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Uniqueness of meromorphic functions sharing

two sets with least possible cardinalities

Arindam Sarkar

Abstract. Let f and g be two nonconstant meromorphic func-
tions sharing two finite sets, namely S ⊂ C and {∞}. We prove
two uniqueness theorems under weaker conditions on ramification
indices, reducing the cardinality of the shared set S and weaken-
ing the nature of sharing of the set {∞} which improve results
of Fang-Lahiri [7], Lahiri [17], Banerjee -Majumder-Mukherjee [5]
and others.
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1 Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of
a-points with the same multiplicities, we say that f and g share the value
a CM (Counting Multiplicities) and if we do not consider the multiplicities,
then f and g are said to share the value a IM (Ignoring Multiplicities). We do
not explain the standard notations and definitions of the value distribution
theory as these are available in [12, 23]. Let S be a set of distinct elements
of C∪{∞} and Ef (S) =

⋃
a∈S{z : f(z)−a = 0}, where each zero is counted

according to its multiplicity. If we do not count the multiplicity then we
replace the above set by Ef (S). If Ef (S) = Eg(S) we say that f and g share
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the set S CM. On the other hand if Ef (S) = Eg(S), we say that f and g
share the set S IM.

For a ∈ C ∪ {∞} and a positive integer m we denote by N(r, a; f |≥ m)
(N(r, a; f |≥ m)) the counting function (reduced counting function) of those
a-points of f whose multiplicities are greater than or equal to m. We put

N2(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2);

δ2(a; f) = 1− lim sup
r→∞

N2(r, a; f)

T (r, f)

and

δ(k+1(∞; f) = 1− lim sup
r→∞

N(r,∞; f |≥ k + 1)

T (r, f)
.

We agree to denote by E any subset of nonnegative reals of finite measure.
For a nonconstant meromorphic function f(z), we denote by S(r, f) any
quantity such that S(r, f) = o(T (r, f), as r →∞, r 6∈ E.

In 1976, F. Gross [10] raised the following question.

Question A. Can one find finite sets Sj, j = 1, 2 such that any two non-
constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2
must be identical?

As a natural outcome of the above question Lin and Yi raised the following
question in [22].

Question B. Can one find finite sets Sj, j = 1, 2 such that any two noncon-
stant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1,
2 must be identical ?

During the last few years a great deal of works has been directed by
researchers to answer the above questions. A nice source of results on the
topic is the monograph written by Yang and Yi [23] (see also [1]-[8], [10],
[12], [16]-[19], [22]-[30]).

In 2003, Fang-Lahiri [7] exhibited a unique range set with smaller car-
dinalities than that obtained previously imposing some restrictions on the
poles of f and g in the following result.

Theorem A. [7] Let S = {z : zn + azn−1 + b = 0} where n(≥ 7) be an
integer and a and b be two nonzero constants such that zn + azn−1 + b = 0
has no multiple root. If f and g be two nonconstant meromorphic functions
having no simple poles such that Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞})
then f ≡ g.

In 2001, Lahiri [15, 16] introduced an idea of a gradation of sharing of
values and sets known as weighted sharing as follows.
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Definition 1.1. [15, 16] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1times if m > k. If
Ek(a; f) = Ek(a; g), we say that f and g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0
is a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a
with multiplicity m(≤ k) and z0 is a zero of f − a of multiplicity m(> k)
if and only if it is a zero of g − a with multiplicity n(> k) where m is not
necessarily equal to n.

We write f , g share (a, k) to mean f, g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for all integers p , 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share
(a, 0) or (a,∞) respectively.

Definition 1.2. [15] Let S be a set of distinct elements of C ∪ {∞} and k
be a positive integer or ∞. We denote by Ef (S, k)the set

⋃
a∈S Ek(a; f).

With the notion of weighted sharing of sets improving Theorem A, Lahiri
[17] proved the following theorem.

Theorem B. [17] Let S be defined as in Theorem A. If f and g be two non-
constant meromorphic functions such that Ef (S, 2) = Eg(S, 2) and Ef ({∞},
∞) = Eg({∞},∞) and Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

Suppose that the polynomial P (w) is defined by

P (w) = aωn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2 (1.1)

where n ≥ 3 is an integer and a and b are two nonzero complex numbers
satisfying
abn−2 6= 2. We also define

R(w) =
awn

n(n− 1)(w − α1)(w − α2)
, (1.2)

where α1, α2 are two distinct roots of n(n−1)w2−2n(n−2)bw+(n−1)(n−
2)b2 = 0. It can be shown that P (w) has only simple roots (see [2, 4]).

In 2011, Banerjee [4] improved Theorem B in the following result by
showing that the condition on the ramification index ceases to exists when
n ≥ 8.

Theorem C. [4] Let S = {w | P (w) = 0} , where P (w) is given by (1.1) and
n(≥ 6). Suppose that f and g are two nonconstant meromorphic functions
satisfying Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) and Θf +
Θg+min{Θ(b, f),Θ(b, g)} > 8−n, where Θf = 2Θ(0; f)+Θ(b; f)+Θ(∞; f)
and Θg is defined similarly. Then f ≡ g.
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In a recent paper Banerjee-Majumder-Mukherjee [5] raised the following
questions.

Question C. What happens if in Theorem C, Ef ({∞},∞) = Eg({∞},∞)
is replaced by Ef ({∞}, k) = Eg({∞}, k) where k is a non-negative integer?

Question D. Can the deficiency condition in Theorem C be further relaxed
?

They provided some affirmative answers to the above questions in the
following theorem.

Theorem D. [5] Let S = {w | P (w) = 0}, where P (w) is given by (1.1) and
n(≥ 6) is an integer. Let c, d ∈ C be such that c, d 6∈ S

⋃
{0, b}. Suppose that

f and g are two nonconstant meromorphic functions satisfying Ef (S,m) =
Eg(S,m) and Ef ({∞}, k) = Eg({∞}, k) and f and g have respectively c-
point and d-point of multiplicity ≥ p+ 1 where p, k are non-negative integers
or infinity such that p∗+ 1

k+1
≤ 1, where p∗ = 1, if p = 0 and = 2

p+1
, if p ≥ 1.

If either
(i) m ≥ 2 and

Θf + Θg +min{δf , δg}+ p∗min{δ(c; f), δ(d; g)} > 7 + p∗ +
1

k + 1
− n

(ii) m = 1 and

Θf + Θg +
1

2
min{Θ(0; f) + Θ(b; f) + Θ(∞; f) + δf ,Θ(0; g) + Θ(b; g)

+ Θ(∞; g) + δg}+min{δf , δg}+ p∗min{δ(c; f), δ(d; g)}

> 8 + p∗ +
1

k + 1
− n

or
(iii) m = 0 and

Θf+Θg + Θ(0; f) + Θ(b; f) + Θ(∞; f) + 2δf + Θ(0; g) + Θ(b; g) + Θ(∞; g)

+ 2δg +min{Θ(0; f) + Θ(b; f) + Θ(∞; f),Θ(0; g) + Θ(b; g) + Θ(∞; g)}

+ p∗min{δ(c; f), δ(d; g)} > 13 + p∗ +
1

k + 1
− n,

then f ≡ g, where Θf = 2Θ(0; f) + 2Θ(b; f) + Θ(∞; f) + 1
2(k+1)

δ(k+1(∞; f)

and δf =
∑

w∈S δ(w, f), and Θg is defined similarly .

Theorem D leads us to the following observations.

Observation 1.1. p = 0⇒ p∗ = 1⇒ k =∞;
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Observation 1.2. p = 1⇒ p∗ = 2
p+1

= 1⇒ k =∞; Θ(c; f) ≥ p
p+1

= 1
2

and

Θ(d; g) ≥ p
p+1

= 1
2
;

Observation 1.3. p = 2 ⇒ p∗ = 2
p+1

= 2
3
⇒ k ≥ 2; Θ(c; f) ≥ p

p+1
= 2

3
and

Θ(d; g) ≥ p
p+1

= 2
3
.

Observation 1.4. p = 3 ⇒ k = 1; Θ(c; f) ≥ p
p+1

= 3
4

and Θ(d; g) ≥ p
p+1

=
3
4
.

Thus we observe that the least possible finite value of k is 1. The theorem
is silent when k = 0 . Above theorem, thus leads us to the following questions.

Question 1.1. Is it possible to prove the above theorem with some finite
value of k, say k = 1 when p = 1?

Question 1.2. Is it possible to prove the above theorem with k = 0 when
p = 1?

Question 1.3. Is it possible to reduce the cardinality of the main shared set
S from n ≥ 6 to n ≥ 4 ?

Question 1.4. Is it possible to prove Theorem D under weaker conditions
on ramification indices?

We answer all the above questions in affirmative in two theorems to follow.
However, we consider only the case when m = 2, that is when f and g
share the set S with weight 2. Note that in the definition of the polynomial
P (w), we require abn−2 6= 2. For our purpose, in addition to it we assume
abn−2 6= 1, 4,±2ω, where ω is a complex cube root of unity, by which the
polynomial P (w) will not lose any of its properties mentioned above. Thus
from now on our set S is given by S = {w | P (w) = 0} where P (w) is given
by (1.1) with abn−2 6= 2, 1, 4,±2ω.

Below we state our main results.

Theorem 1.1. Let S = {w | P (w) = 0}, where P (w) is given by (1.1) and
n(≥ 4) and abn−2 6= 2, 1, 4,±2ω. If f and g be two nonconstant meromor-
phic functions such that Ef (S, 2) = Eg(S, 2) and Ef ({∞}, k) = Eg({∞}, k),
where k ≥ 1 and there exist c, d 6∈ S ∪ {0, b,∞}, such that the zeros of f − c
and g − d are of multiplicity ≥ p+ 1, where p ≥ 1. Then

Θ∗f + Θ∗g > 6 +
2

(n− 2)k + n− 3
+

4

p+ 1
− n, (1.3)

implies f ≡ g, where

Θ∗f =2Θ(0; f) + 2Θ(b; f) + Θ(∞; f) +
2

p+ 1
min{δ(c; f), δ(d; g)}

+
∑

a6∈S∪{0,b,c,d,∞}

δ2(a, f)
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and Θ∗g is defined similarly.

Theorem 1.2. Let S = {w | P (w) = 0}, where P (w) is given by (1.1) and
n ≥ 5 and abn−2 6= 2, 1, 4,±2ω. If f and g be two nonconstant meromor-
phic functions such that Ef (S, 2) = Eg(S, 2) and Ef ({∞}, k) = Eg({∞}, k),
where k ≥ 0 and there exist c, d 6∈ S ∪ {0, b,∞}, such that the zeros of f − c
and g − d are of multiplicity ≥ p+ 1, where p ≥ 1, then the inequality (1.3)
implies f ≡ g.

From the definitions of Θf and Θ∗f of Theorem D and Theorem 1.1 re-
spectively we see that

Θ∗f = Θf −
1

2(k + 1)
δ(k+1(∞; f) +

2

p+ 1
min{δ(c; f), δ(d; g)}+

∑
δ2(a; f).

Thus (1.3) reduces to

Θf + Θg +
4

p+ 1
min{δ(c; f), δ(d; g)}+

∑
δ2(a; f) +

∑
δ2(a; g)

> 6 +
2

(n− 2)k + n− 3
+

4

p+ 1
− n+

1

2(k + 1)
{δ(k+1(∞; f) + δ(k+1(∞; g)},

i.e.

Θf + Θg

> 6 +
2

(n− 2)k + n− 3
+

4

p+ 1
− n+

1

2(k + 1)
{δ(k+1(∞; f) + δ(k+1(∞; g)}

−
[

4

p+ 1
min{δ(c; f), δ(d; g)}+

∑
δ2(a; f) +

∑
δ2(a; g)

]
.

If we call the right hand side of the above inequality as A, then inequality
(1.3) takes the form

Θf + Θg > A.

Whereas the condition for Theorem D implies

Θf +Θg > 7+
2

p+ 1
+

1

k + 1
−n− [min{δf , δg}+

2

p+ 1
min{δ(c; f), δ(d; g)}].

If we denote the quantity on the righthand side of the above inequality as B,
then we have the condition of Theorem D, as

Θf + Θg > B.
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We establish our claim by showing that B ≥ A.

We see that for k ≥ 1 with p ≥ 2 and noting that min{δf , δg} ≤∑
δ2(a; f),

A =6 +
2

(n− 2)k + n− 3
+

4

p+ 1
− n+

1

2(k + 1)
{δ(k+1(∞; f) + δ(k+1(∞; g)}

−
[

4

p+ 1
min{δ(c; f), δ(d; g)}+

∑
δ2(a; f) +

∑
δ2(a; g)

]
≤6 +

2

2n− 5
+

4

p+ 1
− n+

1

k + 1
− 4

p+ 1
min{δ(c; f), δ(d; g)}

−
∑

δ2(a; f)−
∑

δ2(a; g)

≤7 +
2

p+ 1
+

1

k + 1
− n−

[
min{δf , δg}+

2

p+ 1
min{δ(c; f), δ(d; g)}

]
+

2

2n− 5
+

2

p+ 1
− 1− 2

p+ 1
min{δ(c; f), δ(d; g)}+min{δf , δg}

−
∑

δ2(a; f)−
∑

δ2(a; g)

≤B +
2

2n− 5
+

2

p+ 1
− 1− 2

p+ 1
min{δ(c; f), δ(d; g)} −

∑
δ2(a; g).

Thus for p ≥ 2, we have from above for n ≥ 6,

A ≤ B +
2

2n− 5
+

2

3
− 1 = B − 2n− 11

3(2n− 5)
< B.

We conclude this section with the definition of a few more notations as
follows.

Definition 1.3. [4, 15] Let f and g be two nonconstant meromorphic func-
tions such that f and g share (a, 0) for a ∈ C ∪ {∞}. Let z0 be an a-point
of f with multiplicity p, and an a-point of g of multiplicity q. We denote by
NL(r, a; f)(NL(r, a; g)) the reduced counting function of those a-points of f
and g where p > q(q > p). We denote by N∗(r, a; f, g) the reduced counting
function of those a-points of f whose multiplicities differ from that of the
corresponding a-points of g.

We note from the above definition that N∗(r, a; f, g) = N∗(r, a; g, f) and

N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g). We also denote by N
1)
E (r, 1; f) the

counting function of those 1-points of f and g where p = q = 1.
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2 Lemmas

In this section we present some lemmas which will be required to establish
our results. In the lemmas several times we use the function H defined by
H = F ′′

F ′
− 2F ′

F−1 −
G′′

G′
+ 2G′

G−1 where F and G are two nonconstant meromorphic
functions.

Let f and g be two nonconstant meromorphic functions and

F = R(f), G = R(g), (2.1)

where R(w) is given by (1.2). From (1.2) and (2.1) it is clear that

T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r,G) + S(r, g). (2.2)

Lemma 2.1. [22]If F , G be two nonconstant meromorphic functions such
that they share (1, 0) and H 6≡ 0 then

N
1)
E (r, 1;F |= 1) = N

1)
E (r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let F , G be given by (2.1) and H 6≡ 0. If F , G share
(1,m) and f , g share (∞, k), then for any arbitrary set of complex numbers
{aj} ⊂ C \ S ∪ {0, b}, j = 1, 2, . . . , l,

N(r,H) ≤NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f) +N(r, 0; g)

+N(r, b; g) +N∗(r,∞; f, g) +
l∑

j=1

N(r, aj; f | ≥ 2)

+
l∑

j=1

N(r, aj; g| ≥ 2) +N0(r, 0; f ′) +N0(r, 0; g′),

where N0(r, 0; f ′) denotes the reduced counting function corresponding to the
zeros of f ′ which are not the zeros of f(f − b)

∏l
j=1(f − aj) and F − 1.

N0(r, 0; g′) is defined similarly.

Proof. From the definitions of F and G, we have

F ′ =
(n− 2)afn−1(f − b)2f ′

n(n− 1)(f − α1)2(f − α2)2
, G′ =

(n− 2)agn−1(g − b)2g′

n(n− 1)(g − α1)2(g − α2)2
. (2.3)

It is obvious that the simple zeros of f − α1 and f − α2 are the simple poles
of F , the simple zeros of g− α1 and g− α2 are the simple poles of G. It can
be easily verified that the simple zeros of f − α1, f − α2, g − α1 and g − α2
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are not the poles of H. Now it is easy to note that the poles of H occur at
(i) the poles of f and g of different multiplicities;
(ii) the 1-points of F and G of different multiplicities;
(iii) zeros of f(f − b) and g(g − b);
(iv) multiple zeros of f − aj and g − aj, j = 1, 2, . . . , l;

(v) zeros of f ′ and g′, which are not the zeros of f(f − b)
∏l

j=1(f −aj), F −1

and g(g − b)
∏l

j=1(g − aj), G− 1 respectively.
Since the poles of H are all simple, the lemma follows from above observa-
tions.

Lemma 2.3. [3]Let f and g be two nonconstant meromorphic functions shar-
ing (1,m), where 0 ≤ m ≤ ∞. Then

N(r, 1; f) +N(r, 1; g)−N1)
E (r, 1; f) +

(
m− 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)].

Lemma 2.4. [20] Let f be a nonconstant meromorphic function and let

R(f) =
∑n

k=0 akf
k∑m

j=0 bjf
j be an irreducible rational function in f with constant coef-

ficients {ak} and {bj} where an 6= 0, bm 6= 0. Then T (r, R(f)) = dT (r, f) +
S(r, f), where d = max{m,n}.

Lemma 2.5. [2] Let F and G be given by (2.1) and H 6≡ 0. If F and G
share (1,m) and f , g share (∞, k), where 0 ≤ m <∞, 0 ≤ k <∞, then

[(n− 2)k + n− 3]N(r,∞; f |≥ k + 1)

= [(n− 2)k + n− 3]N(r,∞; g |≥ k + 1)

≤ N(r, 0; f) +N(r, 0; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Lemma 2.6. Let f and g be two nonconstant meromorphic functions such
that Ef (S,m) = Eg(S,m), and Ef ({∞}, k) = Eg({∞}, k), where 0 ≤ m <
∞ and 0 ≤ k <∞ are integers. Let {aj} ⊂ C \ S ∪ {0, b}, j = 1, 2, . . . , l, be
an arbitrary set of complex numbers. Then{n

2
+ 1 + l

}
{T (r, f) + T (r, g)}

≤ 2[N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)] +N(r,∞; f) +N(r,∞; g)

+N∗(r,∞; f, g)−
(
m− 3

2

)
N∗(r, 1;F,G) +

l∑
j=1

{N2(r, aj; f) +N2(r, aj; g)}

+ S(r, f) + S(r, g).
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Proof. It is obvious that F and G share (1,m). Then from the second main
theorem we obtain from Lemmas 2.1-2.4,

{n+ l + 1}{T (r, f) + T (r, g)}

≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f) +
l∑

j=1

N(r, aj; f) +N(r, 1;F ) +N(r, 0; g)

+ N(r, b; g) +N(r,∞; g) +
l∑

j=1

N(r, aj; g) +N(r, 1;G)−N0(r, 0; f ′)−N0(r, 0; g′)

≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f) +
l∑

j=1

N(r, aj; f) +N(r, 0; g) +N(r, b; g)

+ N(r,∞; g) +
l∑

j=1

N(r, aj; g)−
(
m− 1

2

)
N∗(r, 1;F,G) +

n

2
{T (r, f) + T (r, g)}

+ {NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)

+ N∗(r,∞; f, g) +
l∑

j=1

N(r, aj; f | ≥ 2) +
l∑

j=1

N(r, aj; g| ≥ 2)

+ N0(r, 0; f ′) +N0(r, 0; g′)} −N0(r, 0; f ′)−N0(r, 0; g′)

≤ 2{N(r, 0; f) +N(r, b; f) +N(r, 0; f) +N(r, b; f)}+N(r,∞; f) +N(r,∞; g)

+ N∗(r,∞; f, g) +
l∑

i=1

{N2(r, aj; f) +N2(r, aj; g)}+
n

2
{T (r, f) + T (r, g)}

−
(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g),

the Lemma follows from above.

Lemma 2.7. [4] Let f , g be two nonconstant meromorphic functions sharing
(∞, 0) and suppose that α1 and α2 are two distinct roots of the equation
n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0. Then

fn

(f − α1)(f − α2)
.

gn

(g − α1)(g − α2)
6≡ n2(n− 1)2

a2
,

where n ≥ 3 is an integer.

Lemma 2.8. [9] Let Q(w) = (n−1)2(wn−1)(wn−2−1)−n(n−2)(wn−1−1)2,
then Q(w) = (w−1)4(w−β1)(w−β2)..(w−β2n−6) where βj ∈ C\{0, 1},(j =
1, 2, . . . , 2n− 6) which are pairwise distinct.
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Lemma 2.9. Let F , G be given by (2.1), where n ≥ 4 is an integer. If f ,
g share (∞, 0) then F ≡ G⇒ f ≡ g.

Proof. From the definitions of F , G we observe that

F ≡ G⇒ fn

(f − α1)(f − α2)
≡ gn

(g − α1)(g − α2)
.

Therefore f , g share (0,∞) and (∞,∞). Then from above and in view of
the definitions of R(w) we obtain

n(n− 1)f 2g2(fn−2 − gn−2)− 2n(n− 2)bfg(fn−1 − gn−1)
+(n− 1)(n− 2)b2(fn − gn) = 0.

(2.4)

Let h = f
g

that is f = gh which on substitution in (2.4) yields

n(n−1)h2g2(hn−2−1)−2n(n−2)bhg(hn−1−1)+(n−1)(n−2)b2(hn−1) = 0.
(2.5)

Note that since f and g share (0,∞) and (∞,∞), 0,∞ are the exceptional
values of Picard of h. If h is nonconstant then from Lemma 2.8 and (2.5) we
have

{n(n− 1)h(hn−2 − 1)g − n(n− 2)b(hn−1 − 1)}2 = −n(n− 2)b2Q(h) (2.6)

where Q(h) = (h − 1)4(h − β1)(h − β2)...(h − β2n−6),βj ∈ C \ {0, 1},j =
1, 2, . . . , 2n− 6 which are pairwise distinct. From (2.6) we observe that each
zero of h− βj, j = 1, 2, . . . , 2n− 6 is of order at least two. Therefore by the
second main theorem we obtain

(2n− 6)T (r, h) ≤ N(r,∞;h) +N(r, 0;h) +
2n−6∑
j=1

N(r, βj;h) + S(r, h)

≤ 1

2
(2n− 6)T (r, h) + S(r, h),

which is a contradiction for n ≥ 4.
Thus h must be a constant. From (2.5) and (2.6) it follows that hn−2−1 =

0 and hn−1−1 = 0 which implies that h ≡ 1.Therefore f ≡ g. This completes
the proof.

Lemma 2.10. [4] Let F , G be given by (2.1) and S be defined as in Theorem
1, where n ≥ 4. If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).

Lemma 2.11. Let f and g be two nonconstant meromorphic functions such
that Ef ({∞}, 0) = Eg({∞}, 0) and Ef (S, 0) = Eg(S, 0), where S is as de-
fined in Theorem 1.1. Let F and G be given by (2.1). If F is a bilinear
transformation of G, then f ≡ g.
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Proof. In this case we have

F ≡ AG+B

CG+D
, (2.7)

where A,B,C,D are constants such that AD − BC 6= 0. Also T (r, F ) =
T (r,G) +O(1), and hence from (2.2)

T (r, f) = T (r, g) +O(1). (2.8)

Since R(w)− c = a(w−b)3Qn−3(w)
n(n−1)(w−α1)(w−α2)

, where the restrictions on a, b as stated

in the Theorem 1.1, shows that c = abn−2

2
6= 1, 1

2
, 2,±ω, ω being a complex

cube root of unity and Qn−3(w) is a polynomial in w of degree n− 3. Then
in view of the definitions of F and G we notice that

N(r, c;F ) ≤ N(r, b; f) + (n− 3)T (r, f) ≤ (n− 2)T (r, f) + S(r, f),

N(r, c;G) ≤ N(r, b; g) + (n− 3)T (r, g) ≤ (n− 2)T (r, g) + S(r, g).
(2.9)

Now we consider the following cases.
Case 1. A 6= 0.
Subcase 1.1. C 6= 0. Since f , g share the value ∞, it follows from (2.7)
that ∞ is an exceptional value of Picard of f and g. Therefore from (1.2)
and (2.1) it follows that

N(r,∞;F ) = N(r, α1; f) +N(r, α2; f),

N(r,∞;G) = N(r, α1; g) +N(r, α2; g).
(2.10)

Subcase 1.1.1. B 6= 0. Then from (2.7) it follows that N(r,−B
A

;G) =

N(r, 0;F ).
Subcase 1.1.1.1. c 6= −B

A
. Thus from the second main theorem we have

from (2.7), (2.8), (2.9) and (2.10)

2nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r,−B
A

;G) +N(r, c;G) + S(r,G)

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, 0; f)

+ (n− 2)T (r, g) + S(r, g)

≤ (n+ 2)T (r, g) + S(r, g).

(2.11)

Clearly (2.11) leads to a contradiction if n ≥ 4.
Subcase 1.1.1.2. c = −B

A
. Then B = −Ac. Therefore, we have from (2.7),

F − c =
(A− Cc)G− (Ac+Dc)

CG+D
.
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First let A− Cc = 0. Then from above we have,

F − c = −(A+D)c

CG+D
.

Clearly A + D 6= 0 , for otherwise F becomes constant. We also claim
that D 6= 0. For if D = 0, then from above we have F − c = − Ac

CG
. Since F

and G share the value 1, we have 1− c = −Ac
C

, which, when combined with
our assumption A−Cc = 0, leads to c2− c+1 = 0. Thus c becomes complex
roots of z3 = −1. Thus if we denote by ω, a complex cube root of unity, then
our c becomes precisely c = −ω, which is contrary to our assumption as has
been observed at beginning of the proof of the lemma.

Since A+D 6= 0, −Ac
D
6= c. Therefore it follows from above by the use of

the second main theorem,

2nT (r, f) ≤ N(r, 0;F ) +N(r, c;F ) +N(r,∞;F ) +N(r,−Ac
D

;F ) + S(r, f)

≤ N(r, 0; f) +N(r,∞;G) +N(r, α1; f) +N(r, α2; f) +N(r, 0;G) + S(r, f)

≤ N(r, 0; f) +N(r, α1; g) +N(r, α2; g) +N(r, α1; f) +N(r, α2; f)

+N(r, 0; g) + S(r, f)

≤ 6T (r, f) + S(r, f).

This leads to a contradiction for n ≥ 4.
Next we consider A− Cc 6= 0. Using B = −Ac, we have from (2.7),

F =
A(G− c)
CG+D

.

Suppose that D 6= 0. It is obvious from above that c 6= −D
C

, for otherwise F
becomes constant. Therefore, by the second main theorem, we have,

2nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r,−D
C

;G) +N(r, c;G) + S(r, g)

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, α1; f) +N(r, α2; f)

+N(r, 0; f) + S(r, g)

≤ 6T (r, g) + S(r, g).

This is a contradiction as before for n ≥ 4.
If D = 0, then we have

F =
A(G− c)
CG

.
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Note that c 6= Ac
A−Cc . Therefore the second main theorem and (2.9) yields

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N(r,
Ac

A− Cc
;G) +N(r,∞;G) + S(r, g)

≤ N(r, 0; g) +N(r, 0; f) +N(r, c;F ) +N(r, α1; g) +N(r, α2; g) + S(r, g)

≤ 4T (r, g) + (n− 2)T (r, f) + S(r, g)

≤ (n+ 2)T (r, g) + S(r, g).

This, as before, yields a contradiction for n ≥ 4.

Subcase 1.1.2. B = 0. Then F ≡
A
C
.G

G+D
C

and N(r, −D
C

;G) = N(r,∞;F ).

We also note that c = abn−2

2
6= 0.

If possible suppose c = −D
C

. Since F , G share 1-points, we have A =

C +D = C − cC and hence F = (C−cC)G
CG−cC = (1−c)G

G−c . Then since c 6= 1
2
,

N(r, c;F ) = N(r,
c2

2c− 1
;G).

Thus by the second main theorem and (2.9) and (2.10) we have,

2nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r, c;G) +N(r,
c2

2c− 1
;G) + S(r, g)

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, α1; f) +N(r, α2; f)

+ (n− 2)T (r, f) + S(r, g)

≤ (5 + n− 2)T (r, g) + S(r, g),

which leads to a contradiction for n ≥ 4.
Next let c 6= −D

C
. Hence as before by the second main theorem

2nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r,
−D
C

;G) +N(r, c;G) + S(r,G)

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, α1; f) +N(r, α2; f)

+ (n− 2)T (r, g) + S(r, g)

≤ (5 + n− 2)T (r, g) + S(r, g),

which leads to a contradiction for n ≥ 4.
Subcase 1.2. C = 0. Therefore F ≡ A

D
G + B

D
. If B = 0, then since F and

G share the value 1, it follows that A
D

= 1, and therefore F ≡ G. Thus by
Lemma 2.9, we have f = g.

If B 6= 0, then since F and G share the value 1, it follows that F =
ηG+ (1− η), where η = A

D
and 1− η = B

D
. If c 6= 1− η, then from above we
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obtain by the second main theorem,

2nT (r, f) ≤ N(r, 0;F ) +N(r, 1− η;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, f)

≤ N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r, α1; f) +N(r, α2; f)

+ (n− 2)T (r, f) + S(r, f)

≤ (n+ 3)T (r, f) + S(r, f),

which leads to a contradiction for n ≥ 4.
If c = 1− η, then F = (1− c)G+ c. Since by our assumption abn−2 6= 4,

we have c 6= 2 and hence c 6= c
c−1 . Therefore by the second main theorem we

have

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N(r,
c

c− 1
;G) +N(r,∞;G) + S(r, g)

≤ N(r, 0; g) +N(r, 0; f) +N(r,∞; g) +N(r, α1; g) +N(r, α2; g)

+ (n− 2)T (r, g) + S(r, g)

≤ (n+ 3)T (r, g) + S(r, g),

as before this leads to a contradiction for n ≥ 4.
Case 2. A = 0. Then clearly BC 6= 0 and F ≡ 1

γG+δ
where γ = C

B
and

δ = D
B

. Then as observed in Subcase 1.1 of Case 1, f and g will have no pole.
Since F and G have some 1-points, then γ+ δ = 1 and so F ≡ 1

γG+1−γ . If

γ = 1, we arrive at a contradiction by Lemma 2.7. So let γ 6= 1. If 1
1−γ 6= c

then by second main theorem and (2.9) and (2.10) we have,

2nT (r, f) ≤ N(r, 0;F ) +N(r,
1

1− γ
;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) + (n− 2)T (r, f) +N(r, 0; g) +N(r, α1; f) +N(r, α2; f) + S(r, f)

therefore

(n+ 2)T (r, f) ≤ N(r, 0; f) +N(r, 0; g) +N(r, α1; f) +N(r, α2; f) + S(r, f),

which is a contradiction for n ≥ 4.
If c = 1

1−γ , then F ≡ c
(c−1)G+1

. Note that c 6= 1
1−c , for otherwise c = ω =

abn−1

2
, which violates our assumption . Then by the second main theorem we

obtain as before,

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N(r,
1

1− c
;G) +N(r,∞;G) + S(r, g)

≤ N(r, 0; g) + (n− 2)T (r, g) +N(r,∞;F ) +N(r, α1; g) +N(r, α2; g) + S(r, g)

≤ N(r, 0; g) + (n− 2)T (r, g) +N(r, α1; f) +N(r, α2; f) +N(r, α1; g)

+N(r, α2; g) + S(r, g).
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Thus

(n+ 2)T (r, g) ≤N(r, 0; g) +N(r, α1; f) +N(r, α2; f) +N(r, α1; g)

+N(r, α2; g) + S(r, g),

which leads to a contradiction for n ≥ 4.

3 Proofs of theorems

Proof of Theorem 1.1. Case 1. H 6≡ 0. Let F , G be given by (2.1). Since
Ef (S, 2) = Eg(S, 2) it follows that F , G share (1,2).

Also since Ef ({∞}, k) = Eg({∞}, k) we see that

N∗(r,∞; f, g) ≤ N(r,∞; f |≥ k + 1).

Let l be any positive integer and aj 6∈ S ∪ {0, b,∞}, j = 1, 2, . . . , l be
distinct complex numbers. The conditions of our theorem imply
N2(r, c; f) ≤ 2

p+1
N(r, c; f) and N2(r, d; g) ≤ 2

p+1
N(r, d; g).

Thus by above and using Lemmas 2.6 and 2.5, with m = 2, we obtain{n
2

+ 1 + l
}
{T (r, f) + T (r, g)}

≤ 2[N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)] +N(r,∞; f) +N(r,∞; g)

+N∗(r,∞; f, g)− 1

2
N∗(r, 1;F,G) +

l∑
j=1

{N2(r, aj; f) +N2(r, aj; g)}

+ S(r, f) + S(r, g)

≤ 2[N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)] +N(r,∞; f) +N(r,∞; g)

+
1

(n− 2)k + n− 3
{N(r, 0; f) +N(r, 0; g) +N∗(r, 1;F,G)}

+ [N(r, c; f) +N(r, c; f |≥ 2)] + [N(r, d; g) +N(r, d; g |≥ 2)]

+
l−1∑
j=1

{N2(r, aj; f) +N2(r, bj; g)} − 1

2
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 2[N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)] +N(r,∞; f) +N(r,∞; g)

+
2

p+ 1
N(r, c; f) +

2

p+ 1
N(r, d; g) +

1

(n− 2)k + n− 3
{T (r, f) + T (r, g)}

+
l−1∑
j=1

{N2(r, aj; f) +N2(r, bj; g)}+ S(r, f) + S(r, g).
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Thus for an arbitrary ε > 0, we have from above{n
2

+ 1 + l
}
{T (r, f) + T (r, g)}

≤ {5 + l − 1 +
1

(n− 2)k + n− 3
+

2

p+ 1
− 2Θ(0, f)− 2Θ(b, f)−Θ(∞, f)

− 2

p+ 1
δ(c; f)−

l−1∑
j=1

δ2(aj, f) + ε}T (r, f) + {5 + l − 1 +
1

(n− 2)k + n− 3

+
2

p+ 1
− 2Θ(0, g)− 2Θ(b, g)−Θ(∞, g)− 2

p+ 1
δ(d; g)

−
l−1∑
j=1

δ2(bj, g) + ε}T (r, g) + S(r),

i.e.,

{2Θ(0, f) + 2Θ(b, f) + Θ(∞, f) +
2

p+ 1
δ(c, f) +

l−1∑
j=1

δ2(aj, f)

− (3 +
1

(n− 2)k + n− 3
+

2

p+ 1
− n

2
)− ε}T (r, f)

+ {2Θ(0, g) + 2Θ(b, g) + Θ(∞, g) +
2

p+ 1
δ(d, g) +

l−1∑
j=1

δ2(bj, g)

− (3 +
1

(n− 2)k + n− 3
+

2

p+ 1
− n

2
)− ε}T (r, g) ≤ S(r).

Above being true for any set of complex numbers aj 6∈ S ∪ {0, b, c,∞} and
bj 6∈ S ∪ {0, b, d,∞}, we have{

Θ∗f −
(

3 +
1

(n− 2)k + n− 3
+

2

p+ 1
− n

2

)
− ε
}
T (r, f)

+

{
Θ∗g −

(
3 +

1

(n− 2)k + n− 3
+

2

p+ 1
− n

2

)
− ε
}
T (r, g) ≤ S(r).

Without loss of generality we assume that T (r, g) ≤ T (r, f) as r →∞, r 6∈ E.
Hence the above inequality reduces to{

Θ∗f + Θ∗g −
(

6 +
2

(n− 2)k + n− 3
+

4

p+ 1
− n

)
− 2ε

}
T (r, g) ≤ S(r),

which contradicts (1.3).
Case 2. H ≡ 0. Then F ≡ AG+B

CG+D
. Hence the Theorem follows from

Lemma 2.11. This completes the proof of the Theorem.
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Proof of Theorem 1.2. We omit the proof as it is the same as the above
proof.
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