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Uniqueness of meromorphic functions sharing
two sets with least possible cardinalities

Arindam Sarkar

Abstract. Let f and g be two nonconstant meromorphic func-
tions sharing two finite sets, namely S C C and {oo}. We prove
two uniqueness theorems under weaker conditions on ramification
indices, reducing the cardinality of the shared set S and weaken-
ing the nature of sharing of the set {co} which improve results
of Fang-Lahiri [7], Lahiri |[17], Banerjee -Majumder-Mukherjee [5]
and others.
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1 Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a € C U {oo}, f and g have the same set of
a-points with the same multiplicities, we say that f and g share the value
a CM (Counting Multiplicities) and if we do not consider the multiplicities,
then f and g are said to share the value a IM (Ignoring Multiplicities). We do
not explain the standard notations and definitions of the value distribution
theory as these are available in [12,23]. Let S be a set of distinct elements
of CU{oo} and E¢(S) = J,cs1% : f(2) —a = 0}, where each zero is counted
according to its multiplicity. If we do not count the multiplicity then we
replace the above set by E;(S). If E¢(S) = E,(S) we say that f and g share
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the set S CM. On the other hand if E;(S) = E,(S), we say that f and g
share the set .S IM.

For a € CU {oo} and a positive integer m we denote by N(r,a; f |> m)
(N(r,a; f |> m)) the counting function (reduced counting function) of those
a-points of f whose multiplicities are greater than or equal to m. We put

Ny(r,a; f) = N(r,a; f) + N(r,a; f |> 2);

dalas f)=1-— lirrisup —N;(Z; a}f)

L . N(r,o0; f |> k+1)
d+1(00; f) =1 hfgsogp T(r f)

We agree to denote by E any subset of nonnegative reals of finite measure.
For a nonconstant meromorphic function f(z), we denote by S(r, f) any
quantity such that S(r, f) = o(T(r, f), as r = oo, r &€ E.

In 1976, F. Gross |10] raised the following question.

and

Question A. Can one find finite sets S;, j = 1,2 such that any two non-
constant entire functions f and g satisfying E;(S;) = E,(S;) for j =1, 2
must be identical?

As a natural outcome of the above question Lin and Yi raised the following
question in [22].
Question B. Can one find finite sets S;, j = 1,2 such that any two noncon-
stant meromorphic functions f and g satisfying Er(S;) = E4(S;) for j =1,
2 must be identical ?

During the last few years a great deal of works has been directed by
researchers to answer the above questions. A nice source of results on the
topic is the monograph written by Yang and Yi [23] (see also [1]-[8], [10],
[12], [16]-[19], [22]-[30]).

In 2003, Fang-Lahiri [7] exhibited a unique range set with smaller car-
dinalities than that obtained previously imposing some restrictions on the
poles of f and ¢ in the following result.

Theorem A. [7] Let S = {z : 2" + az""' + b = 0} where n(> 7) be an
integer and a and b be two nonzero constants such that 2" + az" 1+ b= 0
has no multiple root. If f and g be two nonconstant meromorphic functions
having no simple poles such that Ef(S) = E4(S) and Ef({oo}) = E,({o0})
then f = g.

In 2001, Lahiri [15,/16] introduced an idea of a gradation of sharing of
values and sets known as weighted sharing as follows.
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Definition 1.1. |15,/16] Let k be a nonnegative integer or infinity. For a €
C U {oc} we denote by Ey(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m < k and k + 1times if m > k. If
Ex(a; f) = Ex(a; g), we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z
is a zero of f — a with multiplicity m(< k) if and only if it is a zero of g — a
with multiplicity m(< k) and zy is a zero of f — a of multiplicity m(> k)
if and only if it is a zero of g — a with multiplicity n(> k) where m is not
necessarily equal to n.

We write f, g share (a, k) to mean f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for all integers p, 0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share
(a,0) or (a,o0) respectively.

Definition 1.2. [15] Let S be a set of distinct elements of CU {oo} and k
be a positive integer or oco. We denote by E¢(S, k)the set J,.q Ex(a; f).

With the notion of weighted sharing of sets improving Theorem A, Lahiri
[17] proved the following theorem.

Theorem B. [17] Let S be defined as in Theorem A. If f and g be two non-
constant meromorphic functions such that E¢(S,2) = E,(S,2) and E¢({oo},
0) = E,({o0},00) and ©(oo; f) + O(o0; g) > 1 then f = g.
Suppose that the polynomial P(w) is defined by

P(w) = aw™ — n(n — Dw* + 2n(n — 2)bw — (n — 1)(n — 2)b* (1.1)
where n > 3 is an integer and a and b are two nonzero complex numbers
satisfying
ab™ 2 #£ 2. We also define

n

R(w) =

n(n—1)(w—ay)(w—ag)’ (12)
where a1, as are two distinct roots of n(n —1)w? —2n(n —2)bw+ (n—1)(n —
2)b* = 0. It can be shown that P(w) has only simple roots (see [2,/4]).

In 2011, Banerjee |4] improved Theorem B in the following result by

showing that the condition on the ramification index ceases to exists when
n > 8.
Theorem C. |4 Let S = {w | P(w) = 0} , where P(w) is given by and
n(> 6). Suppose that f and g are two nonconstant meromorphic functions
satisfying E¢(S,2) = E4(S,2) and Ef({oo},00) = Ey({oo}, 00) and ©f +
O, +min{O(b, [),0(b,g)} > 8—n, where O = 20(0; f)+O(b; f)+O(cc; f)
and O, is defined similarly. Then f = g.
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In a recent paper Banerjee-Majumder-Mukherjee [5] raised the following
questions.

Question C. What happens if in Theorem C, E;({cc},00) = E4({oo}, 00)
is replaced by Ef({oo}, k) = Ey({oo}, k) where k is a non-negative integer?
Question D. Can the deficiency condition in Theorem C be further relazed
?

They provided some affirmative answers to the above questions in the
following theorem.

Theorem D. [5| Let S = {w | P(w) = 0}, where P(w) is given by and
n(> 6) is an integer. Let c, d € C be such that ¢, d ¢ S|J{0,b}. Suppose that
f and g are two nonconstant meromorphic functions satisfying E¢(S,m) =
E,(S,m) and E¢({oo}, k) = E,({oo}, k) and f and g have respectively c-
point and d-point of multiplicity > p+ 1 where p, k are non-negative integers
or infinity such thatp*%—k%l <1, wherep*=1,ifp=0 and = %, ifp>1.
If either

(i) m > 2 and

1
O+ 6y + min{sy,5,} + pmin{3(c: ), 6 )} > 7+ + ot~
(1)) m =1 and

O + 6, + £min{O(0: f) + O(b: J) + ©(oo: ) + 37, 0(0:9) + O(big)
+0O(00;9) + 05t + min{dy, 6, + prmin{é(c; f),(d; g)}
>8+p" + %—l—l -n
or
(111)) m =0 and
O+0,+0(0; f) +O(b; f) + O(o0; f) + 205+ O(0; g) + O(b; g) + O(00; 9)
+ 265 + min{©(0; f) + O(b; f) + O(00; [),0(0; 9) + O(b; g) + O(o0; 9)}

1
+p'min{d(c; f),8(d; 9)} > 13+ p" + =7 — .

then f = g, where ©; = 20(0; f) + 20(b; f) + O(o0; f) + m&kﬂ(oo;f)
and 65 = Y s 0(w, f), and O, is defined similarly .

Theorem D leads us to the following observations.

Observation 1.1. p=0=p"=1=k = o0;
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Observation 1.12. p=1=p" = zﬁ =1=k=00;0(cf) > 1y = 1 and
O(d;g) =2 ;51 = 3;

) = p+l 2
Observation 1.;"). p=2=p = z% =2=k>20(f) > # = 2 and
O(d;g) > L = =.

) — p+1 3
Observation 1.4. p =3 = k = 1; O(¢; f) > 25 = % and O(d; g) > L5 =

3

T
Thus we observe that the least possible finite value of k is 1. The theorem

is silent when k£ = 0. Above theorem, thus leads us to the following questions.

Question 1.1. Is it possible to prove the above theorem with some finite

value of k, say k =1 when p =17

Question 1.2. Is it possible to prove the above theorem with k£ = 0 when

p=17

Question 1.3. Is it possible to reduce the cardinality of the main shared set

Sfromn>6ton>47

Question 1.4. Is it possible to prove Theorem D under weaker conditions

on ramification indices?

We answer all the above questions in affirmative in two theorems to follow.
However, we consider only the case when m = 2, that is when f and ¢
share the set S with weight 2. Note that in the definition of the polynomial
P(w), we require ab"~ 2 # 2. For our purpose, in addition to it we assume
ab™ 2 # 1,4, 42w, where w is a complex cube root of unity, by which the
polynomial P(w) will not lose any of its properties mentioned above. Thus
from now on our set S is given by S = {w | P(w) = 0} where P(w) is given
by with ab" 2 # 2,1, 4, +2w.

Below we state our main results.

Theorem 1.1. Let S = {w | P(w) = 0}, where P(w) is given by and
n(>4) and ab™ % # 2,1,4,+2w. If f and g be two nonconstant meromor-
phic functions such that Ef(S,2) = E,(S,2) and Ef({oo}, k) = Ey({o0}, k),
where k > 1 and there ezist ¢, d ¢ SU{0,b,00}, such that the zeros of f — ¢
and g — d are of multiplicity > p+ 1, where p > 1. Then
4

+ —

(n—2k+n—-3 p+1

F4 08> 6+ n, (1.3)

implies f = g, where
0 =20(0: ) + 2005 1) + ©(00: ) + ——min{3(ci 1), 6(d59))

+ Z 52(0'7 .f)

agSU{0,b,c,d,c0}
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and ©} is defined similarly.

Theorem 1.2. Let S = {w | P(w) = 0}, where P(w) is given by and
n >5 and ab®? # 2,1,4,£2w. If f and g be two nonconstant meromor-
phic functions such that E¢(S,2) = E,(S,2) and E¢({oo}, k) = E,({o0}, k),
where k > 0 and there exist ¢, d ¢ SU{0,b, 00}, such that the zeros of f — ¢
and g — d are of multiplicity > p + 1, where p > 1, then the inequality
implies f = g.

From the definitions of ©; and @} of Theorem D and Theorem 1.1 re-

spectively we see that

O =0y - m%ﬂ(om f)+ ]%mm{&a £):6(d;g)} + > ds(as f).

Thus (1.3) reduces to

0+ 0, + —min{d(ci ),6(di )} + 3 daas ) + 3 dalasg)
2 4 1

>0 T s Tor1 T gy e (00 f) 0w (o0 g)},
le.
O+ 0,

6 2 4 1 5 : 5 .
>0+ (n—2)k+n—3+p+1 _”"’m{ (k+1(005 f) + O(re41(005 9) }
- | Smintate: 1,00 00} + X du(as 1) + o)

If we call the right hand side of the above inequality as A, then inequality
(1.3) takes the form

0,40, > A

Whereas the condition for Theorem D implies

2 1 ) 2 .
Of+06, > 7+m+k—+1 —n—- [mzn{éfaég}“‘mmzn{é(a f),0(d; g)}].

If we denote the quantity on the righthand side of the above inequality as B,
then we have the condition of Theorem D, as

@f—l—@g>B.
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We establish our claim by showing that B > A.
We see that for £k > 1 with p > 2 and noting that min{dy, d,} <

> da(a; f),

2 4 1
A:6+(n—2)k+n—3+p+l_n m{ (kt1(00; f) + dry1(0059) }
— {pilmm{é(c f),0(d;9)} + 252((1; )+ 252(61;9)}
2 4 1 4 . :
§6+2n_5+p+1 k—H—mmm{&&f)ﬁ(d,g)}
—Z5z(a;f)_z52 a; g)
<7+ ]% + %%—1 —n — {mm{éf,ég} + ]%mm{é(a f),d(d; 9)}}
2 2 2
g g = L min{3(c 1), 6(d5g)) + min{,6,)
=) dalas f) - 252 a; )
2 2
§B+2n—5+p+1 1-— p+1mzn{5(c :f),0 d;g)}—z52(a§9)-

Thus for p > 2, we have from above for n > 6,

2 2n — 11
Z_ 1=B--—> " <B.
m—5 "3 3(2n — 5)

A< B+

We conclude this section with the definition of a few more notations as
follows.

Definition 1.3. [4,15] Let f and g be two nonconstant meromorphic func-
tions such that f and g share (a,0) for a € CU {o0}. Let zy be an a-point
of [ with multiplicity p, and an a-point of g of multiplicity q. We denote by
Np(r,a; f)(Np(r,a;g)) the reduced counting function of those a-points of f
and g where p > q(q > p). We denote by N, (r,a; f,g) the reduced counting
function of those a-points of f whose multiplicities differ from that of the
corresponding a-points of g.

We note from the above definition that N,(r,a; f,g) = ( a, g, f) and
N.(r,a;f,9) = Np(r,a; f) + Np(r,a; g). We also denote by N (r, : f) the
counting function of those 1-points of f and g where p = ¢ = 1.
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2 Lemmas

In this section we present some lemmas which will be required to establish
our results. In the lemmas several times we use the function H defined by
H — Fll 2F/
functions.

Let f and g be two nonconstant meromorphic functions and

F = R(f),G = R(g), (2.1)
where R(w) is given by (1.2)). From and it is clear that
1 1
T(Ta f) = ET(rv F) + S(?“, f)7 T(?“, g) = ET<T7 G) + S(Tv g) (22)

Lemma 2.1. [22)If F', G be two nonconstant meromorphic functions such
that they share (1,0) and H # 0 then

NP (r 1, F|=1) = NJ(r,1;G |= 1) < N(r, H) + S(r, F) + S(r, G).

Lemma 2.2. Let F, G be giwven by (2.1) and H # 0. If F, G share
(1,m) and f, g share (oo, k), then for any arbitrary set of complex numbers
{a;} cC\SU{0,b}, j=1,2,...,1,

N(r,H) <Np(r,1;F)+ Np(r,1;G) + N(r,0; f) + N(r,b; f) + N(r,0; g)

l
+N(r,byg) + Nu(r,00: f,9) + > N(r,a;; f| > 2)
7j=1
l
+ ZN(T7aj;g| 2 2) + NO(T7O; f/) + NO(TaO;g/)a

J=1

where No(r,0; f') denotes the reduced counting function corresponding to the

zeros of f' which are not the zeros of f(f — b) Hé:1(f —aj) and F — 1.
No(r,0;g") is defined similarly.

Proof. From the definitions of F' and GG, we have
F/ _ (TL B Q)anil(f B b)2f/ G/ _ (n — 2)agn71(g B b)2g/
n(n—1)(f —an)*(f — az)?’ n(n—1)(g — a1)*(g — a2)*’

It is obvious that the simple zeros of f — a; and f — as are the simple poles
of F', the simple zeros of g — a1 and g — a4 are the simple poles of G. It can
be easily verified that the simple zeros of f —ay, f —as, g — a1 and g — a»

(2.3)
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are not the poles of H. Now it is easy to note that the poles of H occur at
(i) the poles of f and g of different multiplicities;

(ii) the 1-points of F' and G of different multiplicities;
(iii) zeros of f(f —b) and g(g — b);

(iv) multiple zeros of f —a; and g —a;, j =1,2,...,;
(v) zeros of f’ and ¢’, which are not the zeros of f(f —b) H§-:1(f —a;), FF—1
and g(g — b) Hé.:l(g —aj), G — 1 respectively.

Since the poles of H are all simple, the lemma follows from above observa-
tions. [

Lemma 2.3. [3|Let f and g be two nonconstant meromorphic functions shar-
ing (1,m), where 0 < m < co. Then

N(r,1;f) + N(r,1;9) — NP (r,1; f) + (m —~ %) N.(r1; f,9)
< SING 1 1) + N L)

Lemma 2.4. [20] Let f be a nonconstant meromorphic function and let

n k
R(f) = %be an rreducible rational function in f with constant coef-
=003

ficients {ay} and {b;} where a,, # 0, b,, # 0. Then T'(r,R(f)) =dT(r, f) +
S(r, f), where d = maz{m,n}.

Lemma 2.5. |2] Let F' and G be given by (2.1) and H # 0. If F and G
share (1,m) and f, g share (00, k), where 0 < m < oo, 0 < k < oo, then

[(n—2)k +n —3]N(r,00; f |> k+1)
=[(n—2)k+n—3|N(r,o0;g |> k+1)
S N(T7O7f) +N(T707g> +N*(7’,1,F,G) +S(T,f) +S(T7g)
Lemma 2.6. Let f and g be two nonconstant meromorphic functions such
that E¢(S,m) = E,(S,m), and Ef({oc}, k) = E,({o0}, k), where 0 < m <
oo and 0 < k < oo are integers. Let {a;} C C\ SU{0,b}, j =1,2,...,1, be
an arbitrary set of complex numbers. Then

{g + 1+ l} {T(r, f)+T(r,9)}
< 2[N(r,0; f) + N(r,b; f) + N(r,0; g) + N(r, b; g)] + N(r, 00; f) + N(r,00; g)

I
N.(r,1; F,G) + Z{NQ(T, aj; f) 4+ Na(r,aj;9)}

Jj=1

DO | o

+ N.(r,00; f,9) — (m -

+ S(r, f)+ S(r,g).
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Proof. 1t is obvious that F' and G share (1,m). Then from the second main
theorem we obtain from Lemmas 2.1-2.4,

{n+1+1H{T(r,f)+T(r,g)}

IN

l

l
< N0 f) + N b f) + N(r,00s f) + 3 N(r,azi f) + N(r,0;9) + N(r, by g)
— l 1]— n
+ N(r,o00;9) + Z (r,a;; 9 —<m—5)N*(T,l;F,G)‘i‘§{T(T,f)+T(T79)}

l
N(r,0; f) + N(r,b; f) + N(r,00: f) + Y _ N(r,a5; f) + N(r, 1, F) + N(r,0; g)

+ {Np(r,1; F)+ Np(r,1;G) + N(r,0; f) + N(r,b; f) + N(r,0; g) + N(r,b; 9)

l
+ N.(r,00; f,9) + Z raj;f|22)+zﬁ(r,aj;g|22)

+ No(r,0; f') + No(r,0;') } — No(r, 0 f') = No(r,0; ¢')
< 2{N(T’O§f> (

+ N.(r,00; f,g) + Z{Ng(r, aj; [) 4+ No(r,aj;9)} + g{T(r, +T(rg)}
— (m - ;) N,.(r,1;F,G)+ S(r, f) + S(r, g),

the Lemma follows from above. O]

Lemma 2.7. [4] Let f, g be two nonconstant meromorphic functions sharing

(00,0) and suppose that aq and oo are two distinct roots of the equation
n(n — Dw? — 2n(n — 2)bw + (n — 1)(n — 2)b* = 0. Then

fr g" n’(n — 1)
(f =) (f —a2) (g —a1)(g — az) a

where n > 3 is an integer.

Lemma 2.8. [9] Let Q(w) = (n—1)*(w"—1)(w" 2 =1)—n(n—2)(w" ' —1)2,
then Q(w) = (w—1)*(w—B1)(w — B2)..(w — Ban—_g) where B; € C\{0,1},(j =

1,2,...,2n — 6) which are pairwise distinct.

7,b; f) 4+ N(r,0; f) + N(r,b; f)} + N(r,00; f) + N(r,00; g)
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Lemma 2.9. Let F', G be given by (2.1)), where n > 4 is an integer. If f,
g share (00,0) then F =G = f=g.
Proof. From the definitions of F'; G we observe that
fr g"
F=G= = :
(f —a))(f —a2) (g —ai)(g— )

Therefore f, g share (0,00) and (00,00). Then from above and in view of
the definitions of R(w) we obtain

n(n—1)f2g°(f"2 —¢" ) = 2n(n = 2)bfg(f" " — g" ")
+(n—1)(n —2)b*(f" —g") = 0.

Let h = § that is f = gh which on substitution in (2.4) yields

(2.4)

n(n—1)h%g*(h"*—1)—2n(n—2)bhg(h" ' —1)+(n—1)(n—2)b*(h" —1) = 0.

(2.5)

Note that since f and g share (0, 00) and (00, 00), 0, 0o are the exceptional

values of Picard of h. If h is nonconstant then from Lemma 2.8 and (2.5) we
have

{n(n— 1" 2 —1)g — n(n —2)b(h" ' —1)}* = —n(n — 2)b’Q(h) (2.6)

where Q(h) = (b — 1)*(h — B1)(h — Ba)...(h — Pan—s),8; € C\{0,1},j =
1,2,...,2n — 6 which are pairwise distinct. From ([2.6)) we observe that each
zeroof h — 3;, 7 =1,2,...,2n — 6 is of order at least two. Therefore by the
second main theorem we obtain
2n—6
(2n = 6)T(r,h) < N(r,00;h) + N(r,0;h) + > N(r, 8 h) + S(r, h)

j=1
1
< S(2n = 6)T(r, ) + (1 h),

which is a contradiction for n > 4.

Thus h must be a constant. From and it follows that h»2—1 =
0 and A" ! —1 = 0 which implies that h = 1.Therefore f = g. This completes
the proof. n

Lemma 2.10. [4] Let F, G be given by (2.1) and S be defined as in Theorem
1, where n > 4. If E¢(S,0) = E,(S,0) then S(r, f) = S(r,g).

Lemma 2.11. Let f and g be two nonconstant meromorphic functions such
that E¢({00},0) = E,({o0},0) and Ef(S,0) = E,(S,0), where S is as de-
fined in Theorem 1.1. Let F' and G be given by (2.1). If F is a bilinear
transformation of G, then f = g.
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Proof. In this case we have

AG+ B
F=—— 2.
CG+ D’ (2.7)
where A, B,C, D are constants such that AD — BC' # 0. Also T(r, F) =

T(r,G) + O(1), and hence from ({2.2))

T(r,f)="T(r,g)+0(1). (2.8)
Since R(w) — ¢ = n(s(zi)—(?%b,&()w)a 7, where the restrictions on a, b as stated

bn2

in the Theorem 1.1, shows that ¢ = 41,3 5: 2, Tw, w being a complex
cube root of unity and Qn_3(w) is a polynomlal in w of degree n — 3. Then
in view of the definitions of F' and GG we notice that

N(T,C;F) SN(T,b,f)—F(n—?))T(T,f) < (n_z)T<T7f>+S(T7f)a

N(r.:G) < N(r.big) + (n— T(r.g) < (n— DT(r.g) + S(r.g). )

Now we consider the following cases.

Case 1. A #0.

Subcase 1.1. C' # 0. Since f, g share the value oo, it follows from ({2.7))
that oo is an exceptional value of Picard of f and g. Therefore from (|1.2))
and it follows that

N(T7OOaF) = N(Tu al;f) —f-N(T’, a?;f)7 (2 10)
n .

N(T,OO,G) IN(T, al;g> N(Tu a2;g>'
Subcase 1.1.1. B # 0. Then from (2.7) it follows that N(r,—Z;G) =
N(r,0; F).

Subcase 1.1.1.1. ¢ 7§ —§. Thus from the second main theorem we have

from €3, &5, 9 and €10
B —
2nT(r,g) < N(r,0;G) + N(r,00; G) + N(r, —Z;G)—FN(T,C;G)—FS(T,G)

< N(r,0;9) + N(r,a1;9) + N(r,as; g) + N(r,0; f)
+(n—2)T(r,g) + S(r,9)
< (n+2)T(r,g) + S(r, g).

(2.11)
Clearly (2.11)) leads to a contradiction if n > 4.
Subcase 1.1.1.2. ¢ = —= . Then B = —Ac. Therefore, we have from ({2.7]),

(A — Cc)G — (Ac+ Dc)

Foe= CG+D
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First let A — Cc = 0. Then from above we have,

(A+ D)e

F-c=—ca7p

Clearly A+ D # 0 , for otherwise F' becomes constant. We also claim

that D # 0. For if D = 0, then from above we have F' — ¢ = —%. Since F

and G share the value 1, we have 1 — ¢ = —%, which, when combined with

our assumption A —Cec = 0, leads to ¢> —c+1 = 0. Thus ¢ becomes complex
roots of z> = —1. Thus if we denote by w, a complex cube root of unity, then
our ¢ becomes precisely ¢ = —w, which is contrary to our assumption as has
been observed at beginning of the proof of the lemma.

Since A+ D # 0, _5‘0 # c. Therefore it follows from above by the use of
the second main theorem,

2nT(r, f) < N(r,0; F) + N(r,c; F) 4+ N(r,00; F) + N(r, —%C; F)+S(r, f)
(r,00;G) + N(r,ay; f) + N(r,a9; f) + N(r,0; G) + S(r, f)

This leads to a contradiction for n > 4.
Next we consider A — C'c # 0. Using B = —Ac, we have from (2.7)),

_AG =0
- CG+ D’

Suppose that D # 0. It is obvious from above that ¢ # —g, for otherwise F'
becomes constant. Therefore, by the second main theorem, we have,

_ _ D _

TanG> +N(T7007G) +N<Ta_57G) +N(T,C,G) +S(T’7g)

T’,O,g) —|—N(7’, al;g) +N(T7 Oég;Q) +N(T7 aq; f) +N(T7 Q] f)
+ N(r,0; ) + S(r, g)

< 6T(r,g) +S(r, 9).

2nT(r,g) < N

This is a contradiction as before for n > 4.
If D =0, then we have

A(G —¢)
cG
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Note that ¢ #

A

AACC :G) + N(r,00;G) + S(r, g)
< N(r,0;9) + N(r,0; f) + N(r,¢; F) + N(r,a1; 9) + N(r, 05 g) + S(r, 9)
<AT(r,g)+ (n—2)T(r, f)+ S(r,g)

< (n+2)T(r,g)+ S(r,g).

2nT(r,g) < N(r, 0;G) —{—N(r, G+ N(

This, as before, yields a contradiction for n > 4.
Subcase 1.1.2. B =0. Then F = 27 and N(r, 22;G) = N(r,00; F).

G+% T C
We also note that ¢ = % # 0.

If possible suppose ¢ = %. Since F', G share 1-points, we have A =
C+ D =C —¢C and hence F = (CGCCC)CG (1G 9% Then since ¢ # 1 35
— — 02
N(r,c;F)= N(r,——; Q).
(e F) = N(r, =)

Thus by the second main theorem and (2.9) and (2.10)) we have,

GG+ 5(0)

< N(r,0;9) + N(r,a1;9) + N(r,ag; g) + N(r,a; f) + N(r, ag; f)
+(n—=2)T(r, f)+ S(r,g)

<(B+n=2)T(r,g)+5(r,9),

2nT(r,g) < N(r,0;G) + N(r,00;G) + N(r,c;G) + N(r

which leads to a contradiction for n > 4.
Next let ¢ # %. Hence as before by the second main theorem

_ _ —-D _
(r, O'G)—|—N(r,oo;G)—|—N(T,T;G)—l—N(r,c;G)—I—S(r,G)

SN(TJO ) N(T,O{l;g)+N(T,O&2;g)+w(7’,a1;f)+N(T,O{2;f)
+(n—2)T(r,g9) + S(r,g)
<B+n-—2)T(r,g)+ S(r,9),

Do
3
=
ZI

which leads to a contradiction for n > 4.
Subcase 1.2. ' = 0. Therefore F' = %G + % If B =0, then since I’ and
G share the value 1, it follows that % = 1, and therefore ' = . Thus by
Lemma 2.9, we have f = g.

If B # 0, then since F' and G share the value 1, it follows that F =
nG + (1 —n), where n = % and 1 —n = %. If ¢ # 1 —n, then from above we
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obtain by the second main theorem,
2nT(r, f) < N(r,0; F) + N(r,1 —n; F) + N(r,¢; F) + N(r,00; F) + S(r, f)
< N(r,0; f) + N(r,0; 9) + N(r,00; f) + N(r, a1; f) + N(r, as; f)
+ (n_ 2)T(T,f) +S<7’,f)
< (n+3)T(r, f) +S(r, f),
which leads to a contradiction for n > 4.
Ifc=1-mn, then FF = (1— C)G + ¢. Since by our assumption ab" 2 # 4,
we have ¢ # 2 and hence ¢ # 5. Therefore by the second main theorem we

have
C J—

2nT(r,g) < N(r,0;G) + N(r,¢;G) + N(r, —1G)+N(rooG)+S(7"9>

< N(r,0;9) + N(r,0; f) + N(r,00; 9) + N(r,a1;9) + N(r, az; g)
+(n—=2)T(r,9) + 5(r,9)
< (n+3)T(r,g)+ S(r,g),

as before this leads to a contradiction for n > 4.
Case 2. A = 0. Then clearly BC' # 0 and F = G+5 where v = E and

0 = %. Then as observed in Subcase 1.1 of Case 1, f and g will have no pole.
Slnce F and G have some 1-points, then v+ = 1 and so F' = TM If

v =1, we arrive at a contradiction by Lemma 2 7 Solet v # 1. If — ;é c
then by second main theorem and (| and we have,

2nT(r, f) < N(r, O;F)—I—N(T,ﬁ;F)—f-N(T,C;F)+N(T’,OO;F)+S(T,F)
< N(r,0; f) + (n = 2)T(r, f) + N(7,0; 9) + N(r,a1; f) + N(r, 003 f) + S(r, f)
therefore

(n+2)T(r, f) < N(r,0; f) + N(r,0; 9) + N(r, 15 f) + N(r, az; f) + S(r, f),

which is a Contradiction for n > 4.
If C = then F = ﬁ
ab™

R whlch Vlolates our assumption . Then by the second main theorem we
obtain as before,

Note that ¢ 7& ——, for otherwise c = w =

— — 1 —

)
N(r,0;g) + (n—2)T(r, )+N(7‘,oo;F)+N(r,oz1, g) + N(r,az;9)+ S(r,g)
N ) +N

+N
N(r,0;9) + (n = 2)T(r, g) N +N(r,a1;9)
+

<
S (Taal;f)_'_N(r?OéZaf)
N(r,az; g) +5(r, 9).
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Thus

(’I’L + Q)T(T‘, g) Sw(ﬁ 0,9) +N(Ta Qg f) —FW(’F, Qg; f) + N(T7 al;g)
+N(r,a2;9) + S(r. ),

which leads to a contradiction for n > 4. O

3 Proofs of theorems

Proof of Theorem 1.1. Case 1. H # 0. Let F', G be given by ([2.1)). Since
E¢(S,2) = E,(S,2) it follows that F, G share (1,2).
Also since E¢({oo}, k) = E ({0}, k) we see that

N.(r,00; f,9) < N(r,00; f |> k+1).

Let [ be any positive integer and a; ¢ S U {0,b,00}, j = 1,2,....1 be
distinct complex numbers. The conditions of our theorem imply
No(r,c; f) < 55 N(r,c; f) and Na(r,d; g) < =2-N(r,d; g).

Thus by above and using Lemmas 2.6 and 2 5, with m = 2, we obtain

{g +1+4+ l} {T(r,f)+T(r,g9)}
< 2[N(r,0; f) + N(r,b; f) + N(r,0;9) + N(r,b; )] + N(r,00; f) + N(r,00; g)

+ N.(r,00; f,9) = %W*(T, LF,G)+ Z{Nz(ﬁ aj; f) + Na(r,a;;9)}
+5(r.£) + 5(r.9)
< 2[N(r,0; f) + N(r,b; f) + N(r,0;g) + N(r,b;g)] + N(r,00; f) + N(r,00; g)
N(r,0

+ = 3{N(r,0; )+ :9) + N.(r,1; F,G)}

(n—2)k+n—
+ [N(r,e; )+ N(r,¢; [ |> 2)] + [N(r,d; g) + N(r,d; g |> 2)]

+ Z{N2(Ta aj;f) + N2<T> bj;g)} - %N*(T’, 1;Fa G) + S(r7 f) + S(r,g)

< 2[N(r,0; f) + N(r,b; f) + N(r,0; 9) + N(r,b; g)] + N(r,00; f) + N(r,00; g)

2 2 1
+ mN(r,c; f)+ mN(r,d;g) + (n— 2k +n— 3{T<7”7f) +T(r,9)}

+ Z{NQ(T, aj; f) + Na(r,bj;9)} + S(r, f) + S(r, 9).
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Thus for an arbitrary € > 0, we have from above

{g F14 z} {T(r, )+ T(r,g)}

1 2
<Hi-14 SN ~20(0. ) ~ 20(b, ) — O(o0. f)
1

—mé 252%, +€}T(Tf)+{5+l_1+( — Nk +n-—3
+2% —20(0, ) — 20(b, g) — O(c0, g) — 1%5@;9)

-1
— Zég(bj,g) +e}T(r,g) + S(r),

=1

ie.,

{20(0, f) +20(b, f) + O(o0, f)+p—5 +252 aj, f

1 2 n

— (3 =
( +(n—2)k—|—n—3+p+1 2

+{20(0, g9) + 20(b, g) + O(o0, g)—l—p—(5 (d,g +Zc52 iy g

1 2 n

5) = €T(r,g) < S(r).

— (3 —
( +(n—2)k—|—n—3+p+1 2

Above being true for any set of complex numbers a; ¢ S U{0,b,¢,00} and
b € SU{0,b,d, 00}, we have

. 1 2 n
{@f_ (3+(n—2)k+n—3+p+1_§> _€}T<T’f)

Ho- (34 gy oo -5 e T <50

Without loss of generality we assume that T'(r,g) < T'(r, f) asr — oo, r € E.
Hence the above inequality reduces to

2 4
{@f+@g (6+(n_2)k+n_3+p+1 n) e} (r,9) < S(r),

which contradicts (|1.3)).

Case 2. H = 0. Then F = égig. Hence the Theorem follows from

Lemma 2.11. This completes the proof of the Theorem. ]
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Proof of Theorem 1.2. We omit the proof as it is the same as the above

proof. O
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