
+ 

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 
Author(s): JÉRÔME BUZZI and OMRI SARIG 
Article Title: Uniqueness of equilibrium measures for countable Markov 
shifts and multidimensional piecewise expanding maps 
Year of publication: 2003 
Link to published 
version: http://dx.doi.org/10.1017/S0143385703000087 
Publisher statement: None 

 
 
 

http://go.warwick.ac.uk/wrap


http://journals.cambridge.org Downloaded: 03 Jun 2009 IP address: 137.205.202.8

Ergod. Th. & Dynam. Sys. (2003), 23, 1383–1400 c© 2003 Cambridge University Press
DOI: 10.1017/S0143385703000087 Printed in the United Kingdom

Uniqueness of equilibrium measures for
countable Markov shifts and multidimensional

piecewise expanding maps

JÉRÔME BUZZI† and OMRI SARIG‡

† CMAT, U.M.R. 7640 du C.N.R.S., Ecole Polytechnique, 91128 Palaiseau Cedex, France
(e-mail: buzzi@math.polytechnique.fr)

‡ Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
(e-mail: sarig@maths.warwick.ac.uk)

(Received 12 July 2002 and accepted in revised form 23 October 2002)

Abstract. We prove that potentials with summable variations on topologically transitive
countable Markov shifts have at most one equilibrium measure. We apply this to
multidimensional piecewise expanding maps using their Markov diagrams.

1. Introduction
Let S be a countable set and A = (tij )S×S a matrix of zeroes and ones. The (one-sided)
topological Markov shift with set of states S and transition matrix A is

� = �+
A := {(x0, x1, . . . ) ∈ SN∪{0} : txixi+1 = 1 for all i}

together with the action of the left shift σ : � → �. The topology on � is assumed to be
the relative product topology inside SN∪{0}, S being discrete. A shift invariant probability
measure µ is called a maximal measure if hµ(σ) is maximal and an equilibrium measure
for φ : � → R if hµ(σ)+

∫
φ dµ is well-defined and maximal.

Parry proved in [19] that if S is finite and σ is topologically transitive, then there
exists exactly one maximal measure and that this measure is the Markov measure with
initial distribution (pi) and transition matrix (pij ) where pi = uivi , pij = uj tij /λui and
u = (ui), v = (vi) and λ > 0 are given by vA = λv,Au = λu and 〈u, v〉 = 1.

Ruelle [20] improved on this and showed that if S is finite, σ is topologically transitive
and varn(φ) = O(θn) for some θ ∈ (0, 1), where

varn(φ) := sup{φ(x)− φ(y) : xi = yi for i = 0, . . . , n− 1},
then φ has exactly one equilibrium measure. Furthermore, he showed that if Lφ is the
operator Lφf = ∑

σy=x eφ(y)f (y), then the unique equilibrium measure is given by h dν
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where h and ν are a positive continuous function and a Borel probability measure such that∫
h dν = 1, Lφh = λh and L∗

φν = λν for λ > 0. The condition varn(φ) = O(θn) was
relaxed to

∑
varn(φ) < ∞ by Walters [27].

If S is infinite there may be no maximal measure, but if it exists it must be unique as
long as σ is topologically transitive (Gurevich [10, 11]). Indeed, Gurevich showed that in
this case there exists a maximal measure if and only if A is R-recurrent and R-positive and
also in this case the unique maximal measure can be determined as in the case |S| < ∞
(the R-positivity and R-recurrence conditions are necessary and sufficient conditions for
the existence of u and v). The same techniques yield the uniqueness of equilibrium
measures of potentials of the form φ(x) = φ(x0, . . . , xN) (Gurevich and Savchenko [12]).

Our aim in this paper is to give a Ruelle-type generalization of these results for φ
which depend on an infinite number of coordinates such that

∑
n�2 varn(φ) < ∞.

We then apply this generalization to certain (non-Markovian) multidimensional piecewise
expanding maps.

The Gurevich pressure of φ is PG(φ) := limn→∞(1/n) log
∑
σnx=x eφn(x) 1[a](x)

where a ∈ S is fixed, [a] := {x ∈ � : x0 = a} and φn := ∑n−1
i=0 φ ◦ T i . Let Pσ (�)

denote the collection of σ -invariant Borel probability measures on�. The metric pressure
(or just pressure) of µ ∈ Pσ (�) is:

Pµ(φ) = Pµ(φ, σ ) := hµ(σ)+
∫
φ dµ.

Note that this is not always well-defined (φ might not be integrable, or it might happen that
hµ(σ) = +∞ and

∫
φ dµ = −∞). One of us showed [22, 23] that if σ is topologically

mixing and supφ < ∞, then

PG(φ) = sup{Pµ(φ) : µ ∈ Pσ (�), Pµ(φ) is well-defined}.
The condition supφ < ∞ guarantees that

∫
φ dµ is well defined (though possibly infinite),

so the ‘well defined’ condition reduces to a preclusion of the µ for which hµ(σ) = ∞ and∫
φ dµ = −∞.† We prove the following.

THEOREM 1.1. Let (�, σ) be a topologically transitive countable Markov shift and
suppose φ : � → R satisfies supφ < ∞, PG(φ) < ∞ and

∑
n�2 varn(φ) < ∞.

There exists at most one invariant probability measure µ such that hµ(σ) + ∫
φ dµ is

well defined and maximal.

THEOREM 1.2. Under the assumptions of the previous theorem, if µ exists, then there
exist a positive continuous function h and a Borel measure ν finite on each [a], a ∈ S

and with full support such that for some λ > 0, Lφh = λh, L∗
φν = λν and

∫
h dν = 1.

Moreover, dµ = h dν.

These two theorems show that for φ with summable variations and finite Gurevich
pressure, if φ has an equilibrium measure then it is positive recurrent in the terminology
of [23, 24]. The opposite is not true, because it might happen that dµ = h dν where

† Measures µ with
∫
φ dµ = −∞ cannot contribute to the supremum (which is always larger than −∞ because

of the existence of invariant measures supported on periodic points). Therefore, the condition of hµ + ∫
φ being

well defined can be replaced by the condition − ∫
φ < ∞.
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L∗
φν = λν, Lφh = λh and

∫
f dν = 1, satisfies hµ(σ) = ∞ and

∫
φ dµ = −∞

(in which case hµ(σ)+
∫
φ dµ is meaningless). Nevertheless, even in these situations, the

measure dµ = h dν can still be interpreted as some kind of weak equilibrium measure.
We refer the reader to [23, 24] for details.

Finally, we remark that if the equilibrium measure of φ is a Gibbs measure (see [2]),
then its uniqueness can be deduced from the uniqueness of Gibbs measures, as in [2].
Unfortunately, if |S| = ∞ this never happens, unless A satisfies the BIP property (see [18]
and [26] for statements and definitions), so the general case cannot be treated this way.

Theorem 1.1 can be applied to non-Markov, multidimensional piecewise expanding
maps by using the connected Markov diagram introduced in [5]. To state our result we
need some definitions.

A piecewise expanding map (X, P, T ) is a locally connected compact metric space X
together with a ‘partition’ P which is simply a finite collection of non-empty, pairwise
disjoint open subsets of X with dense union and a map T : ⋃

A∈P A → X such that
for each A ∈ P , each restriction T |A can be extended to an expanding homeomorphism
between a neighborhood of Ā and one of T A.

The boundary of such a system is ∂P := ⋃
A∈P ∂A.

Pn−1
0 denotes the collection of n-cylinders, i.e. the non-empty intersections A0 ∩

T −1A1 ∩ · · · ∩ T −n+1An−1 where Ai are elements of P .
A piecewise Hölder-continuous potential is φ : X → R such that the restriction of φ to

any element of P is Hölder-continuous, i.e. for all x, y in the same element of P ,

|φ(x)− φ(y)| � K d(x, y)α

for some α > 0, K < ∞ (the values of φ on ∂P are irrelevant for our purposes).
The pressure of a subset S ⊆ X (not necessarily invariant) is

Ptop(φ, S, T ) := lim sup
n→∞

1

n
log

∑
A∈Pn−1

0 |S∩Ā�=∅
sup
x∈A

expφn(x)

where φn(x) := φ(x)+ φ(T x)+ · · · + φ(T n−1x).
The topological pressure of T is Ptop(φ, T ) := Ptop(X, T ).
An equilibrium measure is, as in the case of Markov shifts, an invariant probability

measure µ for which the metric pressure Pµ(φ, T ) is equal to the topological pressure
Ptop(φ, T ).

THEOREM 1.3. Let (X, P, T ) be a piecewise expanding map with a piecewise Hölder-
continuous potential φ. Assume that

Ptop(φ, ∂P, T ) < Ptop(φ, T ).

Then:
(i) Ptop(φ, T ) = supµ∈PT (X) Pµ(φ, T ) and this supremum is realized by at least one

measure;
(ii) there exist at most finitely many ergodic equilibrium measures; and
(iii) if, additionally, T is strongly topologically transitive in the sense that for all non-

empty open sets U ,
⋃
k�0 T

k(U) ⊇ T (X), then there is a unique equilibrium
measure.
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Example. Recall that a multidimensionalβ-transformation is a map T : [0, 1)d → [0, 1)d ,
d � 1 of the form T (x) = {B(x)} where B : R

d → R
d is an expanding affine map and {y}

is the unique vector in [0, 1)d equal to y mod Z
d . T is obviously a piecewise expanding

map on [0, 1]d , the partition P being the collection of maximum connected open sets of
continuity.

COROLLARY 1.4. A multidimensional β-transformation T admits finitely many ergodic
equilibrium measures with respect to any non-negative Hölder-continuous potential φ with
supφ < λd := log min{‖Blin.v‖ : ‖v‖ = 1}, Blin being the linear part of the affine map B.

Moreover if λd > log(1 + √
d) then the equilibrium measure is unique.

To see that the corollary follows from the theorem observe that, ∂P being included in a
finite union of hyper planes, Proposition 4 of [4] gives

Ptop(φ, ∂P, T ) � Ptop(0, ∂P, T )+ sup φ � λ1 + · · · + λd−1 + supφ

and
Ptop(φ, T ) � λ1 + · · · + λd

with λ1 � · · · � λd the logarithms of the moduli of the eigenvalues of Blin. It follows that

Ptop(φ, ∂P, T ) � Ptop(φ, T )− (λd − supφ) < Ptop(φ, T )

so that one can indeed apply Theorem 1.3 to get the finiteness.
The uniqueness follows from Proposition 1 of [4], according to which the lower-bound

on the expansion of the statement of the Corollary implies strong topological mixing.
Theorem 1.3 generalizes a result of [6] which required the existence of a conformal

measure with full support—which had only been proved under additional assumptions
(especially covering, a strong form of mixing) by [8]. Indeed, it is easy to build examples
where the equilibrium measure is supported by a Cantor set and this shows that [6] cannot
apply, since in this case the support would contain a non-empty open set (more precisely,
the support would be equal to an open set modulo a set with zero conformal measure).

The core of the proof of this statement is the isomorphism theorem, Theorem 3.2,
identifying T and the Markov shift defined by its so-called connected Markov extension
with respect to all measures with metric pressure sufficiently close to Ptop(φ, T ).

2. Equilibrium measures on the Markov shift
This section contains the proofs of Theorems 1.1 and 1.2. We use the cylinder notation
[a0, . . . , an−1] := {x ∈ � : xi ∈ [ai]} and set α := {[a] : a ∈ S}.
LEMMA 2.1. Suppose (�, σ) is topologically transitive and φ : � → R is such that
supn�1 varn+1(φn) < ∞. Let ν be a conservative σ -finite measure which is finite and
positive on some partition set. If L∗

φν = λν for some λ > 0, then ν is ergodic.

Proof. We indicate the proof, which is well known (see [1, Ch. 4]). If ν is such a measure,
then its transfer operator is λ−1Lφ and it is easy to see that if C := exp supn�1 varn+1(φn),

then for every [a] = [a0, . . . , an−1] ∈ αn−1
0 , [b] ∈ αm−1

0 with [b] ⊆ [an−1] and x ∈ [a],
1

C
λ−(n−1)eφn−1(x)ν[b] � ν([a] ∩ σ−(n−1)[b]) � Cλ−(n−1)eφn−1(x)ν[b].
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Summing over [b] ∈ αm−1
0 ∩ [an−1] gives

1

C
λ−(n−1)eφn−1(x)ν[an−1] � ν[a] � Cλ−(n−1)eφn−1(x)ν[an−1].

This proves that every cylinder which ends with a state c such that ν[c] > 0 has positive
ν–measure. By transitivity, we can always find a cylinder contained in [a] with this
property. Therefore, ν is finite positive on all cylinders (although the total mass may be
infinite). This argument also shows that

1

C
� λ−(n−1)eφn−1(x)

ν[a]/ν[an−1] � C.

Substituting this in the first displayed inequality gives

1

C2

ν[a]ν[b]
ν[an−1] � ν([a]∩σ−(n−1)[b]) � C2 ν[a]ν[b]

ν[an−1] for all [a] ∈ αn−1
0 and [b] ⊆ [an−1].

A monotone class argument shows that for every Borel set E,

ν([a] ∩ σ−(n−1)E) � 1

C2 ν[a]ν(E ∩ [an−1])/ν[an−1].

We can now prove ergodicity. Suppose E is an invariant set of positive measure.
The previous estimate shows that

Eν(1E|αn−1
0 )(x) = ν([x0, . . . , xn−1] ∩ T −(n−1)E)

ν[x0, . . . , xn−1] � 1

C2

ν(E ∩ [xn−1])
ν[xn−1] .

By conservativity, xn−1 = x0 for infinitely many n. Consequently

lim inf
n→∞ Eν(1E|αn−1

0 )(x) � 1

C2

ν(E ∩ [x0])
ν[x0] almost everywhere.

We claim that the right-hand side is positive. This will prove the lemma, since the right-
hand side is equal (by the Martingale Convergence Theorem) to 1E and an indicator of a
set can only be positive almost everywhere if E = � modulo ν.

By assumption ν(E) > 0, so there exists a state y0 such that ν(E ∩ [y0]) > 0.
By transitivity there exist n and [a] ∈ αn−1

0 such that [a] ⊆ [x0] ∩ σ−(n−1)[y0]. Then

ν(E ∩ [x0]) � ν(σ−(n−1)E ∩ [a]) � 1

C2

ν[a]ν(E ∩ [y0])
ν[y0] > 0

by the choice of y0. �

Our next lemma states that it is possible to assume without loss of generality that (�, σ)
is topologically mixing.

LEMMA 2.2. If Theorems 1.1 and 1.2 are true for all topologically mixing shifts, they are
true for all topologically transitive shifts.

Proof. We use the well-known spectral decomposition (see Remark 7.1.35 in [16]). If �
is topologically transitive, then there exist pairwise disjoint closed sets�0, . . . , �p−1 such
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that � = ⋃p−1
i=0 �i , σ(�i) = �(i+1)modp, and such that (�i, σp) is topologically mixing.

Moreover, each �i is the union of partition sets.
Recoding (�i, σp) by the partition into cylinders of length p, we may view it as a

topologically mixing topological Markov shift.
In order to prove Theorem 1.1 for σ , it is enough to prove that there exists a unique

ergodic invariant µ ∈ Pσ (�) with hµ(σ)+ ∫
φ dµ = PG(φ), because if there were more

than one invariant equilibrium measure, there would have been more than one ergodic
equilibrium measure. Suppose, then, that µ is an ergodic equilibrium measure.

Note that µ(�i) = 1/p > 0 for every i, because � = ⋃p−1
k=0 σ

−k(�i). Let µi be the
measure µi(E) := µi(E ∩�i)/µ(�i). Since µ = (µ0 + · · · + µp−1)/p,

1

p

p−1∑
i=0

Pµi (φp, σ
p) = Pµ(φp, σ

p) = pPµ(φ, σ ) ≡ pPG(φ, σ)

= PG(φp, σ
p) � max

i
PG(φp|�i , σp|�i ).

This is possible only if for every i, µi is an equilibrium measures of φp with respect to
σp : �i → �i . This system is topologically mixing, so the µi are uniquely determined.
These determine µ. This proves the topological transitive version of Theorem 1.1, given
its topological mixing version.

Next, note that the topologically mixing version of Theorem 1.2 implies that each µi
above satisfies dµi = hi dνi , where hi is a continuous function supported and positive on
�i with Lpφhi = λ

p

i hi , λ > 0 and νi is a Borel measure finite and positive on cylinders

included in �i with (Lpφ)
∗νi = λ

p
i νi . Set

h :=
p−1∑
i=0

λ−i
0 L

i
φh0, ν :=

p−1∑
i=0

λ−i
0 (L

i
φ)

∗ν0 and dm := h dν∫
h dν

.

It is easy to check that Lφh = λ0h and L∗
φν = λ0ν. It follows from this thatm is invariant.

It is an ergodic measure, since ν is ergodic by Lemma 2.1. Our equilibrium measure µ
is also ergodic, because almost all its ergodic components are equilibrium measures and
there is only one such measure. Therefore, µ and m are two ergodic invariant probability
measures and by construction µ|�0 and m|�0 are proportional. Ergodicity now implies
that they are equal. This shows that µ has the form h dν where h and ν are eigenvectors
of Lφ . �

For the remainder of the section, we only treat topologically mixing Markov shifts
(the previous lemma states that this is enough).

Definition 1. Let (�, σ) be a topologically mixing countable Markov shift. A function
g : � → R is called a sub g-function if g is strictly positive, PG(logg) = 0 and for all
x ∈ �,

∑
σy=x g(y) � 1.

We recall the following known results.

LEMMA 2.3. If (�, σ) is topologically mixing, then every φ : � → R such that
PG(φ) < ∞ and

∑
n�2 varn(φ) < ∞ is of the form log g + ϕ − ϕ ◦ σ + PG(φ) where g

is a sub g-function and ϕ is continuous with varn(ϕ) �
∑
k�n+1 vark(φ) for all n � 1.
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Proof. See Lemma 1 in [25]. We remark that this proof uses the generalized Ruelle’s
Perron–Frobenius Theorem of [24, 25]. This is the only place we use this theorem
and it would be a significant improvement to have a different argument which does not
require it. �

LEMMA 2.4. Let pi, xi (i = 1, 2, 3, . . . ) be real numbers such that pi � 0, xi > 0 and∑
pi = 1. If

∑∞
i=1 pi log xi = log(

∑∞
i=1 pixi), then all xi with pi �= 0 are equal.

Proof. This is a standard fact. �

Proof of Theorem 1.1. By Lemma 2.2 it is enough to treat the topologically mixing case.
Assume without loss of generality that PG(φ) = 0 (else pass to φ−PG(φ)). By Lemma 2.3
there exists a sub g-function and a continuous function ϕ : � → R with var1(ϕ) < ∞
such that

φ = log g + ϕ − ϕ ◦ σ. (1)

Our strategy of proof is to show that every ergodic equilibrium measure µ satisfies

L∗
φ(e

−ϕµ) = e−ϕµ. (2)

(Here and throughout an equilibrium measure means an invariant probability measure µ
for which hµ(σ)+

∫
φ dµ is well defined and maximal.)

Once we prove this we can proceed as follows. Assume by way of contradiction
that there is more than one invariant equilibrium measure. Every equilibrium measure
is a barycenter of the collection of ergodic equilibrium measures, since almost every
ergodic component of an equilibrium measure is itself an equilibrium measure. Therefore,
if there is more than one equilibrium measure, there must be more than one ergodic
equilibrium measure. Let µ1 and µ2 be two different ergodic equilibrium measures and
set µ := 1

2 (µ1 + µ2). This is a non-ergodic measure which satisfies (2), in contradiction
to Lemma 2.1†. This contradiction proves the theorem.

Recall that an invariant probability measure µ is said to satisfy the Rokhlin formula, if

hµ(σ) = −
∫

log
dµ

dµ ◦ σ dµ

where µ ◦ σ is the σ -finite measure (µ ◦ σ)(E) = ∑
A∈α µ(σ(E ∩ A))‡. Ledrappier

showed in [17] that§

Eµ(f |α∞
1 )(x) =

∑
σy=σx

dµ

dµ ◦ σ (y)f (y)

and deduced that

Iµ(α|α∞
1 ) := −

∑
A∈α

1A log Eµ(1A|α∞
1 ) = − log

dµ

dµ ◦ σ .

† The conditions of Lemma 2.1 are satisfied: (1) e−ϕµ is conservative since it is equivalent to the invariant
probability measure µ; (2) e−ϕµ is finite and positive on some partition set, since µ is a probability measure and
var1(ϕ) < ∞.
‡ Note that, in general, (µ ◦ σ)(E) �= µ(σ(E)).
§ Ledrappier considered the case of a finite alphabet, but this part of his arguments applies to countable alphabets
without modifications.
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It follows from this that

H(α|α∞
1 ) ≡

∫
Iµ(α|α∞

1 ) dµ = −
∫

log
dµ

dµ ◦ σ dµ.

If Hµ(α) is finite, then H(α|α∞
1 ) = hµ(σ). Therefore, Rokhlin’s formula holds whenever

Hµ(α) < ∞.
A key step in the proof of (2) is to show that every ergodic equilibrium measure µ

satisfies the Rokhlin formula, the difficulty being that, in general, Hµ(α) may be infinite
so it is not obvious a priori that H(α|α∞

1 ) = hµ(σ).
Let µ be an ergodic probability measure for which hµ(σ)+

∫
φ dµ is well defined and

equal to zero. Note that
∫
φ dµ must then be finite.

Fix some [a] ∈ α with positive measure and consider the induced transformation on [a]
given by σ (x) = στ(x)(x) where τ (x) := 1[a](x) inf{n � 1 : σn(x) ∈ [a]}. The induced
transformation preserves the measure µ(E) := µ(E ∩ [a])/µ[a] and admits the Markov
partition

β := {[a, ξ1, . . . , ξn−1, a] : n � 1, ξi �= a} \ {∅}.
Define a Bernoulli measure µB on [a] by µB(

⋂n−1
i=0 σ

−iBi) = ∏n−1
i=0 µ(Bi) whenever

Bi ∈ β and let µB be the measure on � given by

µB(E) = µ[a]
∫
[a]

τ−1∑
i=0

1E ◦ σ i dµB.

This is a probability measure, since µB(�) = µ[a] ∫
τ dµB = µ[a] ∫

τ dµ = 1 (by the
Kac formula). µB is σ -ergodic, since µB is σ -ergodic and [a] is a sweep-out set for µB
(i.e. µB(

⋃
i�1 σ

−i[a]) = 1).
We claim that

∫
φ dµB > −∞. Set C := supn�1 varn+1φn �

∑
k�2 varkφ and define

φ := ∑τ−1
i=0 φ ◦ σ i . Note that every B ∈ β is a cylinder of length n(B)+ 1 where n(B) is

the unique value of τ on B. Now,

Eµ(φ|β) =
∑
B∈β

1B
1

µ(B)

∫
B

φ dµ,

so ‖φ − Eµ(φ|β)‖∞ � C. Therefore,∫
φ dµB = µ[a]

∫
[a]
φ dµB � µ[a]

∫
[a]

Eµ(φ|β) dµB − C

= µ[a]
∫
[a]
φ dµ− C =

∫
�

φ dµ− C > −∞.

Consequently, hµB (σ ) + ∫
φ dµB is well-defined although it may be equal to +∞.

Therefore, by the variational principle, hµB (σ ) � − ∫
φ dµB < ∞. Since µB is ergodic,

Abramov’s Formula applies and so hµB (σ ) = (1/µ[a])hµB (σ ) = (1/µ[a])HµB (β) =
(1/µ[a])Hµ(β). Therefore,

Hµ(β) < ∞.
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This implies thatµ satisfies the Rokhlin formula. Since µ is ergodic, the Kac and Abramov
formulas both apply and so

1

µ[a]hµ(σ) = hµ(σ) = −
∫

[a]
log

dµ

dµ ◦ σ dµ = − 1

µ[a]
∫

[a]
log

dµ

dµ ◦ στ dµ

= − 1

µ[a]
∫

[a]

τ−1∑
i=0

log
dµ

dµ ◦ σ ◦ σ i dµ = − 1

µ[a]
∫
�

log
dµ

dµ ◦ σ dµ.

Therefore, µ satisfies the Rokhlin formula as well. This shows that every ergodic
equilibrium measure satisfies the Rokhlin formula.

Our next step is to prove that if µ is an ergodic equilibrium measure, then dµ/dµ ◦ σ =
g modµ ◦ σ where g is as in (1). Our argument is a variation on an argument of Ledrappier
[17] (see also [28])†.

We begin by showing that log g ∈L1(µ) and that
∫
(ϕ − ϕ ◦ σ) dµ = 0.

Since Llogg1 � 1, log g � 0 and so log g is one-sided integrable. We show that it is
absolutely integrable. Set g(n) := ∏n−1

i=0 g ◦ σ i , ḡ(x) := g(τ(x))(x). Since var1ϕ < ∞,
ϕ · 1[a] ∈ L1(µ̄) and

∫
[a](ϕ − ϕ ◦ σ̄ ) dµ̄ = 0. It follows that∫

log g dµ = µ([a])
∫
[a]

log ḡ dµ̄ = µ([a])
∫
[a]

[φ̄ − (ϕ − ϕ ◦ σ̄ )] dµ̄

= µ([a])
∫
[a]
φ̄ dµ =

∫
φ dµ > −∞.

Therefore, log g ∈ L1(µ). It follows that ϕ − ϕ ◦ σ = φ − log g is absolutely integrable,
because φ must be absolutely integrable (

∫
φ+ < ∞ as sup φ < ∞ and

∫
φ− < ∞,

otherwise µ will not be an equilibrium measure). By the ergodic theorem,∫
(ϕ − ϕ ◦ σ) dµ = lim

n→∞
1

n
(ϕ − ϕ ◦ σn) = lim inf

n→∞
1

n
(ϕ − ϕ ◦ σn) = 0

so
∫
(ϕ − ϕ ◦ σ) dµ = 0. Consequently, hµ(σ)+ ∫

log g dµ = 0.
Set gµ := dµ/dµ ◦ σ . We check that the transfer operator of µ is given by σ̂µf =∑
σy=x gµ(y)f (y). The invariance of µ implies that

∑
σy=x gµ(y) = σ̂µ1 = 1 µ-almost

everywhere, so gµ is a g-function. Since µ satisfies Rokhlin’s Formula,

0 = hµ(σ)+
∫

log g dµ =
∫

log
g

gµ
dµ

=
∫ ( ∑

σy=x
gµ(y) log

g(y)

gµ(y)

)
dµ(x) �

∫
log

( ∑
σy=x,gµ(y)>0

g(y)

)
dµ(x) � 0.

All inequalities must be equalities, so∑
σy=x

gµ(y) log
g(y)

gµ(y)
= log

( ∑
σy=x

gµ(y) · g(y)
gµ(y)

)
for µ-almost all x.

By Lemma 2.4, for µ-almost all x there exists c(x) such that

y ∈ σ−1{x}, gµ(y) > 0 implies g(y) = c(x)gµ(y).

† The arguments in [17, 28] only show that for almost every x, dµ/dµ ◦ σ(x) = g(x), but actually a stronger
statement is needed: for almost every x, for all y ∈ σ−1x (dµ/dµ ◦ σ(y) = g(y)).
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Summing over y ∈ σ−1{x} ∩ [gµ > 0] gives c(x) = ∑
σy=x,gµ(y)>0 g(y) � 1.

The last derivation shows that
∫

log c(x) dµ(x) = 0 so c(x) = 1 µ-almost everywhere.
For every x such that c(x) = 1 and

∑
σy=x gµ(y) = 1, σ−1{x} ⊆ [gµ > 0], else

c(x) <
∑
σy=x g(y) � 1 (we have used the positivity of g). Therefore, for µ-almost

every x
y ∈ σ−1{x} implies g(y) = gµ(y).

This means that Lloggµ = Llog g whence L∗
log gµ = L∗

loggµ
µ = µ. A calculation shows

that L∗
φ(e

−ϕµ) = e−ϕµ so (2) holds. By the discussion at the beginning of the proof, this
proves the theorem. �

Proof of Theorem 1.2. Assume without loss of generality that PG(φ) = 0. By Lemma 2.3,
φ = log g+ϕ−ϕ ◦σ with ϕ continuous and g a sub g-function. The proof of Theorem 1.1
shows that if µ is an equilibrium measure, then (2) holds. Consequently, if ν := e−ϕµ and
h := eϕ , then

L∗
φν = ν and

∫
h dν = 1.

For every g ∈ L∞,

ν(gLφh) = ν(g ◦ σ · h) = µ(g ◦ σ) = µ(g) = ν(gh)

so Lφh = h ν-almost everywhere. The identity L∗
φν = ν can be used to show that ν is

finite and positive on cylinders and so since both h and Lφh are continuous, Lφh = h

everywhere. �

3. Equilibrium measures for piecewise expanding maps
We prove Theorem 1.3. Let (X, P, T ) be a piecewise expanding map together with a
piecewise Hölder-continuous potential φ : X → R. We continue using the cylinder
notation [A0, . . . , An] := ⋂n

i=0 T
−iAi .

Fix some T -invariant probability measure m on X. We prove that Pm(φ, T ) �
Ptop(φ, T ). We prove this under the extra assumption that m is ergodic (otherwise use
the ergodic decomposition).

The proof is based on a reduction to the symbolic dynamics of T , which we proceed
to describe. Let dom(T n) ⊆ X denote the domain of definition of T n. The symbolic
dynamics of (X, P, T ) is the left-shift σ on:

�(T ) = Clos({A = (A0, A1, . . . ) ∈ PN∪{0} : ∃x ∈ X
such that for all n ≥ 0 x ∈ dom(T n) and T nx ∈ An}),

where Clos(·) denotes the closure in the compact space PN∪{0} (it is endowed with
the product topology of the discrete topologies on P ). Define π : �(T ) → X by
{π(A)} = ⋂

n�0 [A0 . . . An]. As T is piecewise expanding, π is well defined. Moreover,
if � := π−1(∂P ), then

π : �(T )
∖ ⋃
k≥0

σ−k� → X
∖ ⋃
k≥0

T −k∂P
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is bi-measurable, injective, surjective and satisfies π ◦ σ = T ◦ π . Next, define
� : �(T ) → R by�(A) = limn→∞ infφ([A0, . . . , An]) and note that

�(A) = φ(π(A)) whenever π(A) /∈ ∂P.
It is easy to check that � is Hölder-continuous (respectively continuous) if φ is piecewise
Hölder-continuous (respectively piecewise uniformly continuous); the distance on �(T )
is, as usual d(A,B) = 2−n, where n is the smallest integer such that An �= Bn or n = ∞.

Set S := ⋃
k≥0 T

−k∂P . If m(S) = 0 then π : (�(T ),B(�(T )),m ◦ π, σ) →
(X,B(X),m, T ) is a measure-theoretic isomorphism, so Pm(φ, T ) = Pm◦π−1(�, σ).
Also, Pm◦π−1(�, σ) � Ptop(�, σ), because of the variational principle for the topological
pressure of a continuous function with respect to a homeomorphism of a compact metric
space (see [27]). Therefore, Pm(φ, T ) � Ptop(�, σ). It is routine to check that
Ptop(�, σ) = Ptop(φ, T ) and it follows that Pm(φ, T ) � Ptop(φ, T ) wheneverm(S) = 0.

Suppose now that m(S) > 0. We claim that Pm(φ, T ) < Ptop(φ, T ).
Indeed, m(S) > 0 implies by invariance of m that m(∂P) > 0. Thus our assumption

that Ptop(φ, ∂P, T ) < Ptop(φ, T ) and the following observation (the proof of which is
given in §4) imply the claim.

PROPOSITION 3.1. Consider a piecewise expanding map τ together with a piecewise
uniformly continuous potential f . Let m be an ergodic invariant probability measure.
If m(S) > 0, then Pm(f, τ ) � Ptop(f, S, τ ).

This proves that supm∈PT (X) Pm(φ, T ) � Ptop(φ, T ).
We now show that there exists m such that Pm(φ, T ) = Ptop(�, σ). Note that

σ : �(T ) → �(T ) is expansive and that � is continuous (in fact, it is Hölder-
continuous). It follows that there is a σ -invariant probability measure µ on �(T ) for
which Pµ(�, σ) = Ptop(�, T ) [14, Theorem 20.2.10]. Set m := µ ◦ π−1. If m(S) > 0
then µ(π−1S) > 0 and so

Ptop(�, σ) ≡ Pµ(�, σ) � Ptop(�, π
−1∂P, σ) (Proposition 3.1)

� Ptop(φ, ∂P, T )

< Ptop(φ, T ) (by assumption)

= Ptop(�, σ),

which is a contradiction. Therefore, m(S) = 0. It follows that π is an isomorphism
between (�(T ),B(�(T )), µ, σ ) and (X,B(X),m, T ), and so Pm(φ, T ) = Pµ(�, σ) =
Ptop(�, σ); we have already remarked that Ptop(�, σ) = Ptop(φ, T ). This proves
Theorem 1.3(i).

We now turn to the finite multiplicity of the equilibrium measure, point (ii) of
the theorem. We shall prove it by reduction to a Markov shift using the connected
Markov diagram introduced in [5] by generalizing the construction of Hofbauer [13] for
multidimensional dynamical systems. Let us recall its definition.

Definition 2. The (connected) Markov diagram is the directed graph D = (V ,E) with
vertices V = {T nC : n � 0, C is a connected component of Z ∈ Pn0 } and edges
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E = {A → B : ∃Z ∈ P such that B is a connected component of T (A) ∩ Z}. This graph
defines a one-sided Markov shift (�, σ).

There is a natural projection onto the symbolic dynamics:

q : � → �(T )

defined by q(α) = A such that An ∈ P contains αn for all n ≥ 0. Obviously q ◦ σ = σ ◦ q
and q is countable-to-one. We extend� to � by setting � := � ◦ q on �.

The proof of the second part of the theorem is based on constructing a certain type of
isomorphism between the natural extensions of� andX. We begin with some generalities.
A weighted measurable dynamical system (X, T , φ) is a measurable map T : X → X

together with a measurable function φ : X → R called the potential. A set S ⊆ X

is P -negligible if there exists p < supµ Pµ(φ, T ) such that for every ergodic invariant
probability measure µ, if Pµ(φ, T ) > p then µ(S) = 0.

Definition 3. Two weighted measurable dynamical systems (X, T , φ) and (Y, S,ψ) are
said to beP -isomorphic if there exist invariant subsetsX′ ⊆ X, Y ′ ⊆ Y and a bimeasurable
bijection h : X′ → Y ′, such thatX\X′, Y \Y ′ are P -negligible, h◦T = S◦h and φ = ψ◦h.

We will deduce part (ii) of the theorem from the following.

THEOREM 3.2. Let (X, P, T ) be a piecewise invertible map with a piecewise uniformly
continuous potential φ : X → R. If Ptop(φ, ∂P, T ) < Ptop(φ, T ), then:
(1) the natural extensions† of (X, T ) and of (�, σ) are P -isomorphic;
(2) (�, σ) contains only finitely many maximal irreducible subchains (defined just after

this) with pressure close to Ptop(φ, T ).

Recall that an irreducible part of an oriented graph is a subgraph with the property that
any two vertices can be joined in both directions. A graph splits into its maximal irreducible
parts (and a remaining part made of those vertices to which no path returns, but this part
plays no role dynamically speaking). Recall also that the support of any ergodic invariant
measure is contained in exactly one maximal irreducible subchain, i.e. the subchain defined
by one of these maximal irreducible parts of the graph.

Before proving this theorem, let us see how it can be used to deduce part
Theorem 1.3(ii). Note that �|� is bounded from above and is Hölder continuous, and
therefore has finite Gurevich pressure since

PG(�|�) = sup
µ∈Pσ (�)

Pµ(�, σ) = sup
µ∈PT (X)

Pµ(φ, T ) = Ptop(φ, T ) < ∞.

The second equality follows from Theorem 3.2. Under these conditions, Theorem 1.1
implies that each irreducible sub-shift has at most one equilibrium measure.
Theorem 3.2(2) states that � contains only finitely many maximal irreducible subchains
with maximum pressure. Hence, � has only finitely many ergodic equilibrium measures.
By Theorem 3.2(1) this must then also be true for T , concluding the proof of
Theorem1.3(ii).

† See the definition at the beginning of the proof.
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Proof of Theorem 3.2. The strategy of the proof is the same as in [5] where the same
statements were proved in the case � ≡ 0 (entropy replacing pressure).

Let p− : (X−, T−) → (X, T ) be the natural extension,

X− = {x ∈ XZ : T (xn) = xn+1 ∀n ∈ Z},
T−((xn)n∈Z) = (xn+1)n∈Z, and

p−((xn)n∈Z) = x0.

We also extend φ to X− by setting φ := φ ◦ p−. Define p̃− : (�−, σ−) → (�, σ) and �
on �− similarly. Let �− : �− → X− be the natural extension of� := π ◦ q : � → X to
a map from �− to X−.

It is well known that the projection m �→ m ◦ p− is a bijection between PT−(X−) and
PT (X) which preserves ergodicity, entropy and metric pressure.

The following notion plays a key role in the construction.

Definition 4. An invariant probability measure µ of T− is said to be shadowed by the
boundary if, for some integerN and forµ-almost every x ∈ X−, there exist infinitely many
positive integers n such that Pn−1

0 (x−n)∩�P �= ∅, where�P := ⋃N
k=0 T

k(
⋃
A∈P ∂TA)

and Pn−1
0 (x) is the element of Pn−1

0 containing x if it exists or ∅.

Construct, as in [5], two invariant sets X′− ⊆ X−, �′− ⊆ �− with the following
properties:
(1) The restriction, �− : �′− → X′− is a bi-measurable bijection and �− ◦ σ− =

T− ◦�−.
(2) Let µ be an ergodic T−-invariant probability on X′−. If µ(X− \X′−) = 1, then µ is

shadowed by the boundary.
(3) Let µ be an ergodic σ−-invariant measure on �−. If µ(�− \ �′−) = 1, then either

µ ◦�−1− is shadowed by the boundary, or µ(p̃−1− �−1∂P ) > 0.
For the construction of X′− and �′− and (1) see [5, Proposition 2.2]. Parts (2) and (3)

are Propositions 2.6 and 2.7 there (observe that in contrast to Proposition 2.7 we work with
the Markov shift defined by the Markov diagram and not the geometric Markov extension
of [5]); to relate the two we have to code, hence a possible problem ifµ(p̃−1− �−1∂P ) > 0).

To prove that the above restriction of �− is a P -isomorphism, we need to show that
X− \X′− and �− \�′− are P -negligible.

We begin with the P -negligibility of X− \ X′−. Property (1) says that every ergodic
invariant probability measure µ carried by X− \ X′ must be shadowed by the boundary.
The P -negligibility ofX−\X′− follows from the following proposition and our assumption
that Ptop(φ, ∂P, T ) < Ptop(φ, T ).

PROPOSITION 3.3. Let µ be an invariant measure of (X−, T−). If µ is shadowed by the
boundary then Pµ(�, T−) � Ptop(φ, ∂P, T ).

The proof of Proposition 3.3 is given in §4.
Next, we prove the P -negligibility of �− \ �′−. Consider some ergodic invariant

probability µ measure carried by �− \ �′−. It is enough to prove that Pµ(�, σ−) �
Ptop(φ, ∂P, T ), because Ptop(φ, ∂P, T ) < Ptop(φ, T ) = supm∈PT (X) Pm(φ, T ) �
supm∈Pσ− (�−) Pm(�, σ−).
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Property (3) above says that either µ(p̃−1− �−1∂P ) > 0 or µ(p̃−1− �−1∂P ) = 0 and
µ ◦ �−1− is shadowed by the boundary. In the first case, ν := µ ◦ p̃−1− ◦ q−1 is an
ergodic σ -invariant measure on �(T ) which satisfies ν(π−1∂P ) > 0. By Proposition 3.1,
Pν(�, σ |�(T )) � Ptop(�, π

−1∂P, σ |�(T )) � Ptop(φ, ∂P, T ). Note thatm �→ m ◦ (p̃−)−1

and m �→ m ◦ q−1 both preserve entropy, because the first is a natural extension and the
second is countable-to-one (see, e.g., Proposition 2.8 in [5]). Therefore, Pµ(�, σ−) =
Pν(�, σ |�(T )) � Ptop(φ, ∂P, T ).

In the second case, µ ◦�−1− is shadowed by the boundary and Proposition 3.3 implies
that P

µ◦�−1−
(�, T−) � Ptop(�, ∂P, T ). Since �− preserves entropy being a natural

extension, Pµ(�, σ−) = P
µ◦�−1−

(�, T−) and so again Pµ(�, σ−) � Ptop(φ, ∂P, T ).

This proves that �− \ �′− is P -negligible and concludes the proof of part (1) of
Theorem 3.2.

We now turn to part (2), which says that there are only finitely many subchains with
large pressure. This is a strengthening of [5, Theorem C] even in the case of the zero
potential, but under the additional assumption that T is expanding. We obtain it by adapting
Proposition 1.1 of [9].

Let B(x, r) ⊆ X denote the ball of radius r and center x and define for α ∈ �
ε(α) := sup{r ≥ 0 : ∃n � 0 such that B(�(σnα), r) ⊆ αn}.

LEMMA 3.4. Let V be the set of vertices of the Markov diagram D. For any δ0 > 0, there
exists a finite subset V0 ⊆ V such that for all α ∈ � \ ⋃

n≥0 σ
−n�−1∂P

if ε(α) > δ0, then there exists n ≥ 0 such that αn ∈ V0.

Proof. Let k0 be an integer sufficiently large so that diamPk0
0 < 1

2δ0. Define V0 to be the
collection of the connected components C of the subsets of the form

T k0A for some A ∈ Pk0
0

which are such that C contains a ball with radius δ0/2. The finiteness of V0 follows from
the fact that T k0 is piecewise uniformly continuous so that there is only a finite number of
disjoint subsets S ⊆ X such that T k0S contains a ball with radius δ0.

Indeed, set V0(A) := V0 ∩ {C : C is a connected component of T kA}. By definition,

V0 =
⋃
A∈Pk0

0�k�k0

V0(A).

This is a finite union, because P is finite. Therefore, it is enough to prove that V0(A)

is finite for every A. If this is not true, there are distinct C1, C2, C3, . . . ∈ V0(A) with
Ci ⊇ Bδ0/2(xi). These balls are pairwise disjoint, because Ci are pairwise disjoint
(being connected components of the same set). Thus {xi} is a δ0/2-separated sequence,
which contradicts the compactness of X. This proves that V0 is finite.

Recall formula (2.1) of [5]. For α = (α0, α1, . . . ) ∈ � \ ⋃
n≥0 σ

−n�−1∂P ,

αn+k is the connected component of

T k(αn ∩ [An . . . An+k]) which contains�(σn+kα). (3)
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Let α ∈ � be as in the statement of the lemma with ε(α) > δ0. By definition, there is
some integer n � 0 such that αn ⊇ B(�(σnα), δ0/2), so αn contains a ball of radius δ0/2.
By the choice of δ0, B(�(σnα), δ0/2) ⊇ [An . . . An+k0 ] and so αn ⊇ [An . . . An+k0 ].
Therefore, by (3), αn+k0 is also a connected component of T k0[An . . . An+k0 ]. This shows
that αn+k0 ∈ V0. �

LEMMA 3.5. For all ε > 0, there exists δ > 0 such that if µ is an invariant probability
measure on (�, σ) and ε(α) � δ for µ-almost every α ∈ �, then Pµ(�, σ) �
Ptop(φ, ∂P, T ).

We defer the proof of this lemma to the next section.

Proof of Theorem 1.3(ii). Fix ε ∈ (0, Ptop(φ, T ) − Ptop(φ, ∂P, T )). Let δ > 0 be given
by Lemma 3.5. Let V0 be the finite part defined by Lemma 3.4.

CLAIM. Any invariant probability measure µ of � such that µ({α ∈ � : α0 ∈ V0}) = 0
satisfies Pµ(�, σ) � Ptop(φ, ∂P, T )+ ε.

To prove this claim observe that by Lemma 3.4, µ must satisfy ε(α) � δ0 for µ-almost
every α. But then we can apply Lemma 3.5 and get the claim.

It follows from the claim that any ergodic measure with pressure closer to Ptop(φ, T )

than this right-hand side must live on an irreducible subchain meeting V0, hence it must
live on a finite number of maximal irreducible subchains as V0 is finite. �

4. Proof of the pressure estimates

Proof of Proposition 3.1. µ is an invariant and ergodic probability measure of τ with
µ(S) > 0. Fix ε > 0 arbitrarily small.

By the ergodic theorem, there exist n1 < ∞ and a subset X1 of measure > 1 − 1
2µ(S)

such that for all x ∈ X1 and all n � n1

φn(x) :=
n−1∑
k=0

φ(τ kx) � n

( ∫
φ dµ− ε

)
. (4)

Note that µ(S ∩X1) > µ(S)/2 > 0.
Observe that

|φn(x)− φn(y)| < εn (5)

for all x, y in the same n-cylinder, for n large enough. This is because of the piecewise
uniform continuity of φ and because limn→∞ diamPn = 0.

Consider Cn, the collection of n-cylinders meeting S. By definition,∑
A∈Cn

sup
x∈A

eφn(x) � Cen(Ptop(φ,S,T )+ε)

for some constant C < ∞ and all n. Remove from Cn any cylinder that does not meet X1.
The resulting C′

n is a cover of X1 ∩ S. By (5) and then (4),∑
A∈Cn

sup
x∈A

eφn(x) �
∑
A∈C ′

n

sup
x∈A∩X1

eφn(x)−εn � #C′
n e

n(
∫
φ dµ−3ε).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 03 Jun 2009 IP address: 137.205.202.8

1398 J. Buzzi and O. Sarig

We thus obtain
#C′

n � Ce(Ptop(φ,S,τ )−
∫
φ dµ+4ε)n.

Rudolph’s formula for the entropy [21] states that if µ is an ergodic invariant probability
measure and P is a finite generator, then

hµ(τ) = lim inf
n→∞

1

n
logRn,

whereRn is the minimum cardinality of a collection ofP -cylinders with a union of measure
of at least some fixed constant 0 < λ < 1. Hence,

hµ(τ) � lim inf
n→∞

1

n
log #C′

n.

Hence we get, after taking the limits n → ∞ and ε → 0,

hµ(τ) � Ptop(φ, S, τ ) −
∫
φ dµ,

from which the proposition follows immediately. �

Proof of Proposition 3.3. Let µ− be an invariant and ergodic probability measure
of (X−, T−). Let µ be the corresponding measure on (X, T ). As is well known,
Pµ−(�, T−) = Pµ(�, T ), so that it is enough to bound the latter quantity.

Pick ε > 0. Fix n0 so large that for all n � n0, the collection Sn of n-cylinders, the
closure of which meets ∂P , satisfies∑

A∈Sn
sup
x∈A

eφn(x) � e(Ptop(φ,∂P ,T )+ε)n.

Fix n1 so large that for all n � n1, |φn(x)−φn(y)| < εn for all x, y in the same n-cylinder.
Let n∗ = max(n0, ε

−1 log(#P ·‖φ‖∞)·n1). Increase n∗ if necessary so that the binomial
coefficient C[2n/n∗]+1

n is at most eεn/(n/n∗ + 1).
Indeed, by Stirling’s Formula n! = C±1(n/e)nn1/2, where C±1 represents a function of

n with value in (C−1, C), where C is independent of n. Hence, writing α := 2/n∗,

(n/n∗ + 1)C[2n/n∗]+1
n � C3αn−1/2 exp[(−α logα − (1 − α) log(1 − α))n] � eεn

for n large enough, if n∗ has been chosen large enough.
Define the measurable integer-valued function n on X− by

n(x) = min{n � n∗ : Pn(x−n) ∩�P �= ∅}.
As µ− is shadowed by the boundary, this is well defined almost everywhere.

Let N− be so large that µ−({x ∈ X− : n(x) � N−}) < ε/(#P · ‖φ‖∞).
By the ergodic theorem, there exists n3 < ∞ and a measurable subset X1 ⊆ X− such

that for all x ∈ X1 and n � n3,

1

n
#{0 � k < n : n(T k−x) � N−} < ε/(#P · ‖φ‖∞). (6)

By the same reasoning as in the proof of Proposition 3.1, it is enough to prove that for all
large n, the collection Cn of n-cylinders that meet X1 satisfies∑

A∈Cn
sup
x∈A

eφn(x) � Cen(Ptop(φ,∂P ,T )+ε)
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Let x ∈ X1 and n � n∗. We define intervals [ai, bi) by induction. We set
a0 = n. Provided ai is defined, we let bi+1 = max{b � ai : n(T b−x) � N−} and

ai+1 = bi+1 − n(T
bi+1− x).

Let i0 be the largest i with ai � 0. We claim:
(1) �P ∩ Pbi−ai0 (p−T ai− x) �= ∅;
(2) bi − ai � n∗;
(3) #

([0, n) \ ⋃i0
i=1[ai, bi)

)
� (ε/ log(#P · ‖φ‖∞))n.

Therefore, the itinerary A0A1 . . . An−1 ∈ Pn (or more precisely in (p−1− P)n) determining
the n-cylinder containing x can be described completely by specifying:
(1) an integer 0 � r � n/n∗ giving the number of intervals [ai, bi);
(2) the starting and ending positions of each one of these intervals;
(3) the symbols AaiAai+1 . . . Abi−1 picked among the itineraries of the same length of

points in �P ;
(4) the symbols at the remaining places.
Hence, writing n′ = ∑i0

i=1(bi − ai),

∑
A∈Cn

sup
x∈A

eφn(x) �
[n/n∗]∑
r=0

∑
0�ar<br<···<a1<b1<n

r∏
i=1

∑
B∈Pbi−ai−1

0 |B̄∩�P �=∅

× sup
y∈B

eφbi−ai (y)(#P · e‖φ‖∞)n−n′

� (n/n∗ + 1)C2[n/n∗]
n en(Ptop(φ,∂P ,T )+2ε)eεn

� en(Ptop(φ,∂P ,T )+4ε),

proving the claim. �

Proof of Lemma 3.5. Let µ be an invariant probability measure on (�, σ) such that for
almost every α, ε(α) < δ. Fix D0 such that µ({α : α0 = D0}) > 0. The proof of Proposi-
tion 1.1 in [9] shows that if δ > 0 is small enough then for every n ≥ 0 there is a collection
Cn of n-cylinders containing all the points α ∈ [D] that satisfy ε(α) < δ such that∑

A∈Cn
sup
A

e�n(x) � Ce(Ptop(φ,∂P ,T )+ε)n.

The union of the cylinders in Cn covers D0 modulo µ, thus its µ-measure is positively
lower-bounded. However, we have seen (see the proof of Proposition 3.1) that this implies
that Pµ(�, σ) � Ptop(φ, ∂P, T )+ ε. �
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