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UNIQUENESS OF INVARIANT MEANS
FOR MEASURE-PRESERVING TRANSFORMATIONS

BY

JOSEPH ROSENBLATT

Abstract. For some compact abelian groups X (e.g. T", n > 2, and II"_, ZJ, the
group G of topological automorphisms of X has the Haar integral as the unique
G-invariant mean on ¿X(V, \x). This gives a new characterization of Lebesgue
measure on the bounded Lebesgue measurable subsets ß of R", n > 3; it is the
unique normalized positive finitely-additive measure on ß which is invariant under
isometries and the transformation of R": (xx, . . . , x„)i->(xx + x2, x2.x„).
Other examples of, as well as necessary and sufficient conditions for, the unique-
ness of a mean on L^(X, ß, p), which is invariant by some group of measure-pre-
serving transformations of the probability space (X, ß, p), are described.

0. Introduction. Let ß be the ring of bounded Lebesgue measurable sets in R " or
in S", the «-dimensional unit sphere in Rn+X, and let \, be the Lebesgue measure
on ß normalized by Xn(J") = 1, where J = [0, I], or by Xn(S") = 1 respectively.
The classical characterization by Lebesgue of \ is that it is the unique positive
real-valued function / on ß which satisfies these three conditions.

(a)f(Jn) = 1 or/(5") = 1 respectively,
(b)/is invariant under isometries,
(c) / is countably-additive.

In 1923, Banach [1] studied the question of Ruziewicz as to whether/is still unique
when (c) is replaced by

(c0) / is finitely-additive.
Banach gave a negative answer to this question for Rx, R2, and S ; but for R",
n > 3, or S", n > 2, this question is still unanswered.

In this paper we will prove a theorem which comes close to a solution of this
problem for R", n > 3.

Theorem 3.10. If f satisfies (a), (b), and (c0), and if f is invariant under the
transformation of R", n > 3, given by (xx, x2, . . . , xn) i-> (xx + x2, x2, . . . , xn), then

/=A„.

Our method of proof will give several other theorems similar to this one. In
Theorem 3.10, we do not need the full strength of (b); we need only know that/ is
absolutely continuous with respect to \ i.e. for N G ß, f(N) = 0 whenever
\,(N) = 0. The fact that for R", n > 3, or 5", n > 2, (a), (b), and (c0) imply this
absolute continuity of / is an observation of Tarski which is proved like this.
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624 JOSEPH ROSENBLATT

Because there are paradoxical decompositions by isometries of /", n > 3, or S",
n > 2, for N E ß when \(N) = 0, N can be packed by finite decomposition and
isometries into open sets of arbitrarily small diameter; hence/(A) = 0 if X„(N) = 0
with N E ß. This implication is not true for Rx, R2, or Sx; for example, see [8].
Therefore, we need to assume absolute continuity instead of (b) in proving this
analogue of Theorem 3.10 which holds for all n > 2.

Theorem 3.11. If f satisfies (a) and (c0), and f is absolutely continuous with respect
to \, n > 2, then f = \as long as f is invariant under these three transformations of
R",n > 2.

(XX, X2, . . . , Xn) K> (XX  +   1, X2, . . . , X„),

(XX, X2, . . . , X„) M> (xx, Xx  +  X2, . . . , X„),

+ 1
(xx, X2,..., X„) H> (x2, ...,X„, (-1)"+  xx).

These results can also be viewed as proving the existence of a new kind of
paradoxical decomposition of the cube /", n > 2. Already in [11], it was shown
that for J", n > 3, there exist paradoxical decompositions by isometries with Borel
parts modulo some isometry-invariant ideal of Borel sets. Now, by Tarski's equiva-
lence of the existence of paradoxical decompositions and the nonexistence of
invariant finitely-additive measures (see [9] for example), our main theorems prove
that, for any invariant ideal in ß which contains a set of positive measure and also
contains all null sets, there exist paradoxical decompositions of J", n > 2, modulo
this ideal. But here the transformations being used come from the group generated
by the three transformations of Theorem 3.11 and not just from the group of
isometries of R" demanded in the original problem of Ruziewicz. When using just
isometries for the transformations, the existence of paradoxical decomposition,
modulo an ideal as before, is still unknown.

The techniques of functional and harmonic analysis used to prove the main
theorems are perhaps best understood when one considers invariant linear func-
tionals instead of invariant finitely-additive measures. For instance, the problem of
Ruziewicz for Rn+i, n > 1, has this alternate formulation. Let L^S") denote the
bounded Lebesgue measurable functions on the «-sphere in Rn + X. The Lebesgue
measure \, determines a linear functional Z„ on LX(S") given by I„(f) = j f d\
for all / G LX(S"). This linear functional ln has the properties (1) Z„(l) = 1, (2)
/„(/) > 0 if/ > 0, and (3) In(gf) = In(f) iff G LX(S") and g is an isometry of Sn.
A linear functional with properties (l)-(3) is an invariant mean of L^S"),
invariance being with respect to the group of isometries of S". The problem is this:
is In the unique isometry-invariant mean on S"?

The notion of an amenable group and the importance of amenability in
harmonic analysis has been recognized by many authors. See Greenleaf [4] for a
survey of amenability. In this context, we have the modern version of the problem
that Banach studied. Let G be an infinite compact group and let XG be the Haar
measure on G normalized by XG(G) = 1. Let L^G) denote the usual equivalence
classes of Xc-measurable essentially bounded functions on G. The measure XG
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UNIQUENESS OF INVARIANT MEANS 625

determines a mean IG on LX(G) by IG(f) = ff dXG for all/ G LX(G). This mean
is invariant under left (or right) translations and group inversion in G. The problem
is this: is IG the unique mean on LX(G) which is invariant under left-translations?
Independently, Granirer [3] and Rudin [13] showed that if G is amenable as a
discrete group, then there are other invariant means on LM(G); Rosenblatt [12]
showed that there are even 2° mutually singular invariant means on LX(G) if G is
amenable as a discrete group. The techniques used in [12] show that for the
classical problem on L^S1) studied by Banach, there are also 2C mutually singular
invariant means. Moreover, in Rosenblatt [12] it is shown that the existence of
many invariant means on L^G) can imply the amenability of G as a discrete
group. See [12] for the details.

However, it is still unsolved whether there can be any infinite compact group G
such that IG is the unique invariant mean on LX(G). Worse yet, until recently the
following slightly more general problem was not resolved. If G is a semigroup of
measure-preserving transformations of a probability space (X, ß, p), does there
exist more than one G-invariant mean on LX(X, ß, p)l Of course, the G-invariant
mean/» determines one G-invariant mean I on LX(X, ß,p) by 1(f) = ff dp for all
/ G LX(X, ß, p). The question is whether I is the only invariant mean. In del Junco
and Rosenblatt [2], it is shown that when G is a countable amenable semigroup,
and (X, ß, p) is nonatomic, there are other G-invariant means. This is an abstract
analogue for countable semigroups of [3] and [13]. Also, it is easy to see that if G is
too large (e.g. consisting of all measure-preserving transformations of (X, ß, /»)),
then there is a unique invariant mean. What is important is a case like the prior
ones where G is a group of natural geometrical transformations of some probability
space, and, moreover, G is not a large group but is countable or even finitely
generated.

In §1, this more general problem is studied and necessary and sufficient condi-
tions for the uniqueness of I are given. In §3, an application of these theorems
shows that the topological automorphisms of the torus T", n > 2, form a group
with two generators acting on T" as measure-preserving transformations such that
the Haar integral is the unique invariant mean for LX(T", ß, XT„). Both Theorems
3.10 and 3.11 are consequences of this result.

When this paper was essentially finished, we received a preprint [5] from V.
Losert and H. Rindler where some theorems similar to the theorems in §3 were
obtained. They use [2], but apparently were unaware of [14] which inspired us.
Although obtained independently of [5], both Proposition 3.5 and Theorem 3.6
have been written here to show more clearly their similarity to the main theorem in
[5] as well as their dependence on § 1. Also, a debt is owed to J. Mycielski for his
many helpful suggestions about the contents of this paper.

1. Asymptotically invariant nets. Let (X, ß, p) be a probability space and let G be
a group of measure-preserving transformations of (X, ß, p). For a /8-measurable
function /: X —» C into the complex numbers C and a mapping g G G, gf(x) =
/( g(x)) define another measurable function   /: X —» C. In this way, G acts as a
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626 JOSEPH ROSENBLATT

family of bounded linear operators on LX(X, ß, /»), the linear space of /»-equiva-
lence classes of/»-essentially bounded measurable functions. A G-invariant mean is
a linear functional cp G LX(X, ß,p) which is a mean (i.e. cp(/) > 0 whenever/ > 0
and cp(l) = 1) and which satisfies <p(gf) = cp(/) for all g G G and/ G LX(X, ß,p).
Because p is G-invariant, 1(f) = ff dp defines a G-invariant mean on LK(X, ß, p).

Suppose that there is a measurable set A with 0 <p(A) < 1 andp(g~"'(A)AA) =
0 for all g G G. Then Z is trivially not unique because IA(f) = (ÍAfaP)/p(A)
defines another G-invariant mean on LX(X, ß, /»). So we will assume throughout
this section that G is ergodic; no such A exists.

The existence of G-invariant means besides I can be characterized by a type of
Feiner condition. First, let <p be any G-invariant mean on LX(X, ß, p) with cp =£ I.
Then define m(E) = inf{2Jl, <p(lE)'- (E¡) is a measurable partition of E} for each
measurable set E. The set function m is a G-invariant countably-additive measure
on (X, ß). Moreover, because lE = 0 in LX(X, ß,p) if p(E) = 0, m is absolutely
continuous with respect to p. This is the main point at which it is critical that our
linear space LX(X, ß,p) consists of equivalence classes of functions. Some discus-
sion of this point and what happens if our linear space is £X(X, ß,p), all essentially
bounded measurable functions not identified in /»-equivalence classes, will be given
at the end of §3. But here this absolute continuity forces m = cp where c is some
constant, 0 < c < 1. Because cp ̂  I, c =?*= 1. Let cp0 = (cp — cZ)/(l — c). Then cp =
ci + (1 — c)cp0 and <p0 is another G-invariant mean. We call this the canonical
decomposition of the G-invariant mean cp.

Proposition 1.1. If there exists a G-invariant mean cp with cp ̂  I, then there exist
a G-invariant mean <p0 and an increasing sequence (En) of measurable sets with
lim„^x p(En) = 1, and (p0(lEn) = 0 for all n > 1.

Proof. Let cp = ci + (1 — c)cp0 be the canonical decomposition of <p. Fix a
measurable set E0 with p(E0) > 0. There is some measurable sets E c E0 with
p(E) > 0 and <p0(l£-) = 0. Otherwise, for all measurable sets E c E0, p(E) = 0 if
and only if cp0(l£) = 0. We could then define mQ in terms of cp0 as m was defined in
terms of cp; one can show that at least for measurable sets E c E0, m0(E) = 0 if
and only if p(E) = 0. In particular, m0(E0) ¥= 0. But m0 is a countably-additive
measure with (1 — c)m0 < (1 — c)cp0 < <p0. This means (1 — c)m0 = 0 and m0 = 0
because any countably-additive positive measure v on (X, ß) with v(E) < <Po(l£),
for all measurable sets E, must be identically zero. This is a contradiction.

Now use measure-theoretic transfinite induction to show that there exists a
sequence (Dn) of pairwise-disjoint measurable sets with/»(Z)„) > 0 and tp0(lfl ) = 0
for all n > I, and with 2^_, p(Dn) = 1. Let E„ = U?., Z>, for n > 1 to get the
desired sequence of measurable sets.    □

We use this proposition to get the next one. The set ^P will denote {/ G
Lx(X,ß,p):f> 0 and //dp = 1}.

Proposition 1.2. If there exists a G-invariant mean (p ¥= I, then there exist an
increasing sequence (En) of measurable sets with lim,,^,,^ p(En) = 1 and a net
(/„) C 9 such that limJ^Z, - /J|, = 0/or all g E G and, for all n > 1, there exists
a0 such that for all a > a0,fa = 0 a.e. on En.
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Proof. Fix a G-invariant mean cp0 and a sequence (En) as in Proposition 1.1.
Because 9 is w*-dense in the positive part of the unit ball of LX(X, ß,p), there
exists a net (fa) c 9 with /„ —>• <p0 pointwise on LX(X, ß, p) i.e. lima ffa F dp =
cp0(F) for all F E LX(X, ß, p). But <p0(lEn) = 0 for all n > I; hence,
lima ffalxyE dp — 1 for all n > 1. Therefore, by restricting fa to I\ En and
normalizing the restriction, one can obtain a net, also denoted by (fa), with
(fa) E 1? such that fa -» cp0 pointwise on LX(X, ß, p) and, in addition, eventually
fa = 0 a.e. on any fixed En. Assume we have chosen such a net (fa) c ÍP. Using the
method of Theorem 2.2 in Namioka [10] as applied to the group G acting on
LX(X, ß,p), one concludes that some net (ha) of convex combinations of {fa} has
the property that limj|g/ia - ha\\x = 0 for all g G G; of course, the net (ha) c 9
again. By starting with subnets of the original net (/a), one can see easily from this
that there exists a net (/„) c 9 such that lima||g/a - /J|, = 0 for all g G G and
such that, for any n > l,fa = 0 a.e. on En eventually.    □

The next theorem will be proved in a way similar to the proof of [2, Theorem
2.4]. This idea was inspired by Namioka [10].

Theorem 1.3. Assume that there exists a G-invariant mean <p with cp =£ I. Then
there exists an increasing sequence (En) of measurable sets with limn_>00 p(En) — 1,
and there exists a net (Aa) of measurable sets with p(Aa) > Ofor all a, such that

(1) for all n > 1, eventually A„ E X \ En,
(2) for allgE G, limp(g-x(Aa)AAa)/p(Aa) = 0.

Proof. Let (fa) be a net as in Proposition 1.2. Fix some g,, . . . , gk E G. Let (9a
be the ordinate set of /„ in X X R +, that is ©a = {(x, t): 0 < t < fa(x)}, and let
0a(. be the ordinate set of fa. Writing/» X X for the product of/» with Lebesgue
measure X on R+, we have by Fubini's Theorem,p X X(6ai) = p X X(6a) = \\fa\\x
= 1 and/» X X(&aiA&) = \\ fa — fa\\x. For any e > 0, if a is large enough, then we
have

p x x(ea n n ej >0 - e/2). (1)
\ '-I /

Now recall that for a measurable set U c X X R +,p X X(U) = /"p(U,)dt where
£/, = (x: (t, x) E U}. Also note thatr      i      v      / i

k        x *

V        «-i     /( «-i
Thus, (1) may be written as

k

ÇpliL >t}r\,f\ {/„ « g, > r}jrf/ > (1 - e/2)/o°°/»({/a > í})cZí.     (2)

Therefore, by (2), there must be a set of t of positive Lebesgue measure, and hence
at least one t > 0, such that

P\{fa > '} n PI U - ft > /} I > (1 - e/2)/»({/a > t}). (3)i=i
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Hence, there exists some t such that for all i = 1, . . . , k, we have

p({f* > t) n ft"'«/« > 0» >(1 - e/2)p({f > f}). (4)
Since {fa > 0} c X \ En eventually, we can take the set {/„ > /} in (4) to be
contained in X \ En. Hence, for all finite F c G, e > 0, and n > I, there exists a
measurable A, p(A) > 0, such that A c X \ En, and for all g G F,
p(g~x(A)AA)/p(A) < e. By a suitable indexing, we get a net (Aa) as stated in the
theorem.    □

A net of sets with property (2) of Theorem 1.3 will be called asymptotically
invariant. The conditions on (En) and (1) above force lima p(Aa) = 0. If this is the
case, as well as (2), then (Aa) is an arbitrarily small asymptotically invariant net. If
(Aa) is asymptotically invariant and (p(Aa)) is bounded away from 1, then (Aa) is
called a nontrivial asymptotically invariant net. Given a net as in Proposition 1.2,
any w*-limit of (lA/p(Aa)) in Lx(X,ß,p) will be a G-invariant mean on
LX(X, ß, p) satisfying the properties of Proposition 1.1 with respect to (E„).
Because G is ergodic, this observation proves

Theorem 1.4. The following are equivalent:
(1) There exists a G-invariant mean cp on LX(X, ß,p) with cp =£ I.
(2) There exist a measurable set E, with p(E) > 0, and an asymptotically invariant

net (Aa), with Aa c X \ E for all a.
If G is countable, then in addition (I) is equivalent to
(3) There exists an arbitrarily small asymptotically invariant sequence.

We see then that the question of the existence of certain invariant linear
functionals is equivalent to the much more concrete problem of the existence of
certain types of asymptotically invariant nets of measurable sets.

2. Some applications. In this section, we make some applications of §1; the
applications of §1 which give the theorems in the introduction follow in §3. Assume
that (X, ß, p) is nonatomic and that G is an ergodic semigroup of measure-preserv-
ing transformations of (X, ß,p). Given g E G, let g*: LX(X, ß,p) -» LX(X, ß,p)
be the adjoint of f-*gf for/ G LX(X, ß,p). We say a mean cp on LX(X, ß,p) is
G*-invariant if <p(g;F) = <p(F) for all g G G and F G LX(X, ß,p). If G is a group,
this is the same as the definition of invariance in §1. The techniques of §1 now
apply to study G*-invariant means.

In del Junco and Rosenblatt [2], it was shown that if G is a countable amenable
semigroup then (3) of Theorem 1.4 holds. This gives

Theorem 2.1. If G is a countable amenable semigroup of measure-preserving
transformations of a nonatomic (X, ß,p), then I is not the unique G*-invariant mean.

It is an open question whether the assumption that G is countable can be
dropped in Theorem 2.1. This problem shares the same difficulty (the cardinality of
G) with this open problem: does an amenable group G acting on an infinite set X
always have more than one G-invariant mean on /^(A')? Also, even when G is
countable, the cardinality of the set of invariant means on LX(X, ß,p) is not
known.
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UNIQUENESS OF INVARIANT MEANS 629

Another application of §1 is to pairs of independent transformations. Let
X = [0, 1] with Lebesgue measure /». Two measure-preserving transformations
g,, g2: X -^ X are independent if p(gx~l(Ex) n g{\E2)) = p(Ex)p(E2) for all mea-
surable sets Ex and E2. One simple way of obtaining such a pair is this. Let 9:
[0, 1]—» [0, l]2 be any Borel measure-preserving isomorphism of [0, 1] in Lebesgue
measure /» with [0, l]2 in Lebesgue measure /» X p. Let ttx and tt2 be the first and
second coordinate projections of [0, l]2 onto [0, 1]; and define g, = ttí ° 6 for
/ = 1, 2. Then g, and g2 are independent.

Theorem 2.2. If gx,g2: [0, 1]—»[0, 1] are independent measure-preserving trans-
formations, then I is the unique mean on L^O, 1], /») which is invariant under g* and

8*2-

Proof. Suppose I is not unique. Then there exists a sequence of measurable sets
(An) with lim^^ p(An) = 0 and

hm P(g-\An) n An)/p(An) = 1    for i = 1, 2.

But then we have

lim p(gx-x(An)ng2i(An))/p(An)=l
n—>>qo

too. However, p(gx~\An) n gï\An)) = p(An)2. Hence, 0 = lim,,^ p(An) = 1, a
contradiction.    □

3. Permutations of the characters. In this section, we further specialize the
theorems of §1 with the application to the group of automorphisms of a compact
abelian group in mind. Let G and (X, ß,p) be as in §1.

Lemma 3.1. Assume that a nontrivial asymptotically invariant net (Aa) exists for the
action of G on X. Then there exists a net (Fa) c L2(X, ß, p) such that

Hm||gFa- Ta||2 = 0   for all g EG,
a

and \\Fa\\2= 1, /Fa dp = 0 for all a.

Proof. Let/a - (lAJ]/p(Aa) ) - ^p(Aa) , and let Fa = /a/||/J|2 for all a. Then
fFa dp = 0 because //„ dp = 0, and ||TJ|2 = 1 for all a. Also,

IU - fat = 2(l-p(g~xAan Aa)/p(Aa)).

Since \\fa\\2 = p(X \ Aa) is bounded away from 0 by the nontriviality of (Aa), the
sequence (Fa) has the desired invariance property by the asymptotic invariance of
(Aj. a

In Schmidt [14], asymptotically invariant nets with p(Aa) bounded away from 0
and 1 were studied. For the action of SL(2, Z) on T2, the existence of a sequence
(Fn) as in Lemma 3.1 was shown to be impossible via a combinatorial argument.
We present here a more abstract argument which proves this same thing in
particular and which will more directly relate Schmidt's idea to the nonamenability
of G. It will also allow us to prove this same type of theorem for other groups of
automorphisms of compact abelian groups.
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First, consider the case that X is the «-dimensional torus T", n > 2, and /» is the
normalized Haar measure on T". We coordinatize T" in the usual manner as
{(z,, . . . , z„): z, G C, |z,| = 1, for /' = 1, . . . , «}. Let G be the group of topological
automorphisms of the compact group T". Then G is a group of measure-preserving
transformations of T"; and each g G G has a unique representation as an « X «
matrix g = (g0) with integer entries and det(gy) = ± 1, where g(zx, . . . , z„) =
(zf "zfl2 • • • z*'", . . . , zf"zf"2 • ■ • z*"). In particular, G is countable.

The space L2(T") has an orthonormal basis given by the characters T(T"). For
each y E T(T"), there exists a uniquely determined sequence (a,, . . . , an) E Z"
such that yOi> • • • '. 4)"■ ¿f'^2 ' ' ' z^- With this identification of T(T"), if
g G G corresponds as before to ( gy), then

gy(zx, ...,z„) = y(g(zx, ..., zn)) = (z?»z$» ■ ■ ■ *««.)* ■ ■ ■ (zf-'zf • ■ ■ **-)*

zl Ln

This gives the formula for gy which we did expect to be another character in
T(Tn); it is the character which corresponds to the image (bx, . . . , b„) =
(gy)T(ax, . . . , an) of (ax, . . . , an) under the transposed matrix (g¡j)T. Hence, up to
this identification of T(T") with Z", the regular action of G on L2(T") permutes
T(T") exactly as the transposes of the matrices (gy) act on Z". Therefore, if we let
0: L2(T") -^ l2(Z") be the canonical identification via the Riesz-Fischer theorem
using the above identification of T(T") and Z", then 9(gF)(v) = 9(F)(((gy)T)-xv)
for each g E G and its corresponding matrix (g¡j), each F G L2(T"), and v E Z".
Notice that ((gy)r)~' is again a matrix with integer entries and determinant ±1.
Since it should not cause confusion, we will also think of G as a group of invertible
matrices acting on Z".

More generally, suppose AT is a compact abelian group and G is the group of
topological automorphisms of X. Then G acts as measure-preserving transforma-
tions of (X, ß, Xx). The character group r of X forms an orthonormal basis of
L2(X, ß, Xx) and the regular action of G on L2(X, ß, Xx) permutes T. Let 9:
L2(X, ß, Xx) -* /2(r) be the canonical identification via the Riesz-Fischer theorem.
The group G acts on /2(T) by gf(y) = fiy ° g) for all g G G, / G /2(r), and y ET.
With this action 9(gF) =g-,9(F) for ail g G G, F G L2(À-, ß, Xx).

The group G above permutes T \ {1} because 1 is fixed by any g E G. We can
speak of G-invariant means on lx(T \ {1}) in the usual way with invariance with
respect to the regular action of G on lx(T \ {1}). The comments above give this
proposition and its immediate corollary for T", n > 2.

Proposition 3.2. If there is a nontrivial asymptotically invariant net for the group
G of topological automorphisms of the compact abelian group X, then there exists a
G-invariant mean on lx(T \ {1}).

Proof. Let (Aa) be the asymptotically invariant net. By Lemma 3.1 and the
comments above, there exists a net (fa) c /2(r \ {1}) such that lima||J/a — /J|2 = 0
for all g G G and ||/„||2 = 1 for all a. Let ha = |/J2 for all a. Then for all g G G,

SA -Ml,-B(,W-l/.lX«W+W)li
< U/,1 - \fa\   \\2  \Wa\ + |/«|   ||2   <   2|U  - /J2.
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Hence, lim„||g/ia - A„||, = 0 for all g E G. Because (ha) c /,(r \ {1}), any wMimit
of (ha) in /*(r \ {1}) is a G-invariant mean on lx(T \ {1}).    □

Remark. The group G can be replaced by any subgroup G in this proposition.

Corollary 3.3. If there were a nontrivial asymptotically invariant sequence for the
group G of topological automorphisms of T", n > 2, then there would be a G-in-
variant mean on lx(Z" \ {0}).

Again, consider the case that X = T", n > 2. Because G as a matrix group
contains SL(n, Z), it contains free nonabelian subgroups and it is not amenable. If
one has a free action of G on a set Y, then the existence of a G-invariant mean on
lx( Y) would imply that G is amenable, an impossibility. So Corollary 3.3 is close to
giving Theorem 3.4 except that the action of G on Z" \ {0} is not a free action. The
same difficulty occurs in the general case of a compact abelian group X; in order
to use Proposition 3.2 to assert there cannot be nontrivial asymptotically G-in-
variant nets in X, we would need besides the nonamenability of G, some informa-
tion about the orbit structure of the action of G on T \ {1}. This is the purpose of
Proposition 3.5.

Theorem 3.4. The Haar integral is the unique mean on LX(T", ß, XT»), n > 2,
invariant under the topological automorphisms of T".

Proof. The results in §1 and Corollary 3.3 show that we need to prove there is
no SL(n, Z)-invariant mean on lx(Z" \ {0}). For n = 2, this was stated in Myciel-
ski [7]; here is a proof. A 2 X 2 integer matrix (ac bd) with ad - be = 1 and
a + d = 2 is called parabolic. It is easy to check that ("c bd) is parabolic in SL(2, Z)
if and only if 1 is an eigenvalue. W. Magnus and B. H. Neumann have proved (see
[7, p. 725]) that there exist free nonabelian subgroups of Sl(2, Z) without any
parabolic elements except the identity matrix. Let F Ç SL(2, Z) be such a free
group. Then F acts freely on Z2 \ {0} and F is nonamenable, so there cannot exist
an T-invariant mean on lx(Z \ {0}).

For n > 2, we argue by induction. Suppose that we have shown that
lx(Z" \ {0}) has no SL(n, Z)-invariant mean. Then by Tarski's theorem (see [9]),
Zk \ {0} has paradoxical decompositions relative to SL(n, Z). Hence, Z X
(Z" \ {0}) = {(z,, . . . , z„ + 1): some z,■ ¥= 0, i = 2, . . . , n + 1} has paradoxical de-
compositions relative to SL(n + 1, Z). Let g(zx, z2, . . . , zn+x) = (z,, z2, . . . , z„ + ,
+ z,) for (z„ . . . , zn+x) E Zn+1; then g G SL(n + 1, Z). Also, g maps
(Zn + 1 \ {0})\(Z X (Z" \ {0})) into Z X (Z"\ {0}); hence Z"+1 \ {0} has para-
doxical decompositions relative to SL(n + 1, Z) (see Lemma 1 in [9]). Thus, there
is no SL(n + 1, Z)-invariant mean on lx(Zn + x \ {0}).    □

For general compact abelian groups we need this proposition.

Proposition 3.5. Suppose G is a group acting on a set Y and suppose there exists
{ya: a E A} c Y such that {Gya: a E A} is a partition of Y. Let Ha = {g G G:
gya = ya} for a E A and suppose Ha is amenable for all a E A. Then if there exists a
G-invariant mean on lx(X), the group G itself is amenable.
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Proof. Let cpa be an ZZa-invariant mean on lx(Ha) and let <D be a G-invariant
mean on lx(Y). We identify the orbit Gya with G/Ha by the correspondence
gHa «-> gya for g G G. Because this commutes with the usual action of G on the
left-coset spaces G/ Ha, there is no harm in assuming at the outset that Y =
U {Ya: a E A}, a partition of Y, each Ya = G/ZZa, and G acts on T by
left-multiplication in each Ya. Fix F E lx(G) and define T(cpa) G lx(Ya) by
F((pa)(gHa) = <PÁF(g- )) where F(£' ) is the function in lx(Ha) given by
F(g-)(h) = F(gh) for all h E Ha. This is a well-defined element ZTcpJ G
lx(G/Ha) because cpa is ZZa-invariant. Now define FY(gHa) = F((pa)(gHa) for all
g E G and a E A. This is well defined because Y is partitioned by the coset spaces
and it gives FY E lx(Y). We get a linear functional \p on lx(G) by iKF) = $(Z*V)
for all F E lx(G). It is easy to check that \p is a mean on lx(G). So to prove G is
amenable only requires showing »// is G-invariant. But for g0 G G and Z7 G lx(G),
(gf)(<Pa)(gHa) = F(<pa)(g0gHa) for all g G G and a E A. Therefore, (gF)Y
= g0(FY); so t(gF) = H(gF)Y) = t>(g0(FY)) = <i>(FY) = ^(F) for all g0 G G and
FElx(G).    U

Remark. When G is transitive on Y and H = {g E G: gx0 = x0} is normal in G
for some fixed x0, this theorem just states the well-known fact that when H and
G/ H are amenable, then G is amenable. For applications, it is often important that
the subgroups ZZa are not assumed to be normal.

One application of Proposition 3.5 is that it gives another proof of Theorem 3.4.
The case n > 3 is derived by induction, as in the proof of Theorem 3.4, from the
case n = 2. For n = 2, we know G is not amenable because G D SL(2, Z) which
contains free nonabelian subgroups. Let xn = (n, 0) G Z \ {0}. Then Dn = Gx„ =
{(np, nq): p, q E Z and gcd(p, q) = 1} describes the orbit of xn under G. Also,
because (Dn: n E Z \ {0}) is a partition of Z2 \ {0}, this gives the orbit structure
of G acting on Z2 \ {0}. Let Hn c G be the subgroup consisting of all g G G such
that gxn = xn. Then for all n E Z \ {0}, Hn is the same subgroup, {(¿ ±ax): a G Z}.
This has an abelian normal subgroup {(¿"): a E Z} of index 2; therefore, ZZ„ is the
same amenable subgroup of G for all n E Z \ {0}. By Proposition 3.5, there does
not exist a G-invariant mean on lx(Z2 \ {0}).

Another application of Proposition 3.5 is that it gives this general theorem which
essentially appears in Losert and Rinder [S].

Theorem 3.6. Let G0 be a subgroup of the group of topological automorphisms of X
which acts ergodically on (X, ß, Xx). Assume G0 is not amenable and that there exist
characters {ya: a E A} e T \ {1} such that each Ha = {g E G0: ya ° g = ya} is
amenable, and {gya: g E G0, a E A} = T\{1}. Then the Haar integral is the
unique G0-invariant mean on LX(X, ß, Xx).

Proof. If the Haar integral were not unique, then the ergodicity of G0 and
Theorem 1.3 would prove there exists an arbitrarily small asymptotically invariant
net (Aa) for the action of G0 on X. By Proposition 3.2, there would be a
G0-invariant mean on lx(T \ {1}). This is impossible by Proposition 3.5.    □

Here are some other examples of compact abelian groups with unique means.
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Theorem 3.7. Let K be a compact abelian group with at least two elements and let
X = PI",., K be the product compact abelian group. Then the topological automor-
phisms G of X have the Haar integral I as the unique G-invariant mean

LX(X, ß, Xx).

Theorem 3.8. Let p be any probability measure on {0, 1} with p{0} and p{l} both
not zero. Let X = II^_,{0, 1} with the product probability measure p = il*,., p. The
permutations G of Z + act as measure-preserving transformations of X by permuting
the coordinates; this group G has the integral I as the unique G-invariant mean on

Lx(X,ß,p).

Proof. The proofs for the two theorems are similar; we will prove Theorem 3.8
with /i({0}) = ]U.({1}) = 1/2. In this case G again consists of topological automor-
phisms of X considered as a compact group by identifying {0, 1} with Z/2Z. So
one needs only prove that the character group T of X is acted on by G in such a
manner that /^(rxfl}) admits no G-invariant mean. But this character group
T = U £°=o r* where T0 = {1} and Tk, k > 1, consists of those characters which
depend on exactly k coordinates. The group G leaves each Tk invariant and {Tk:
k > 0} forms a partition of F. Because of Proposition 3.5, it would suffice to find
two elements g,, g2 E G which are free group generators and such that the group H
generated by {gx,g2} acts freely on each Fk, k > I. This is easily, but not
explicitly, done by identifying the coordinate set Z + with the free group F2 on free
generators ax and a2, and letting g¡ be the permutation of Z+ corresponding to
left-multiplication of a¡ on F2, i = 1,2. Then if h E H and y E Tk, k > 1, satisfy
hy = y, one knows that the finite set F c Z +, with k elements, that consists of the
coordinates in which y is nontrivial must satisfy hF = F. It follows that there exist
N > 1 and z G F with hNz = z; hence, hN = e and h = e as a group element.
Thus, the action by this group H on Tk is free.    □

It is shown in Trott [17] that the group G of topological automorphisms of T",
n > 2, is generated by the two elements g,, g2 given by gx(zx, . . . , zn) =
(z„ zxz2, z3, . . . , z„) and g2(zx, . . . , z„) = (z2, . . . , z„, z\~xr) for (z„ . . . , z„) G T".
Because g2 has finite order, an equivalent statement of Theorem 3.4 is that there
cannot be a nontrivial sequence (An) with g2(An) = An for all « > 1, which is also
asymptotically invariant under g,. Applying this to cylinder sets A X A c T2 gives
this interesting corollary.

Corollary 3.9. For 8, 0 < 8 < 1, there exists e > 0 such that for all measurable
sets A E Tx with Haar measurep(A) < 8,

f. ,2p(Az n A) dp(z) < (I -e)p(A)1
A

It seems to be difficult to give an elementary proof of this fact. For this reason, it
is also difficult to find the largest e = e(8) for a given 8 > 0. For example,
calculations with various cases suggest that if 8 = 1/2, then e = 1/4 will work, but
this has not been proven except whenp(A) = 8 too.

We now prove the two theorems discussed in the introduction.
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Proof of Theorem 3.10. Suppose / satisfies (a), (b), and (c0). We identify J"
with T" in the usual way using the exponential map exp: J" —» T", exp(x,, . . . , xn)
= (e\p(2Trixx), . . . , exp(2iTixn)) for all (xx, . . . , xn) E J". Because / is absolutely
continuous with respect to Lebesgue measure, by restricting / to J", J = [0, 1], we
can define a mean cp on LX(T", ß, XT„) with <p(lexp<£)) = f(E) for all measurable
sets E c J". Since / is invariant by isometries and (xx, . . . , xn) h» (xx +
x2, x2, . . . , xn), Trott [17] shows that cp is invariant under topological automor-
phisms of T". By Theorem 3.4, cp is the Haar integral. But then F(E) = X„(E) for
measurable E c J"; by translation invariance of/,/(£) = Xn(E) for all bounded
measurable sets E.    fj

Proof of Theorem 3.11. First, note that invariance under the first two trans-
formations implies that/ is invariant under translations by Z". Then use Trott [17]
to show that at least the last two transformations generate a subgroup G of finite
index in SL(n, Z). Indeed, Trott claims that if n is odd, G = SL(n, Z); if n = 2,
one can check easily that G = SL(n, Z). Otherwise, it is not hard to prove from
Trott [17] that the left cosets of G in SL(n, Z) are among {oG: o G SL(n, Z), o
diagonal}. Now if the mean cp above is not the Haar integral, then lx(Z" \ {0})
admits a G-invariant mean. But because G is finite index in SL(n, Z), it follows
that lx(Z" \ {0}) admits an SL(n, Z)-invariant mean. Since this is impossible, cp is
the Haar integral and /is the Lebesgue measure.    □

Remark. For R2 the conditions (a), (b), (c0), and the absolute continuity of/,
without the additional assumption of Theorem 3.11 do not suffice for the conclu-
sion of Theorem 3.11. This follows for instance from Theorem 6.1 [8] and the
observation that for R", n = 1, 2, or S", n = 1, there exists an ideal 5 of
measurable subsets of ß which is invariant under isometries, contains all null sets,
contains a set of positive measure (e.g. some nowhere dense set), but does not
contain J" or S" respectively.

There are some more facts to observe about the role of null sets in Theorems
3.10 and 3.1.1. Consider the Haar measure X = XT¡ on Lebesgue measurable subsets
of T2; let G be the topological automorphisms of T2. There do exist G-invariant
finitely-additive positive measures p on ß with p(T2) = 1 but with /i^A. For
example, let WM = {z E T2: z has finite order dividing A/!}; then WM is a finite
subgroup of T2 which is permuted by G. By taking co*-limits of counting measures
on WM, one can construct a G-invariant finitely-additive positive measure
p( U m- i wm) = M( T2) = 1 • Of course, X( U Z-1 wm) = 0- we can arrange having
p vanish on finite sets here. These two problems are unsolved: (1) if p is a
G-invariant finitely-additive positive measure on ß with p(T2) = 1 and
p( U m- i wm) = 0, is ju = XI, (2) if n is as in (1) and p(N) = 0 for all N countably
infinite, is p = A?

We can also formulate Theorem 3.4 with a weaker assumption than the implied
absolute continuity. Let G and (T", ß, Aj-») = (T", ß, \) be as in Theorem 3.4. For
each g G G, let Fg = {z E T": gz = z}. Then Fg is a closed subgroup and
\(Fg) = 0 if g is not the identity e. Let F = U {Fg: g G G \ {e}}. Then \(F) =
0 too.
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Theorem 3.12. Let p be a G-invariant finitely-additive positive probability measure
on (Tn, ß) with p(F) = 0. Then p = \,.

Proof. It is sufficient to prove p(N) = 0 for all null sets N. If p(N) > 0 with
X(N) = 0, then let X = (J {gN: g G G} \ F. Since F is G-invariant and G is
countable, A' is a G-invariant null set with p(X) > 0. Define v(E) = p(E)/p(X)
for all E c X (any E c X is measurable). This gives a G-invariant finitely-additive
probability measure on X. But G is not amenable and G acts freely on X, a
contradiction.    □

We end with two questions. First, we would like to know if the amenability of G
has anything to do with the uniqueness of I. For example, is it the case that I fails
to be unique if and only if X = Xx X X2 as a nontrivial product of two probability
spaces, G = Gx X G2 with G, acting on X¡ as a group of measure-preserving
transformations for i = 1,2, G acts on X by (g,, g^X*,, x^ = (g,x,, g2Xj) for all
g, G G, and x, G X¡ for /' = 1,2, and G, is amenable?

The theorems presented here suggest that the Lebesgue integral Z might indeed
be the unique isometry invariant mean on LX(S2). Using the technique of §1 and
§2, this question becomes a problem in representation theory for connected
nonabelian compact groups. Let G be any connected compact Lie group with no
Tk, k > 1, as a closed normal subgroup. Let (Uk: k > 1) be a list up to a unitary
equivalence of the irreducible representations of G on finite-dimensional Hubert
spaces (Hk: k > 1). Exclude the trivial representation from this list. Under what
conditions (if ever!) is it the case that for each finite set F c G, there exists a
sequence (xk), xk E Hk, \\xk\\Hk = 1 for all k > 1, such that limit_0O|| Ugxk — xk\\H
= 0 for all g G F? If G is a group for which this fails for some finite F, then
LX(G, ß, XG) has the Haar integral as the unique G-invariant mean. If this
condition holds then the regular representation of G as a discrete group is weakly
contained in the orthogonal complement of {1} in L2(G, ß, XG) and, also, there will
be a nontrivial asymptotically invariant net for the left-multiplication of G on G.
This problem on the irreducible representations of G is fundamental for the
solution of the problem of Ruziewicz which Banach studied in [1].

Postscript. There have been some new results related to the above which are
worth mentioning. K. Schmidt [15] has shown that for a countable ergodic group G
of measure-preserving transformations of (A', ß, /»), there is more than one G-in-
variant mean on LX(X, ß,p) if and only if the identity representation is weakly
contained in the regular representation of G as a discrete group when it is restricted
to L2(X, ß,p)= {/G L2(X, ß,p): ff dp = 0). He also discussed the relationships
of strong ergodicity, Kazhdan's property T, and the uniqueness of G-invariant
means. His remarks on Kazhdan's property T make it clear that one can embed
SL(3, Z) as a dense subgroup of a totally disconnected compact metric group G
and thus construct a compact group G for which the Haar integral is the unique
G-invariant mean on LX(G, ß, XG).

Also, using some of the ideas of this paper and Kazhdan's property T, Dennis
Sullivan [16] has solved the Banach-Ruziewicz problem for n > 5; that is, he has
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shown that for n > 5, the additional mapping is not needed in Theorem 3.10. He
shows that for n > 5, the orthogonal group On contains a dense subgroup Tn which
as a discrete group has Kazhdan's property T and, hence, the compact group On
has the Haar integral as the unique G„-invariant mean on Lx(On, ß, X0 ).
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