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We consider ground states of the quasilinear equation

(1.1) div(A(|Du|)Du) + f(u) = 0 in Rn, n ≥ 2,

that is, C1 solutions of (1.1) such that

(1.2) u ≥ 0, u 6≡ 0; u(x) → 0 as |x| → ∞.

Two particular model operators A motivate this work, first

(1.3) A(t) ≡ 1, n = 2,

the Laplace case, and second

(1.4) A(t) = tm−2, t > 0, m ≥ n,

the case of the degenerate Laplacian operator. When n = m it is well known that radially
symmetric ground states can exist in the case (1.4), even for functions f(u) with expo-
nential growth as u→∞, that is

f(u) = O(eβun/(n−1)
) as u→∞,

where β is an appropriate positive constant, see [1, 2, 4, 6, 7].
The question of uniqueness of ground states for (1.1) when f(u) has such exponential

behavior has not previously been treated; the purpose of this paper is to make a beginning
on this problem.

Appropriate assumptions on the operator A will be given in the next section. On the
other hand, for the nonlinearity f we consider the specific family of functions

(1.5) f(u) = −αu+ (eu − 1− u), α > 0,

or, more generally,

(1.6) f(u) = up−1{−αup + (eup

− 1− up)}, α > 0, 1
2 < p ≤ 1,
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of which (1.5) is the special case p = 1. For the family (1.6) it is not hard to show (see
Section 2) that f is in C[0,∞) ∩C1(0,∞) and that there exists a > 0 such that f(a) = 0
and

f(u) < 0 for 0 < u < a, f(u) > 0 for a < u <∞.

In consequence we are able to apply the principal result of [9] to obtain uniqueness of the
corresponding radial ground states of (1.1). Our main conclusions will be given in the
next section.

In recent work, e.g. [8, 10], the question whether all ground states of (1.1) are radially
symmetric has been considered. In particular, when the operator A is regular on the entire
interval [0,∞), as for example for the Laplacian case (1.3), it is known for wide classes
of functions f , including the family (1.6), that ground states are radially symmetric with
respect to an appropriate origin O ∈ Rn, see [10]. In such cases the a priori assumption of
radial symmetry is then automatically satisfied, and we find for n = 2 that ground states
of (1.1), (1.6) are unique up to translations, see Theorem 2.

§2. The main result.

We consider the quasilinear equation (1.1), in which the operator A is of class
C1(0,∞). Let

Ω(t) = tA(t), G(t) =
∫ t

0

Ω(s)ds, t > 0,

and suppose that the following specific conditions are satisfied:

(1) Ω′(t) > 0 for t > 0, Ω(t) → 0 as t→ 0,
(2) tΩ(t)/G(t) is (non–strictly) increasing in (0,∞);

see [9, Section 1].

We define the critical constant

(2.1) m = lim
t→0

tΩ(t)
G(t)

.

It is clear that m ≥ 1, since G(t) < tΩ(t) for t > 0 by (1).
The operator A in (1.4) obviously satisfies conditions (1), (2), where the exponent m

there coincides with the constant m given in (2.1).

Theorem 1. Suppose that the operator A obeys conditions (1), (2), and let the critical
constant m satisfy

m ≥ n.

Assume that f in (1.1) is of the form (1.6). Then radially symmetric ground states of
(1.1) are unique up to translations.
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Proof. By [9, Theorem 1 and Lemma 2.1] it is enough to prove for the family (1.6) that

(2.2)
d

du

[
F (u)
f(u)

]
≥ 0 for u > 0, u 6= a,

where

F (u) =
∫ u

0

f(s)ds =
1
p

{
eup

− 1− up − (α+ 1)
2

u2p

}
and a is the unique positive zero of f .

In fact, to see that f has exactly one positive zero a, we note that, in the new variable
v = up,

f = f(u(v)) = v(p−1)/p[ev − 1− (α+ 1)v].

It is thus enough to show that ev − 1− (α+1)v has only one zero in (0,∞), which follows
by trivial calculus. Indeed one finds a > [log(α+ 1)]1/p.

Since [
F

f

]′
=
f2 − f ′F

f2
, ′ =

d

du
,

to show (2.2) it is enough to verify that

(2.3) f2 − f ′F ≥ 0 for u > 0.

Again in the v variable, we find

f2 − f ′F =
1
p
v(p−2)/p[(1− p)(ev − 1)2 + v(ev − 1){A + Bv + Cv2}+ v2{D + Ev}],

where

A = (2p− 1)(α+ 1)− 1, B = − 1
2 (3p+ 1)α− 1

2 (p+ 1),

C = 1
2p(α+ 1), D = (1− 2p)α+ 1− p, E = 1

2 (α+ 1)(α+ p+ 1).

Let ϕ be the function in brackets in the previous formula, namely

ϕ(v, α ; p) = (1− p)(ev − 1)2 + v(ev − 1){A + Bv + Cv2}+ v2{D + Ev}.

The required condition (2.3) then follows if we show that

(2.4) ϕ(v, α ; p) > 0 for v, α ∈ (0,∞) and p ∈ [ 12 , 1].

Note moreover that ϕ(v, α ; p) is linear in p, so that it is enough to prove (2.4) at the
endpoints p = 1/2 and p = 1.
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Case 1. p = 1/2. Here

(2.5)

ϕ(v, α ; 1/2) = 1
2 (ev − 1)2 + v(ev − 1){A + Bv + Cv2}+ v2{D + Ev},

A = −1, B = −1
4
(5α+ 3), C =

1
4
(α+ 1),

D =
1
2
, E =

1
4
(2α2 + 5α+ 3).

We first show

(2.6) ϕ(v, α ; 1/2) > 0 for v ≥ 5; ϕ(0, α ; 1/2) = 0 for α > 0.

Indeed

A + Bv + Cv2 =
{ −1 when v = 0

3/2 when v = 5
.

Therefore, since A + Bv + Cv2 is quadratic in v, with C > 0, we get A + Bv + Cv2 ≥ 3/2
for v ≥ 5, α > 0. Now (2.6) follows from (2.5).

Next, observe that
1
2 (ev − 1)2 + v(ev − 1)A + Dv2 = 1

2 (ev − 1− v)2 > 0.

Therefore, since B is linear in α and E quadratic, and also ev−1 ≤ 1
5 (e5−1)v for v ∈ [0, 5],

it is clear from (2.5) that there is α1 > 0 such that

(2.7) ϕ(v, α ; 1/2) > 0 if 0 < v ≤ 5 and α ≥ α1.

Also, by a straightforward calculation we obtain

ϕ(v, 0 ; 1/2) =
1
8
v5 +

(
ev − 1− v − v2

2

)
·
{
−1

4
v2 +

1
3
v3 +

1
2
(ev − 1− v − v2

2
− v3

6
)
}
.

=
1
12
v5 + Positive function (of order v6 at v = 0).

Therefore

(2.8) ϕ(v, 0 ; 1/2) > 0 for all v > 0.

From (2.6)–(2.8) it follows that if ϕ(v, α ; 1/2) takes negative values in (0,∞)× (0,∞),
then it attains a negative minimum at some point (v0, α0), with 0 < v0 < 5 and 0 < α0 <
α1. Moreover, by direct calculation we find

∂ϕ

∂v
(v, α ; 1/2) = (ev − 1)2 + v(ev − 1){(A + 2B) + (B + 3C)v + Cv2}

+ (B + 3E)v2 + Cv3.
(2.9)

∂ϕ

∂α
(v, α ; 1/2) =

1
4
v2{(ev − 1)(v − 5) + (4α+ 5)v}.(2.10)
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We claim that at the minimum point (v0, α0) there holds

(2.11)
ϕ(v0, α0 ; 1/2) =

v2
0

4(5− v0)2
[
32α2

0 − 2α0(25α0 + 22)v0

+4(5α2
0 + 8α0 + 3)v2

0 − 2(α0 + 1)2v3
0

]
.

Indeed, since (v0, α0) is a critical point, by (2.10) and the fact that 0 < v0 < 5 there
follows

(2.12) ev0 − 1 =
4α0 + 5
5− v0

v0.

The claim (2.11) now arises by eliminating ev0 − 1 from the main formula (2.5).
By (2.9), we also have at (v0, α0)

(ev0 − 1)2 = −v0(ev0 − 1){(A + 2B) + (B + 3C)v0 + Cv2
0} − (B + 3E)v2

0 − Cv3
0 .

Eliminating (ev0 − 1)2 from the main formula (2.5) and then using (2.12) once more, we
get

(2.13)
ϕ(v0, α0 ; 1/2) =

v2
0

4
[(

70α2
0 + 108α0 + 75

)
−

(
28α2

0 + 44α0 + 23
)
v0

+
(
2α2

0 + 3α0 + 1
)
v2
0

]
.

Define

ψ(v, α) = 70α2 + 108α+ 75−
(
28α2 + 44α+ 23

)
v +

(
2α2 + 3α+ 1

)
v2.

Clearly

ψ(v, 0) = 75− 23v + v2 > 0 for v ∈ [0, 3.9],
∂ψ

∂α
(v, 0) = 108− 44v + 3v2 > 0 for v ∈ [0, 3.1],

∂2ψ

∂α2
(v, α) = 4[35− 14v + v2] > 0 for ∈ [0, 3.2] and all α > 0.

Consequently, by integration with respect to α from 0 to any α > 0, we get ψ(v, α) > 0
on [0, 3]× [0,∞). But ψ(v0, α0) = 2v−2

0 ϕ(v0, α0 ; 1/2) < 0, so that

(2.14) 3 < v0 < 5.

Next define

ω(v, α) = 32α2 − 2α(25α+ 22)v + 4(5α2 + 8α+ 3)v2 − 2(α+ 1)2v3.
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Then

ω(v, 0) = 2v2(6− v) > 0 for v ∈ (0, 6),
∂ω

∂α
(v, 0) = −4v(11− 8v + v2) > 0 for v ∈ [1.8, 6.2],

∂2ω

∂α2
(v, α) = 4(1− v)(v2 − 9v + 16) > 0 for v ∈ [2.5, 6.5] and all α > 0.

Hence, by integration with respect to α from 0 to α > 0, we get ω(v, α) > 0 on [2.5, 6)×
(0,∞). Since ω(v0, α0) = 4(5− v0)2v−2

0 ϕ(v0, α0 ; 1/2) < 0 by (2.11) and since v0 < 5, this
implies

0 < v0 < 2.5,

which contradicts (2.14). Therefore ϕ(v, α ; 1/2) cannot take negative values. This com-
pletes the proof of Case 1.

Case 2. p = 1. Here v = u and

(2.15)

ϕ(v, α ; 1) = v(ev − 1){A + Bv + Cv2}+ v2{D + Ev},
A = α, B = −2α+ 1, C = 1

2 (α+ 1),

D = −α, E = 1
2 (α+ 1)(α+ 2).

By Taylor’s expansion and use of the formula (2.15) for the coefficients, A, . . . , E, one
finds

ϕ(v, α ; 1) =
1
2
α2v3 − 1

3
αv4 +

∞∑
k=2

vk+3

{
α

(k + 2)!
− 2α+ 1

(k + 1)!
+
α+ 1
2k!

}

=
1
2
v3

{
α2 − 2

3
αv +

∞∑
k=2

vk

(k + 2)!
[(k2 − k − 4)α+ k2 + k − 2]

}
.

For all k ≥ 3 the coefficients (k2−k−4)α+k2 +k−2 are non–negative. Hence, dropping
all terms with k ≥ 4, we obtain

(2.16) ϕ(v, α ; 1) ≥ 1
2
v3

{
α2 − 2

3
αv +

1
12

(2− α)v2 +
1
60

(α+ 5)v3

}
.

By (2.16), to prove the assertion it is enough to show that

(2.17) 60α2 − 40αv + 5(2− α)v2 + (α+ 5)v3 > 0 on (0,∞)× (0,∞).

By Cauchy’s inequality 40αv ≤ 20α2 + 20v2. We are thus led to consider the function

(2.18) ψ(v, α) = 40α2 − 5(α+ 2)v2 + (α+ 5)v3 v > 0, α > 0.
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For fixed α the minimum of ψ(·, α) is attained at

vα =
10
3
α+ 2
α+ 5

.

Hence
ψ(v, α) ≥ ψ(vα, α) =

20
27

1
(α+ 5)2

{54α2(α+ 5)2 − 25(α+ 2)3}.

The expression in braces is the quartic function

Q(α) = 54α4 + 515α3 + 1200α2 − 300α− 200.

Observe that Q(2/3) > 0, Q′(2/3) > 0 and Q′′(α) > 0 on (0,∞). Consequently, Q(α) > 0
for all α ≥ 2/3. It is now evident that ψ(v, ·) > 0 for α ≥ 2/3, and so (2.17) holds in the
subset (0,∞)× [2/3,∞).

On the other hand,

60α2 − 40αv + 5(2− α)v2 + (α+ 5)v3 ≥ 5{12α2 − 8αv + (2− α)v2}.

The quadratic function on the right side has minimum value

20α2

2− α
(2− 3α) > 0

for α < 2/3. Hence (2.17) holds on the entire set (0,∞)× (0,∞), as required.
This completes the proof of Case 2, and in turn of the theorem.

It is surprising that the proof of Case 1 is so tricky. On the other hand, the function
ϕ(·, · ; 1/2) in (2.5) is very close to zero when (v, α) is in [0, 1]2. Indeed

ϕ(0.01, 0.01 ; 1/2) = 21× 10−12, ϕ(0.1, 0.1 ; 1/2) = 22× 10−7,

ϕ(1, 1/2 ; 1/2) = 0.039, ϕ(1/2, 1 ; 1/2) = 0.040, ϕ(1, 1 ; 1/2) = 0.181.

Instead of (1.6), another natural choice for the nonlinearity f(u) in (1.1) would be

f(u) = −αu+ (eup

− 1− up), α > 0,
1
2
< p ≤ 1.

For this family, however, the verification of (2.2) does not seem to be obvious.
Since in Theorem 1 we treat radially symmetric ground states u = u(r) of (1.1), it is

clear that the dimension n may be taken as any real number greater than 1. In fact, it is
precisely this point of view which was used in Theorem 1 of [9]. With this interpretation
the condition m ≥ n in Theorem 1 then allows values m < 2 when n < 2.
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When the operator A is smooth on the entire interval [0,∞), the result of Theorem 1
can be improved. In particular we have the following

Theorem 2. Let n = 2. Suppose that A is of class C1,1[0,∞), that Ω′(t) > 0 for
t ≥ 0, and that condition (2) is satisfied. Also let f in (1.1) have the form (1.6). Then
ground states of (1.1) having connected support are radially symmetric, and unique up to
translations.

When p = 1 in (1.6), the condition of connected support can be omitted.

Proof. First observe that A satisfies conditions (1), (2). Moreover Ω(t) = tΩ′(0) + o(t) as
t → 0, with Ω′(0) > 0. Hence from the definition (2.1) and use of condition (2) we get
m = 2.

The family (1.6) has the property that f ′(u) < 0 for 0 < u < δ and some δ > 0; indeed,
it is not hard to see that (using the variable v = up)

f ′(u) ≤ v2(p−1)/pev − 1− 2p− 1
p

α) < 0

for v ∈ (0, η), η = log(1 + 2p−1
p α) > 0 since p > 1/2. Thus we can take δ = η1/p. Hence f

is nonincreasing for u near zero (note also that f ′(0) = −∞ when 1/2 < p < 1), and by
Theorem 1 of [10] any corresponding ground state u of (1.1) having connected support is
radially symmetric about some origin O = O(u) ∈ Rn. The first part of Theorem 2 now
follows from Theorem 1, since for n = 2 the required condition m ≥ n is fulfilled.

To obtain the second part of the theorem, note that when p = 1 the function f in (1.6),
see also (1.5), is uniformly Lipschitz continuous on [0, δ] for any δ > 0. Hence by Corollary
1.1 of [10] any ground state is radially symmetric and the result follows from Theorem 1
above.

Similar results can be proved for singular operators A such as the m–Laplacian. We
omit the details since the required conditions are somewhat complicated to state (see in
particular [5, 10]).
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