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UNIQUENESS OF HAAR SERIES WHICH ARE  (C, 1) SUMMABLE

TO DENJOY INTEGRABLE FUNCTIONS

BY

WILLIAM R. WADE

ABSTRACT.    A Haar series   2 a xh  satisfies Condition H if   ak\,/k — 0

uniformly as  k — oo.   We show that if such a series is  (C, 1)  summable to a

Denjoy integrable function  /,  except perhaps on a countable subset of  LO, l],

then that series must be the Denjoy-Haar Fourier series of /.

1.   Introduction.   The Haar functions  y0, y., ••• ate a complete orthonormal

system in the Hilbert space L   [0, l].   For the purposes of this paper we need

only recall that  y0  is identically 1 and that, given any positive integer n = 2m

+ k, where   0 < k < 2m,  the corresponding Haar function  y    takes on the value

+ \/2m on the open interval

(D A(l,«)a(2A/2m + 1, [2k + l]/2m+1),

and takes on the value - \¡2m on the open interval

(2) A(2, ra) 3 ([2k + l]/2m + 1, [2k + 2]/2m + 1 ).

Furthermore, the support of that 72th  Haar function is precisely the closure of

the union of intervals (1) and (2):

Supp[XJ = [k,'2m, [k + l]/2m].

The Denjoy integral (see [5, pp. 84-85]),  (tí) /*,  is more general than ei-

ther Lebesgue's integral or the improper Riemann integral.

The D-Haar Fourier series of a Denjoy integrable function / is a Haar series

S(x) = 2^_0 afcXtW which is related to / by the following formula:

(3) ak = (D)f1of(x)Xk(x)dx.

If (3) ho ids and / is also Lebesgue integrable, then 5  is simply the Haar Four-

ier series oí f.
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The harmonic analysis of Haar series is greatly simplified by the following

property of Haar Fourier series:

The Haar Fourier series of any Lebesgue integrable function /

converges to / almost everywhere on  [0,  l].

The standard proof of this fact [l, pp. 47-50] uses only one consequence of the

Lebesgue integrability of /:   the derivative of an indefinite Lebesgue integral is

equal to the integrand almost everywhere.   Since this property is also shared by

Denjoy's integral, that same proof will establish that

(4) The D-Haar Fourier series of f converges to f a.e.

2.   The uniqueness theorem.    In this section we state the uniqueness  theo-

rem proved in §4 and relate it to the research presented in [2] and [4].

A Haar series   2^_. a  x¡.ix)  satisfies Condition G if, given any  lQ e [0, l],

(5) lim   aK/y    (í ) = 0,
j— oo 7 7

where   K     K2, •••  ate all those indices  p  for which  XÖU) ^ ^-   Lemma 3 of

[2] shows that a D-Haar Fourier series always satisfies Condition G.

A Haar series  2°°„ a  x Sx) satisfies Condition H if

(6) lim   a  y (x)/tz = 0    uniformly for x e [0, l].
22 /v 72 J

n—*oo

Condition G is equivalent to supposing that the limit in (6) exists pointwise,

since if XftOg) 4 0 then p > Ix^'o^ - P^'   Thus Condition H can be viewed

as the uniform analogue of Condition G.

F. G. Arutjunjan [2] has shown that if a Haar series 5 satisfying Condition

G converges, except perhaps on a countable subset of [O, l], to a Denjoy inte-

grable function /, then 5 must be the D-Haar Fourier series of /.

We shall denote the nth partial (C, l) sum of a Haar series  S(x) =

*r=o *kxk^ by

51(*)+...+5n + 1(x)        n, k    v

(7) o-niS;x) =-.   £   I - —      \a xk(x)
72+1 k=0\      n+l)k*

where 5 jM = ~"k_0 akX^x^- ^ tne sequence displayed in (7) converges at

x then 5 is said to be (C, 1) summable at x. If 5 converges at x it is auto-

matically  (C, l) summable at x; the converse of this statement is false.

The question motivating this research was:   Does Arutjunjan's result still

hold if 5  is only (C, l) summable off that countable set?

If 5  also satisfies Condition H (loosely, if 5  satisfies Condition G uni-

formly) the answer to this question is yes and is obtained as a corollary to the

following result, which is proved in §4.
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Theorem.    Let
oo

(8) S(x) = £ akXk(x)

be a Haar series satisfying Condition H such that

(9) lim sup \a (5; x)\ < oo
72-»oo

for all but countably many x's in  [0, l].     Suppose further that f is a Denjoy inte-

grable function such that

(10) lim   on(S; x) = f(x)    a.e. in [0, l].
72 -*00

Then S  is the D-Haar Fourier series of f.

This result is already known in the case that / is Lebesgue integrable (see

[4]), but the techniques used here to establish Lemma 4 in the next section are

radically different and substantially more complex due to the fact that a function

can be conditionally Denjoy integrable.

3.   Fundamental lemmas.

Lemma 1.    Let  S be a Haar series satisfying Condition G and A(z'n, k   ) be

an interval of the form (1) or (2) such that

(12) 5feQ + 1(x)/0     for x £ A(i0, *„).

Then given any tQ £ [0, 1]  there is an interval A(z'n, kA  of the form (1) or (2)

such that  £„  does not lie in the closure of A(z'n, kA and such that

(13) 5^ + iUMO    for x £ A(i¿, k¿).

This lemma was proved on pp. 225—226 of [4].

Lemma 2.    Le£  f be a Denjoy integrable function and L  be any collection

of nonoverlapping subintervals of a fixed interval A(z., kA of the form (1) or

(2).   Define the function f     by

f*(x) = f(x)    if x € A(x0, *0)~U®,

<14) 1       c
= 7TT(D)Ja  f^dt    lf x e A e ®-

Then the  (kQ + l)st partial sum of the D-Haar Fourier series  T of f can be

written as

0 Ali       h    ) J á(m.kn)A(i0>A0)|       JMio.koV

for any x £ A(z'Q, kQ).
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This lemma was proved on pp. 338—339 of [2J.

Lemma 3.   Let f be a Denjoy integrable function,  T be its D-Haar Fourier

series and 2)  be any collection of nonoverlapping subintervals of a fixed interval

A(z'n, kA of the form (1) or (2).   Suppose further that S     is any Haar series whose

partial (C, l) sums satisfy

(15) lim    f .      on(S*;t)dt = iD)J ../*(*)*,

where  f     is defined by (14).   Then 5,      Ax) = T,      ,(x)  for x e A(z'  , kA.
' ' J «0+1 «0 +i o      0

Proof.    The integral of a Haar function is zero, and the support of each Haar

function  y,      ., Xtn+2> " ' is either a subset of A(z'0, k^) or disjoint from it.

Consequently, if tz > kQ,

f o (S*; t)dt
JMio,k0)   "

(16) *n'+ 1    r n-kü + l  r
= —- ak  (5*; t)dt +- St   +i(t)dt.

77+1     JáCioM)     fe0 77+1 JMi0,k0) 0

But  Xn> Xi ' " " ' ' Xu     are aH constant on  A(z'     kQ) so the last summand of (16)

is simply

"~k0   +   l       ,„■        ,     Mr*

\à(i0, kQ)\Sl  nix)
n + 1

for any  x e \(i     kA.   Solving (16) for 5L+J.W we then obtain

5* + 10r) = -111-!-f a (5*; t)dt
o n-kc + l     |A(z0, A0)jJA(f0.*o)   *

¿0 + l

—r—r, I. CT& (5*; i)^z*.
77-^0   +   1       |A(Z0,   ^0)|^A(20,fe0)     *0

Taking the limit of both sides of this equation as  » —> oo  and applying (15) re-

sults in

S*   +l(x)=-i-(D)( f*(t)dt,
ko |A(z0,/fc0)|     JMi0,k0)'

fot any x e \(in, kA.   According to Lemma 2, this is the value of T,     ,   over

A(z-0, *0).

Lemma 4.   Let f be Denjoy integrable,  T be its Haar Fourier series and

suppose that S(x) = 2 a  y_Ax) is a Haar series satisfying Condition H which is

(C, 1)  summable to  f almost everywhere.   Suppose further that on some fixed

interval A(z', kA of the form (1) or (2) that

(17) 5fe   +i(%) 4 Tkß+lix)    for x e A(z0, kQ).
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Then given any M > 0 there is an interval A(z', k^) contained in A(z'Q, kQ) such that

\ak '(S; x)\ > M for x £ A(z'¿, k£) and such that Tk > . and Sk>  x sa£z's/y (17) 072

a(z°;^).

Proof.   We shall prove this lemma in six steps:

I. We begin by supposing the lemma is false; i.e., that there is an MQ such

that if A(/, ra)  is any subinterval of   VzQ, k^ of the form (1) or (2) then

\an(S; x)\ > M0    for x £ A(j, n)

implies    5  +](x) = T  +,(x)    for x £ Mj, n).

II. We next shall use Lemma 1 to show that it is no loss of generality to

suppose that  |a x (x)/n\ < MQ for n > kQ.

III. We shall then construct a "maximal" class of intervals

5)= !A(zj, pA, A(z2, p2), ... !

on which 5„     ,   and  T „     ,   ace identically equal.
Pk+l Pk+l ' *

IV. Next we shall construct a subseries  5    of 5  such that.

(a) 5    is  (C, 1)  summable to the function /     almost everywhere,

where /     is defined with respect to the class X chosen in III by (14);

(b) 5    and  5  are identical in  A(z', kA ~ X;

•   (c) st0 + i{x) s Skc,+i{x) for x e A(V ^o^

V. We shall then show that the partial (C, 1) sums of this series  5    are

bounded by  13MQ by showing that if they are not, we are lead to a contradiction

of the construction of 5    in step IV.

VI. Finally, we shall use IV and V to lead to the ultimate contradiction.

Indeed, since any (C, l) partial sum of a Haar series is Lebesgue integrable,

we can use IV(a) and V to conclude that /     is Lebesgue integrable and that (15)

holds.   Consequently, by Lemma 3,  5*q + 1 = E       ,   on  A(zQ, kQ).   But, by IV(c),

this identity also implies  5¿o+1 = EfeQ+1   on  A(z'0, kQ).   Since this and hypothesis

(17) of this lemma are incompatible, assumption I was false; i.e., the proof of

the lemma is complete by contradiction.

What remains, then, is to execute steps II through V:

II.   By (6) we choose an integer  2Ö  so large that

(19) \a„Xn(x)/n\ < M0     whenever n > 2Q

and for any x £ [0, l].

Using Lemma 1 successively on the points  £Q = 1/22,  t.= 2/2ö, ••• , tQ

= (2     - l)/2Q   and the series  S - T,  we may suppose with no loss of generality

that  |A(z'0, kQ)\ < 1/2    .   This fact together with (19) will assure us that

(20) \anyn(x)/n\ < MQ    for 72 > kQ

and for any  x £ [O, l].
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III. If there is no subinterval A(zj, pj) of A(z'0, kQ) such that Spi +J s

T       ,   on A(z',, p.) then set 3) = 0.   Otherwise let A(z'., p.) be the first such
Pi +1 i   r i i      l

interval of the form (1) or (2).

Suppose that we have either terminated this process or have managed to

choose N-l intervals A(z'j,pj), •••,  \( U_,> P/v-l^   ^ there is no subinterval

A(z  , p ) of A(z'  , kA disjoint from   U/U' A(/'„ p ) such that Sn       = Tn    ,
n    r n U '     U ' 1 = 1 I    ' I Pn+1 "n + l

then set

ÍD= \Mir p¡): 1= 1, 2, ..-_, N - li.

Otherwise let  AU, pA) be the first such interval of the form (1) or (2).

If this process can be continued indefinitely, set

S) = (A(z'/,p/):/=l,2,...S.

Clearly Ju is a collection of nonoverlapping intervals of the form (1) or (2).   De-

fine the function /     by (14).   Notice that if 2) is empty then /     is identically

equal to /.

IV. We shall construct the series  5     by choosing a particular sequence of

integers tz   < n   < • • • which are indices of Haar functions whose support lies

in the closure of A(z', kA.

Let n    be that integer such that A(l, n A  U A(2, nA is the interval

AU, zeQ) without its midpoint.   For instance, if  AU, kQ) = (%, l/4) then  n. = 5.

By (17), tz    is the first integer such that 5,     . 4 T,     .on A(z', kA.

Let tz    be the very next integer such that the support of x      ^ies in tne closure of

A(z'0, kQ) and such that, if  i.   and  k.   ate chosen so that  A(l, nA  U A(2, n A

is the interval  A(z,, kA without its midpoint, then 5,      , 4 T,      ,   on  A(z',, k,)-
i- I *■ 221+1 ftl+1 I'l

Throughout the following pages we shall denote the interval A(/, n) without its

midpoint as  A  (;', 72).

We continue this process as long as possible, thereby generating subintervals

AU, k) of A(z'0, kQ) and integers  n. if = 1, 2, • • •)  such that

(21) A(l, 7z; + 1) u A(2, n.n) = A*(z;, k)

and

(22) s 4 T on   A(z, /é.) for 7 = 0, 1, 2, ... .
2j. + l Kj + t I 7

Finally, using the sequence  n.,n   ,•••  just generated we set

(23) S*(x) = SkQ + l(x) + £ anxn.(xl

In case the process for selecting the  72.'s   terminates after a finite number
-*

of steps, 5    is just a finite series.   Note also that IV(c)   is trivially satisfied.
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We shall now show IV(a) and (b) are also satisfied by this  5  .

Indeed, by the disjointness of the collection X and by the choice of the

sequence  ira.I,  if the support of  X„  iS contained in  A(z'0, kQ) but  Xn  does not

appear in the sum (23), then it must be the case that Supp (Xfj) Ç A(z';, p¡) fot

some  /.   In particular, the series 5 and 5    are the same series in the set

A(z'     k A 'v, U X.   By the hypotheses of this lemma, then

(24) lim  ct (5   ; x) = f(x) = f*(x)    fot almost every  x in  A(z'0, kQ) ̂  U X.
72 —oo

On the other hand, if xQ £ A(z., p.) tot some  / used to define X,  then the

disjointness of X means that the series (23) must be truncated at p..   Since 5

and 5    were identical up to that point, 5 (x A = 5      Ax A.   But by the choice of

p., S      .   = T      .   on A(z'     pA.   Lemma 2 and the fact /     is constant on

A(z',, p.) now imply that  T      . = f     on  A(2., p.).   Combining these three facts

we conclude that 5 \xQ) = /  (xQ).   Since xQ was any point in any interval of X,

we can now conclude that

(25) lim an(S*; x) = f*(x)    on each A e X.
72—00

Combining (24) and (25) we have IV(a).

V.   Suppose that the partial (C, 1) sums of 5    are not bounded by  13/VE

on A(z'0, kA and let L be the smallest index greater than or equal to ra.   such

that   kL(5*; £Q)| > 13M0 for some  tQ £ A(z'Q, ¿Q).

If we let ra     be the largest number in the sequence n. , n  , • • •  which is

less than or equal to L, then for some choice of j   = 1  or  2,

(26) K(5*; *)| > !3Mo    for x e A{ip> np)-

Indeed, if L = ra    then (26) is trivial by (21).   Otherwise we use the least prop-

erty of L.

We first begin by noting that

(27) V^V> °°AVi'*#-!>■
Indeed, if (27) were false, then 5 = 5, , + a     x        and a corresponding

"p+l kp-l+í np^np' * 6

equation involving  T and its 72 th coefficient, say ß    , implies 5

Tkp„x+\ s {ßnp - an^np on A {lp-V kp-l]-   But Xnp changes signs inthat

punctured interval while the left-hand side of the above identity is constant in

that punctured interval.   The only possibility, then, is that ß     = a      which

P        "P
in turn forces Sk       +]   - Tkp_x+l = 0 on A (ip_v ^_,)-   Since both partial

sums are constant throughout A(z       , k       ), this statement and (22) are incom-

patible; consequently (27) does hold.
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Let j'p 4 jp with j'p = 1   or 2.   Then, by (21),  Mjp, np) U Mj'p, n) =

^ip-vK-J] and.by(22), S^^^T^^   on AO^, *,_,)•   Hence by

the contrapositive of (18),

\ok      (S;x)\<MQ    fot x e A(ip_l, kp_l).

Note also by (22) and the fact that 5  and 5    are identical outside D, we have

on(S; x) = on(S  ; x)     for x £ A(z      p k      j)

whenever n = k      ., k + I, • • • , n        - 1.   Consequently, the above inequality

becomes

(28) ¡ffi,   _ i (S*; x)\ < M0    fot x £ Mip_ p ¿p_ L).

Using (27) and the contrapositive of (18) we can also conclude that on at

> %).  ^;, np),

K^*;x)\<M0.

least one of the intervals   AU , n),   My', n),
P      P P     P

'P

But

"P-i /          ,      ,                       a    v    (x)

(x)   +-■-%(5*;*U   E    [l--±-)akXA
*=o    V      "¿, + V "p + i

a     y    (x)
v  r  \ ,        p      P

,(*)

Vl

Hence by (20) and the triangle inequality,

|2, W| < \anp(S*; x)\ + \anpxnpix)/inp + l)| < MQ + Mfl = 2MQ

on at least one of the intervals   \(j  , 72  ),   A(/   , n).   But  2,   is constant through-p     p p     p i &

out the union of both these intervals, so   |2,(x)| < 2M„  for x £ A(z      ,, k      ,).
li      ' —       u p—l'p—l

Applying (20) and the triangle inequality again, we conclude that

(29) \an  (5*; x)| < 3MQ    for x £ AUp_ p Ap_ ;).

We shall now complete the proof of step V by showing that (28), (29) and

(26) are incompatible with (27).

The definition of (C, l) sums and the construction of 5    allow us to write

the following equations for any x £ \(i k     .).

72+1 L - 72p   + 1

(30) (7,(5*; x) = -L- a    (5*; x) +-5*   +Ax);
L L + 1    nP L + 1 "p + 1
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k*   i +1
,c*        x P-L

a AS  ; x) = —-—- akL L + 1        *P-1

L -k*   i + l

.(S*;x)+.       /- 5* U)
L + 1 ^

(3D L  - 72p  +   1

+-a.    y   (*);L + 1        "pxV   '

Vi + 1 £7 P- 1 r*
a     Y w

(32)    ff    (S*; X) . JLT_L__ a        (5*; x) + JL-»—— Sl(x) + _^J
"<> npU       kP~l np+l P np + x

Since  y      is constant on  A(/'  , ra  ) there are two possible cases:
«77

'£>'     i>

(34)

or

(35)

L -' n   + 1
P a    v    W| > M      for x e A(/ , « )

'      72p ^72p I Ü P P

P
— l%x„pWI<^o   for xe Wp> V-

If (34) holds then we use (29) and (26) on (30) to conclude that

L - n.   )- 1
P

_J_-15*       (x)| > 10AL     on A(;\. raj.
L + 1 "P+l ° ?     p

But 5 =5      + a    y       so (34) implies
"p+l »p np^np' r

~TTÎ~ {s"pl > 10M° " M°= m° on A(;"' "^

Since  5*     is constant on  A(z      . , k      A this inequality must hold throughout

the larger interval:

(36) L?1+    {S»P{X)] > 9A1°    f°r * £ A('*-l' kP-l)

On the other hand, if (35) holds, then using (28) on (31) implies

> 12/VE,
L — k.    . + I L - ra„ + 1

P- l c*   I   \ P I   \-5    (x) +-a     y    U)
L + 1 "P L +1 npAnp

on   Mz      ., /e      . ),  which by (35) guarantees

Y+r k] > iiAi°> 9M° °n A(/^ v-
This show that (36) holds in any case.

Now,  2ra    is an element of the sequence  ra  , 72  , ■••by (27).   Hence by

the choice of ra    relative to  L,  L < 2ra .   The construction of the sequence  k.
P P * ;

shows that  2k < n  .   These two inequalities together yield  3(«    - k      ,  + l)
p—ip a & j p        p—1

> L - ¿        + 1.   Consequently, applying (20), (28), and (36) to (32), we con-

clude   |ct    (5*; x)\ > (l/3)9Mn-Mn -M. = Mn for x £ A(i     ,,k     A.   This,
np u u u u p—1      P—1

together with (18) and (21), implies 5       , =T       ,   on  A*(z      ,,k     ,).   By
np+l np+l P—l       p-1 '

(27) this is impossible.
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This final contradiction completes the proof of step V which in turn completes

the proof of this lemma.

4.   The proof of the theorem.   Let  \Z     Z  , • • • ! be the set of points in

[0, l] where

lim sup \a (5; x)\ = + oo.
22 — oo

Suppose that  T is the D-Haar Fourier series of /,  but that the theorem is

false.   Choose  kQ  least so that the  &Qth  Fourier coefficient of / is different

from a     .   Clearly, then, 5,      . 4 T,     ,.   Since  T satisfies Condition G (Lern-
en ' '     fen + 1 eo+1

ma 3 of [2]) the series  S - T satisfies the hypotheses of Lemma 1.   The series

5 and  T also satisfy the hypotheses of Lemma 4.

Applying Lemmas 1  and 4 countably many times, we can thus choose a

sequence of intervals A(z  , kA, • • • , AU, k   ), • • •  of the form (1) or (2) such

that

(37) Z    does not lie in the closure of  AU, ^N),

(38) the closure of AU, kN) is a subset of AU + ,, &N + j),

and

(39) \ok (5; x)\ > N    for x e A(z'N, kN), for N = 1, 2, • • • .

By (38), ir  ,  A(z', k   ) is not empty; let £ be in this intersection.

By (37), £, 4\Z., Z   , ••■!  which, by the definition of this sequence, implies

(40) lim sup|o-n(5;  f)| < oo.
rc-»oo

Yet by (39), since  rf É A(z'N, k^ for all  N,  lim sup^^ \o(S; &\ = 00.   This

being incompatible with (40) completes the proof of the theorem by contradiction.
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