Homp(B, X) for B € B, X € D, induces a quasi-functor

¢:D — SF(B) suchthat H(¢): H(D) = H°(SF(B)) = D(B)

is an equivalence. Therefore, SF(B) is another enhancement of D(A)/L which is
equivalent to D. Thus it is sufficient to prove that SF(B) is quasi-equivalent to
SF(A)/LNSF(A).

Denote by Fy the composition of H%(¢) with the equivalence € and the localiza-

tion m,
~ 0
Fy: D(A) = D(A)/L - H(D) =& D(B).

Thus we have two functors F; and Fy from D(A) to D(B) and both of them
enjoy properties 1), 2), 3) of (x). By construction of F; and a, the composition of
h*: A — D(A) and F, coincides with A % H°(B) — D(B). The commutativity of
diagram (@T]) immediately proves the following lemma.

Lemma 5.1. There exists an isomorphism 0 : Fy - h® 5 Fy - h® of functors from A
to D(B).

Now we are ready to prove the following lemma.

Lemma 5.2. The quasi-functor p : SF(A) — SF(B) factors through the DG
quotient SF(A)/LNSF(A).
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Proof. By the Drinfeld Theorem [[.3]it is sufficient to show that the corresponding
functor Fy : D(A) — D(B) factors through the quotient D(.A)/L.

Let P € SF(A) be a semi-free DG module that belongs to £. Consider it as
the object of D(.A). We have to show that Fy(P) = 0. Since {F1(hY)}yea is a set
of compact generators of D(B) it is enough to check that for any Y € A and any
keZ,

Hom(F (hY)[k], Fi(P)) = 0.
Let us consider a stupid truncation oy, 1)P — P — o<y, P, for some m > k.
By Corollary B3] we have an isomorphism
Hom(Fy () [K], Fi (P)) 2 Hom(Fy (¥ )[k], Fi (7. P).
On the other hand, o<, P belongs to SF~(A) and by Proposition B.4] there is an
isomorphism Fij (o<, P) & Fy(0<mP). Now applying Corollary B3] to the functor
F, we obtain isomorphisms

)
where the last equality holds because Fy(P) = H%(¢) - € 7(P) = 0.
Thus, by Theorem [[.3] there exists a quasi-functor

p:SF(A)/LNSF(A) — SF(B)
and an isomorphism of functors Fy = H%(p) = H(p) - . O

Now the following lemma finishes the proof of the theorem.
Lemma 5.3. The functor H°(p) : D(A)/L — D(B) is an equivalence.

Proof. Let us prove that the functor H°(p) is fully faithful.

The set {m(hY)}yea is a set of compact generators for the category D(A)/L,
and the functor H?(p) preserves direct sums, since 7 and H%(p) do. Thus, it suffices
to prove that the map

H°(p) - Hom(m (A" )[k], w(h?)) — Hom(H® (p)m (h")[k], H" (p)m (h7))

is an isomorphism for every Y, Z € A and any k € Z.

Let us fix Y, Z and k as above. Recall that the localization functor 7 has a right
adjoint functor p: D(A)/L — D(A) which is full and faithful, so that the natural
morphism of functors idp(4y/, — 7 is an isomorphism. Let P = pm(h?) € D(A)
be a semi-free DG A-module. We have 7(h?) 2 w(P) and the map

7 Hom ) (Y [k], P) — Homp(ay1((hY ) K], 7(P))

is an isomorphism.
Consider the stupid truncation o<, P for some m > k. We have a commutative
diagram

HomD(A)(hY[k],P) ;) HomD(A)/L(W(hy)[k],w(P))

L |

Homp(a)(hY [k], 0<mP) —— Homp /(7 (hY)[k], m(0<mP)),
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where the right vertical arrow is an isomorphism by Corollary Hence, the lower
horizontal arrow is an isomorphism too.

On the other hand, by Lemma [5.1] and Proposition 3.4] there exist isomorphisms
Oy : Fi(hY) 5 Fa(hY) and O<, : Fi(0<mP) = Fa(0<,, P) such that the diagram

HOI’IID(A)(hY[k],O'SmP) — HomD(A)(hY[k],JSmP)

3 |~

[
Hom p gy (Fi(hY)[k], Fi(0<mP)) ———— Hompp)(F2(hY)[k], F2(0<mP))

commutes. Since F} = H%(p) -7 and Fy, = H%(¢) - € - 7 we obtain the following
commutative diagram:

HomD(A)(hY[k],ang) HOmD(A)(hY[kZ],O'SmP)

ﬁlz wll

HomD<A)/L(7T(hY)[k], m(o<mP)) _ HomD(A)/L(fr(hY)[k], m(o<mP))

H“(n)l H°<¢>~Elz

<

Homp sy (H (o) (hY ) K], HO(p)7(0<m P) ~=2-2s Homp sy (Fa (hY ) [k], Fa(0<m P).

In this diagram all arrows, except possibly H(p), are isomorphisms. Hence H(p)
is an isomorphism as well. Finally we obtain that in the commutative diagram

HomD(A)/L(ﬂ(hy)[k],ﬂ'(P)) BEASN HomD(A)/L(ﬂ'(hY)[k},W(ang))

Ho(ﬂ)l Ho(ﬁ)ll
Homp ) (H (p)m(h")[k], H’(p)7(P)) —— Homps)(H®(p)m(h")[k], H(p)m(o<m P))

the horizontal arrows are isomorphisms by Corollary B.3]and the right arrow is also
an isomorphism as proved above. Thus we get that the canonical map

H®(p) - Hom(m(h*)[k], m(h”)) — Hom(H" (p)m(h")[K], H® (p)m(h?))

is an isomorphism.

Thus we proved that H(p) is fully faithful. Since the image of H%(p) contains
the set of compact generators B C D(B) and is closed under taking arbitrary direct
sums, the functor H%(p) is essentially surjective. Therefore, it is an equivalence.
This proves the lemma and the theorem. O

Theorem 5.4. Let A be a small category which we consider as a DG category and
L C D(A) be a localizing subcategory with the quotient functor m : D(A) — D(A)/L
that has a right adjoint (Bousfield localization) u. Assume that the following con-
ditions hold:

a) for every Y € A the object m(hY') € D(A)/L is compact;

b) for every Y, Z € A we have Hom(w(hY), w(h%)[i]) = 0 when i < 0.
Let € be a DG category and let F : D(A)/L — H°(&) be a fully faithful functor.
Then there is a quasi-functor F : SF(A)/LNSF(A) — & such that

(1) the functor HO(F) : D(A)/L — H°(E) is also fully faithful;

(2) H°(F)(X) = F(X) for any X € D(A)/L.
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Proof. (1) Let D C £ be a full DG subcategory that consists of all objects in the
essential image of F. Then the DG category D is another enhancement for D(A)/L
and the functor F induces an equivalence ¢ : (D(A)/L) = H°(D) between the
triangulated categories.

As in the proof of Theorem [277] we denote by B C D the full DG subcategory
with the set of objects {€r(hY)}yea. By Proposition [LI7, a DG functor & : D —
Mod- B induces a quasi-functor ¢ : D — SF(B) such that H’(¢) : H(D) —
D(B) is an equivalence.

By construction in Section M (formula ([@2])) we have a quasi-functor

7 SF(A) — SF(B)

and by Lemma[5.2] the quasi-functor p factors through the DG quotient SF(A)/LN
SF(A). Hence it induces a quasi-functor p : SF(A)/LNSF(A) — SF(B). In
Lemma [5.3] we proved that our quasi-functor p is a quasi-equivalence. We denote
by F the composition of quasi-functors p, $~! and the full embedding of D to &. It
is evident that H°(F) is fully faithful by construction.

(2) Lemma[G.dlimplies that there is an isomorphism of functors 6 : H(F)-m-h® =
F-7-h® from A to H°(£). By Proposition B4 applied to U = SF~(A) there is an
isomorphism HO(F)r(P) = Fr(P) for any P € SF~(A).

Denote as above the functor H(p)m and H®(¢)er from SF(A) to SF(B) by Fy
and Fy, respectively. Now let P € SF(A) be any semi-free DG module. Consider
its truncations o<, P € SF~(A). The object P is isomorphic to a homotopy limit
of the truncations o<,, P in D(A); i.e., there is an exact triangle

P — HUSWP e HUSmP'

We have a natural map kp : F;(P) — holim F;(0<,,P). By Lemma for any
Y € A and j € Z we have Hom(F;(hY), F;(0>mP)[j]) = 0 when m > j. Therefore,
the map

Hom(F;(h"), Fi(P)[j]) — Hom(F;(h"), holim F; (<., P)[j])

is an isomorphism for any Y and j. Since F;(hY) forms a set of compact generators
of SF(B) the map kp is an isomorphism.

Now we construct an isomorphism ¥p : Fy(P) — F5(P). By Proposition 34
there are isomorphisms 0™ : Fy (P™) = Fy(P™) for all m and < : Fi(0<oP) =
F3(0<oP) making the following square commutative:

Fl(PO) E— Fl(O'SQP)

‘| J-
Fy(PY) —— Fy(o<oP).

~

For every m > 0 we will construct an isomorphism d<,, : Fi(o<mP) —
F5(0<mP) such that the diagram

Fl(Pm)[—m} _— Fl(O'SmP) e FI(USM—IP)

T e

Fg(Pm)[—m] _— FQ(USmP) e FQ(USTU—1P>
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commutes for m > 0. The proof uses the (ascending) induction on m with the base
of induction for m = 0. Assume that the map V<, : Fi(0<mP) = Fa(0<mP) exists
for some m > 0. We claim that in the natural diagram

Fl(Pm)[—m] — FI(US'HLP) — Fl(Perl)[_m]

07”[fm]l ﬂsml le""“[—m]
Fy(P™)[~m] —— Fy(0<mP) —— Fp(P™+1)[—m]

the right square commutes. Indeed, the outside square commutes by Proposition
B4 and the left one commutes by the induction assumption. Further, we have that
the map

Hom(Fy (o< P), Fi (P™ ) [=m]) — Hom(Fy (P™)[—m], Fi (P! [-m])
is injective, because
Hom(Fy(0<pm-1P), Fi(P™*")[=m]) = Hom(hocolim , Fy (PP~ 1) [m], Fy (P™))
=0
by property 3) of (x). Using the compositions with ™1 we conclude that the
natural map
Hom(Fy (o<, P), Fo(P™ ) [—m]) — Hom(Fy (P™)[—m], Fo(P™)[-m)])

is also injective. Therefore, the right square in the above diagram commutes too.
Hence we can find ¥<,,11 so that the diagram

Fl(Perl)[—m— 1} — F1(0§m+1p) — Fl(USmP) — Fl(Perl)[_m]

9m+1[7m71]l ﬁg,,,LJFll lﬁgm l9m+1[7m]
Ey (Pt [—m — 1] — Fa(0<mi1P) — Fa(o<pmP) — Fp(P™)[—m]
commutes. This provides the induction step. Since F;(P) = holim F; (o<, P), there

exists an isomorphism ¥p : Fy(P) = Fy(P) that gives an isomorphism of triangles
F(P) —— [ Fi(o<mP) —— [[Fi(o<nP)

m m

ﬂpl Hﬂgml ll'WSm

FQ(P) — HFQ(USmP) e HF2(0§mP)~
Thus, H°(F)n(P) = Fr(P) for any P € SF(A). O

6. PROOF OF THEOREM [2.§

As in Section [ let C be a pretriangulated DG category and € : (D(A)/L)¢ =
H°(C) be an equivalence of triangulated categories. Denote by B C C the full DG
subcategory with the set of objects {em(hY)}yea. As in formula (I) there is the
canonical DG functor ¥ : C — Mod- B which induces a quasi-functor ¢ : C —
SF(B) and the functor

HY(y) : H'(C) — H°(SF(B)) = D(B).

Objects {em(hY)}yea classically generate the category (D(A)/L)¢ by Theorem
21l Hence by Proposition [L.16] the functor H%(¢)) induces an equivalence between
H°(C) and Perf(B) = D(B)°.
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Consider the DG category of perfect DG modules Per f(B), which by definition is
the full DG subcategory of SF(B) consisting of all DG modules which are homotopy
equivalent to a direct summand of a finitely generated semi-free DG module. The
quasi-functor 1 induces a quasi-functor x : C — Per f(B) that is quasi-equivalence;
i.e., the induced functor

HY(x) : H°(C) = D(B)¢ = Perf(B)

is an equivalence. Thus the DG category Perf(B) is another enhancement of
(D(A)/L)° which is equivalent to C via the quasi-functor x. Therefore it is sufficient
to prove that Perf(B) is quasi-equivalent to a natural enhancement coming from
the DG quotient. More precisely, we can consider a full DG subcategory V C
SF(A)/L N SF(A) which consists of all objects that belong to the subcategory
of compact objects (D(A)/L)¢. Thus we have to show that the DG category V is
quasi-equivalent to Per f(B).

By construction in Section H] formulas ([@2]) and @3] give a quasi-functor

p:SF(A) — SF(B)
and the induced functor F; = H%(p) : D(A) — D(B). The restriction of F; to the
subcategory of compact objects D(A)¢ induces a functor
G1 : Perf(A) = D(A)*—D(B)¢ = Perf(B).

Denote by Gy the composition of H°(x) with the equivalence ¢ and the localiza-

tion 7:

Gy : Perf(A) = D(A)® T (D(A)/L)* - HO(C) 1) D(B)¢ = Perf(B).

Thus we have two functors Gy and G2 from D(A)° to D(B)¢ and both of them
enjoy the properties 1), 2), 3) of (x). By construction of G5 and a, the composition of
h* : A — D(A)¢ and G4 coincides with A % H°(B) — D(B)¢. The commutativity
of diagram (41)) immediately proves the following lemma.

Lemma 6.1. There exists an isomorphism 0 : G1 - h®* = Go - h® of functors from

A to D(B)°.
As in the proof of Theorem 2.7} first, we show that the following lemma holds.

Lemma 6.2. The quasi-functor p : SF(A) — SF(B) factors through the DG
quotient SF(A)/LNSF(A).

Proof. By the Drinfeld Theorem [[3it is sufficient to show that the induced functor
Fy : D(A) — D(B) factors through the quotient D(A)/L. Let P € Perf(A) be a
perfect DG module that belongs to £. By Lemma and Proposition B.4] we have

G1(P) = Gy(P) = H%(x) - € - n(P) = 0.

By assumption, the subcategory L is generated by objects compact in D(.A). Since
F) commutes with direct sums we get that Fy(P) = 0 for any P € SF(A) N L.
Hence, the functor Fy : D(A) — D(B) factors through the quotient D(A)/L, and,
by Theorem [[L3] there is a quasi-functor

p: SF(A)/LNSF(A) — SF(B)
with an isomorphism of functors Fy = H%(p) = H(p) - . O

Next we would like to prove the following lemma.
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Lemma 6.3. The functor H°(p) : D(A)/L — D(B) is an equivalence.

Proof. We already know that H°(p) is essentially surjective, because the image of
HY(p) contains the set of compact generators B C D(B) and is closed under taking
arbitrary direct sums. Now we show that it is full and faithful.

As usual, since the set {m(hY)}yc.4 is a set of compact generators for D(A)/L,
and the functor H°(p) preserves direct sums, it suffices to prove that for any Y, Z €
A, and any k € Z the map

H®(p) - Hom(m(h*")[k], m(h”)) — Hom(H" (p)m(h")[K], H® (p)m(h?))
= Hom(G1(h")[k], G1(h%))

is an isomorphism.

By Theorem [[L.21] since L is generated by compact objects, the natural functor
D(A)¢/L® — (D(A)/L) is fully faithful. Hence, by definition of localization, any
morphism f : w(hY)[k] — 7(h?) is represented by a pair (g, s) in D(A)¢ of the form

hY (k] 5 P < h?,
where P is a perfect DG module and a cone of s belongs to L¢; i.e., w(s) is an
isomorphism and f = m(s)"1m(g).

Full. Consider a morphism f; € Hom(Gy(hY)[k], G1(h?)). The isomorphism
0:Gy-h* = Gy - h® induces a morphism fo = 07 - f1 - Oy [k] ™! from Go(hY)[k] to
Ga(h?).

The functor Gy is the composition H%(y)-e-m and H%(x)-€ : (D(A)/L)¢ = H°(B)
is an equivalence.

Denote by f : w(hY)[k] — m(h?) the morphism for which H°(x) - e(f) = fo. By
Proposition [3.4] applied to U = Perf(A) there is an isomorphism 0p : G1(P) =
G2(P) such that in the following diagram

(6.1) Gr(P)
W ‘ G (s)
Gy (hY) k] —2 G (h?)
eptl
0y [K] |2 Go(P) 1 0z
y Ga(s)
Ga(hY )] — Ga(h?)

the three squares are commutative and the lower triangle is also commutative. Now
the following sequence of equalities,

(6.2)
fi=Hp)(w(s)™") - Gi(s)- fr = H(p)(m(s)™") - Gi(s) - 05" - fo - Oy [K]
=Hp)(n(s)™") - 0p" - Ga(s) - f2- Oy [k] = H(p)(m(s) ") - 05" - Galg) - Oy [K]
= H°(p)(n(s)~") - G1(g) = H(p)(w(s) "' (g)) = H(p)(f),

show us that f; is in the image of the functor H°(p).
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Faithful. Consider a morphism f : w(hY)[k] — m(h%). As above there exist a
perfect DG A-module P € Perf(A) and a pair of morphisms (g, s) in D(.A)° of the
form

WY (k] - P <= h?
such that the morphism 7(s) is an isomorphism and f = w(s)~'n(g).

Denote by f; and f, the images of f under the functors H%(p) and H°(x) - e,
respectively. Consider again the diagram (6.I]). Now both triangles are commuta-
tive and both back squares are commutative too. Assume that f; = H(p)(f) = 0.
Then G1(g) = 0 and, as a consequence, G3(g) = 0. Thus we get

f2 = H(x)e(n(s) 1) Ga(s) f2 = H(x)e(n(s) ™) Ga(g) = 0.

But the functor H°(x)e is an equivalence. We conclude that f = 0. This proves
faithfulness. U

1

Thus, our quasi-functor p : SF(A)/LNSF(A) — SF(B) is a quasi-equivalence
and it induces a quasi-functor between subcategories of compact objects p¢: V —
Perf(B), where V C SF(A)/LNSF(A) is the full DG subcategory which consists of
all compact objects (D(A)/L)¢, and p° is a quasi-equivalence as well. This finishes
the proof of Theorem 2.8

More precisely we have proved the following theorem.

Theorem 6.4. Let A be a small category which we consider as a DG category
and L C D(A) be a localizing subcategory that is generated by compact objects
L¢ = LN D(A)°. Assume that for the quotient functor m : D(A) — D(A)/L the
following condition holds:

for every Y, Z € A we have Hom(w(hY), 7(h?)[i]) = 0 when i < 0.

Let V ¢ SF(A)/L N SF(A) be the full DG subcategory which consists of all
compact objects (D(A)/L)¢. Let £ be another pretriangulated DG category and
N : (D(A)/L)¢ — HY(E) be a fully faithful functor. Then there is a quasi-functor
N :V = & such that

(1) the functor H°(N) : (D(A)/L)¢ — HY(E) is also fully faithful;

(2) there is an isomorphism of functors 6 : HO(N') -m-h® = N -7 -h® from A

to HO(E);
(3) HOWNV)(X) = N(X) for any X € (D(A)/L)°.

Proof. Let C C & be a full DG subcategory that consists of all objects in the essential
image of N. Then the DG category C is another enhancement for (D(.A)/L)° and the
functor N induces an equivalence € : (D(A)/L)¢ = H°(C) between the triangulated
categories.

As in the proof of Theorem 2.8 we denote by B C C the full DG subcategory with
the set of objects {er(hY )}y c.a. By Proposition[[.I6, a DG functor ¥ : C — Mod-B
induces a quasi-functor x : C — Per f(B) such that

H(x) : H*(C) = D(B)® = Perf(B)
is an equivalence. By construction in Section [ (formula (£2)) we have a quasi-
functor
p:SF(A) — SF(B)
and by Lemma[6.2] the quasi-functor p factors through the DG quotient SF(A)/LN
SF(A). Hence it induces a quasi-functor p : SF(A)/L N SF(A) — SF(B). In
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Lemmal [6.3] we proved that our quasi-functor p is a quasi-equivalence and, therefore,
it induces a quasi-equivalence between DG subcategories of compact objects p°
V — Perf(B). Now we denote by N the composition of quasi-functors p¢, x 1 and
the full embedding of C to €.

(1) It is evident that HY(N) is fully faithful by construction.

(2) Lemma implies immediately that there is an isomorphisms of functors
0:H'(N)-7-h* = N-7-h* from A to H°(E).

(3) By Proposition B4l applied to U = Perf(A), there is an isomorphism
HY(N)7(P) = Nn(P) for any P € D(A)°. By Theorem [[ZT] (4) any object
X € (D(A)/L)¢ is a direct summand of an object m(P), where P € SF;4(A).
Since for any Y,Z € A we have Hom(n(hY),7(h%)[i]) = 0, when i < 0, we can
deduce that Hom(7(P),n(P)[k]) = O for sufficiently negative k& < 0. Therefore,
we do not have any homomorphisms from H°(N)w(P) to N7 (P)[k] and from
N7 (P) to HY(N)r(P)[k] for k < 0, because these functors are fully faithful and
HOY(N)m(P) = Nr(P). This implies that for X as a direct summand of 7(P) we
also have
(6.3)

Hom(H(N)(X), N(X)[k]) =0, Hom(N(X), HN)(X)[k]) =0 for k<O0.
Consider an object X & X[2m + 1] for sufficiently large m > 0. Its class in the
Grothendieck group Ko((D(A)/L)°) is equal to 0. By Lemma 2.2 of [Th| it belongs
to any full subcategory whose idempotent completion is (D(A)/L)¢. Hence, X @
X[2m + 1] =2 7(Q) for some @ € Perf(A) = D(A)°. We know that there is an
isomorphism H°(N)7(Q) = Nm(Q). The vanishing conditions (63) imply that
such an isomorphism induces an isomorphism H°(N)(X) = N(X). O

7. APPLICATIONS TO COMMUTATIVE AND NONCOMMUTATIVE GEOMETRY

Let A be a small category. As above we can consider A as a DG category and let
Mod- A be the DG category of DG A-modules. We also can consider the abelian
category of right A-modules which we denote by Mod-.A. The DG category of
all complexes C%(Mod- A) is exactly the DG category Mod-.A and the derived
category D(Mod - A) of the abelian category Mod - A is exactly the derived category
D(A) introduced above.

Let S € Mod- A be a Serre (or dense) subcategory. By definition, this means
that for any exact sequence

0— M — M—M"—0,
M is in S if and only if both M’ and M" are in S.

Definition 7.1. In this case we can define a quotient category QModg(A) :=
Mod-.A/S as a category with the same objects as Mod - A and
HomQModS(_A)(M; N) = Ohlll HOHlMOd_A(M/, N/N/),
where M’ and N’ are submodules of M and N such that M /M’ and N’ are in S.
We will assume that the subcategory S is localizing; i.e., it is a Serre category
that is closed under direct sums in Mod-.A. (Hence it is closed under direct limits
as well.) Denote by IT the canonical quotient functor from Mod-.A to QModg(.A).

It is exact, preserves direct sums and, since Mod - A is an AB5-category with a set
of generators and with enough injective objects, the quotient category QModg(.A)
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also has these properties. Moreover, in this case, the quotient functor IT has a right
adjoint functor (2 which is called a section functor. The functor {2 is left exact and
it is full and faithful; i.e., the natural morphism 172 — idqmoq is an isomorphism.
All these facts are the standard theory of localization for abelian categories and
can be found in [Gal [Pd].

The functor I7 is exact and it induces the functor between the derived categories
which we also denote by

IT : D(A) = D(Mod-A) — D(QModg(.A)).
Since IT respects direct sums, by Theorem 4.1 in [N2], it has a right adjoint functor
R2: D(QModg(A)) = D(Mod-.A) = D(A).

We are interested only in the case when IT(hY) are compact in D(QModg(.A))
for all Y € A. This property is equivalent to the condition that Rf2 preserves direct
sums. Indeed, in the following commutative diagram,

@ Hom(I1(hY), X;) ——— @ Hom(hY, R2(X;))

canl CCL’N/J/

Hom(II(hY),@ X;) —— Hom(h", RQ2(P X)),

the right arrow is an isomorphism if and only if the left arrow is an isomorphism.

Now for any injective object I € QModg(A) we have ITRS2(I) = IT2(I) = 1.
Hence the functor R{? is fully faithful on the subcategory of bounded below com-
plexes DT (QModg(A)). If now R{2 preserves direct sums, then it is fully faithful
on the whole derived category D(QModg(A)).

Furthermore, for any object M" € D(A) we have an exact triangle of the form

N — M — RQI(M)

and IT(N") 2 0. This implies that cohomologies of N* belong to S. Denote by Ls
the full triangulated subcategory of D(A) that consists of all objects, cohomologies
of which belong to S. It is a localizing triangulated subcategory, because it is closed
under taking direct sums. Since IT(N') = 0 when N € Lg, the quotient functor
II : D(A) — D(QModg(.A)) factors through the projection 7 : D(A) — D(A)/Ls.
Moreover, it is evident now that the functor Rf2 in composition with 7 establishes
an equivalence between D(QMod(.A)) and D(A)/Ls, because both these categories
are equivalent to the right orthogonal Lg in D(A). Thus we obtain

Lemma 7.2. Let A be a small category and S C Mod - A be a localizing subcategory.
Let IT : Mod- A — QModg(A) be the canonical functor to the quotient category
and let Ls C D(Mod-.A) be the full triangulated subcategory of D(A) that consists
of all objects, cohomologies of which belong to S. Assume that the objects IT(hY)
are compact in D(QModg(A)) for all Y € A. Then the functor II induces an
equivalence of triangulated categories

II' : D(Mod-A)/Ls — D(QModg(A)).
Now Theorem 2.7 together with this lemma implies the following proposition.

Proposition 7.3. Let A be a small category and S C Mod- A be a localizing sub-
category. Then the derived category of the quotient abelian category D(QModg(A))
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has a unique enhancement if the objects II(hY) € D(QModg(A)) are compact for
allY € A.

As we mentioned above the quotient category QModg(A) is a Grothendieck
category; i.e., it is an abelian AB5-category with a set of generators. A well-known
theorem of Gabriel and Popescu (see, for example, [Pol) states essentially that any
Grothendieck category C is equivalent to a quotient category of the category Mod - A
of right modules over the endomorphism ring A of a generator U € C. There are
also Gabriel-Popescu type theorems for a set of generators.

Theorem 7.4 ([Me, TENT]). Let C be a Grothendieck category. Assume that A
is a full subcategory of C such that Ob A forms a set of generators of C. Then
there exist a localizing subcategory N' C Mod- A and an equivalence of categories
C = QMod,/(A).

Combining this theorem with Proposition [[33] we obtain

Theorem 7.5. Let C be a Grothendieck category. Assume that it has a set of small
generators which are compact objects in the derived category D(C). Then the derived
category D(C) has a unique enhancement.

Now we can apply this result to the category of quasi-coherent sheaves on a
quasi-compact and separated scheme. We say that a quasi-compact and separated
scheme X has enough locally free sheaves if for any finitely presented sheaf F there
is an epimorphism £ — F with a locally free sheaf £ of finite type. In this case, the
set of all locally free sheaves of finite rank forms a set of generators of the abelian
category of quasi-coherent sheaves Qcoh X. This follows from a fact that in this
case every sheaf in Qcoh X is a filtering colimit of finitely presented Ox-modules
(see [EGAT], 6.9.12). Moreover, any locally free sheaf of finite rank is a compact
object in D(Qcoh X)), because the functor of global sections commutes with direct
sums for a quasi-compact and separated scheme (see [N2], Lemma 1.4, Ex.1.10).
It is also necesssary to mention that for a quasi-compact and separated scheme X
the category D(Qcoh X)) is equivalent to the category D(X)qeon of complexes of
Ox-modules with quasi-coherent cohomology ([BN], Cor.5.5). Thus, Theorem
implies the following corollary immediately.

Corollary 7.6. Let X be a quasi-compact and separated scheme that has enough
locally free sheaves. Then the derived category of quasi-coherent sheaves D(Qcoh X)
has a unique enhancement.

Remark 7.7. The statement is also true for a quasi-compact and semi-separated
scheme in the definition of [TT], B.7, because the proofs of Corollary 5.5 in [BN]
and Lemma 1.4 in [N2] can be applied for a semi-separated scheme directly.

For a quasi-projective schemes by Serre’s theorem we have a precise description
of the category of quasi-coherent sheaves as a quotient category. Let X be a quasi-
projective scheme. Then it is an open subscheme of a projective scheme X C P".
Denote by A the following Z-graded algebra:

A=PHX,0%(n)).

We can consider the abelian category of all graded A-modules Gr(A). This category
has a Serre subcategory of torsions modules Tors(A). Recall that a module M is
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called torsion if for any element x € M one has zA>, = 0 for some p. Denote by
QGr(A) the quotient category Gr(A)/ Tors(A).

With the graded algebra A one can associate a Z-category A, objects of which
are Z and morphisms Hom 4(i, j) = A7~% so that the composition in A comes from
the multiplication in A. It is clear that the categories Gr(A), Tors(A), and QGr(A)
are equivalent to Mod - A, Tors(A), and QMod(.A), respectively.

The well-known Serre theorem gives us an equivalence between the category
of quasi-coherent sheaves Qcoh X on X and the quotient category QGr(4) =
QMod(A) (see [Sel [EGA2]). On the other hand, the category of quasi-coherent
sheaves Qcoh X on X is equivalent to the quotient of the category Qcoh X by
the subcategory of quasi-coherent sheaves with support on the complement X\ X
([Ga]). Therefore, the category Qcoh X is equivalent to the quotient of the cate-
gory Gr(A) = Mod - A by the localizing subcategory of I-torsion modules Torsy(A),
where I is a homogenous ideal such that the support of the subscheme Proj A/I C
X is exactly X\ X. More precisely, a graded A-module M is called I-torsion if

M=I;(M)= oliQnHomA(A/I”,M).

In addition, the free modules h¥ map to the corresponding line bundles O(3)|x
which are compact objects in D(Qcoh X).

Corollary 7.8. The derived category of quasi-coherent sheaves D(Qcoh X) on a
quasi-projective scheme X has a unique enhancement.

Now let us consider the subcategory of compact objects D(Qcoh X)¢. It is well
known that the subcategory of compact objects on any quasi-compact and quasi-
separated scheme coincides with the subcategory of perfect complexes (see [N2|
BvB]).

Theorem 7.9. The triangulated category of perfect complexes Perf(X) on a quasi-
projective scheme X has a unique enhancement.

Proof. To apply Theorem 2.8 for the subcategory of compact objects Perf(X) =
D(Qcoh X)¢ we need to show that the corresponding localizing subcategory
D;(Gr(A)) of all complexes, cohomologies of which are I-torsion modules, is com-
pactly generated.

The functor It : Gr(A) — Torsy(A) has a right-derived functor RI7 : D(Gr(A))
— D(Torsy(A)) via h-injective resolutions, i.e., complexes of modules Z such that
Hom(A,Z) = 0 in the homotopy category of graded A-modules for any acyclic
complex A (see [Sp] Th.C, or [KS] Ch.14 for details).

It is known that the canonical functor i : D(Torsy(A)) — D(Gr(A)) is fully faith-
ful and realizes an equivalence of D(Torsy(A)) with the full subcategory D;(Gr(A)).
(This is proved for Noetherian rings, for example, in [Li], Cor 3.2.1.) To prove
this fact it is sufficient to show that for any C° € D;(Gr(A4)) the natural map
iRI7(C") — C" is an isomorphism. Since the functor RI7 is bounded for Noe-
therian schemes ([Li], Cor. 3.1.4), by the usual “way out” argument ([Hal, §7) it
is sufficient to check the isomorphism ¢RI 7(M) — M only for I-torsion modules
M € Torsy(A). But for the I-torsion module M we have RITM 2= I'T M, because
RITM 2 MK(t1)®- - @K (tm), where (t1,...,ty) is a sequence in A, generating
the ideal I and K(t;) := {A — A4, } (Prop. 3.1.2 in [Li]). Now the corollary follows
from the lemma
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Lemma 7.10. The subcategory Dy(Gr(A)) C D(Gr(A)) is compactly generated.

Proof. By definition it is sufficient to show that for any C* € D;(Gr(A)) there is a
perfect complex P from D;(Gr(A)) and a nonzero morphism from P to C".

Since there is an equivalence D(Tors;(A)) = D;(Gr(A)) we can assume that
the object C" is a complex of I-torsion modules. Consider a nontrivial cohomology
of C". Assume for simplicity that it is the Oth cohomology H°(C") # 0. Let us
consider a nontrivial map from A(k) — H°(C") for some k € Z and lift it to a
nontrivial map f : A(k) — Z°(C") = Ker dy. Thus the corresponding morphism f:
A(k) — Z°(C") — C" is nontrivial in the derived category, and the image of f is an
I-torsion module. Let us cover the kernel Ker f by a free module T' = @?_, A(k;),
and consider the Koszul complex

K= {0 — det(T(—k)) (k) —> --- —> (A2T(—k))(k) — T —> A(k) —> 0}.

The cohomologies of the Koszul complex are [I-torsion modules; hence K €
D;(Gr(A)). On the other hand it is perfect. Finally the map f can be factor-
ized as A(k) — K' — Im f < Z°(C") — C". Since f is not trivial, the morphism
K — C" is also nontrivial. Therefore, the subcategory D;(Gr(A)) is compactly
generated. (I

Thus, applying Theorem 2.8 we obtain the required statement. O

8. BOUNDED DERIVED CATEGORIES OF COHERENT SHEAVES

Let as above A be a small category which we consider as a DG category. Let
D(A) be the derived category of DG A-modules and L be a localizing subcategory in
D(A) which is generated by objects compact in D(A). Consider again the quotient
functor 7 : D(A) — D(A)/L. By Neeman’s theorem [LZ]] the objects w(hY) €
D(A)/L are compact for all Y,Z € A. As above we assume that the following
condition holds:

for every Y, Z € A we have Hom(7w(hY), n(h%)[i]) = 0 when i < 0.
In this section we are going to talk about bounded derived categories of coherent

sheaves. To work with these categories we introduce a notion of a triangulated
subcategory of bounded and coherent objects for a general triangulated category.

Definition 8.1. Let 7 be a triangulated category that admits arbitrary direct
sums. Let S C T° be a set of compact generators of the category 7. We say that
an object M € T is compactly approximated if

a) there is m € Z such that for any Y € S we have Hom(Y, M[i]) = 0 when
< m;
b) for any k € Z there is a morphism ¢y : P, — M from a compact object
Py, € T¢ such that for every Y € S the canonical map
Hom(Y, Px[i]) — Hom(Y, Mi])
is an isomorphism when ¢ > k.
We denote by 7 the full subcategory of compactly approximated objects.
Remark 8.2. This definition depends on a set of compact generators S. In our

applications this set is fixed by a construction and gives a usual bounded derived
category of coherent sheaves as we see below (see Proposition [B0]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



888 VALERY A. LUNTS AND DMITRI O. ORLOV

Remark 8.3. By Remark[[.ITlthe set S classically generates the category of compact
objects T¢. Hence any compact object P is a direct summand of a finite extension
of finite direct sums of objects of the form Y[i], where Y € S. This implies that if
we fix a compactly approximated object M and a compact object P, then for any
m € Z there is an s € Z such that for any k < s the morphism

Hom(P, Py[i]) — Hom(P, M[i])
induced by ¢y : Pr — M is an isomorphism when ¢ > m.
This remark implies the following lemma.

Lemma 8.4. The property b) of Definition Bl holds if and only if M is isomorphic
to hocolig Py, where Py — P_1 — --- is a sequence of morphisms of compact

objects such that for every Y € S the canonical map Hom(Y, Py[i]) = Hom(Y, Ps[i])
is an tsomorphism when © > k > s.

Proof. < If M = hocolig Py, then the morphisms ¢y : P, — M satisfy property
b) of Definition Bl because Hom(Y, Py [i]) = Hom(Y, M[i]) for any i > k.

= By Remark for the map ¢¢ : Py — M we can find k; < 0 and a map
ug : Po — Pj, such that ¢, uo = po. Moreover, there are isomorphisms

Hom(Y, Py[i]) — Hom(Y, Py, [i]) — Hom(Y, M[i])

for any 7 > 0. Taking ¢y, : Py, = M we can find ko < k; and a map u; : Py, — P,
such that ¢i,u1 = pg,. Repeating this procedure we get a sequence of morphisms
{ui : Py, = Py, }ien that satisfies the condition of the lemma. Now we can take
M = hocolig Py,. The maps ¢y, induce a map ¢ : M’ — M. Tt is easy to see that
Hom(Y, M'[i]) = Hom(Y, M[i]) under ¢ for any i € Z and any Y € S C T°. Since
S is a set of compact generators the map ¢ is an isomorphism. O

Lemma 8.5. In the notation as above, the compactly approximated objects T*
form a triangulated subcategory. In addition, if all objects Z € S satisfy property
a) of Definition Bl (with Z = M ) the subcategory T* contains the subcategory of
compact objects TC.

Proof. It is evident that any shift M[i] of a compactly approximated object is
compactly approximated too. It is also easy to see that a cone C(f) of a map f :
M — N of two compactly approximated objects satisfies property a) of Definition
B

Now we need to show that the cone C(f) satisfies property b) of this definition.
Let us fix k € Z and consider a map @y, : Py — M from Definition Now take a
sufficiently negative m < k and a morphism ,, : @, — N from a compact object
Q. € T€ as in Definition Bl such that the canonical map

Hom(Py, Qm[i]) — Hom(Py, NTi)

is an isomorphism when ¢ > m. It exists by Remark 83l The morphism f: M — N
induces a morphism from Py to N that can be uniquely lifted to a map [’ : P, —
Q- Now morphisms ¢y and v, induce a map Xy from the compact object C(f')
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to the object C(f):
f/

Py Qm C(f) —— F[l]
Sakl wml Xk J/gak[l]
M-t N C(f) —— ML)

The 5-Lemma gives us isomorphisms
Hom(Y, C(f")[i]) — Hom(Y, C(f)[i])

for any Y € S and ¢ > k. Hence, property b) of Definition [R1] holds for the object
C(f) too.

If a compact object satisfies property a), then it is compactly approximated
because it satisfies property b) with ¢ being the identity morphism. Therefore,
all objects Y € S belong to 7°*. Since S classically generates the subcategory of
compact objects, the subcategory 7 contains 7 ¢, because property a) obviously
extends to direct summands. (]

Let A be a small category which we consider as a DG category. Let D(A) be
the derived category of DG A-modules and L be a localizing subcategory in D(A),
generated by compact objects L¢ = D(A)¢ N L. Consider the quotient functor
7 : D(A) — D(A)/L. By Theorem [[.2T] the objects w(hY) € D(A)/L are compact
for all Y, Z € A. We assume that the following condition holds:

for every Y, Z € A we have Hom(7w(hY), n(h%)[i]) = 0 when i < 0.

The main aim of this section is to show that the triangulated subcategory of
compactly approximated objects (D(A)/L)¢® with respect to the set of compact
generators m(hY), Y € A also has a unique enhancement.

Let D be an enhancement of this category; i.e., D is a pretriangulated DG
category and € : (D(A)/L)°® = H(D) is an equivalence of triangulated categories.

Denote by C C D the full DG subcategory which consists of all objects that
belong to €((D(A)/L)¢). (By Lemma B35l (D(A)/L)¢ C (D(A)/L)¢*.) The equiv-
alence € induces an equivalence € : (D(A)/L)¢ = H°(C). Thus we can apply the
construction from Section [l

As in Section [] denote by B € C C D the full DG subcategory with the set of
objects {em(hY)}yea. By the construction in Section H formulas ([2) and (@3
give a quasi-functor

p:SF(A) — SF(B)
and the induced functor Fy = H°(p) : D(A) — D(B).

By Lemma the quasi-functor p : SF(A) — SF(B) can be factored through

the DG quotient SF(A)/LNSF(A), and we get a quasi-functor

p: SF(A)/LNSF(A) — SF(B)

such that the induced functor H%(p) : D(A)/L — D(B) is an equivalence by
Lemma [6.3

Denote by W C SF(A)/L N SF(A) the full DG subcategory which consists
of all objects that are compactly approximated in D(A)/L, i.e., that belong to
(D(A)/L)°*. Denote by W' C SF(B) the essential image of W under the quasi-
functor p. It is evident that the DG subcategory W C SF(B) consists of all com-
pactly approximated objects D(B)¢® (compactly approximated with respect to B).
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As a consequence, we obtain a quasi-equivalence
(8.1) prW W
between DG categories W and W’ that are natural enhancements of (D(A)/L)*
and D(B), respectively.
Now we consider the canonical DG functor @ : D — Mod- B defined by the rule
&(X)(B) =Homp(B,X), where Be B,X €D.

In composition with the DG quotient functor Mod-B — Mod-B/Ac(B) it induces
a quasi-functor

¢:D— SF(B).
It remains to show that ¢ induces a quasi-equivalence between D and W'. By
Proposition [[T6], the functor HY(¢) realizes an equivalence between subcategories
of compact objects H(C) = (D(A)/L)¢ and D(B)¢. Moreover, by construction, we
have isomorphisms

(8.2) Hom o (p) (B, X ) = Homps) (H"(¢) B, H(¢)X)

for any B € Band X € D.
Let us denote by @ the composition of functors

(8.3) Q : (D(A)/L) - HD) 9 pB) "2 p(ay/rL.
Now we prove the following lemma.

Lemma 8.6. The functor Q induces a functor Q' : (D(A)/L)** — (D(A)/L),
which is fully faithful.

Proof. As we know, Q(m(hY)) = 7(hY) for each Y € A and Q gives an autoequiva-
lence of the subcategory of compact objects (D(A)/L)°. Moreover, the isomorphism
[B2) gives an isomorphism

Hom(m(hY), X) =5 Hom(Q(x(hY)), Q(X))

for every Y € A and every X € (D(A)/L)°*. Since the subcategory (D(A)/L)¢
is the smallest triangulated subcategory which contains 7(hY) and which is closed
under direct summands we have the same isomorphism

Hom(P, X) — Hom(Q(P),Q(X))

for any compact object P € (D(A)/L)¢. This immediately implies that any object
Q(X) is compactly approximated for each X € (D(A)/L)°*. Hence, we obtain a
functor

Q'+ (D(A)/L)™ = (D(A)/L)".

Let us show that @ (and consequently @) is fully faithful. Let X and X’ be two
objects of (D(A)/L)**. Let m be an integer such that Hom(7w(hY), X'[i]) = 0, for
all Y € A when i < m.

Fix some k < m and consider a map ¢y : Pr — X as in Definition BT from a
compact object Py such that for every 7(hY) the canonical map

Hom(nw(hY), Py[i]) — Hom(n(hY), X[i])

is an isomorphism when i > k. Denote by C} a cone of ¢j. Consider the right adjoint
functor p : D(A)/L — D(A) to the functor w. For any object M € D(A)/L we
have

Hom(hY, u(M)[i]) = Hom(n(hY), M[i]).
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Hence the cohomologies H?(u(X")) and H*(uQ(X')) are trivial when i < m.
By the same reason the cohomologies H?(u(Cy)) and H? (uQ(Cy)) are trivial
when j > k. We know that the functor y is fully faithful. Since k¥ < m we obtain
Hom(Cy, X") = Hom(u(Cy), u(X")) = 0,

(84) Hom(Cy[~1], X') = Hom(u(Ck)[~1], p(X")) = 0.

This implies that the canonical map
Hom(X, X’) — Hom(Py, X')

is an isomorphism. For Q(C}%) and Q(X’) there is a similar vanishing as in (84)
and we get an isomorphism

Hom(Q(X), Q(X")) — Hom(Q(Px), Q(X")).

Thus we have a commutative diagram

Hom(X, X’) 2, Hom(Q(X), Q(X"))

Hom(P;, X) —— Hom(Q(Py), Q(X")),

where three arrows are isomorphisms. Hence the upper arrow is also an isomor-
phism. This implies that the functor @ is fully faithful. O

Finally, we have to show that the corresponding functor @’ is essentially surjec-
tive.

Lemma 8.7. In the notation as above the functor Q" : (D(A)/L)** — (D(A)/L)**
is essentially surjective.

Proof. Let X € (D(A)/L)* be a compactly approximated object. Suppose that it
is bounded by m € Z as in Definition[8Ila) and that X is isomorphic to hocoliQ Py,
where

PP, P, P —

is a sequence of morphisms of compact objects such that for every Y € S the
canonical map Hom(Y, P.[i]) = Hom(Y, Ps[i]) is an isomorphism when i > k > s
as in Lemma [84]

The functor @’ induces an autoequivalence on the subcategory of compact ob-
jects. Hence there are a sequence of compact objects {u; : P, — P’, ;}ien and
isomorphisms t; : P_; = Q'(P’,) such that Q'(u})t; = t;11u,;. Consider an object
X = hocolim P/ and denote by ¢}, : P, — X’ the respective morphisms. The
object X’ is bounded by the same m € Z as X. By Lemma B4l it is compactly
approximated. Now we have to prove that Q'(X’) = X.

Since X = hocolim Py, = hocolim @’(Py) we have a morphism tx : X — Q'(X’)
which is induced by Q'(y},). For any k¥ <« 0 and ¢ > k there is a commutative
diagram

Hom(m(hY), Pli])  —=—  Hom(r(hY), X[i])

L |

Hom(Q'm (h¥), Q' (F})[i]) —— Hom(Q'm(hY), Q'(X")]i]).
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This implies that the right vertical arrow is an isomorphism for any i. Hence the
morphism tx : X — Q'(X’) is an isomorphism since the objects 7(hY) form a set
of compact generators. O

Thus we obtain the following theorem.

Theorem 8.8. Let A be a small category which we consider as a DG category
and L C D(A) be a localizing subcategory, which is generated by compact objects
L¢ = D(A)* N L. Assume that for the quotient functor m : D(A) — D(A)/L the
following condition holds:

for every Y, Z € A we have Hom(w(hY), 7(h%)[i]) = 0 when i < 0.

Then the category of compactly approzimated objects (D(A)/L)¢® has a unique en-
hancement.

Proof. Since the image of the functor @) belongs to the subcategory of compactly
approximated objects the quasi-functor ¢ : D — SF(B) induces a quasi-functor
¢ : D — W, where W C SF(B) as above is the DG subcategory which consists
of all compactly approximated objects D(B)°®. By Lemmas and [B7 the functor
()’ is an equivalence. Hence the quasi-functor ¢ is a quasi-equivalence as well. On
the other hand, we showed above that there is a quasi-equivalence p® : W — W',
where W C SF(A)/L N SF(A) is the full DG subcategory, which consists of all
compactly approximated objects in D(A)/L. The composition

(8.5) (¢°) ™1 p W — D

gives a quasi-equivalence between these two different enhancements of (D(A)/L)%.
O

Let X be a Noetherian scheme. As above we say that X has enough locally free
sheaves if for any coherent sheaf F there is a locally free sheaf of finite type £ and
an epimorphism £ — F. For example, any quasi-projective scheme satisfies these
conditions.

Proposition 8.9. Let X be a Noetherian scheme that has enough locally free
sheaves. Let S = {&;}icr be a set of locally free sheaves of finite type such that for
any coherent sheaf F there is an epimorphism from a finite direct sum EB;L:I &
to F. Then the set S is a set of compact generators of D(Qcoh X) and an object
M € D(Qcoh X) is compactly approxzimated (with respect to S) if and only if it is
a cohomologically bounded complex with coherent cohomologies. Thus the triangu-
lated subcategory of compactly approzimated objects D(Qcoh X)* is equivalent to

the bounded category of coherent sheaves D®(coh X) =2 D?(Qcoh X)con-

First of all, it is known that for any Noetherian scheme X the natural functor
from the bounded derived category of coherent sheaves D’(coh X) to D(Qcoh X)
is fully faithful and establishes an equivalence of D®(coh X) with the subcategory
D®(Qcoh X)con of cohomologically bounded complexes with coherent cohomologies.
To prove Proposition B9 we will need the following lemmas.

Lemma 8.10 ([T'T], B.11, B.8). Let X be a Noetherian scheme. Then there is
an integer N such that for all kK > N and all quasi-coherent sheaves F we have
Extk(S,.F) = 0, where & is a locally free sheaf of finite type.
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Lemma 8.11 ([TT], 2.3.1 e), 2.2.8). Let X be a scheme as in Proposition [B9
Then for any M € D*(Qcoh X)con there is a bounded above complex of locally free
sheaves of finite type P with a quasi-isomorphism P° = M.

Lemma 8.12. Let a scheme X and a set of locally free sheaves of finite type
S = {&;}ier be as in Proposition BI. Let M € D(Qcoh X) be a complex of quasi-
coherent sheaves and H? (M) # 0 for some j € Z. Then there is a sheaf & € S
such that Hom(&;, M[j]) # 0.

Proof. Let us consider the stupid truncation o>;M. We have an epimorphism
Hi(os;M) — H’(M). Any quasi-coherent sheaf on a Noetherian scheme is a di-
rect limit of its coherent subsheaves. Therefore we can find a coherent subsheaf
F C H'(o>;M) such that the compositon map to H7(M) is nontrivial. By as-
sumption any coherent sheaf can be covered by a direct sum of & € S. Hence, we
can find a morphism & — H7(o>;M) such that the composition with the map to
H7(M) is nontrivial. This map induces a map

& — H (05, M) — o>;M[j] — M[j],
which is nontrivial, because it is nontrivial on the cohomologies. O

Proof of Proposition B9 < Any (cohomologically) bounded complex satisfies
property a) of Definition Bl By Lemma BIT] for any M € D?(Qcoh X )¢op there
is a bounded above resolution of locally free sheaves of finite type P~ = M. To
construct an approximation ¢g : P, — M we can consider a stupid truncation
o> P for l < (k— N), where N is an integer from Lemma[8T0l The object o> P
is a perfect complex and the canonical map ¢y, : 0> P° — M satisfies the property
b). Indeed, the cone Cj of this map ¢y, is a cohomologically bounded complex such
that H7(C}) are trivial when j > [. Lemma BI0 implies that Hom(&;, Cx[m]) = 0
for all & € S when m > k. Therefore, any bounded complex of coherent sheaves is
compactly approximated.

= Let M € D(Qcoh X) be a compactly approximated object. By Lemma BT12]
property a) implies that M is cohomologically bounded below. On the other hand,
property b) gives us that M is cohomologically bounded above. Indeed, by Lemma
BI2 a cone of a map ¢, : Py — M is bounded above and the object Py is
cohomologically bounded as a perfect complex. Moreover, Lemma [B12]implies that
all cohomologies H™(C}) of the cone Cj of the map ¢y are trivial when m > k.
Hence, for sufficiently negative k, we have that nontrivial cohomologies of M are
isomorphic to the cohomologies of P;. Therefore, they are coherent sheaves and M
is a cohomologically bounded complex with coherent cohomologies. O

Theorem 8.13. The bounded derived category of coherent sheaves D’(coh X) on
a quasi-projective scheme X has a unique enhancement.

Proof. Let X be a quasi-projective scheme. Then it is an open subscheme of a
projective scheme X C P™. Denote by A the following Z-graded algebra:

A= H (X, 0x(n)).

With the graded algebra A one can associate a Z-category A, objects of which
are Z and Hom (%, j) = A7~* so that the composition in A comes from the multi-
plication in A.
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It was shown in the previous Section [[ that the category Qcoh X is equivalent
to a quotient of the category Gr(A) = Mod-.A by the localizing subcategory of
I-torsion sheaves Torsy(A), where I is a homogenous ideal such that the support
of the subscheme Proj A/I C X is exactly X\X. Moreover, by Lemma [7.2] we
also know that the derived category D(Qcoh X) is equivalent to the quotient of
D(A) by the localizing subcategoy D;(A) C D(A) that consists of all objects,
cohomologies of which belong to Tors;(.A). In addition, the free modules h¥ map
to the corresponding line bundles O(i)|x which are compact objects in D(Qcoh X).

By Lemma[Z.T0 the subcategory Dj(.A) is compactly generated. Hence, Theorem
BRimplies that the bounded derived category of coherent sheaves D®(coh X ), which
is equivalent to the subcategory of compactly approximated objects in D(Qcoh X),
has a unique enhancement. O

9. STRONG UNIQUENESS AND FULLY FAITHFUL FUNCTORS

In this section we prove a strong uniqueness for bounded derived categories of
coherent sheaves and categories of perfect complexes on projective schemes. We
recall the notion of an ample sequence in an abelian category introduced in [O1].

Definition 9.1. Let 2 be a k-linear abelian category. Let {P;};cz be a sequence
of objects of 2. We say that this sequence is ample if for every object C' € 2 there
exists IV such that for all i < N the following conditions hold:

a) there is an epimorphism Pi@"i — C' for some n; € N;
b) Ext’/(P;,C) = 0 for any j # 0;
¢) Hom(C, P;) = 0.

Proposition 9.2. Let X C PN be a projective scheme such that the mazimal
torsion subsheaf To(Ox) C Ox of dimension 0 is trivial. Then the sequence
{Ox (i) }iez is ample in the abelian category of coherent sheaves coh X.

Proof. Tt is a classical result of Serre [Se] that for any coherent sheaf G on a pro-
jective scheme X and for sufficiently large m > 0 the sheaf G(m) is generated by
a finite number of global sections and H’(X,G(m)) = 0 for j > 0. This implies a)
and b) of Definition

Since any coherent sheaf G on X is covered by a O(k)®" for some k € Z, it is
sufficient to show that H°(X, Ox(m)) = for m < 0. But for m < 0,

H°(X,0x(m)) = H (PY,0x(m)) = H* (P, ExtPi (Ox, wpn ) (—m)) = 0,
because by local duality the sheaf Extl (Ox,wpn) is trivial when Ty(Ox) is trivial.

O

Let 2 be an abelian category with an ample sequence { P;}. Denote by D?(2() the
bounded derived category of . Let us consider the full subcategory j : P < D?(2)
such that ObP := {P; | i € Z}. The following proposition is proved in [O1 [02].

Proposition 9.3. Let F : D*(21) = D*(2l) be an autoequivalence. Suppose there

exists an isomorphism of functors 0p : j = F - j, where j is the natural embedding
of P:={P; | i € Z} to D*(A). Then it can be extended to an isomorphism id = F
on the whole D°(2).

We can extend this proposition to the case of exact categories. Let € be an exact
category. Assume that it is a full exact subcategory of an abelian category 2, i.e.,
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that & C 2 is closed under extensions in 2. We also assume that an additional
property holds:

(EPI) amap f in € is an admissible epimorphism if and
only if it is an epimorphism in 2.

Now we define an ample sequence in €.

Definition 9.4. Let & be a k-linear exact category. Let {P;};cz be a sequence of
objects of €. We say that the sequence {P;};cz is ample in € if there is an exact
embedding € C 2 in an abelian category 2l such that the condition (EPI) holds
and {P;};cz is ample in 2.

Starting with an exact category & we can construct a derived category D*(€). A
complex E" is called acyclic if for any n the differential d,, : F,, — E, 41 factors as

E, 2z, = E,+1, where p,, is a cokernel for d,,_; and an admissible epimorphism
and 4, is a kernel for d, 11 and an admissible monomorphism. We define a derived
category D*(€) as a quotient of the homotopy category H*(€) by the triangulated
subcategory of acyclic complexes.

Remark 9.5. If € C A is an exact subcategory of an abelian category 2 such that
the condition (EPI) holds and for any C' € 2 there is an epimorphism £ — C' from
E € €, then the canonical functor D~ (&) — D~ (2) is an equivalence and hence
the functor D*(€) — D¥(2A) is fully faithful ([K2]). This follows from the fact that
for any bounded above complex C" over 2 with cohomologies from & there is a
quasi-isomorphism E° — C", where E" is a bounded above complex over €.

Proposition can be generalized and extended to the case of exact categories.

Proposition 9.6. Let € be an exact category possessing an ample sequence {P;}.
Let F: D*(&) 5 DY(€) be an autoequivalence. Suppose there is an isomorphism of
functors 0p : §j = F - j, where ObP = {P; | i € Z} and j : P — D"(&) is a natural
full embedding. Then it can be extended to an isomorphism id = F on the whole
Db(¢).

Proof. A proof of this proposition is essentially the same as the proof of Proposition
and it is given in Appendix [Bl O

Remark 9.7. Our main example of an exact category is the category of locally free
sheaves of finite type Loc X on a projective scheme X. In this case the exact em-
bedding Loc X C coh X satisfies condition (EPI) and the bounded derived category
D®(Loc X) is equivalent to the category of perfect complexes Perf X C Db(coh X).
If the maximal torsion subsheaf Ty(Ox) C Ox of dimension 0 is trivial, then the
sequence {Ox (i) };cz is an ample sequence in Loc X according to Definition

Theorem 9.8. Let € be an exact category with an ample sequence {P;}icz and
j: P < DY&) be a full subcategory with ObP := {P; | i € Z}. Assume that there
is an equivalence u : D*(€) = (D(P)/L)¢ (or with (D(P)/L)*), where L C D(P)
is a localizing subcategory that is generated by compact objects L¢ = LN D(P)¢, such
that u-j = 7-h® on P. Then the category D*(&) has a strongly unique enhancement.

Proof. (1) Let € be a pretriangulated DG category and N : (D(P)/L)¢ = H°(E)
be an equivalence. By Theorem there is a quasi-equivalence N : V — £, where
YV C SF(P)/LNSF(P) is the full DG subcategory which consists of all compact
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objects (D(P)/L)¢. Moreover, we know that there is an isomorphism of functors
0:H'(N)-7-h* = N-7-h® from P to H(E).

Consider the composition F = u~*H(N)~!Nu from D¥(&) to itself. There is
an isomorphism j — F - j on the subcategory P. Hence we can apply Proposition
and obtain that the functor F' is isomorphic to the identity functor on the
whole D®(&). Therefore, the functors H°(AN) and N are isomorphic. Thus, any
equivalence N : (D(P)/L)¢ = H°(E) can be lifted to a quasi-equivalence N, and
the category D(€) = (D(P)/L) has strongly unique enhancement.

(2) Denote by W C SF(P)/LNSF(P) the full DG subcategory which consists
of all objects that are compactly approximated in D(P)/L, i.e., that belong to
(D(P)/L)e".

Let D be a pretriangulated DG category and € : (D(P)/L)*® = H°(D) be
an equivalence. In the proof of Theorem R.§ we constructed a quasi-equivalence
(¢°@)~1.p : W — D. Moreover, by construction, the functors H°((¢°*) =t p@)wh®
and erh® from P to H°(D) are isomorphic. Thus, for the composition F =
uLHO((p*) =1 - ¢°®) - €u we have an isomorphism j = F - j on the subcategory
‘P. Applying Proposition we obtain that the functor F' is isomorphic to the
identity functor on the whole D®(&). Therefore, the functors H°((¢)~1 - p@) and
€ are isomorphic. Thus any equivalence € : (D(P)/L)°* = H°(D) can be lifted to
a quasi-equivalence. (I

This theorem immediately implies the following corollary.

Theorem 9.9. Let X be a projective scheme over k such that the maximal torsion
subsheaf To(Ox) C Ox of dimension 0 is trivial. Then the triangulated categories
Perf(X) and D®(coh X) have strongly unique enhancements.

Proof. Let X be a projective scheme. Denote by A the graded algebra A =
@, H°(X,0x(n)). To the graded algebra A we can attach a Z-category A, ob-
jects of which are Z and Hom 4(i, j) = A7~% with a natural composition law.

It was explained in Section [ that the category Qcoh X is equivalent to a quo-
tient of the category Mod-A = Gr(A) by the localizing subcategory of torsion
sheaves Tors(.A). Moreover, by Lemma[l2] we also know that the derived category
D(Qcoh X) is equivalent to the quotient D(A)/Dyors(A), where Diors(A) C D(A)
is a localizing subcategory that consists of all objects, cohomologies of which belong
to Tors(A). In addition, the free modules h¥ map to the corresponding line bun-
dles Ox (i) which are compact objects in D(Qcoh X). Lemma [ZT0 gives us that the
subcategory Diors(A) is compactly generated. The category Perf(X) = D?(Loc X)
(Remark [@7) is equivalent to the category (D(A)/Diors(A))¢ and by Proposition
the bounded derived category of coherent sheaves D’(coh X) is equivalent to
the triangulated category of compactly approximated objects (D(A)/Dyops(A))* =
D(Qcoh X )@, These equivalences are isomorphic to the identity on the full sub-
category P := {Ox(i)}iez. By Remark [0 (resp., Prop. [@2) the sequence P :=
{Ox(i)}iez is ample in Loc X (resp., coh X) on a projective scheme with To(Ox) =
0. Hence we can apply Theorem and obtain that Perf(X) (resp., D’(coh X))
has strongly unique enhancement. (I

Let X be a quasi-compact and quasi-separated scheme. Define a DG enhance-
ment Dy, (Qcoh X) of the derived category D(Qcoh X) as the quotient Cyq(Qcoh X)/
Acgg(Qcoh X), where Cyq(Qcoh X)) is the DG category of unbounded complexes
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over Qcoh X and Acgy(Qcoh X)) is the DG subcategory of unbounded acyclic com-
plexes. Thus the DG category Dgy(Qcoh X) is an enhancement of the derived
category D(Qcoh X). There is a theorem of Bertrand Toén which says that the
functors between DG derived categories are represented by objects on the product.

Theorem 9.10 ([To], Th.8.9). Let X and Y be quasi-compact and separated
schemes over a field k. Then we have a canonical quasi-equivalence

Dyy(Qeoh(X x Y)) — RHom(Day(Qcoh X), Dyy(Qeoh Y)),

where RHom, denotes the DG category formed by the direct sums preserving quasi-
functors (we say that a quasi-functor preserves direct sums if its homotopy functor

does).

Remark 9.11. In other words this theorem tells us that for any quasi-functor F
from Dgy(Qcoh X) to Dyy(QeohY) that preserves direct sums, the functor H°(F)
can be represented by an object on the product X x Y7 i.e., it is isomorphic to a
functor of the form

L
De- (=) = Rp2: (€ @ pi(-)),
where £ is a complex of quasi-coherent sheaves on the product X x Y, and this
representation is unique up to isomorphism in D(Qcoh(X xY)) (see [To], Cor.8.12).

Combining Theorem [0.I0] with the uniqueness of enhancement for the derived
category of quasi-coherent sheaves on a quasi-compact and quasi-separated scheme
with enough locally free sheaves we obtain the following corollary.

Corollary 9.12. Let X and Y be quasi-compact separated schemes over a field k.
Assume that X has enough locally free sheaves. Let F': D(Qcoh X) — D(QcohY')
be a fully faithful functor that commutes with direct sums. Then there is an object
E € D(Qcoh(X x Y)) such that the functor ®g- is fully faithful and $g (C") =
F(C") for any C" € D(Qcoh X).

Proof. We know that by Corollary [[.6] D(Qcoh X) has a unique enhancement.
Moreover, by Theorem [4] and Lemma the category D(Qcoh X) can be repre-
sented as a quotient D(.A)/L, where A is a small category formed by a set of locally
free sheaves of finite type and L is a localizing subcategory in D(A). Thus, the en-
hancement Dgy(Qcoh X) is equivalent to the enhancement Mod- A/L. Under the
quotient functor, all objects of the form hY go to locally free sheaves of finite type
and, hence, they are compact in D(Qcoh X). Now we can apply Theorem [5.4] and
obtain a quasi-functor F from Dg,(Qcoh X) to Dyy(QcohY) such that HO(F) is
fully faithful and H°(F)(C") = F(C") for any C* € D(Qcoh X).

By construction, the functor H°(F) realizes an equivalence of D(Qcoh X) with
a subcategory in D(QcohY) that is the essential image of the functor F. The inclu-
sion of this subcategory in D(QcohY’) commutes with direct sums by assumption.
Therefore, the functor H°(F) commutes with direct sums and by Theorem it
has the form ®¢- for some £ € D(Qcoh(X x Y)). O

Note that under the assumptions in the corollary above the functor F' has a right
adjoint functor by the Brown representability theorem (see [N3], Thm. 8.4.4).

Corollary 9.13. Let X be a quasi-projective scheme and Y be a quasi-compact
and separated scheme. Let K : Perf(X) — D(QcohY) be a fully faithful functor.
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Then there is an object £ € D(Qcoh(X x Y)) such that

(1) the functor ®g|pers(x) : Perf(X) — D(QcohY') is fully faithful and ®¢- (P")
= K(P) for any P € Perf(X);

(2) if X is projective with To(Ox ) = 0, then @g- |pere(x) = K;

(3) if K sends Perf(X) to Perf(Y), then the functor ®g. : D(Qcoh X) —
D(QcohY) is fully faithful and also sends Perf(X) to Perf(Y);

(4) if Y is Noetherian and K sends Perf(X) to D(QcohY )eon, then the object
& is isomorphic to an object of D®(coh(X x Y)).

Proof. Since X is a quasi-projective scheme it is an open subscheme of a projective
scheme X C P". We have a graded A algebra A = @, H(X,Ox(n)) and a
corresponding Z-category A, objects of which are Z and morphisms Hom 4 (i, j) =
Al

As was explained in Section [ the category D(Qcoh X)) is equivalent to the
quotient D(A)/Dy(A), where Dy(A) is a localizing subcategory of complexes with
I-torsion cohomologies (here I is an ideal such that the support of the subscheme
ProjA/I C X is exactly X\X). In addition, the free modules kY map to the
corresponding line bundles O(i)|x which are compact objects in D(Qcoh X)), and
Perf(X) = (D(A)/D;(A))C.

As we know (see Proposition [[I7) the DG categories Dg4(Qcoh X) and
D4g(Qecoh X)) are quasi-equivalent to the DG categories SF(Perf(X)) and
SF(Perf(Y)), respectively, and we denote by ¢x and ¢y the corresponding quasi-
functors. For shortness, denote by C the DG category Perf(Y) and by C’ the full
DG subcategory in SF(C) = Dgyy(QcohY’) which consists of all objects in the es-
sential image of H%(¢y ) K. The functor K induces an equivalence N : Perf(X) =
HO(C).

By Theorem there is a quasi-functor N : Per f(X) — C’ which is a quasi-
equivalence. It induces a quasi-equivalence N* : SF(Perf(X)) — SF(C’).

Let D be a DG subcategory D C SF(C) that contains C and C’. We denote by
J:C'=>DCSF(C)and Z:C — D C SF(C) the respective DG full embeddings.
We have the extension DG functor J* : SF(C') — SF(D) and the restriction DG
functor Z, : Mod-D — Mod-C, which induces a quasi-functor ¢, : SF(D) —
SF(C). Consider the composition of quasi-functors ¢, - J* - N* : SF(Per f(X)) —
SF(Perf(Y)). The functors H°(v,), H°(J*), and H°(N*) evidently commute with
direct sums. (Note that the right adjoint to the quasi-functor ¢, J* is the quasi-
functor ¢ : SF(C) — SF(C') which is induced by the DG functor @ : SF(C) —
Mod-C' given by the standard formula (M )(C’) = Homgz(c)(C’, M) for C" €
C', M eSF(C).

Thus, considering the compositions of quasi-functors (;5{,1 b T NF - px we
obtain a quasi-functor F from Dy, (Qcoh X) to Dyy(QcohY) that completes the
following commutative diagram:

Dyg(Qecoh X) Dag(QcohY)

ox ll [o3% ll
SF(Perf(X)) X SF(C) —L > SF(D) —“= SF(C) = SF(Perf(Y)).

~

The quasi-functor F commutes with direct sums and, hence, by Theorem the
functor HY(F) is isomorphic to ®¢- with £ € D(Qcoh(X x Y)).
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(1) The restriction of the quasi-functor ¢, 7* on C’ is isomorphic to the inclusion
C' — SF(C). This implies that the restriction ®¢- |pee(x) is fully faithful. Moreover,
by property (3) of Theorem there is an isomorphism H°(N)(P") = N(P") for
any P € Perf(X). Hence, &g (P) = K(P").

(3) If K sends Perf(X) to Perf(Y'), then we can take D = C. In this case, ¢, is
the identity, but H°(J*) is fully faithful by Proposition Therefore, H°(F) is
fully faithful and sends Perf(X) to Perf(Y).

(2) Let X be projective. We know by property (2) of Theorem [64] that there is
an isomorphism of functors 6 : HO(N) - 7+ h®* = N -7 - h*® from A to H°(C').

Consider the composition G = HY(N)~! - N from Perf(X) to itself. We have a
natural transformation from j = G - j on the subcategory h®(A) which coincides
with the full subcategory P := {Ox (i) }iez. Since X is projective with To(Ox) =0
the sequence {Ox (i) }icz is ample in Loc X. Hence we can apply Proposition
to Perf(X) and obtain that the functor G is isomorphic to the identity functor on
the whole Perf(X). Therefore, the functors H°(N') and N are isomorphic; i.e., the
functor K is isomorphic to the functor ®¢|pers(x)-

(4) Finally, we have to argue that the object £ is isomorphic to an object
from D’(coh(X x Y)) if Y is Noetherian and the functor ®¢- sends Perf(X) to
D®(QcohY)eon. It is well known that the canonmical functor DP(cohZ) —
D(Qcoh Z) is fully faithful and establishes an equivalence with the subcategory
D®(Qcoh Z)con of cohomologically bounded complexes with coherent cohomolo-
gies. Consider an inclusion i : X < PN. The composition of the inverse image
functor Li* and ®¢- gives a functor from D(QcohPY) to D(QcohY') which is rep-
resented by the object R(7,idy ). and sends Perf(PY) to D’(QcohY)eop. It is
sufficient to check that the object R(i,idy ).& belongs to D°(Qcoh(PY X Y))con-
The category D(Qcoh(PY x Y)) has a semi-orthogonal decomposition of the form
(O(=N)X D(QcohY),...,OKD(QcohY)). The components of R(7,idy).E" with
respect to this decomposition are isomorphic to O(—p) X ®¢- Li*(Qpx [p]).-

There is a similar decomposition (O(—N) X D%(cohY),...,O X D°(cohY)) for
the bounded category of coherent sheaves D®(coh(P x Y)). Since the objects
e Li* (Qpy [p]) belong to D?(Qcoh Y )eon, the object R(i,idy )€ is isomorphic to
an object of D?(coh(PV x Y)). Therefore, the object £ is also isomorphic to an
object of D?(coh(X x Y)). O

Let us consider the bounded derived category of coherent sheaves D°(coh X)
on a quasi-projective scheme X. Consider an exact functor F from D(coh X)
to a triangulated category 7 that admits arbitrary direct sums. We say that
the functor F' commutes with homotopy colimits if for any M~ € D®(coh X),
which is isomorphic in D(Qcoh X) to hocolig P, of perfect complexes P;, there

is an isomorphism F(M) = hocoligiF(Pi' ) in 7 that commutes with canonical
morphisms from F'(P;) for each i. Note that our functor F' is defined only on

D*(coh X) = D¥(Qcoh X )con C D(Qcoh X).

Corollary 9.14. Let X be a projective scheme with To(Ox) = 0 and Y be a
quasi-compact and separated scheme. Let K : D’(coh X) — D(QcohY') be a fully
faithful functor that commutes with homotopy colimits. Then there is an object
& € D(Qcoh(X x Y)) such that ®g-|pbcon x) = K.
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Proof. We can consider the restriction of the functor K on the subcategory of
perfect complexes Perf(X) € D?(Qcoh X)con = D®(coh X). By Corollary @13 there
is an object £ € D(Qcoh(X xY')) and an isomorphism of functors 6 : ®¢: |per(x) =
K|pers(x)- For any object M" € DP(coh X) there is a quasi-isomorphism P~ =
M-, where P is a bounded above complex of locally free sheaves of finite type
(see Lemma [RIT)). Hence, the object M is isomorphic to hocolig g o> P in
D(Qcoh X). By assumption, there is an isomorphism hocolim kK (ospP) = K(M)
in D(QcohY’). On the other hand, the functor ®¢- commutes with direct sums and
homotopy colimits. Therefore, there is an isomorphism 6y : ®g (M) = K(M")
that makes the following square

q)g-(O'ZkP') E— q)g(M)

szlz OMlz
K(o>pP) —— K(M')

commutative for any k.

Now we have to check that the restriction of ®¢. on D’(coh X) is fully faithful.
Let @ belong to Perf(X). Any morphism f : Q — M factors through o> P for
k < 0. Since the right and left squares in the following diagram

P (Q) — Pe-(05kP) —— Qe (M)

te? 921{2 QZ\/IJ/Z

KQ —— K(oskP) —— K(M)
commute, the outside square also commutes. Therefore, 657 - ®¢-(f) = K(f) - g
for any f: @Q — M. If now ®¢-(f) = 0, then K(f) =0 and f = 0, because K is
fully faithful. On the other hand, for any g : ®¢-(Q) — Pg- (M) we can consider
g =0y-g- 951 and take f : Q@ — M such that K(f) = ¢'. It is obvious now that
®¢.(f) = g. Thus, there are isomorphisms

Hom(Q, M) -5 Hom(®¢ (Q), De (M))

for any @ € Perf(X) and every M~ € D®(coh X).
The objects C" € D(Qcoh X) for which the natural map

Hom(C", M'[m]) — Hom(®¢-(C"), ®g- (M )[m])

is bijective for all m € Z form a triangulated subcategory in D(Qcoh X) which
contains Perf(X) and is closed under direct sums (since ®¢- commutes with direct
sums). Therefore, this subcategory coincides with the whole D(Qcoh X'). Thus, the
functor ®¢- | pe con x) is fully faithful and has the same essential image as K. Now we
can apply Proposition and extend the isomorphism 6 : ®¢- |pere(x) = K|pere(x)
to an isomorphism of the functors ®¢-|pv(con x) = K.

Remark 9.15. Notice that in the proof of the corollary we used only the fact that K
commutes with homotopy colimits of a special form hocolig; 0>, P and this implies

that K = ®¢-|po(eon x)- Thus, as a result, it commutes with all homotopy colimits.

Example 9.16. We say that the functor K : D?(coh X) — D(QcohY') is bounded
above by n € Z if H (K (F)) = 0 for all coherent sheaves F € coh X when i > n. If
the functor K is bounded above, then it commutes with homotopy colimits. Indeed,
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for any M' € D’(coh X) and a locally free resolution P° — M we have that the
map K (o>, P) — K(M'), when k < 0, is an isomorphism on cohomologies H* for
all @ > k + n. Therefore, hocolim K (o>, P) = K(M"). By the remark above, K
commutes with homotopy colimits.

Corollary 9.17. Let X be a projective scheme with To(Ox) = 0 and Y be a
Noetherian scheme. Let K : D’(coh X) — DP(cohY) be a fully faithful functor
that has a right adjoint K' : D’(cohY) — DP(coh X). Then there is an object
& € DP(coh(X x Y)) such that Pg-|pb(con x) =K.

Proof. To apply Corollary we need to check that the functor K commutes with
homotopy colimits. Following the example above it is sufficient to show that the
functor K is bounded above. First, we easily see that K is bounded above on the
sequence of line bundles {O(j)} ez, because by Beilinson’s theorem for any j > 0
(resp. j < —N) we have a left (resp. right) resolution of Ox(j) of the form

Vi ® Ox(=N) — -+ — V; ® Ox(—1) — Vo ® Ox,

where X < P¥ is a closed embedding and Vj is HO(PY,Q%(s + 7)) (resp. HY (PV,
Q%(s+7))) (see, for example, [OSS], Th.3.1.4).

Denote by n an integer such that H* (K (O(j)) = 0 for all j when i > n. If F €
coh X is a coherent sheaf that has a highest nontrivial cohomology H™ (K (F)) =
G # 0 with m > n, then we can construct a sequence of coherent sheaves {F, €
coh X },>¢ such that H™?(K(F,)) = G. The construction goes by induction with
base Fo = F and F,1 is the kernel of some epimorphism from O(—k,)®"» to F,. It
is evident that such an epimorphism exists when £, < 0 and the highest cohomology
of K(F,+1) has a number m+p+ 1 and it is isomorphic to the H™?(K (F,)) = G.

Assume that K has a right adjoint functor K': D?(cohY) — D?(coh X). Take
the object K'(G). By construction above we have that

Hom(F,, K'(G)[~m — p]) = Hom(K (F,), G[-m — p]) # 0

for all p > 0. This gives a contradiction with the fact that K !(Q) is a bounded
complex. Therefore, K is bounded above and by Example and Corollary
it is isomorphic to the functor ®¢. for some £ € D(Qcoh(X xY)). Since the functor
K sends Perf(X) to D’(cohY’), Corollary (4) implies that £ is isomorphic to
an object of D’(coh(X x Y)). O

Remark 9.18. The last statement also holds under the conditions that Y is projec-
tive and K has a partially left adjoint K* : Perf(Y) — Perf(X). In this case, for
sufficiently large s > 0, there is a nontrivial morphism from Oy (—s) to G that can
be lifted to a nontrivial morphism from Oy (—s) to K(Fp[m + p]). Therefore,

Hom(K™*(Oy (—s)), Fplm + p]) = Hom(Oy (—s), K(F,)[m + p]) # 0.

This gives a contradiction with the fact that K*(Oy(—s)) is a perfect complex,
and, hence, K is bounded above as well.

APPENDIX A. SMALL U-COCOMPLETE CATEGORIES

Fix universes U € V, so that U contains an infinite set [SGA4]. A set X is called
a U-set (resp. U-small) if X € U (resp. X is isomorphic to an element of U).
Similarly for groups, vector spaces, etc.

We call C a U-category if for each A, B € C, the set Hom(A, B) is U-small. We
call a U-category (or a DG U-category) C U-small if the collection of objects of C
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is a U-small set. Also a U-category is called essentially U-small if the isomorphism
classes of its objects form a U-small set. Denote by Aby the category of U-small
abelian groups.

A triangulated U-category is called U-cocomplete if it has all U-small direct
sums, i.e., if it has a direct sum of any collection of its objects which is indexed by
a U-small set.

We would like to translate some well-known fact about cocomplete triangulated
categories into the language of triangulated U-categories which are U-cocomplete.

Fix a triangulated U-category 7 which is U-cocomplete. Recall that a set S C T
generates T if whenever Hom(A, X[n]) = 0 for all A € S and all n € Z, then
X = 0. For a subset S C T denote by (S)U the smallest strictly full triangulated
subcategory which contains S and is U-cocomplete.

Theorem A.1 (Brown representability for U-categories). Let T be a triangulated
U-category T which is U-cocomplete. Suppose that T is compactly generated by a
U-small set S C T°.

a) Let H : T°P — Aby be a cohomological functor which takes U-small coprod-
ucts to products. Then H is representable.

b) T =(9)".
Proof. The (simultaneous) proof is the same as in the book of A. Neeman [N3],
Theorem 8.3.3. U

Lemma A.2. Let T be a triangulated U-category. Assume that S C T is an
essentially U-small triangulated subcategory. Then the Verdier quotient T/S is a
U-category.

Proof. The categories 7 and T /S have the same objects. Fix objects A and B. A
morphism f between A and B in 7 /S is represented by a diagram A & C 4% B,
where the cone D of the morphism s is in §. Up to isomorphism we have a U-small
set of choices for a diagram A — D, where D € C. Thus up to isomorphism we have
a U-small set of choices for a diagram A < C, such that the cone of s is in S. Thus
up to isomorphism there is a U-small set of choices for a diagram A <& C % B as
above. (|

Lemma A.3. Let T be a triangulated category which is U-cocomplete. Assume
that S C T is a full triangulated subcategory which is closed under U-small direct
sums in T. Then the quotient category T /S is also U-cocomplete and the functor
7: T — T/S preserves U-small direct sums.

Proof. The proof is the same as the proof of Lemma 3.2.10 in [N3]. O

Remark A.4. Note that in the last lemma we do not know if the quotient 7 /S is
a U-category, or even if morphisms between two objects in 7 /S form a set.

Proposition A.5. Let T be a triangulated U-category which is U-cocomplete. Let
S C T be a full triangulated subcategory which is closed under U-small direct sums
in T. Assume that S is generated by a U-small set of objects in S NTC. Then

a) the localization functor w : T — T/S has a right adjoint functor p which
is full and faithful;

b) u preserves arbitrary direct sums;

c) T/S is a U-category.
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Proof. c) is an immediate consequence of a). The proofs of a), b) are the same as
in [N1, Lemma 1.7, Proposition 1.9] and [N3| Lemma 9.1.7]. O

Theorem A.6. Let T be a triangulated U-category which is U-cocomplete and
such that the category T€ is essentially U-small. Let S C T be a full triangulated
subcategory which is closed under U-small direct sums in T. Assume that S is
generated by a U-small set of objects in SN TC. Let C = T/S be the quotient
category. Then

(1) C is generated by a U-small subset of its compact objects;
(2) T°¢ maps to C° under the quotient functor;

(3) the induced functor T¢/S¢ — C€ is full and faithful;

(4) C¢ is the idempotent completion of T¢/S°.

Proof. The proof is the same as the proof of Theorem 2.1 in [NTJ. O

Let A be a U-small DG U-category. Denote by Mody-.A C Mod- A the full DG
subcategory consisting of all U-small DG A-modules, i.e., DG modules M such that
M(Y) is a U-small vector space for each Y € A. It is a pretriangulated category.
Put

SFu(A) = SF(A) N Mody-A, Acy(A) = Ac(A) N Mody - A.
Let Dy(A) = H°(Mody - A)/H°(Acy(A)) be the corresponding derived category.
The natural functor H(SFy(A)) — Dy(A) is an equivalence of triangulated U-
categories. (This is because every U-small DG A-module is quasi-isomorphic to a
U-small semi-free DG module. The proof is the same as in [K1], Thm. 3.1 b).)

Note that triangulated categories H°(Mody-.A), H°(SFy(A)), H°(Acy(A)),
and Dy(A) are U-cocomplete and since A is a DG U-category the image of the
Yoneda DG functor h® : A — Mod- A lies in Mody - A.

Note also that the DG category Mody-.A is DG equivalent to a DG category
which is V-small. Indeed, call M € Mody- A strict if M(Y) is a U-set (and not
just a U-small set). Denote by Mod§i"- A the full DG subcategory consisting of
strict DG modules. Clearly every DG module is DG isomorphic to a strict one.
The DG category Mod;f* - A is obviously V-small.

Denote SF(A) = SFy(A) N Mod§f* - A and similarly for Acji*(A). The inclu-

sions
Mod*- A C Mody-A, SF(A) C SFu(A), Ad(A) C Acy(A)
are quasi-equivalences of pre-triangulated categories. Hence
HY(Modsi* - A)/H (A (A)) ~ Dy(A)

and the natural functor H(SF*(A)) — Dy(A) is an equivalence. Thus SF5*(A)
is a V-small enhancement of Dy(A). In particular, the U-category Dy(.A) is essen-
tially V-small.

Let L C Dy(A) be a strictly full triangulated subcategory. Then L is essentially
V-small. Hence the quotient Dy(A)/L is a V-category by Lemma above.

Let £ C SF(A) be the full DG subcategory of objects which map to L under
the equivalence H(SF5*(A)) — Dy(A). Then L is a pretriangulated category,
so that H°(L) ~ L. Hence also Dy(A)/L ~ H°(SF*(A))/H°(L). Since the DG
category SFi*(A) is V-small the Drinfeld DG quotient SFi*(A)/L is defined, and
by Theorem [T.3]

HY(SFY"(A)/L) = H(SF*(A))/HO(L).
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Therefore SF*(A)/L is a canonical enhancement of Dy (.A)/L.

Lemma A.7. Let A be a U-small DG U-category. Then the derived category Dy(.A)
coincides with its full subcategory (h*(A))Y.

Proof. Clearly the U-small set h*(A) of compact objects in Dy(A) generates the
U-cocomplete triangulated U-category Dy(A). So it remains to apply part b) of
Theorem [AT] O

Proposition A.8. Let C be a pretriangulated DG U-category. Assume that the
triangulated U-category H°(C) is U-cocomplete and is generated by a U-small set of
compact objects A C H°(C)¢. Consider A as a full DG subcategory in C. The DG
functor @ : C — Mody - A defined as

&(X)(Y) = Homs(Y, X)

for X € C andY € A induces a quasi-functor ¢ : C — SF(A) such that the functor
HO(¢) : H°(B) — Dy(A) is an equivalence of categories.

Proof. First one shows (as in the proof of Proposition [LT) that H°(¢) preserves
direct sums.
By the Brown representability theorem part b) one knows that H°(B) = (A)Y.
Hence the same proof as in Proposition [LI7] shows that H%(¢) is full and faithful.
On the other hand, the essential image of H%(¢) is a full trianglated subcategory
of Dy(A) closed under U-small direct sums and containing the U-small set h*(A) of
compact generators. Thus HY(¢) is essentially surjective by Lemma[ATlabove. [

The following proposition shows that things don’t change much when we pass to
a larger universe or even consider the whole category of DG modules.

Proposition A.9. Let A be a U-small DG U-category. Then
(1) The category Dy(A) is a full subcategory of D(A).
(2) Let L C D(A) be a localizing subcategory generated by objects which are in

Ly := LN Dy(A). (For example, L may be compactly generated.) Then the
natural functor Dy(A)/Ly — D(A)/L is full and faithful.

Proof. (1) Consider the diagram M Lps5 N H°%(Mod- A), where M,N €
H°(Mody-A) and s is a quasi-isomorphism. It suffices to prove that there ex-
ists Q € H°(Mody-.A) and a morphism ¢ : Q@ — P, such that s- g is a quasi-
isomorphism. Take @ € SFy(A) and a quasi-isomorphism ¢ : Q — N. Then there
exists g : Q — P, such that ¢ = s - g. This proves (1).

(2) Following [N3] we denote by D(A)(Y) C D(A) the full triangulated subcate-
gory of all objects K such that for any collection {X, A € A} of objects of D(A)
any map K — €, X factors through a direct subsum of cardinality strictly
less than U. (These are called U-small in [N3], but we already use this term in a
different way.) Also denote by

{D(A) P}y c DA™

the full triangulated subcategory of U-perfect objects (see Defs. 3.3.1 and 4.2.2 in
[N3]). This category {D(A)}y is denoted by D(A)V and its objects are called
U-compact objects of D(A). (The categories D(A)(Y) and D(A)Y are indeed tri-
angulated, because U is an infinite cardinal (Lemmas 4.1.4 and Corollary 3.3.12 in
[N3]).) Since U is a regular cardinal these categories are also U-cocomplete (Lemma
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4.1.5 and Corollary 3.3.14 in [N3]). It follows that Dy(A) € D(A)Y. Moreover, it
is proved in Lemma 4.4.5 [N3] that in fact Dy(A) = D(A)Y.

Notice that Ly = (Ly)Y, since L is cocomplete and Dy (A) is U-cocomplete. Now
Corollary 4.4.1 in [N3] asserts that the functor Dy(A)/Ly — D(A)/L is full and
faithful. O

APPENDIX B. PROOF OF PROPOSITION

In this appendix we present a proof of Proposition 9.6. It is essentially the same
as the proof of Proposition 9.3 that is given in [OI) [02]. We will directly follow
[O2] 3.4.6] and will use the notation of that proof.

Let & be an exact category. Assume that it is a full exact subcategory of an
abelian category 2; i.e., € C 2 is closed under extensions in 2. We also assume
that the additional property (EPI) holds:

(EPI) a map f in € is an admissible epimorphism if
and only if it is an epimorphism in 2I.

As in Definition we say that the sequence {P; | i € Z} of objects in € is ample
in € if it is ample in 2 as in Definition

Let us consider the derived categories D*(€). Since & C 2 is an exact subcategory
of an abelian category 2 such that the condition (EPI) holds and for any C' € 2
there is an epimorphism E — C from E € €, then the canonical functor D~ (&) —
D~ () is an equivalence and the functor D(€) — D®(2l) is fully faithful [K2].

Proposition B.1. Let € be an ezxact category with an ample sequence {P; | i €
Z<o}. Let j : P — DP(€) be the natural embedding of the full subcategory P with
objects ObP := {P; | i € Z<o}. Let F : D*(&) 5 DY(&) be an autoequivalence.
Suppose that there is an isomorphism of functors f : j = F|p. Then f can be
extended to an isomorphism id = F on the whole category D°(&).

Proof. A proof of this proposition is essentially the same as the proof of Proposition
.31 We consider the canonical functor from D’(&) — DP(2A). Tt is fully faithful,
because any object C' € 2 can be covered by a direct sum of P; that belongs to
€. This means that we can work with D%(€) as a full triangulated subcategory of
D®(21) and, in particular, we can talk about cohomologies of a complex from D(&)
as objects of 2.

First, since F' commutes with finite direct sums, the transformation f extends
componentwise to all finite direct sums of objects of the category P. Note that an
object X € DP(¢) is isomorphic to an object of 2 if and only if Hom? (P;, X) = 0 for
all j # 0 when ¢ < 0. It follows that in this case the object F'(X) is also isomorphic
to an object of A, because

Hom’ (P;, F(X)) = Hom? (F(P;), F(X)) = Hom’ (P;, X) = 0
for j # 0 when 7 < 0.

Step 1. In Step 1 we construct an isomorphism fy : X = F(X) for all X € D*(€)
that are isomorphic to an object of 2. Let X be such an object. Then X = H°(X).
We fix a morphism v : P®¥ — X such that the canonical map P®* — HO(X) is
surjective in the abelian category 2(. After that the proof of Step 1 is the same as
the proof of Step 1 in [O2] 3.4.6].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



906 VALERY A. LUNTS AND DMITRI O. ORLOV

Step 2. Now we show that fx does not depend on the choice of the morphism
v Pi@k — X. The proof of Step 2 is the same as the proof of Step 2 in [02] 3.4.6].

Step 3. In Step 3 we check that the morphisms fx define a natural transformation of
functors on the subcategory of D?(&) consisting of all objects that are isomorphic
to objects of the abelian category 2. That is, for any morphism of such objects
¢ : X =Y, we have to prove that fy -¢ = F(¢) - fx. The proof of this step is word
for word the same as the proof of Step 3 in [O2] 3.4.6].

Step 4. We constructed transformations fx : X — F(X) for all X € Db(€) that
are isomorphic to objects of the abelian category 2. Now we define fx,) : X[n] —
F(X[n]) =2 F(X)[n] for any such X by the evident formula fxp,) = fx[n]. We
need to show that these transformations commute with any v € Hom(X,Y[k])
for all £ > 0. For an abelian category we used the fact that any element u €
Hom(X,Y[k]) can be represented as a composition u = ug - - - u; of some elements
u; € Hom(Z;_1, Z;[1]) with Zy = X, Z; = Y. That allowed us to reduce the
problem to the case u € Hom(X, Y[1]). In the case of D*(€) we should correct the
argument.

Let X and Y be objects of D’(€) that are isomorphic to objects of the abelian
category . A fiber of a morphism v € Hom(X, Y[k]) when k > 2 can be represented
by a complex over 2 of the form C* : C~*+! — ... — C% which has only two
nontrivial comomologies H°(C") = X and H~**1(C") = Y. By Remark [0.7] there

are a complex E" : {--- d—2> E-! d—1> E°} over € and a quasi-isomorphism E° — C".
Consider the usual truncation of the form 7>_p11E" : {Coker dF - E=k+2
.-+ — EY} and the induced quasi-isomorphism 7>_j1E — C". It is easy to see
that the object Imd~" as a fiber of the map E® — X is isomorphic to an object of
D®(¢). Similarly, each Imd~% = Kerd~**! for 2 < i < k — 1 is also isomorphic to
an object of Db(€). Finally, Coker d=* as an extension of Imd~**! and Y is also
isomorphic to an object of D*(€). Now we put Zgp = X, Z, = Y and Z; = Imd ™"
fori=1,...,k—1 with corresponding u; € Hom(Z;_1, Z;[1]). Thus, the morphism
u can be represented as a composition u = uy - --uy. Therefore, it is sufficient to
verify that fx[, commutes with elements v € Hom(X, Y[1]).

The rest of the proof is the same as the corresponding part of the proof of Step
4 in |02, 3.4.6.].

Step 5. We carry out the final part of the proof by induction on the length of
the interval to which the nontrivial cohomology of the object belongs. For this
consider the full subcategory 7, : D,, < D?(&) consisting of objects with nontrivial
cohomologies in some interval of length n (the interval is not fixed). We now
prove that there is a unique extension of the natural transformation f to a natural
functorial isomorphism f, : j, — F|p,. We have already proved this above for
n = 1, as the basis of the induction.

Now to prove the induction step, suppose that the assertion is already proved
for some n = a > 1. Let X be an object of D,11. In Step 5 we construct an
isomorphism fx : X — F(X) for all X € D,11. The proof is the same as the proof
of Step 5 in [O2] 3.4.6].

Step 6. Now we have to prove that the isomorphism fx does not depend on the
choices made in the construction in Step 5. The proof is word for word as the proof
of Step 6 in [O2] 3.4.6].
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Step 7. We constructed isomorphisms fx : X — F(X) for all X € D, ;. It remains
to show that this extension of f, is a natural transformation from j,41 to Flp,, .
Thus, we have to check that for any ¢ : X — Y with X and Y in D,1; we obtain
a commutative diagram

X —f£5 v

| |

F(x) 29 poy).
We reduce this problem to the case in which both objects X and Y belong to D,.
The proof is the same as the proof of Step 7 in [O2] 3.4.6]. O
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