

DOI: 10.2478/awutm-2019-0019

Analele Universității de Vest, Timișoara Seria Matematică – Informatică LVII, 2, (2019), 112–130

Uniqueness of meromorphic functions sharing two sets with least possible cardinalities

Arindam Sarkar

Abstract. Let f and g be two nonconstant meromorphic functions sharing two finite sets, namely $S \subset \mathbb{C}$ and $\{\infty\}$. We prove two uniqueness theorems under weaker conditions on ramification indices, reducing the cardinality of the shared set S and weakening the nature of sharing of the set $\{\infty\}$ which improve results of Fang-Lahiri [7], Lahiri [17], Banerjee -Majumder-Mukherjee [5] and others.

AMS Subject Classification (2000). 30D35 Keywords. Meromorphic function; uniqueness; set sharing

1 Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C} . If for some $a \in \mathbb{C} \cup \{\infty\}$, f and g have the same set of a-points with the same multiplicities, we say that f and g share the value a CM (Counting Multiplicities) and if we do not consider the multiplicities, then f and g are said to share the value a IM (Ignoring Multiplicities). We do not explain the standard notations and definitions of the value distribution theory as these are available in [12, 23]. Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and $E_f(S) = \bigcup_{a \in S} \{z : f(z) - a = 0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity then we replace the above set by $\overline{E}_f(S)$. If $E_f(S) = E_q(S)$ we say that f and g share the set S CM. On the other hand if $\overline{E}_f(S) = \overline{E}_g(S)$, we say that f and g share the set S IM.

For $a \in \mathbb{C} \cup \{\infty\}$ and a positive integer m we denote by $N(r, a; f \geq m)$ $(\overline{N}(r, a; f \geq m))$ the counting function (reduced counting function) of those a-points of f whose multiplicities are greater than or equal to m. We put

$$N_2(r, a; f) = N(r, a; f) + N(r, a; f \ge 2);$$

$$\delta_2(a; f) = 1 - \limsup_{r \to \infty} \frac{N_2(r, a; f)}{T(r, f)}$$

and

$$\delta_{(k+1)}(\infty; f) = 1 - \limsup_{r \to \infty} \frac{N(r, \infty; f \mid \ge k+1)}{T(r, f)}$$

We agree to denote by E any subset of nonnegative reals of finite measure. For a nonconstant meromorphic function f(z), we denote by S(r, f) any quantity such that $S(r, f) = o(T(r, f), \text{ as } r \to \infty, r \notin E$.

In 1976, F. Gross [10] raised the following question.

Question A. Can one find finite sets S_j , j = 1, 2 such that any two nonconstant entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for j = 1, 2must be identical?

As a natural outcome of the above question Lin and Yi raised the following question in [22].

Question B. Can one find finite sets S_j , j = 1, 2 such that any two nonconstant meromorphic functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for j = 1, 2 must be identical ?

During the last few years a great deal of works has been directed by researchers to answer the above questions. A nice source of results on the topic is the monograph written by Yang and Yi [23] (see also [1]-[8], [10], [12], [16]-[19], [22]-[30]).

In 2003, Fang-Lahiri [7] exhibited a unique range set with smaller cardinalities than that obtained previously imposing some restrictions on the poles of f and g in the following result.

Theorem A. [7] Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \geq 7$ be an integer and a and b be two nonzero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. If f and g be two nonconstant meromorphic functions having no simple poles such that $E_f(S) = E_g(S)$ and $E_f(\{\infty\}) = E_g(\{\infty\})$ then $f \equiv g$.

In 2001, Lahiri [15, 16] introduced an idea of a gradation of sharing of values and sets known as weighted sharing as follows.

A. Sarkar

Definition 1.1. [15,16] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_0 is a zero of f - a with multiplicity $m(\leq k)$ if and only if it is a zero of g - a with multiplicity $m(\leq k)$ and z_0 is a zero of f - a of multiplicity m(> k) if and only if it is a zero of g - a with multiplicity m(> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers p, $0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Definition 1.2. [15] Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and k be a positive integer or ∞ . We denote by $E_f(S, k)$ the set $\bigcup_{a \in S} E_k(a; f)$.

With the notion of weighted sharing of sets improving Theorem A, Lahiri [17] proved the following theorem.

Theorem B. [17] Let S be defined as in Theorem A. If f and g be two nonconstant meromorphic functions such that $E_f(S,2) = E_g(S,2)$ and $E_f(\{\infty\}, \infty) = E_g(\{\infty\}, \infty)$ and $\Theta(\infty; f) + \Theta(\infty; g) > 1$ then $f \equiv g$.

Suppose that the polynomial P(w) is defined by

$$P(w) = a\omega^{n} - n(n-1)w^{2} + 2n(n-2)bw - (n-1)(n-2)b^{2}$$
(1.1)

where $n \geq 3$ is an integer and a and b are two nonzero complex numbers satisfying

 $ab^{n-2} \neq 2$. We also define

$$R(w) = \frac{aw^{n}}{n(n-1)(w-\alpha_{1})(w-\alpha_{2})},$$
(1.2)

where α_1 , α_2 are two distinct roots of $n(n-1)w^2 - 2n(n-2)bw + (n-1)(n-2)b^2 = 0$. It can be shown that P(w) has only simple roots (see [2,4]).

In 2011, Banerjee [4] improved Theorem B in the following result by showing that the condition on the ramification index ceases to exists when $n \ge 8$.

Theorem C. [4] Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1.1) and $n(\geq 6)$. Suppose that f and g are two nonconstant meromorphic functions satisfying $E_f(S,2) = E_g(S,2)$ and $E_f(\{\infty\},\infty) = E_g(\{\infty\},\infty)$ and $\Theta_f + \Theta_g + \min\{\Theta(b,f),\Theta(b,g)\} > 8 - n$, where $\Theta_f = 2\Theta(0;f) + \Theta(b;f) + \Theta(\infty;f)$ and Θ_g is defined similarly. Then $f \equiv g$.

Vol. LVII (2019) Uniqueness of meromorphic functions sharing two sets 115

In a recent paper Banerjee-Majumder-Mukherjee [5] raised the following questions.

Question C. What happens if in Theorem C, $E_f(\{\infty\}, \infty) = E_g(\{\infty\}, \infty)$ is replaced by $E_f(\{\infty\}, k) = E_g(\{\infty\}, k)$ where k is a non-negative integer?

Question D. Can the deficiency condition in Theorem C be further relaxed ?

They provided some affirmative answers to the above questions in the following theorem.

Theorem D. [5] Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1.1) and $n(\geq 6)$ is an integer. Let $c, d \in \mathbb{C}$ be such that $c, d \notin S \bigcup \{0, b\}$. Suppose that f and g are two nonconstant meromorphic functions satisfying $E_f(S,m) = E_g(S,m)$ and $E_f(\{\infty\},k) = E_g(\{\infty\},k)$ and f and g have respectively c-point and d-point of multiplicity $\geq p+1$ where p, k are non-negative integers or infinity such that $p^* + \frac{1}{k+1} \leq 1$, where $p^* = 1$, if p = 0 and $= \frac{2}{p+1}$, if $p \geq 1$. If either

(i)
$$m \geq 2$$
 and

$$\Theta_f + \Theta_g + \min\{\delta_f, \delta_g\} + p^* \min\{\delta(c; f), \delta(d; g)\} > 7 + p^* + \frac{1}{k+1} - n$$

(ii) m = 1 and

$$\begin{split} \Theta_f + \Theta_g + \frac{1}{2}min\{\Theta(0;f) + \Theta(b;f) + \Theta(\infty;f) + \delta_f, \Theta(0;g) + \Theta(b;g) \\ + \Theta(\infty;g) + \delta_g\} + min\{\delta_f, \delta_g\} + p^*min\{\delta(c;f), \delta(d;g)\} \\ > 8 + p^* + \frac{1}{k+1} - n \end{split}$$

or

(iii) m = 0 and

$$\begin{split} \Theta_f + \Theta_g + \Theta(0;f) + \Theta(b;f) + \Theta(\infty;f) + 2\delta_f + \Theta(0;g) + \Theta(b;g) + \Theta(\infty;g) \\ + 2\delta_g + \min\{\Theta(0;f) + \Theta(b;f) + \Theta(\infty;f), \Theta(0;g) + \Theta(b;g) + \Theta(\infty;g)\} \\ + p^*\min\{\delta(c;f), \delta(d;g)\} > 13 + p^* + \frac{1}{k+1} - n, \end{split}$$

then $f \equiv g$, where $\Theta_f = 2\Theta(0; f) + 2\Theta(b; f) + \Theta(\infty; f) + \frac{1}{2(k+1)}\delta_{(k+1)}(\infty; f)$ and $\delta_f = \sum_{w \in S} \delta(w, f)$, and Θ_g is defined similarly.

Theorem D leads us to the following observations.

Observation 1.1. $p = 0 \Rightarrow p^* = 1 \Rightarrow k = \infty;$

Observation 1.2. $p = 1 \Rightarrow p^* = \frac{2}{p+1} = 1 \Rightarrow k = \infty$; $\Theta(c; f) \ge \frac{p}{p+1} = \frac{1}{2}$ and $\Theta(d; g) \ge \frac{p}{p+1} = \frac{1}{2}$; **Observation 1.3.** $p = 2 \Rightarrow p^* = \frac{2}{p+1} = \frac{2}{3} \Rightarrow k \ge 2$; $\Theta(c; f) \ge \frac{p}{p+1} = \frac{2}{3}$ and $\Theta(d; g) \ge \frac{p}{p+1} = \frac{2}{3}$. **Observation 1.4.** $p = 3 \Rightarrow k = 1$; $\Theta(c; f) \ge \frac{p}{p+1} = \frac{3}{4}$ and $\Theta(d; g) \ge \frac{p}{p+1} = \frac{3}{4}$.

Thus we observe that the least possible finite value of k is 1. The theorem is silent when k = 0. Above theorem, thus leads us to the following questions. **Question 1.1.** Is it possible to prove the above theorem with some finite value of k, say k = 1 when p = 1?

Question 1.2. Is it possible to prove the above theorem with k = 0 when p = 1?

Question 1.3. Is it possible to reduce the cardinality of the main shared set S from $n \ge 6$ to $n \ge 4$?

Question 1.4. Is it possible to prove Theorem D under weaker conditions on ramification indices?

We answer all the above questions in affirmative in two theorems to follow. However, we consider only the case when m = 2, that is when f and g share the set S with weight 2. Note that in the definition of the polynomial P(w), we require $ab^{n-2} \neq 2$. For our purpose, in addition to it we assume $ab^{n-2} \neq 1, 4, \pm 2\omega$, where ω is a complex cube root of unity, by which the polynomial P(w) will not lose any of its properties mentioned above. Thus from now on our set S is given by $S = \{w \mid P(w) = 0\}$ where P(w) is given by (1.1) with $ab^{n-2} \neq 2, 1, 4, \pm 2\omega$.

Below we state our main results.

Theorem 1.1. Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1.1) and $n(\geq 4)$ and $ab^{n-2} \neq 2, 1, 4, \pm 2\omega$. If f and g be two nonconstant meromorphic functions such that $E_f(S, 2) = E_g(S, 2)$ and $E_f(\{\infty\}, k) = E_g(\{\infty\}, k)$, where $k \geq 1$ and there exist $c, d \notin S \cup \{0, b, \infty\}$, such that the zeros of f - c and g - d are of multiplicity $\geq p + 1$, where $p \geq 1$. Then

$$\Theta_f^* + \Theta_g^* > 6 + \frac{2}{(n-2)k+n-3} + \frac{4}{p+1} - n, \tag{1.3}$$

implies $f \equiv g$, where

$$\begin{split} \Theta_f^* =& 2\Theta(0;f) + 2\Theta(b;f) + \Theta(\infty;f) + \frac{2}{p+1}min\{\delta(c;f),\delta(d;g)\} \\ &+ \sum_{a \not\in S \cup \{0,b,c,d,\infty\}} \delta_2(a,f) \end{split}$$

116

and Θ_q^* is defined similarly.

Theorem 1.2. Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1.1) and $n \geq 5$ and $ab^{n-2} \neq 2, 1, 4, \pm 2\omega$. If f and g be two nonconstant meromorphic functions such that $E_f(S, 2) = E_g(S, 2)$ and $E_f(\{\infty\}, k) = E_g(\{\infty\}, k)$, where $k \geq 0$ and there exist $c, d \notin S \cup \{0, b, \infty\}$, such that the zeros of f - c and g - d are of multiplicity $\geq p + 1$, where $p \geq 1$, then the inequality (1.3) implies $f \equiv g$.

From the definitions of Θ_f and Θ_f^* of Theorem D and Theorem 1.1 respectively we see that

$$\Theta_f^* = \Theta_f - \frac{1}{2(k+1)}\delta_{(k+1)}(\infty; f) + \frac{2}{p+1}\min\{\delta(c; f), \delta(d; g)\} + \sum \delta_2(a; f).$$

Thus (1.3) reduces to

$$\Theta_{f} + \Theta_{g} + \frac{4}{p+1} \min\{\delta(c; f), \delta(d; g)\} + \sum \delta_{2}(a; f) + \sum \delta_{2}(a; g)$$

> $6 + \frac{2}{(n-2)k+n-3} + \frac{4}{p+1} - n + \frac{1}{2(k+1)}\{\delta_{(k+1)}(\infty; f) + \delta_{(k+1)}(\infty; g)\},$

i.e.

$$\begin{aligned} \Theta_f + \Theta_g \\ > 6 + \frac{2}{(n-2)k+n-3} + \frac{4}{p+1} - n + \frac{1}{2(k+1)} \{\delta_{(k+1)}(\infty; f) + \delta_{(k+1)}(\infty; g)\} \\ - \left[\frac{4}{p+1} \min\{\delta(c; f), \delta(d; g)\} + \sum \delta_2(a; f) + \sum \delta_2(a; g)\right]. \end{aligned}$$

If we call the right hand side of the above inequality as A, then inequality (1.3) takes the form

$$\Theta_f + \Theta_g > A.$$

Whereas the condition for Theorem D implies

$$\Theta_f + \Theta_g > 7 + \frac{2}{p+1} + \frac{1}{k+1} - n - [\min\{\delta_f, \delta_g\} + \frac{2}{p+1}\min\{\delta(c; f), \delta(d; g)\}].$$

If we denote the quantity on the righthand side of the above inequality as B, then we have the condition of Theorem D, as

$$\Theta_f + \Theta_g > B.$$

An. U.V.T.

We establish our claim by showing that $B \ge A$.

We see that for $k \geq 1$ with $p \geq 2$ and noting that $\min\{\delta_f, \delta_g\} \leq \sum \delta_2(a; f)$,

$$\begin{split} A = & 6 + \frac{2}{(n-2)k+n-3} + \frac{4}{p+1} - n + \frac{1}{2(k+1)} \{ \delta_{(k+1}(\infty; f) + \delta_{(k+1}(\infty; g)) \} \\ & - \left[\frac{4}{p+1} min\{\delta(c; f), \delta(d; g)\} + \sum \delta_2(a; f) + \sum \delta_2(a; g) \right] \\ \leq & 6 + \frac{2}{2n-5} + \frac{4}{p+1} - n + \frac{1}{k+1} - \frac{4}{p+1} min\{\delta(c; f), \delta(d; g)\} \\ & - \sum \delta_2(a; f) - \sum \delta_2(a; g) \\ \leq & 7 + \frac{2}{p+1} + \frac{1}{k+1} - n - \left[min\{\delta_f, \delta_g\} + \frac{2}{p+1} min\{\delta(c; f), \delta(d; g)\} \right] \\ & + \frac{2}{2n-5} + \frac{2}{p+1} - 1 - \frac{2}{p+1} min\{\delta(c; f), \delta(d; g)\} + min\{\delta_f, \delta_g\} \\ & - \sum \delta_2(a; f) - \sum \delta_2(a; g) \\ \leq & B + \frac{2}{2n-5} + \frac{2}{p+1} - 1 - \frac{2}{p+1} min\{\delta(c; f), \delta(d; g)\} - \sum \delta_2(a; g). \end{split}$$

Thus for $p \ge 2$, we have from above for $n \ge 6$,

$$A \le B + \frac{2}{2n-5} + \frac{2}{3} - 1 = B - \frac{2n-11}{3(2n-5)} < B.$$

We conclude this section with the definition of a few more notations as follows.

Definition 1.3. [4,15] Let f and g be two nonconstant meromorphic functions such that f and g share (a,0) for $a \in \mathbb{C} \cup \{\infty\}$. Let z_0 be an a-point of f with multiplicity p, and an a-point of g of multiplicity q. We denote by $\overline{N}_L(r,a;f)(\overline{N}_L(r,a;g))$ the reduced counting function of those a-points of fand g where p > q(q > p). We denote by $\overline{N}_*(r,a;f,g)$ the reduced counting function of those a-points of f whose multiplicities differ from that of the corresponding a-points of g.

We note from the above definition that $\overline{N}_*(r,a;f,g) = \overline{N}_*(r,a;g,f)$ and $\overline{N}_*(r,a;f,g) = \overline{N}_L(r,a;f) + \overline{N}_L(r,a;g)$. We also denote by $N_E^{(1)}(r,1;f)$ the counting function of those 1-points of f and g where p = q = 1.

118

Vol. LVII (2019) Uniqueness of meromorphic functions sharing two sets 119

2 Lemmas

In this section we present some lemmas which will be required to establish our results. In the lemmas several times we use the function H defined by $H = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1}$ where F and G are two nonconstant meromorphic functions.

Let f and g be two nonconstant meromorphic functions and

$$F = R(f), G = R(g), \tag{2.1}$$

where R(w) is given by (1.2). From (1.2) and (2.1) it is clear that

$$T(r,f) = \frac{1}{n}T(r,F) + S(r,f), T(r,g) = \frac{1}{n}T(r,G) + S(r,g).$$
(2.2)

Lemma 2.1. [22] If F, G be two nonconstant meromorphic functions such that they share (1,0) and $H \neq 0$ then

$$N_E^{(1)}(r, 1; F \mid = 1) = N_E^{(1)}(r, 1; G \mid = 1) \le N(r, H) + S(r, F) + S(r, G).$$

Lemma 2.2. Let F, G be given by (2.1) and $H \not\equiv 0$. If F, G share (1,m) and f, g share (∞, k) , then for any arbitrary set of complex numbers $\{a_j\} \subset \mathbb{C} \setminus S \cup \{0, b\}, j = 1, 2, ..., l$,

$$\overline{N}(r,H) \leq \overline{N}_L(r,1;F) + \overline{N}_L(r,1;G) + \overline{N}(r,0;f) + \overline{N}(r,b;f) + \overline{N}(r,0;g) + \overline{N}(r,b;g) + \overline{N}_*(r,\infty;f,g) + \sum_{j=1}^l \overline{N}(r,a_j;f| \geq 2) + \sum_{j=1}^l \overline{N}(r,a_j;g| \geq 2) + \overline{N}_0(r,0;f') + \overline{N}_0(r,0;g'),$$

where $\overline{N}_0(r, 0; f')$ denotes the reduced counting function corresponding to the zeros of f' which are not the zeros of $f(f-b) \prod_{j=1}^{l} (f-a_j)$ and F-1. $\overline{N}_0(r, 0; g')$ is defined similarly.

Proof. From the definitions of F and G, we have

$$F' = \frac{(n-2)af^{n-1}(f-b)^2 f'}{n(n-1)(f-\alpha_1)^2(f-\alpha_2)^2}, \quad G' = \frac{(n-2)ag^{n-1}(g-b)^2 g'}{n(n-1)(g-\alpha_1)^2(g-\alpha_2)^2}.$$
 (2.3)

It is obvious that the simple zeros of $f - \alpha_1$ and $f - \alpha_2$ are the simple poles of F, the simple zeros of $g - \alpha_1$ and $g - \alpha_2$ are the simple poles of G. It can be easily verified that the simple zeros of $f - \alpha_1$, $f - \alpha_2$, $g - \alpha_1$ and $g - \alpha_2$ are not the poles of H. Now it is easy to note that the poles of H occur at (i) the poles of f and g of different multiplicities;

(ii) the 1-points of F and G of different multiplicities;

(iii) zeros of f(f-b) and g(g-b);

(iv) multiple zeros of $f - a_j$ and $g - a_j$, j = 1, 2, ..., l;

(v) zeros of f' and g', which are not the zeros of $f(f-b) \prod_{j=1}^{l} (f-a_j)$, F-1 and $g(g-b) \prod_{j=1}^{l} (g-a_j)$, G-1 respectively.

Since the poles of H are all simple, the lemma follows from above observations.

Lemma 2.3. [3] Let f and g be two nonconstant meromorphic functions sharing (1, m), where $0 \le m \le \infty$. Then

$$\overline{N}(r,1;f) + \overline{N}(r,1;g) - N_E^{(1)}(r,1;f) + \left(m - \frac{1}{2}\right)\overline{N}_*(r,1;f,g)$$
$$\leq \frac{1}{2}[N(r,1;f) + N(r,1;g)].$$

Lemma 2.4. [20] Let f be a nonconstant meromorphic function and let $R(f) = \frac{\sum_{k=0}^{n} a_k f^k}{\sum_{j=0}^{m} b_j f^j}$ be an irreducible rational function in f with constant coefficients $\{a_k\}$ and $\{b_j\}$ where $a_n \neq 0$, $b_m \neq 0$. Then T(r, R(f)) = dT(r, f) + S(r, f), where $d = max\{m, n\}$.

Lemma 2.5. [2] Let F and G be given by (2.1) and $H \neq 0$. If F and G share (1,m) and f, g share (∞, k) , where $0 \leq m < \infty$, $0 \leq k < \infty$, then

$$[(n-2)k+n-3]\overline{N}(r,\infty;f|\geq k+1)$$

= $[(n-2)k+n-3]\overline{N}(r,\infty;g|\geq k+1)$
 $\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}_*(r,1;F,G) + S(r,f) + S(r,g).$

Lemma 2.6. Let f and g be two nonconstant meromorphic functions such that $E_f(S,m) = E_g(S,m)$, and $E_f(\{\infty\},k) = E_g(\{\infty\},k)$, where $0 \le m < \infty$ and $0 \le k < \infty$ are integers. Let $\{a_j\} \subset \mathbb{C} \setminus S \cup \{0,b\}, j = 1, 2, ..., l$, be an arbitrary set of complex numbers. Then

$$\begin{split} &\left\{\frac{n}{2}+1+l\right\}\left\{T(r,f)+T(r,g)\right\}\\ &\leq 2[\overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,0;g)+\overline{N}(r,b;g)]+\overline{N}(r,\infty;f)+\overline{N}(r,\infty;g)\\ &+\overline{N}_*(r,\infty;f,g)-\left(m-\frac{3}{2}\right)\overline{N}_*(r,1;F,G)+\sum_{j=1}^l\left\{N_2(r,a_j;f)+N_2(r,a_j;g)\right\}\\ &+S(r,f)+S(r,g). \end{split}$$

Vol. LVII (2019) Uniqueness of meromorphic functions sharing two sets 121

Proof. It is obvious that F and G share (1, m). Then from the second main theorem we obtain from Lemmas 2.1-2.4,

$$\begin{split} &\{n+l+1\}\{T(r,f)+T(r,g)\}\\ &\leq \ \overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,\infty;f)+\sum_{j=1}^{l}\overline{N}(r,a_{j};f)+\overline{N}(r,1;F)+\overline{N}(r,0;g)\\ &+ \ \overline{N}(r,b;g)+\overline{N}(r,\infty;g)+\sum_{j=1}^{l}\overline{N}(r,a_{j};g)+\overline{N}(r,1;G)-N_{0}(r,0;f')-N_{0}(r,0;g')\\ &\leq \ \overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,\infty;f)+\sum_{j=1}^{l}\overline{N}(r,a_{j};f)+\overline{N}(r,0;g)+\overline{N}(r,b;g)\\ &+ \ \overline{N}(r,\infty;g)+\sum_{j=1}^{l}\overline{N}(r,a_{j};g)-\left(m-\frac{1}{2}\right)\overline{N}_{*}(r,1;F,G)+\frac{n}{2}\{T(r,f)+T(r,g)\}\\ &+ \ \{\overline{N}_{L}(r,1;F)+\overline{N}_{L}(r,1;G)+\overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,0;g)+\overline{N}(r,b;g)\\ &+ \ \overline{N}_{*}(r,\infty;f,g)+\sum_{j=1}^{l}\overline{N}(r,a_{j};f|\geq 2)+\sum_{j=1}^{l}\overline{N}(r,a_{j};g|\geq 2)\\ &+ \ \overline{N}_{0}(r,0;f')+\overline{N}_{0}(r,0;g')\}-N_{0}(r,0;f')-N_{0}(r,0;g')\\ &\leq \ 2\{\overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,0;f)+\overline{N}(r,b;f)\}+\overline{N}(r,\infty;f)+\overline{N}(r,\infty;g)\\ &+ \ \overline{N}_{*}(r,\infty;f,g)+\sum_{i=1}^{l}\{N_{2}(r,a_{j};f)+N_{2}(r,a_{j};g)\}+\frac{n}{2}\{T(r,f)+T(r,g)\}\\ &- \ \left(m-\frac{3}{2}\right)\overline{N}_{*}(r,1;F,G)+S(r,f)+S(r,g), \end{split}$$

the Lemma follows from above.

Lemma 2.7. [4] Let f, g be two nonconstant meromorphic functions sharing $(\infty, 0)$ and suppose that α_1 and α_2 are two distinct roots of the equation $n(n-1)w^2 - 2n(n-2)bw + (n-1)(n-2)b^2 = 0$. Then

$$\frac{f^n}{(f - \alpha_1)(f - \alpha_2)} \cdot \frac{g^n}{(g - \alpha_1)(g - \alpha_2)} \neq \frac{n^2(n - 1)^2}{a^2},$$

where $n \geq 3$ is an integer.

Lemma 2.8. [9] Let $Q(w) = (n-1)^2(w^n-1)(w^{n-2}-1) - n(n-2)(w^{n-1}-1)^2$, then $Q(w) = (w-1)^4(w-\beta_1)(w-\beta_2)..(w-\beta_{2n-6})$ where $\beta_j \in \mathbb{C} \setminus \{0,1\}, (j = 1, 2, ..., 2n-6)$ which are pairwise distinct. A. Sarkar

Lemma 2.9. Let F, G be given by (2.1), where $n \ge 4$ is an integer. If f, g share $(\infty, 0)$ then $F \equiv G \Rightarrow f \equiv g$.

Proof. From the definitions of F, G we observe that

$$F \equiv G \Rightarrow \frac{f^n}{(f - \alpha_1)(f - \alpha_2)} \equiv \frac{g^n}{(g - \alpha_1)(g - \alpha_2)}.$$

Therefore f, g share $(0, \infty)$ and (∞, ∞) . Then from above and in view of the definitions of R(w) we obtain

$$n(n-1)f^2g^2(f^{n-2}-g^{n-2}) - 2n(n-2)bfg(f^{n-1}-g^{n-1}) + (n-1)(n-2)b^2(f^n-g^n) = 0.$$
(2.4)

Let $h = \frac{f}{g}$ that is f = gh which on substitution in (2.4) yields

$$n(n-1)h^2g^2(h^{n-2}-1) - 2n(n-2)bhg(h^{n-1}-1) + (n-1)(n-2)b^2(h^n-1) = 0.$$
(2.5)

Note that since f and g share $(0, \infty)$ and (∞, ∞) , $0, \infty$ are the exceptional values of Picard of h. If h is nonconstant then from Lemma 2.8 and (2.5) we have

$$\{n(n-1)h(h^{n-2}-1)g - n(n-2)b(h^{n-1}-1)\}^2 = -n(n-2)b^2Q(h) \quad (2.6)$$

where $Q(h) = (h-1)^4(h-\beta_1)(h-\beta_2)...(h-\beta_{2n-6}), \beta_j \in \mathbb{C} \setminus \{0,1\}, j = 1, 2, ..., 2n-6$ which are pairwise distinct. From (2.6) we observe that each zero of $h-\beta_j, j=1,2,...,2n-6$ is of order at least two. Therefore by the second main theorem we obtain

$$(2n-6)T(r,h) \le \overline{N}(r,\infty;h) + \overline{N}(r,0;h) + \sum_{j=1}^{2n-6} \overline{N}(r,\beta_j;h) + S(r,h)$$
$$\le \frac{1}{2}(2n-6)T(r,h) + S(r,h),$$

which is a contradiction for $n \ge 4$.

Thus h must be a constant. From (2.5) and (2.6) it follows that $h^{n-2}-1 = 0$ and $h^{n-1}-1 = 0$ which implies that $h \equiv 1$. Therefore $f \equiv g$. This completes the proof.

Lemma 2.10. [4] Let F, G be given by (2.1) and S be defined as in Theorem 1, where $n \ge 4$. If $E_f(S, 0) = E_g(S, 0)$ then S(r, f) = S(r, g).

Lemma 2.11. Let f and g be two nonconstant meromorphic functions such that $E_f(\{\infty\}, 0) = E_g(\{\infty\}, 0)$ and $E_f(S, 0) = E_g(S, 0)$, where S is as defined in Theorem 1.1. Let F and G be given by (2.1). If F is a bilinear transformation of G, then $f \equiv g$.

Proof. In this case we have

$$F \equiv \frac{AG+B}{CG+D},\tag{2.7}$$

where A, B, C, D are constants such that $AD - BC \neq 0$. Also T(r, F) = T(r, G) + O(1), and hence from (2.2)

$$T(r, f) = T(r, g) + O(1).$$
 (2.8)

Since $R(w) - c = \frac{a(w-b)^3 Q_{n-3}(w)}{n(n-1)(w-\alpha_1)(w-\alpha_2)}$, where the restrictions on a, b as stated in the Theorem 1.1, shows that $c = \frac{ab^{n-2}}{2} \neq 1, \frac{1}{2}, 2, \pm \omega, \omega$ being a complex cube root of unity and $Q_{n-3}(w)$ is a polynomial in w of degree n-3. Then in view of the definitions of F and G we notice that

$$\overline{N}(r,c;F) \le \overline{N}(r,b;f) + (n-3)T(r,f) \le (n-2)T(r,f) + S(r,f),
\overline{N}(r,c;G) \le \overline{N}(r,b;g) + (n-3)T(r,g) \le (n-2)T(r,g) + S(r,g).$$
(2.9)

Now we consider the following cases.

Case 1. $A \neq 0$.

Subcase 1.1. $C \neq 0$. Since f, g share the value ∞ , it follows from (2.7) that ∞ is an exceptional value of Picard of f and g. Therefore from (1.2) and (2.1) it follows that

$$\overline{N}(r,\infty;F) = \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f),$$

$$\overline{N}(r,\infty;G) = \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g).$$
(2.10)

Subcase 1.1.1. $B \neq 0$. Then from (2.7) it follows that $\overline{N}(r, -\frac{B}{A}; G) = \overline{N}(r, 0; F)$.

Subcase 1.1.1.1. $c \neq -\frac{B}{A}$. Thus from the second main theorem we have from (2.7), (2.8), (2.9) and (2.10)

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,-\frac{B}{A};G) + \overline{N}(r,c;G) + S(r,G)$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,0;f)$$

$$+ (n-2)T(r,g) + S(r,g)$$

$$\leq (n+2)T(r,g) + S(r,g).$$

(2.11)

Clearly (2.11) leads to a contradiction if $n \ge 4$. Subcase 1.1.1.2. $c = -\frac{B}{A}$. Then B = -Ac. Therefore, we have from (2.7),

$$F - c = \frac{(A - Cc)G - (Ac + Dc)}{CG + D}.$$

A. Sarkar

An. U.V.T.

First let A - Cc = 0. Then from above we have,

$$F - c = -\frac{(A+D)c}{CG+D}.$$

Clearly $A + D \neq 0$, for otherwise F becomes constant. We also claim that $D \neq 0$. For if D = 0, then from above we have $F - c = -\frac{Ac}{CG}$. Since Fand G share the value 1, we have $1 - c = -\frac{Ac}{C}$, which, when combined with our assumption A - Cc = 0, leads to $c^2 - c + 1 = 0$. Thus c becomes complex roots of $z^3 = -1$. Thus if we denote by ω , a complex cube root of unity, then our c becomes precisely $c = -\omega$, which is contrary to our assumption as has been observed at beginning of the proof of the lemma.

Since $A + D \neq 0$, $\frac{-Ac}{D} \neq c$. Therefore it follows from above by the use of the second main theorem,

$$\begin{aligned} 2nT(r,f) &\leq \overline{N}(r,0;F) + \overline{N}(r,c;F) + \overline{N}(r,\infty;F) + \overline{N}(r,-\frac{Ac}{D};F) + S(r,f) \\ &\leq \overline{N}(r,0;f) + \overline{N}(r,\infty;G) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + \overline{N}(r,0;G) + S(r,f) \\ &\leq \overline{N}(r,0;f) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) \\ &\quad + \overline{N}(r,0;g) + S(r,f) \\ &\leq 6T(r,f) + S(r,f). \end{aligned}$$

This leads to a contradiction for $n \ge 4$. Next we consider $A - Cc \ne 0$. Using B = -Ac, we have from (2.7),

$$F = \frac{A(G-c)}{CG+D}$$

Suppose that $D \neq 0$. It is obvious from above that $c \neq -\frac{D}{C}$, for otherwise F becomes constant. Therefore, by the second main theorem, we have,

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,-\frac{D}{C};G) + \overline{N}(r,c;G) + S(r,g)$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f)$$

$$+ \overline{N}(r,0;f) + S(r,g)$$

$$\leq 6T(r,g) + S(r,g).$$

This is a contradiction as before for $n \ge 4$. If D = 0, then we have

$$F = \frac{A(G-c)}{CG}.$$

Note that $c \neq \frac{Ac}{A-Cc}$. Therefore the second main theorem and (2.9) yields

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,c;G) + \overline{N}(r,\frac{Ac}{A-Cc};G) + \overline{N}(r,\infty;G) + S(r,g)$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,0;f) + \overline{N}(r,c;F) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + S(r,g)$$

$$\leq 4T(r,g) + (n-2)T(r,f) + S(r,g)$$

$$\leq (n+2)T(r,g) + S(r,g).$$

This, as before, yields a contradiction for $n \ge 4$. **Subcase 1.1.2.** B = 0. Then $F \equiv \frac{\frac{A}{C} \cdot G}{G + \frac{D}{C}}$ and $\overline{N}(r, \frac{-D}{C}; G) = \overline{N}(r, \infty; F)$. We also note that $c = \frac{ab^{n-2}}{2} \neq 0$.

We also note that $c = \frac{ab^{n-2}}{2} \neq 0$. If possible suppose $c = \frac{-D}{C}$. Since F, G share 1-points, we have A = C + D = C - cC and hence $F = \frac{(C-cC)G}{CG-cC} = \frac{(1-c)G}{G-c}$. Then since $c \neq \frac{1}{2}$,

$$\overline{N}(r,c;F) = \overline{N}(r,\frac{c^2}{2c-1};G).$$

Thus by the second main theorem and (2.9) and (2.10) we have,

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,c;G) + \overline{N}(r,\frac{c^2}{2c-1};G) + S(r,g)$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f)$$

$$+ (n-2)T(r,f) + S(r,g)$$

$$\leq (5+n-2)T(r,g) + S(r,g),$$

which leads to a contradiction for $n \ge 4$.

Next let $c \neq \frac{-D}{C}$. Hence as before by the second main theorem

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,\frac{-D}{C};G) + \overline{N}(r,c;G) + S(r,G)$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f)$$

$$+ (n-2)T(r,g) + S(r,g)$$

$$\leq (5+n-2)T(r,g) + S(r,g),$$

which leads to a contradiction for $n \ge 4$.

Subcase 1.2. C = 0. Therefore $F \equiv \frac{A}{D}G + \frac{B}{D}$. If B = 0, then since F and G share the value 1, it follows that $\frac{A}{D} = 1$, and therefore $F \equiv G$. Thus by Lemma 2.9, we have f = g.

If $B \neq 0$, then since F and G share the value 1, it follows that $F = \eta G + (1 - \eta)$, where $\eta = \frac{A}{D}$ and $1 - \eta = \frac{B}{D}$. If $c \neq 1 - \eta$, then from above we

obtain by the second main theorem,

$$2nT(r,f) \leq \overline{N}(r,0;F) + \overline{N}(r,1-\eta;F) + \overline{N}(r,c;F) + \overline{N}(r,\infty;F) + S(r,f)$$

$$\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,\infty;f) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f)$$

$$+ (n-2)T(r,f) + S(r,f)$$

$$\leq (n+3)T(r,f) + S(r,f),$$

which leads to a contradiction for $n \ge 4$.

If $c = 1 - \eta$, then F = (1 - c)G + c. Since by our assumption $ab^{n-2} \neq 4$, we have $c \neq 2$ and hence $c \neq \frac{c}{c-1}$. Therefore by the second main theorem we have

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,c;G) + \overline{N}(r,\frac{c}{c-1};G) + \overline{N}(r,\infty;G) + S(r,g)$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,0;f) + \overline{N}(r,\infty;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g)$$

$$+ (n-2)T(r,g) + S(r,g)$$

$$\leq (n+3)T(r,g) + S(r,g),$$

as before this leads to a contradiction for $n \ge 4$.

Case 2. A = 0. Then clearly $BC \neq 0$ and $F \equiv \frac{1}{\gamma G + \delta}$ where $\gamma = \frac{C}{B}$ and $\delta = \frac{D}{B}$. Then as observed in Subcase 1.1 of Case 1, f and g will have no pole.

Since F and G have some 1-points, then $\gamma + \delta = 1$ and so $F \equiv \frac{1}{\gamma G + 1 - \gamma}$. If $\gamma = 1$, we arrive at a contradiction by Lemma 2.7. So let $\gamma \neq 1$. If $\frac{1}{1 - \gamma} \neq c$ then by second main theorem and (2.9) and (2.10) we have,

$$2nT(r,f) \leq \overline{N}(r,0;F) + \overline{N}(r,\frac{1}{1-\gamma};F) + \overline{N}(r,c;F) + \overline{N}(r,\infty;F) + S(r,F)$$
$$\leq \overline{N}(r,0;f) + (n-2)T(r,f) + \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + S(r,f)$$
therefore

$$(n+2)T(r,f) \le \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + S(r,f),$$

which is a contradiction for $n \ge 4$.

If $c = \frac{1}{1-\gamma}$, then $F \equiv \frac{c}{(c-1)G+1}$. Note that $c \neq \frac{1}{1-c}$, for otherwise $c = \omega = \frac{ab^{n-1}}{2}$, which violates our assumption. Then by the second main theorem we obtain as before,

$$\begin{aligned} &2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,c;G) + \overline{N}(r,\frac{1}{1-c};G) + \overline{N}(r,\infty;G) + S(r,g) \\ &\leq \overline{N}(r,0;g) + (n-2)T(r,g) + \overline{N}(r,\infty;F) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + S(r,g) \\ &\leq \overline{N}(r,0;g) + (n-2)T(r,g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + \overline{N}(r,\alpha_1;g) \\ &+ \overline{N}(r,\alpha_2;g) + S(r,g). \end{aligned}$$

Vol. LVII (2019) Uniqueness of meromorphic functions sharing two sets 127

Thus

$$(n+2)T(r,g) \leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + S(r,g),$$

which leads to a contradiction for $n \ge 4$.

3 **Proofs of theorems**

Proof of Theorem 1.1. Case 1. $H \neq 0$. Let F, G be given by (2.1). Since $E_f(S,2) = E_g(S,2)$ it follows that F, G share (1,2). Also since $E_f(\{\infty\}, k) = E_g(\{\infty\}, k)$ we see that

$$\overline{N}_*(r,\infty;f,g) \le \overline{N}(r,\infty;f \mid \ge k+1).$$

Let l be any positive integer and $a_j \notin S \cup \{0, b, \infty\}, j = 1, 2, \dots, l$ be distinct complex numbers. The conditions of our theorem imply $N_2(r,c;f) \leq \frac{2}{p+1}N(r,c;f)$ and $N_2(r,d;g) \leq \frac{2}{p+1}N(r,d;g)$. Thus by above and using Lemmas 2.6 and 2.5, with m = 2, we obtain

$$\begin{split} & \left\{\frac{n}{2}+1+l\right\}\left\{T(r,f)+T(r,g)\right\} \\ &\leq 2[\overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,0;g)+\overline{N}(r,b;g)]+\overline{N}(r,\infty;f)+\overline{N}(r,\infty;g) \\ &\quad +\overline{N}_*(r,\infty;f,g)-\frac{1}{2}\overline{N}_*(r,1;F,G)+\sum_{j=1}^l \{N_2(r,a_j;f)+N_2(r,a_j;g)\} \\ &\quad +S(r,f)+S(r,g) \\ &\leq 2[\overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,0;g)+\overline{N}(r,b;g)]+\overline{N}(r,\infty;f)+\overline{N}(r,\infty;g) \\ &\quad +\frac{1}{(n-2)k+n-3}\{\overline{N}(r,0;f)+\overline{N}(r,0;g)+\overline{N}_*(r,1;F,G)\} \\ &\quad +[\overline{N}(r,c;f)+N(r,c;f|\geq 2)]+[\overline{N}(r,d;g)+N(r,d;g|\geq 2)] \\ &\quad +\sum_{j=1}^{l-1}\{N_2(r,a_j;f)+N_2(r,b_j;g)\}-\frac{1}{2}\overline{N}_*(r,1;F,G)+S(r,f)+S(r,g) \\ &\leq 2[\overline{N}(r,0;f)+\overline{N}(r,b;f)+\overline{N}(r,0;g)+\overline{N}(r,b;g)]+\overline{N}(r,\infty;f)+\overline{N}(r,\infty;g) \\ &\quad +\frac{2}{p+1}N(r,c;f)+\frac{2}{p+1}N(r,d;g)+\frac{1}{(n-2)k+n-3}\{T(r,f)+T(r,g)\} \\ &\quad +\sum_{j=1}^{l-1}\{N_2(r,a_j;f)+N_2(r,b_j;g)\}+S(r,f)+S(r,g). \end{split}$$

Thus for an arbitrary $\epsilon > 0$, we have from above

$$\begin{split} &\left\{\frac{n}{2}+1+l\right\}\left\{T(r,f)+T(r,g)\right\}\\ &\leq \left\{5+l-1+\frac{1}{(n-2)k+n-3}+\frac{2}{p+1}-2\Theta(0,f)-2\Theta(b,f)-\Theta(\infty,f)\right.\\ &\left.-\frac{2}{p+1}\delta(c;f)-\sum_{j=1}^{l-1}\delta_2(a_j,f)+\epsilon\right\}T(r,f)+\left\{5+l-1+\frac{1}{(n-2)k+n-3}\right.\\ &\left.+\frac{2}{p+1}-2\Theta(0,g)-2\Theta(b,g)-\Theta(\infty,g)-\frac{2}{p+1}\delta(d;g)\right.\\ &\left.-\sum_{j=1}^{l-1}\delta_2(b_j,g)+\epsilon\right\}T(r,g)+S(r), \end{split}$$

i.e.,

$$\{2\Theta(0,f) + 2\Theta(b,f) + \Theta(\infty,f) + \frac{2}{p+1}\delta(c,f) + \sum_{j=1}^{l-1}\delta_2(a_j,f) - (3 + \frac{1}{(n-2)k+n-3} + \frac{2}{p+1} - \frac{n}{2}) - \epsilon\}T(r,f) + \{2\Theta(0,g) + 2\Theta(b,g) + \Theta(\infty,g) + \frac{2}{p+1}\delta(d,g) + \sum_{j=1}^{l-1}\delta_2(b_j,g) - (3 + \frac{1}{(n-2)k+n-3} + \frac{2}{p+1} - \frac{n}{2}) - \epsilon\}T(r,g) \le S(r).$$

Above being true for any set of complex numbers $a_j \notin S \cup \{0, b, c, \infty\}$ and $b_j \notin S \cup \{0, b, d, \infty\}$, we have

$$\left\{\Theta_{f}^{*} - \left(3 + \frac{1}{(n-2)k+n-3} + \frac{2}{p+1} - \frac{n}{2}\right) - \epsilon\right\} T(r, f) \\ + \left\{\Theta_{g}^{*} - \left(3 + \frac{1}{(n-2)k+n-3} + \frac{2}{p+1} - \frac{n}{2}\right) - \epsilon\right\} T(r, g) \le S(r).$$

Without loss of generality we assume that $T(r,g) \leq T(r,f)$ as $r \to \infty$, $r \notin E$. Hence the above inequality reduces to

$$\left\{\Theta_f^* + \Theta_g^* - \left(6 + \frac{2}{(n-2)k+n-3} + \frac{4}{p+1} - n\right) - 2\epsilon\right\} T(r,g) \le S(r),$$

which contradicts (1.3). **Case 2.** $H \equiv 0$. Then $F \equiv \frac{AG+B}{CG+D}$. Hence the Theorem follows from Lemma 2.11. This completes the proof of the Theorem.

Proof of Theorem 1.2. We omit the proof as it is the same as the above proof. \Box

References

- A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math., 31, (2007), 7-17
- [2] A. Banerjee, On uniqueness of meromorphic functions that share two sets, Georgian Math. J., 15 (1), (2008), 21-28
- [3] A. Banerjee, On the uniqueness of meromorphic functions sharing two sets, Communications Math. Anal., 10 (10), (2010), 1-10
- [4] A. Banerjee, A uniqueness result on meromorphic functions sharing two sets, J. Adv. Math. Stud., 4 (1), (2011), 1-10
- [5] A. Banerjee, S. Majumder, and S. Mukherjee, A uniqueness result on meromorphic functions sharing two sets -II., *Fasc. Math.*, 53, (2014), 355-366
- [6] M. Fang and H. Guo, On meromorphic functions sharing two values, Analysis, 17 (4), (1997), 17-30
- [7] M. Fang and I. Lahiri, Unique range set for certain meromorphic functions, *Indian J. Math.*, 45 (2), (2003), 141-150
- [8] M. Fang and W. Xu, A note on a problem of Gross (Chinese), Chinese Ann. Math. Ser.A, 18 (5), (1997), 563-568
- [9] G. Frank and M. R. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Var. Theory Appl., 37, (1998), 185-193
- [10] F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Lexington, 599, (1976), 51-69
- [11] Q. Han and H. X. Yi, Some further results on meromorphic functions that share two sets, Ann. Polon. Math., 91 (1), (2008), 17-31
- [12] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964
- [13] I. Lahiri, The range set of meromorphic derivatives, Northeast J. Math, 14, (1998), 353-360
- [14] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2), (2001), 83-91
- [15] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J, 161, (2001), 193-206
- [16] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46, (2001), 241-253
- [17] I. Lahiri, On a question of Hong Xun Yi, Arch Math. (Brno), 38, (2002), 119-128

- [18] P. Li and C. C. Yang, Some further results on the unique range sets for meromorphic functions, *Kodai Math. J.*, 18, (1995), 437-450
- [19] P. Li and C. C. Yang, On the unique range sets for meromorphic functions, Proc. Amer. Math. Soc., 124, (1996), 177-185
- [20] A. Z. Mohon'ko, On the Nevanlinna Characteristics of some meromorphic functions, Theory of Funct. Funct. Anal. Appl., 14, (1971), 83-87
- [21] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125, (1972), 107-112
- [22] W. C. Lin and H. X. Yi, Some further results on meromorphic functions that share two sets, *Kyungpook Math. J.*, 43, (2003), 73-85
- [23] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Acad. Press, Beijing, 2003
- [24] H. X. Yi, Uniqueness of meromorphic functions and a question of Gross, Science in China(A), 37/7, (1994), 802-813
- [25] H. X. Yi, Unicity theorem for meromorphic functions or entire functions, Bull. Austral. Math. Soc., 52, (1995), 215-224
- [26] H. X. Yi, Uniqueness of meromorphic functions II, Indian J. Pure Appl. Math., 28, (1997), 509-519
- [27] H. X. Yi, On a question of Gross concerning uniqueness of entire functions, Bull. Austral. Math. Soc., 57, (1998), 343-349
- [28] H. X. Yi, Meromorphic functions that share two sets (Chinese), Acta Math. Sinica(Chinese Ser.), 45 (1), (2002), 75-82
- [29] H. X. Yi and W. C. Lin, Uniqueness of meromorphic and a question of Gross, Kyungpook Math.J., 46, (2006), 437-444
- [30] H. X. Yi and W. R. Lü, Meromorphic functions that share two sets II, Acta Math. Sci. Ser. B, Eng Ed., 24 (1), (2004), 83-90

Arindam Sarkar

Department of Mathematics Krishnagar Women's College Krishnagar West Bengal - 741101 India E-mail: sarkararindam.as@gmail.com