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Abstract

The uniqueness of Nash equilibria is shown for a class of stochastic
differential games where the dynamic constraints are linear in the control

variables and the result is applied to an oligopoly.



I. INTRODUCTION™

Despite the many results available on nonzero-sum Nash differential
games, we have very limited knowledge on the uniqueness of optimal
strategies. 1In fact quite often uncountably many equilibria exist (Basar,
1977), although stochatic elements sometimes can shrink the set of equilibria
considerably by rendering strategies which depend on the history of the game
inoptimal (Basar and Olsder, 1982; Corollary 6.4). In a deterministic
setting, one can altermatively require the strategies to be functions of time
and the current state only. This approach is taken by Papavassilopoulos and
Cruz (1979), who derive a unliqueness theorem for a class of analytic games of
this type.

In the present paper we give a similar uniqueness result, which allows
the state dynamics to be stochastic, but require them to be linear in the
control variables. After deriving the result, we will apply it to a dynamic

duopoly.

*This paper benefitted from comments by two anonymous referees, larry
Blume and Carl Simon.



II. A STOCHASTIC DIFFERENTIAL GAME

Notation

i=1,...,0 generic player

t € [0,1], time

U, a compact metric space.

A, space of measurable functions from [0,1] x " to U
P; € A, (feedback) strategy of player i
P € A", a set of strategies, one for each player

Py = Pi(t,st), value of control variables of player i for all (t,st)

Pr = (PipseeesPpp)

B;, space of ¢? functions from [0,1] x T x U to T

By, subset of By in which.the functions are linear in the control
variables, have bounded derivatives, and are bounded at some point,
say (t,0,0).

F e B2

F(t,st,Pt), drift in s¢, for all (t,st,Pt)

Zys Brownian motion in RT

C, space of C? functions from [0,1] x T to KD

c €C

G(t,St), m X m matrix, which has a bounded inverse, bounded derivatives,
and is bounded at (t,0) | |

o] a typical element of o(t,s;)

ijs
D;, space of ¢ functions from [0,1] x ®® x U to [O’kl]’ k) € R;.

Dy, subset of Dy in which the functions are convex in the control

variables



mi € Dy

n;(t,s¢,P;¢) instantaneous, discounted payoff to player iofor all
(t,sy,Piy)

E, space of C2 functions from F® to [0,k,], ko € Ry

vi € E

Vi(sl)’ discounted terminal value of s; to player i

An N-Player Game

We can now define the game

X 1 .
Min foni(t,st,Pit)dt + Vi(sl)’ i=1,...,n

P,
i

(G) (1 dst = F(t,st,Pt)dt + G(t,st)dzt

s, € T given

Theorem 1: (G) has a Nash equilibrium.
Proof: This is a direct application of Corollary 1 in Uchida (1978). Q.E.D.

Noting that an equilibrium in general will depend on the initial

condition, we can further get

Theorem 2: If (G ) has a Nash equilibrium P* in c2 strategies, then that

equilibrium is unique in. that class of strategies.1
Proof: This complex proof consists of five steps.

1. Note first that the minimizing strategies are unique as functions of the
arguments. That is, for any given (t,s.,a;.) € [0,1] x " x R, the

equations:



’ '
(2) gln aitF(t,st,Pt) + ni(t,st,Pit), i=1,u4e,n
it

have at most one solution Py in uo.
(To see this, remember that F(e¢) is linear in P; such that (2) is
additive in functions of the individual control variables, such that each

player minimizes a convex function on R, independent of the actions of

other players.)

2 By assumption, these strategies are C2 and we can define value

functions: V;: [0,1] x ®”®>mR i=1,.4.,n, as

1 '™ % * *%*
v, (7,¢) .¢E¢ ftni(t,si(r,cb,P ), Pi(t,S(T,cb,Pt))) dt +_vi(31(1’¢’P )

~ *
where St(T,¢,P ) is a realization of (1) starting from (t,¢), with
players using strategies P*. Since all the functions defining Vi(-) are

C2 so is Vi-

3. By the Bellman principle, the V;i's therefore solve:

(bv, n 2%y, m oV,

=t ) o 4+ Min [ [ g Fi(E,5,,P) + my(t,8,,P5)] = 0

3t 7 ij 35,08 ) 5. T3 St 1458yt
J,k= ] k Pi J=1 J

_(3)<vi(1,s) = v, (s))

= 1,000,

\?

4, (3) has a unique solution in the class c? (by Theorem IV. 10.1 in

Ladyzenskaja et al., 1968).

5. So there can be only one V and this induces a unique P*. Q.E.D.



ITI. EXAMPLE: A DIFFERENTIATED DUOPOLY

Model

A continuum of consumers are distributed evenly on [0,1]. Each has a
demand curve of the form a - 28 Fi(s), (a,B) € Ri, where §i(s) is the
"effective” price (price per unit quality) of firm i = (0,1) to a consumer at
s € (0,1]. At any given time, all consumers in [0,s.] buy only from firm O,
whereas all consumers in (st,l] buy only from firm 1. The marginal buyers

flow, for them, to the most attractive firm, as:

(i1) ds, = a(® (t,5) - By(t,s.))dt — ols (1 - st)]l/zdzt

where (a,o) EIB& and z, is Brownian motion.
The two firms are positioned at 0, firm 0, and firm 1, firm 1, and their
effective prices are the products of the distance to the consumer and their

nominal prices (POt’Plt) € Eg. So (ii) takes the form
1/2d

dst = a[(l - St)Pit - stgt]dt + c[st(l - st)l Z,
The sales of firm 0 are therefore given by

s 2 .
fot(a - ZBPOtr)dr = as, - BPOtst’ whereas the sales of firm 1 are
a(l - st) - BPlt(l - st)z. The firm's strategies are functions of (t,s.).

We will solve the game over a unit time horizon, such that the firm's

objectives are

1 2 2,
(4) gax fo((cxsit - BPitsit)Pit)dt + 2si s;pp 1= 0,1
i

1

where Sot = S¢» Syt = 1 - s, and sg € (0,1).



Results

The game (4), (ii) leads to value functions of the form

Vi(sgy) = A(t)s%t + B(t)s;, + c(t), (1 = 0,1), and the price functions:

* = a _aa(t) _ ai(t) i = 0,1 where A(t), B(t) and C(t) solves

P, >
it ZBSit B ZBsit

dA/dt + 3a2a%/g = 0, A1) = -1, dB/dt + a?AB/B - 2a°A%/g = 0, B(1) = 2, and

2 2

dc/dt + A + (a2 - 4a"AB - a2B2)/(AB) =0, C(1) = 0, respectively, From

- *
this, A(t) = -[1 + 3a2(1 - t)/B]”} and P;, > O for all t,s if « is

sufficiently large.

IV. CONCLUSION

In the presen; paper, the uniqueness of the feedback Nash strategies is
shown for a class of stochastic differential games, where the state dynamics
are linear in the control variables. Much, of course, needs to be done before .
the potential of this type of model can be realistically assessed. First,
this is just 'uniqueness of Nash equilibria, although in very complex strategy
spaces. If we allow more conjectural variations, the.number of equilibria
multiply again. Secondly, while the existence result of Uchida (1978) is
reasonably general given the type of uncertainty-he postulates, it needs
extension to other types of uncertainties. Our own uniqueness result is much
less general and should be relatively easy to extend. Finally there remains
the problem of solving or characterizing solutions to the system (2), such

that qualitative insights can be obtained.

Northwestern University



NOTES -

1. Given the Markov property of the dynamic constraint it is obvious that no
other equilibrium exist in the wider class of strategies which result if

we allow P(+) to depend on the entire history of s.
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