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1. Introduction

Fractionalpowers of the Laplacian arise in a numerous variety of equations in mathe-
matical physics and related fields; see, e.g., [1], [9], [14], [17], [20], [24], [28], [34] and
the references therein. Here, a central role within these models is often played by so-
called ground state solutions, or simply ground states. By this, we mean non-trivial,
non-negative and radial functions Q=Q(|x|)�0 that vanish at infinity and satisfy (in the
distributional sense) an equation of the form

(−Δ)sQ+F (Q) = 0 in R
d. (1.1)

As usual, the fractional Laplacian (−Δ)s with 0<s<1 is defined via its multiplier |ξ|2s

in Fourier space, whereas F (Q) denotes some given non-linearity. In most examples of
interest, the existence of ground states Q=Q(|x|)�0 follows from variational arguments,
applied to a suitable minimization problem whose Euler–Lagrange equation is given by
(1.1). Moreover, based on this variational approach, it is natural in these cases to require
that a ground state is also a minimizer for some related variational problem in addition
to just being a non-negative and radial solution of (1.1). Indeed, we will make use of
this (strengthened) notion of a ground state in this paper further below.

In striking contrast to the question of existence, it seems fair to say that extremely
little is known about uniqueness of ground states Q=Q(|x|)�0 for problems like (1.1),
except for the “classical” limiting case with s=1, where standard ordinary differential
equation (ODE) methods are applicable. Indeed, to the best of the authors’ knowledge,
the only examples for which uniqueness of ground states for (1.1) has been proven are:

• Ground state solitary waves for the Benjamin–Ono equation in d=1 dimension;
see [5].

• Optimizers for fractional Sobolev inequalities in d�1 dimensions; see [13] and [23].
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In fact, in both cases the unique ground states are known in closed form. However,
the uniqueness proof of both results hinges on a very specific feature of each problem:
In the first case, the proof is intimately linked to complex analysis and special identities
exhibited by the (completely integrable) Benjamin–Ono equation; whereas, in the second
case, the conformal symmetry of Sobolev inequalities plays a key role in the uniqueness
proof. In particular, the specific arguments developed in [1], [5], [13] and [23] are appar-
ently of no use in a more general setting. Hence, we see that a satisfactory understanding
of uniqueness for ground states of problems like (1.1) is largely missing. Clearly, the main
analytical obstruction is that shooting arguments and other ODE techniques (which are
essential in the classical case s=1; see, e.g., [21], [30] and [31]) are not applicable to the
non-local operator (−Δ)s when 0<s<1.

In the present paper, we address the question of uniqueness for a general class of
the form (1.1) in d=1 space dimension. More precisely, we prove uniqueness of ground
states Q∈Hs(R) for the non-linear model problem

(−Δ)sQ+Q−Qα+1 = 0 in R. (1.2)

Here we assume that 0<s<1 and 0<α<αmax(s) holds, where the critical exponent
αmax(s) is defined as

αmax(s) :=
{

4s/(1−2s) for 0 < s < 1
2 ,

∞ for 1
2 � s< 1.

(1.3)

Technically speaking, the condition that α be strictly less than αmax(s), which is vacuous
if s� 1

2 , ensures that the non-linearity in equation (1.2) is Hs-subcritical. In fact, it turns
out that this condition on α is necessary to have existence of ground states for (1.2),
since (by so-called Pohozaev identities) it is easy to see that (1.2) does not admit any
non-trivial solutions in Hs(R)∩Lα+2(R) when α�αmax(s) holds.

Apart from being a natural model case for equation (1.1) in one space dimension,
we remark that equation (1.2) and its solutions provide solitary wave solutions of three
fundamental non-linear dispersive model equations in d=1 dimension. Namely, the gen-
eralized Benjamin–Ono equation and Benjamin–Bona–Mahony equation, as well as the
fractional non-linear Schrödinger equation given by

ut+((−Δ)su)x+uαux = 0, (gBO)

ut+ux+((−Δ)su)t+uαux = 0, (gBBM)

iut−(−Δ)su+|u|αu = 0. (fNLS)
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Note that in (gBO) and (gBBM) we assume that α∈N is an integer and that u=u(t, x)
is real-valued.(1) Suppose now that Q=Q(|x|)�0 solves (1.2). Then it is elementary to
see that the functions

uc(t, x) = (c(α+1))1/αQ(c1/2s(x−(1+c)t)),

uc(t, x) = (c(α+1))1/αQ
(( c

1+c

)1/2s

(x−(1+c)t)
)
,

uω(t, x) = eiωtω1/αQ(ω1/2sx)

provide solitary wave solutions of (gBO), (gBBM) and (fNLS), respectively. In the first
two (water wave) examples, the parameter c>0 corresponds to the traveling speed of the
wave to the right; whereas the parameter ω>0 plays the role of an oscillation frequency
of the solitary wave for (fNLS). There is numerous literature on the evolutions problems
mentioned above; see, e.g., [3], [7], [20], [25] and [34] for results on solitary waves for
(gBO), (gBBM) and (fNLS).

In all these cases, the uniqueness and the so-called non-degeneracy (see below) of the
ground states Q=Q(|x|)�0 are of fundamental importance in the stability and blowup
analysis for the corresponding solitary waves uc(t, x) and uω(t, x) above. So far, except
for the special case s= 1

2 and α=1 in [5] and a perturbative result for s close to 1 in
[20], no rigorous results have been derived in this direction, and hence these properties
of Q=Q(|x|) have been imposed in terms of assumptions, partly supported by numerical
evidence, and they have been left as main open problems; see, e.g., the recent paper
by Kenig–Martel–Robbiano [20]. In particular, the rigorous understanding of blowup
phenomena close to Q=Q(|x|) in the L2-critical setting, i.e., when α=4s holds in (gBO),
(gBBM) and (fNLS), has been hindered so far by the absence of any essential result for
the non-local equation (1.2) in this important case. Here, as a particularly intriguing
feature of the fractional Laplacian (−Δ)s, the slow algebraic decay of Q=Q(|x|) (see
Proposition 1.1 below) is expected to lead to strong corrections to blowup rates that
follow from a scaling analysis.

In Theorems 2.3 and 2.4 below, we prove uniqueness and so-called non-degeneracy
of ground states for equation (1.2) in the full range 0<s<1 and 0<α<αmax(s). In
particular, these main results can be viewed as the sine qua non for future work on
solitary waves and blowup for dispersive non-linear partial differential equations (PDEs)
with ground state solitary wave profiles Q=Q(x) that satisfy (1.2).

Before we formulate the main results of this paper, let us first recall some facts
about existence, regularity and spatial decay of ground state solutions of equation (1.2).

(1) We could extend to complex-valued u and non-integer α, by replacing uαux with |u|αux.
Indeed, such models are also of interest in the PDE literature; see, e.g., [20].
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Indeed, by following the seminal approach of M. Weinstein in [33] and [34], we notice
that problem (1.2) has indeed non-trivial solutions Q∈Hs(R), which are optimizers of
the Gagliardo–Nirenberg-type inequality

∫
R

|u|α+2 dx �Cα,s

(∫
R

|(−Δ)s/2u|2 dx

)α/4s(∫
R

|u|2 dx

)α(2s−1)/4s+1

, (1.4)

in one space dimension. Here Cα,s>0 denotes the optimal constant depending on α

and s. Equivalently, this claim follows from considering the ‘Weinstein’ functional

Js,α(u) :=
(∫

R

|u|α+2 dx

)−1(∫
R

|(−Δ)s/2u|2 dx

)α/4s(∫
R

|u|2 dx

)α(2s−1)/4s+1

, (1.5)

defined for u∈Hs(R) with u �≡0. Clearly, every minimizer Q∈Hs(R) for Js,α optimizes
the interpolation estimate (1.4) and vice versa. In addition, any such non-negative
Q∈Hs(R) is found to satisfy equation (1.2) after some suitable rescaling Q(x) �!aQ(bx)
with some positive constants a>0 and b>0.

In summary, we have the following existence result and fundamental properties of
solutions to (1.2), which we can infer from the literature.

Proposition 1.1. Let 0<s<1 and 0<α<αmax(s). Then the following holds:
(i) (Existence) There exists a solution Q∈Hs(R) of (1.2) such that Q=Q(|x|)>0

is even, positive and strictly decreasing in |x|. Moreover, the function Q∈Hs(R) is a
minimizer for Js,α.

(ii) (Symmetry and monotonicity) If Q∈Hs(R) with Q�0 and Q �≡0 solves (1.2),
then there exists x0∈R such that Q( ·−x0) is even, positive and strictly decreasing in
|x−x0|.

(iii) (Regularity and decay) If Q∈Hs(R) solves (1.2), then Q∈H2s+1(R). More-
over, we have the decay estimate

|Q(x)|+|xQ′(x)|� C

1+|x|1+2s

for all x∈R and some constant C>0.

Remarks. (1) As for the proof of part (i), we can refer to Weinstein’s paper [34]
where concentration/compactness-type arguments are used to show existence of mini-
mizers for 1

2 �s<1. But the method can be applied to the range 0<s< 1
2 as well; see also

[4]. Moreover, by strict rearrangement inequalities for
∫

R
|(−Δ)s/2u|2 dx when 0<s<1

(see, e.g., [16]), we can deduce that any minimizer Q∈Hs(R) for Js,α must be equal (apart
from translation and phase) to its symmetric-decreasing rearrangement Q∗=Q∗(|x|). See
also §2 and §5 below.
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(2) To derive part (ii), we can directly adapt the moving plane method recently
developed in [26], combined with some properties of the integral kernel for ((−Δ)s+1)−1

on R. For more details, we refer to Appendix B.
(3) The regularity proof of part (iii) is worked out in Appendix B. Moreover, it is

easy to see that in fact Q∈Hk(R) for all k�1, if Q=Q(x) is positive or if the exponent
α�1 is a positive integer; see also [22] for an analyticity result in this case. See [20] and
the references given there for the spatial decay estimate stated above.

(4) For positive solutions Q=Q(x) of (1.2), we also have the lower bound

Q(x) � c(1+|x|)−1−2s

with some constant c>0.

2. Main results

We now formulate the main results of this paper about ground state solutions to (1.2)
that we define as follows.

Definition 2.1. Let Q∈Hs(R) be an even and positive solution of (1.2). If

Js,α(Q) = inf
u∈Hs(R)\{0}

Js,α(u),

then we say that Q∈Hs(R) is a ground state solution of equation (1.2).

Remark 2.2. In fact, there are several constrained variational problems that are
equivalent to the unconstrained problem of minimizing Js,α on Hs(R)\{0}.

For example, in the so-called L2-subcritical case when 0<α<4s, the constrained
minimization problem, with parameter N>0,

E(N) = inf
{

1
2

∫
R

|(−Δ)s/2u|2 dx− 1
α+2

∫
R

|u|α+2 dx : u∈Hs(R) and
∫

R

|u|2 dx = N

}

is attained at u∈Hs(R) if and only if u=eiϑλ1/αQ(λ1/2s( ·+y)) with some ϑ∈R, y∈R

and λ>0 chosen to ensure that
∫

R
|u|2 dx=N holds. Here Q∈Hs(R) is a ground state

solution of (1.2) in the sense of Definition 2.1 above.

Our first main result establishes the so-called non-degeneracy of the linearization
associated with positive solutions Q of (1.2) that are local minimizers for Js,α; and thus
our result holds in particular when Q is a ground state solution. As already mentioned,
the non-degeneracy of the linearization around ground states plays a fundamental role for
the stability and blowup analysis for solitary waves for related time-dependent equations
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such as the generalized (gBO) and (gBBM) equations; see, e.g., [3], [7], [20], [25] and
[34], where the non-degeneracy of L+ is imposed in terms of a spectral assumption, or
proven for s close to 1 by perturbation arguments.

We have the following general non-degeneracy result.

Theorem 2.3. (Non-degeneracy) Let 0<s<1 and 0<α<αmax(s). Suppose that
Q∈Hs(R) is a positive solution of (1.2) and consider the linearized operator

L+ = (−Δ)s+1−(α+1)Qα

acting on L2(R). Then the following conclusion holds: If Q is a local minimizer for
Js,α, then L+ is non-degenerate, i.e., its kernel satisfies

ker L+ = span{Q′}.

In particular, any ground state solution Q=Q(|x|)>0 of equation (1.2) has a non-
degenerate linearized operator L+.

Remarks. (1) In fact, we will prove the non-degeneracy of L+ under the (weaker)
second-order condition

d2

dε2

∣∣∣∣
ε=0

Js,α(Q+εη) � 0 for all η ∈C∞0 (R),

which clearly holds true when Q∈Hs(R) is a local minimizer for Js,α.
(2) A fundamental application of Theorem 2.3 arises in the stability and blowup

analysis of solitary waves for related time-dependent equations; notably in terms of a
coercivity estimate, which readily follows from the non-degeneracy of L+. More precisely,
for suitable 2-dimensional subspaces M⊂L2(R), we can derive the lower bound

〈η, L+η〉� δ‖η‖2Hs for η⊥M ,

where δ>0 is some positive constant independent of η. For example, by using the result
of Theorem 2.3, it is to easy see that M=span{φ,Q′} is a suitable choice, where φ=φ(x)
denotes the first eigenfunction of L+ acting on L2(R).

Let us briefly comment on the proof of Theorem 2.3. The essential idea of the proof
is to find a suitable substitute for Sturm–Liouville theory in order to estimate the number
of sign changes for the second eigenfunction(s) for “fractional” Schrödinger operators of
the form

H = (−Δ)s+V
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in d=1 space dimension. In fact, it turns out that a key step in the proof of Theorem 2.3
follows from an argument in [11] developed for the classical ODE case when s=1 holds,
provided we know that any (even) second eigenfunction of L+ can change its sign only
once on the positive real line {x>0}. Obviously, the crux of that matter is that (−Δ)s

is a non-local operator when 0<s<1; and hence estimating the number of zeros for
eigenfunctions of H=(−Δ)s+V requires new arguments and insights, which substitute
classical ODE techniques.

Let us briefly explain how we tackle this difficulty. First, we recall the known fact
that (−Δ)s can be regarded as a Dirichlet–Neumann operator for a suitable elliptic
problem on the upper half-plane R

2
+={(x, y)∈R

2 :y>0}; see, e.g., the recent work by
Caffarelli–Silvestre in [9] and also Graham–Zworski in [19] and Maz′ya in [29, Theo-
rem 7.1.1.1] for this observation in the context of geometry and the theory of function
spaces, respectively. Using now this extension to the upper half-plane R

2
+, we derive—as

a technical key result—a variational characterization of the eigenfunctions (and eigen-
values) for fractional Schrödinger operators H=(−Δ)s+V in terms of the Dirichlet-type
functional

A(u) =
∫∫

R
2
+

|∇u(x, y)|2y1−2s dx dy+
∫

R

V (x)|u(x, 0)|2 dx,

which is defined for a suitable class of functions u=u(x, y) on the upper half-plane R
2
+,

where u(x, 0) denotes the trace of u(x, y) on the boundary ∂R
2
+=R×{0}. Moreover,

for the variational problem based on the functional A(u), we establish a nodal domain
bound à la Courant. From such estimates we can finally deduce a sharp upper bound
on the number of sign changes for any second eigenfunction of the non-local operator
H=(−Δ)s+V acting on L2(R), as needed in the proof of Theorem 2.3. Furthermore,
this estimate for the second eigenfunctions of H involving general powers of (−Δ)s and
a broad (Kato-type) class of potentials V on R can be viewed as a generalization and
extension of the inspiring work by Bañuelos–Kulczycki in [6], which studies eigenfunctions
for
√−Δ on the unit interval in R. We believe that our techniques allow one to extend

the results of [6] from
√−Δ to the case of (−Δ)s with arbitrary 0<s<1, which was left

as an open problem in [6].
We now turn to the second main result of this paper, which proves global uniqueness

of ground state solutions. As a consequence, we also obtain uniqueness of optimizers for
the interpolation inequality (1.4) up to scaling and translations.

Theorem 2.4. (Uniqueness) Let 0<s<1 and 0<α<αmax(s). Then the ground state
solution Q=Q(|x|)>0 of equation (1.2) is unique.

Furthermore, every optimizer v∈Hs(R) for the Gagliardo–Nirenberg inequality (1.4)
is of the form v=βQ(γ( ·+y)) with some β∈C, β �=0, γ>0 and y∈R.
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Remarks. (1) Under the assumption that Q=Q(|x|)>0 minimizes Js,α, we remark
that Theorem 2.4 generalizes the striking result by Amick and Toland in [5] about unique-
ness of positive solutions Q=Q(|x|)>0 that satisfy

(−Δ)1/2Q+Q−Q2 = 0 in R. (2.1)

In fact, it was proven in [5] that (apart from translations) the function

Q(x) =
2

1+x2

is the only positive solution of (2.1) in H1/2(R). However, the remarkably elegant ap-
proach taken in [5] makes essential use of complex analysis (e.g., harmonic conjugates
and Cauchy–Riemann equations) in combination with very specific identities derived
from (2.1). In particular, it appears to be a hopeless enterprise to try to generalize the
arguments in [5] to different powers of the fractional Laplacians (−Δ)s with s �= 1

2 or
non-quadratic non-linearities f(Q)=Qα+1 with α �=1.

(2) The uniqueness result of Theorem 2.4 gives an affirmative answer to an open
question recently posed by Kenig–Martel–Robbiano in [20].

(3) The uniqueness of optimizers for the interpolation inequality (1.4) follows di-
rectly from the ground state uniqueness and the strict rearrangement inequalities in [16];
see also §5 below.

Let us briefly explain the strategy behind the proof of the ground state uniqueness
result of Theorem 2.4. First, we fix 0<s0<1 and 0<α<αmax(s0) and suppose that Q0=
Q0(|x|)>0 is a ground state solution to (1.2) with s=s0. By the non-degeneracy result
of Theorem 2.3, the associated linearized operator L+ is invertible on L2

even(R)⊥ker L+.
Hence, by using an implicit function argument, we can construct around (Q0, 1) a locally
unique branch of solutions (Qs, λs) (in some suitable Banach space) which satisfy

(−Δ)sQs+λsQs−|Qs|αQs = 0, (2.2)

where s∈[s0, s0+δ) and δ>0 being sufficiently small. Here the function λs is introduced
to ensure that the conservation law(2)∫

R

|Qs|α+2 dx =
∫

R

|Q0|α+2 dx

holds along the branch (Qs, λs). Furthermore, we show that positivity is preserved along
the branch, i.e., we have Qs=Qs(|x|)>0 for all s∈[s0, s0+δ) due to Q0=Q0(|x|)>0

(2) Equivalently, we could keep λs≡1 at the expense of varying
∫

R
|Qs|α+2 dx. However, we

realized that using λs is more convenient when we derive a-priori bounds for Qs.
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initially. Note that, although we start from a ground state solution for s=s0, it cannot
be inferred that Qs (up to a rescaling) is also a ground state solution; i.e., a global
minimizer for Js,α. Therefore, the global continuation of the branch (Qs, λs) to s=1,
say, is far from obvious.

However, as an essential step in the uniqueness proof, we show that the branch
(Qs, λs) can be indeed continued for all s∈[s0, 1). This global continuation will be based
on the non-degeneracy result of Theorem 2.3 in combination with the a-priori bounds

∫
R

|(−Δ)s/2Qs|2 dx∼ 1,

∫
R

|Qs|2 dx∼ 1 and λs∼ 1.

Here it turns out that establishing the upper bound
∫

R
|Qs|2 dx�1 is the most delicate

step and thus it requires a careful analysis of the problem. In addition to a-priori reg-
ularity bounds, the strict positivity and monotonicity of Qs=Qs(|x|)>0 also enters in
a significant way, since it allows us to derive the uniform decay estimate Qs(|x|)�|x|−1

for |x|�1. The latter fact then guarantees relative compactness of {Qs}s in certain
Lp-norms.

Once we have established that (Qs, λs) can be extended to s=1, we conclude that
Qs!Q∗ (in some suitable sense) and λs!λ∗ as s!1, where Q∗=Q∗(|x|)>0 and λ∗>0
satisfy

−ΔQ∗+λ∗Q∗−Qα+1
∗ = 0.

For this limiting equation, it is well known (by standard ODE techniques) that uniqueness
of even and positive solutions Q∗=Q∗(|x|)>0 holds true. Furthermore, by Pohozaev
identities and the conservation law for

∫
R
|Qs|α+2 dx and the fact that Q0 is a ground

state, we deduce that the limit λ∗=λ∗(s0, α) only depends on s0 and α. Hence, we can
conclude that two different branches (Qs, λs) and (Q̃s, λ̃s) (both starting from a ground
state with s=s0) must converge to the same limit (Q∗, λ∗). By using the known non-
degeneracy for the linearization around (Q∗, λ∗), we can infer that the branches (Qs, λs)
and (Q̃s, λ̃s) must intersect for some s∈[s0, 1) in contradiction to the local uniqueness
of branches. This fact establishes uniqueness of ground states for all 0<s0<1 and all
0<α<αmax(s0), as stated in Theorem 2.4.

Finally, we mention that the second part of Theorem 2.4 follows from the fact that
every optimizer for (1.4) must be equal to its symmetric-decreasing rearrangement mod-
ulo scaling and translation. The proof of this will be mainly based on strict rearrangement
inequalities for (−Δ)s.
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Extension of the main results to higher dimensions

With regard to possible extensions to higher dimensions, we remark that most of the
arguments presented here can be easily generalized to d�2 dimensions. However, as the
only notable exception, the proof of the oscillation estimate for the second eigenfunction
of L+ (see Theorem 3.4 below) hinges on the fact that L+ acts on functions in d=1
dimension. How to obtain a similar oscillation estimate for radial eigenfunctions of L+

in d�2 dimensions remains the chief open problem. If this could be solved, the anal-
ogous non-degeneracy result of Theorem 2.3 would readily follow for d�2 dimensions.
Moreover, the uniqueness proof of Theorem 2.4 would allow for a straightforward adapta-
tion to d�2 dimensions, since we have uniqueness and non-degeneracy of positive radial
solutions Q=Q(|x|)>0 in H1(Rd) for the limiting equation

−ΔQ+Q−Qα+1 = 0 in R
d,

where 0<α<∞ for d=2, and 0<α<4/(d−2) for d�3; see, e.g., [21].

Plan of the paper

We organize this paper as follows. In §3 we establish (as a technical key fact) a variational
principle for fractional Schrödinger operators H=(−Δ)s+V in terms of a local energy
functional. As a main consequence, we obtain a sharp bound on the number of sign
changes for any second eigenfunction of H. Then, in §4, we prove Theorem 2.3. Here
we will make essential use of the main result from §3. Finally, in §5, we establish the
uniqueness of ground states as stated in Theorem 2.4. The proof will be based on the
non-degeneracy result of Theorem 2.3, combined with an elaborate global continuation
argument. The appendices contain several technical results and proofs needed in this
paper.

Notation

Throughout this paper, we employ standard notation for Lp-spaces and Sobolev spaces
Hs(R) of order s∈R. We use 〈f, g〉=∫

R
f̄g dx to denote the inner product on L2(R). (In

fact, we will mostly deal with real-valued functions and hence complex conjugation is
redundant.) Furthermore, we make the usual abuse of notation by writing both f=f(x)
and f=f(|x|) whenever f : R!R is an even function. The (open) positive real axis will
be denoted by R+=(0,∞). Also, we use the standard notation X�Y to denote X�CY

for some constant C>0 that only depends on some fixed quantities. We also write X∼Y

if X�Y �X. Sometimes we write X�a,b,...Y to underline that C depends on the fixed
quantities a, b, ... .
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3. An oscillation estimate for H=(−Δ)s+V

This section serves as a preliminary discussion for §4 below, where we prove the non-
degeneracy result of Theorem 2.3. More precisely, the present section deals with “frac-
tional” Schrödinger operators

H = (−Δ)s+V

acting on L2(R). As our key technical result in this section, we prove a sharp bound
on the number of sign changes for the second eigenfunction(s) of the non-local operator
H, which we formulate in Theorem 3.4 below. The proof will be based on a variational
characterization of the eigenvalues for H in terms of a local energy functional and asso-
ciated nodal domain bound à la Courant; see Corollary 3.8 and Theorem 3.9 below. As
mentioned in §2 above, the result derived below can be regarded as a generalization of
[6], where properties of eigenfunctions of

√−Δ on the unit interval in R are studied.
Let us first introduce a suitable class of potentials V for the fractional Schrödinger

operators discussed here. In many respects (e.g., perturbation theory and properties of
eigenfunctions), the following “Kato class” (denoted by Ks) is a natural choice.

Definition 3.1. Let 0<s<1. We say that the potential V ∈Ks if and only if V : R!R

is measurable and satisfies, where E>0 is a positive number,

lim
E!∞

∥∥((−Δ)s+E)−1|V |∥∥
L∞!L∞ = 0.

Remarks. (1) If V ∈Ks, then H=(−Δ)s+V defines a unique self-adjoint operator
on L2(R) with form domain Hs(R), and the corresponding heat kernel e−tH maps L2(R)
into L∞(R)∩C0(R) for any t>0. In particular, any L2-eigenfunction of H is continuous
and bounded. See also [10] for equivalent definitions of Ks and further background
material.

(2) If V ∈Ks, then V is relatively form-bounded (with relative bound less than 1)
with respect to (−Δ)s. That is, for every 0<ε<1, there is a constant Cε>0 such that

〈ψ, |V |ψ〉� ε〈ψ, (−Δ)sψ〉+Cε〈ψ, ψ〉

for all ψ∈Hs(R). In fact, the latter condition is also sufficient for V to be in Ks, provided
that Cε depends on ε in some explicit way.
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(3) In terms of Lp-spaces, we can derive the following useful criterion for real-valued
V to be in Ks:

• if 0<s� 1
2 and V ∈Lp(R) for some p>1/2s, then V ∈Ks;

• if 1
2 <s<1 and V ∈Lp(R) for some p�1, then V ∈Ks.

See Lemma C.1 for further details on this sufficient condition.

Let us now assume that V ∈Ks holds. Suppose that ψ is an L2-eigenfunction of
H=(−Δ)s+V . Then, by the previous remark, we have that ψ is a continuous and
bounded function on R. Note also that we can always assume that ψ is real-valued,
since H=(−Δ)s+V is a real operator (i.e., it preserves real and imaginary parts). In
particular, we can define what it means that ψ(x) changes its sign N times.

Definition 3.2. Let ψ∈C0(R) be real-valued and let N�1 be an integer. We say
that ψ(x) changes its sign N times if there exist points x1<...<xN+1 such that ψ(xj) �=0
for j=1, ..., N+1 and sign(ψ(xj))=− sign(ψ(xj+1)) for j=1, ..., N .

Remark 3.3. For ψ∈C0(R) we can define the nodal domains of ψ(x) as the connected
components of the open set {x∈R:ψ(x) �=0}. If ψ(x) cannot vanish to second order, then
clearly the maximal number of sign changes of ψ(x) equals K−1, where K is the number
of nodal domains of ψ. But, in what follows, we prefer to work with the weaker notion
of sign changes of ψ(x).

We are now ready to state the following main result of this section.

Theorem 3.4. (An oscillation estimate for H) Let 0<s<1, V ∈Ks, and consider
H=(−Δ)s+V acting on L2(R). Suppose that λ2<inf σess(H) is the second eigenvalue
of H and let ψ2∈Hs(R)∩C0(R) be a corresponding real-valued eigenfunction. Then
ψ2=ψ2(x) changes its sign at most twice on R.

In particular, if ψ2=ψ2(|x|) is an even eigenfunction, then ψ2(|x|) changes its sign
exactly once on the positive axis {x>0}.

Remarks. (1) The reader who is mainly interested in applying this technical result
may fast forward to §4 at first reading.

(2) By Perron–Frobenius arguments (see Appendix C), the first eigenfunction
ψ1=ψ(x)>0 of H is always strictly positive. Hence, by the self-adjointness of H, we
easily see that ψ2 changes its sign at least once in order to satisfy the orthogonality
condition 〈ψ1, ψ2〉=0.

The proof of Theorem 3.4 will be given at the end of this section. But first we have
to establish some auxiliary facts in the following subsections. In particular, we derive the
key variational principle of eigenvalues of H in terms of a local energy functional, which
we formulate in Corollary 3.8 below.
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3.1. Extension to 2
+

and a sharp trace inequality

We recall the known fact that the fractional Laplacian (−Δ)s on R
d can be expressed

as the Dirichlet-to-Neumann operator for a suitable local problem on the upper half-
space R

d+1
+ ={(x, y):x∈R

d and y>0}. See the recent work by Caffarelli–Silvestre [9] for
this fact. We also refer to the work of Graham–Zworski [19], where this observation
occurred in a geometric context; see [12] for a comparison and extension of [9] and [19].
Our trace inequalities can also be viewed as sharp versions of certain bounds in [29,
Theorem 7.1.1.1].

We consider d=1 space dimension in the sequel. Let 0<s<1 be given and set
a=1−2s. For a measurable function f : R!R, we (first formally) define its extension
Eaf : R2

+!R as

(Eaf)(x, y) :=
∫

R

1
y
Pa

(
x−x′

y

)
f(x′) dx′, (3.1)

where the convolution kernel Pa: R!R is given by

Pa(x) :=
Γ
(

1
2 (2−a)

)
√

π Γ
(

1
2 (1−a)

) 1
(1+x2)(2−a)/2

. (3.2)

Under suitable assumptions on f it is known (see, e.g., [9]) that w=Eaf solves the
boundary value problem{

div(ya∇w) = 0, in R
2
+,

w = f , on ∂R
2
+ = R×{0}. (3.3)

Here the boundary condition w=f is understood in some suitable sense, which will be
formulated below. If f is sufficiently regular, then we also have that

lim
y!0

ya∂yw( · , y) =−ca(−Δ)sf, (3.4)

where ca>0 is some explicit constant; see Proposition 3.5 below.
To give a precise meaning to the statements mentioned above, we first recall the

definition of the homogeneous Sobolev spaces Ḣs(R) as the completion of C∞0 (R) with
respect to the quadratic form ‖(−Δ)s/2f‖2. It follows from Hardy’s inequality that
this completion is a space of functions when 0<s< 1

2 . On the other hand, if 1
2 �s�1,

this completion is not a space of functions, but rather a space of equivalence classes
of functions differing by an additive constant. (To see this phenomenom for s=1, con-
sider a smoothened version of the sequence fn(x)=(1−|x|/n)+. Similar examples can be
constructed for any 1

2 �s<1.) For simplicity, we shall write elements of Ḣs(R) still as
functions, but with the understanding that for s� 1

2 equalities are understood modulo
constants.
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Next, for −1<a<1 given, we introduce the weighted homogeneous Sobolev space
Ḣ1,a(R2

+) as the completion of C∞0 (R2
+) with respect to the quadratic form

‖u‖2Ḣ1,a(R2
+)

:=
∫∫

R
2
+

|∇u|2ya dx dy. (3.5)

Similarly as before, this completion is a space of functions for 0<a<1 and a space of
equivalence classes modulo constants for −1<a�0. (These facts are known, but they
are also consequences of our analysis below.) We note that, if a=1−2s, then 0<a<1 if
and only if 0<s< 1

2 . Moreover, by scaling, one sees that
∫

R
y−1Pa(x/y) dx is a constant

independent of y (indeed, it is 1, as we shall see below). Hence, if f is an equivalence
class modulo constants, then so is Eaf . We have the following basic result.

Proposition 3.5. Let 0<s<1, f∈Ḣs(R) and set a=1−2s. Then Eaf∈Ḣ1,a(R2
+)

and we have that ∫∫
R

2
+

|∇Eaf |2ya dx dy = ca‖(−Δ)s/2f‖22, (3.6)

where

ca := 2a Γ
(

1
2 (1+a)

)
Γ
(

1
2 (1−a)

) . (3.7)

Moreover, the function w=Eaf is a weak solution to the partial differential equation

div(ya∇w) = 0 in R
2
+. (3.8)

Finally,

w( · , ε)! f in Ḣs(R) and − εa

ca

∂w

∂y
( · , ε)! (−Δ)sf in Ḣ−s(R),

both as ε!0.

Proof. We begin by writing

‖(−Δ)s/2f‖22 =
∫

R

(−Δ)sf(x)f(x) dx,

where the right-hand side should be understood as the duality pairing between Ḣ−s and
Ḣs. Our goal now is to express both functions (which are strictly speaking distributions)
on the right-hand side as boundary values of functions defined on the upper half-plane
R

2
+. We put w=Eaf and claim that

w( · , ε)! f in Ḣs(R) and − εa

ca

∂w

∂y
( · , ε)! (−Δ)sf in Ḣ−s(R), (3.9)
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both as ε!0.
These properties are easily seen in Fourier space. Indeed, using the computation [2,

equation (11.4.44)] of the Fourier transform of Pa, we see that

(Eaf)(x, y) =
1√
2π

∫
R

f̂(ξ)ma(|ξ|y)eiξ·x dξ, (3.10)

where

ma(r) :=
2

Γ
(

1
2 (1−a)

)(r

2

)(1−a)/2

K(1−a)/2(r)

and K(1−a)/2 is a Bessel function of the third kind. From standard properties of these
functions (see, e.g., [2] again) we know that ma(0)=1 and 0<ma(r)�Aa for all r�0.
This means that

ma(|ξ|ε)! 1 as ε! 0 and 0<ma(|ξ|ε) �Aa,

and hence ∫
R

|ξ|2s
∣∣ma(|ξ|ε)−1

∣∣2|f̂(ξ)|2 dξ! 0 as ε! 0,

by dominated convergence. This proves the first relation in (3.9). In order to prove the
second one, we note that

∂w

∂y
(x, ε) =

1√
2π

∫
R

f̂(ξ)|ξ|m′
a(|ξ|ε)eiξ·x dξ.

and that, again by properties of Bessel functions,

lim
r!0

ram′
a(r) =−ca

and 0<−rama(r)�Ba for all r�0. This means that

−εa

ca
|ξ|m′

a(|ξ|ε)! |ξ|2s as ε! 0 and 0<
εa

ca
|ξ|m′

a(|ξ|ε) �Ba|ξ|2s,

which, again by dominated convergence, implies that

∫
R

∣∣∣∣εa

ca
|ξ|m′

a(|ξ|ε)+|ξ|2s

∣∣∣∣
2

|f̂(ξ)|2 dξ

|ξ|2s
! 0 as ε! 0,

and thus establishing the second relation in (3.9).
Next, we prove that w=Eaf satisfies the partial differential equation (3.8). This can

either be shown directly by differentiating (3.1), or using (3.10) and a partial Fourier
transform with respect to x. Indeed, the Bessel equation satisfied by K(1−a)/2 is equiva-
lent to (ram′

a)′=rama, which is the same as (3.8) after Fourier transform and scaling.
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With (3.9) and (3.8) at hand, it is now easy to show that (3.6) holds. Indeed,

‖(−Δ)s/2f‖22 =
∫

R

(−Δ)sf(x)f(x) dx =− 1
ca

lim
ε!0

εa

∫
R

∂w

∂y
(x, ε)w(x, ε) dx

=
1
ca

lim
ε!0

∫∫
y>ε

|∇w(x, y)|2ya dx dy.

This proves that Eaf belongs toH1,a(R2
+) and satisfies (3.6). The proof of Proposition 3.5

is now complete.

For u∈C∞0 (R2
+), we denote by Tu(x):=u(x, 0) its trace. As we shall see, the operator

T can be extended by continuity to Ḣ1,a(R2
+), due to the next proposition which also

yields a sharp trace inequality. In particular, this auxiliary result identifies the space of
functions on R that arise as traces of functions in Ḣ1,a(R2

+) as the homogeneous Sobolev
space Ḣs(R) when s= 1

2 (1−a).

Proposition 3.6. Let 0<s<1 and a=1−2s. Then there is a unique linear bounded
operator T : Ḣ1,a(R2

+)!Ḣs(R) such that Tu(x)=u(x,0) for u∈C∞0 (R2
+). Moreover, for

any u∈Ḣ1,a(R2
+), the following inequality holds:∫∫

R
2
+

|∇u|2ya dx dy � ca‖(−Δ)s/2Tu‖22, (3.11)

with the constant ca from (3.7). Here equality is attained if and only if u=Eaf for some
f∈Ḣs(R).

Remark 3.7. In [18] inequality (3.11) was derived by different arguments in the range
1
2 <s<1.

Proof. We use a similar argument as in the proof of Proposition 3.5. Let u∈C∞0 (R2
+)

and g∈Ḣ−s(R) be given. Note that f :=(−Δ)−sg∈Ḣs(R). By the same arguments as
in the proof of Proposition 3.5, the function w:=Eaf satisfies (3.8) and (3.9). Hence we
conclude∫

R

g(x)u(x, 0) dx =
∫

R

(−Δ)sf(x)u(x, 0) dx =− 1
ca

lim
ε!0

εa

∫
R

∂w

∂y
(x, ε)u(x, ε) dx

=
1
ca

lim
ε!0

∫∫
y>ε

∇w(x, y)·∇u(x, y)ya dx dy.

Next, by the Cauchy–Schwarz inequality,∣∣∣∣
∫

R

g(x)u(x, 0) dx

∣∣∣∣ � 1
ca

(∫∫
R

2
+

|∇w(x, y)|2ya dx dy

)1/2(∫∫
R

2
+

|∇u(x, y)|2ya dx dy

)1/2

.

(3.12)
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We also note that, by Proposition 3.5,

lim sup
ε!0

∫∫
y>ε

|∇w(x, y)|2ya dx dy = ca‖(−Δ)s/2f‖22 = ca‖(−Δ)−s/2g‖22.

Thus we have shown that∣∣∣∣r
∫

R

g(x)u(x, 0) dx

∣∣∣∣ � 1√
ca
‖(−Δ)−s/2g‖2

(∫∫
R

2
+

|∇u(x, y)|2ya dx dy

)1/2

,

which, by duality, is the same as (3.11) for u∈C∞0 (R2
+). This allows us to extend the

operator T by continuity from C∞0 (R2
+) to Ḣ1,a(R2

+), preserving the above inequality,
whereas the uniqueness of T follows from the density of C∞0 (R2

+).
Moreover, the above argument is valid for any u∈Ḣ1,a(R2

+) and equality in (3.12) is
attained if and only if ∇u is a constant multiple of ∇w. Hence u is a weak solution of
equation (3.8). By the unique solvability of this equation, u is given as the Ea-extension
of its trace.

For the rest of this section, we will adapt the following convention.

Convention. For u∈Ḣ1,a(R2
+), we also write u(x, 0) to denote its trace Tu(x).

We conclude our preliminary discussion by introducing the ‘inhomogeneous’ Sobolev
space

H1,a(R2
+) := {u∈ Ḣ1,a(R2

+) :u(x, 0)∈L2(R)}, (3.13)

endowed with the norm ‖u‖H1,a(R2
+) :=‖u‖Ḣ1,a(R2

+)+‖Tu‖L2(R). Note that H1,a(R2
+) is

in fact a space of functions (even for −1<a�0). This space will be of use in the next
subsection.

3.2. Variational characterization of eigenvalues

Using the results of the previous subsection, we now derive a variational principle for
the first n�1 eigenvalues of a fractional Schrödinger operator H=(−Δ)s+V in terms
of a local energy functional. Apart from requiring that V be in the class Ks, we make
the convenient assumption that the bottom of the essential spectrum of H=(−Δ)s+V

satisfies
inf σess(H) � 0.

This can be imposed without loss of generality, by replacing V with V +c where c∈R is
some suitable constant.

We are now ready to formulate our key variational principle for the eigenvalues of
H below the essential spectrum.
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Corollary 3.8. Let 0<s<1 and V ∈Ks. Suppose that n�1 is an integer and
assume that H=(−Δ)s+V has at least n eigenvalues

λ1 � ...�λn < 0.

Furthermore, let M be an (n−1)-dimensional subspace of L2(R) spanned by eigenfunc-
tions corresponding to the eigenvalues λj with j=1, ..., n−1. Then

λn = inf
{

1
ca

∫∫
R

2
+

|∇u|2ya dx dy+
∫

R

V (x)|u(x, 0)|2 dx :

u∈H1,a(R2
+),

∫
R

|u(x, 0)|2 dx = 1 and u( · , 0)⊥M

}
,

where a=1−2s and ca>0 is the constant from (3.7). Moreover, the infimum is attained if
and only if u=Eaf , where ‖f‖22=1 and f∈M⊥ is a linear combination of eigenfunctions
corresponding to the eigenvalue λn.

Proof. By Proposition 3.6, the infimum on the right-hand side is bounded from
below by

inf
{
‖(−Δ)s/2f‖22+

∫
R

V |f |2 dx : f ∈Hs(R), ‖f‖22 = 1 and f ⊥M

}
,

and equality is attained if and only if u=Eaf . The assertion now follows from the usual
variational characterization for the eigenvalues of H=(−Δ)s+V .

3.3. Nodal domain bound on 2
+

Let V ∈Ks. Recall that we can always assume that any L2-eigenfunction ψ of H is real-
valued, since H=(−Δ)s+V is a real operator. Furthermore, by the remark following Def-
inition 3.1, any such eigenfunction ψ of H is bounded and continuous. Likewise, the ex-
tension Eaψ belongs to C0(R2

+) as well. Consider the set N={(x, y)∈R
2
+ :(Eaψ)(x, y)=0}

which is closed in R
2
+. We define the nodal domains of Eaψ as the connected components

of the open set R
2
+\N in R

2
+. We have the following bound on the number of nodal

domains.

Theorem 3.9. Let 0<s<1, V ∈Ks and set a=1−2s. Let n�1 be an integer and
assume that H=(−Δ)s+V has at least n eigenvalues

λ1 � ...�λn < 0.

If ψn∈Hs(R)∩C0(R) is a real eigenfunction of H with eigenvalue λn, then its extension
Eaψn has at most n nodal domains in R

2
+.
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Proof. We argue by contradiction. Assume that Eaψn has nodal domains Ω1, ...,Ωm,
where m�n+1. We consider the sets Kj :={x∈R:(x, 0)∈Ωj} for j=1, ...,m, where Ωj is
the closure of Ωj in R2

+. Since Eaψn is continuous up to the boundary and ψn �≡0, we may
assume that K1 �=∅. Furthermore, let M be an (n−1)-dimensional subspace of L2(R)
spanned by eigenfunctions corresponding to the eigenvalues λj , j=1, ..., n−1. Next, we
define the function

u = (Eaψn)
n∑

j=1

γj Ωj
.

Note that we can choose the constants γj∈R, j=1, ..., n, in such a way that u( · , 0)⊥M

and ‖u( · , 0)‖2=1. Using standard facts about Sobolev spaces, one can show that

u∈H1,a(R2
+) and ∇u = (∇Eaψn)

n∑
j=1

γj Ωj
.

By the same argument as in the proof of Proposition 3.6, the function Eaψn satisfies

1
ca

∫∫
R

2
+

∇v ·(∇Eaψn)ya dx dy+
∫

R

V (x)v(x, 0)ψn(x) dx = λn

∫
R

v(x, 0)ψn(x) dx

for any v∈H1,a(R2
+). We can apply this to v=|γj |2 Ωj

Eaψn, j=1, ..., n, (which belong
to H1,a(R2

+)) and sum over j to obtain

1
ca

∫∫
R

2
+

|∇u|2ya dx dy+
∫

R

V (x)|u(x, 0)|2 dx = λn

n∑
j=1

|γj |2
∫

Kj

|ψn|2 dx

= λn‖u( · , 0)‖22 = λn.

Thus we conclude that equality holds in the variational principle in Corollary 3.8. Hence
u=Eaf , where f∈M⊥ is a linear combination of eigenfunctions corresponding to the
eigenvalue λn. In particular, the non-trivial function u satisfies equation (3.8). Note that
u≡0 on the open non-empty set Ωn+1⊂R

2
+. However, we can deduce, by unique contin-

uation of solutions of the elliptic equation (3.8), that u≡0 on the upper half-plane R
2
+.

Indeed, consider the open connected set Dδ={(x, y)∈R
2
+ :δ<y<1/δ}, where 0<δ<1 is

a fixed constant. Clearly, the differential operator L on Dδ with Lu=div(ya∇u) has
smooth coefficients, and moreover L is uniformly elliptic on Dδ (with bounds depending
on δ). By choosing δ0>0 so small that Ωn+1∩Dδ0 �=∅, we deduce by standard unique
continuation for Lu=0 that u≡0 on the connected set Dδ0 . We can repeat this argu-
ment for any set Dδ⊂R

2
+ with 0<δ�δ0 to conclude that u≡0 on R

2
+ itself. But this is a

contradiction. The proof of Theorem 3.9 is now complete.
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3.4. Proof of Theorem 3.4

We argue by contradiction. Suppose that ψ2: R!R changes its sign at least three times
on R. Thus, after replacing ψ2 by −ψ2 if necessary, there exist points x1<x2<x3<x4

on the real line such that

ψ(xj) > 0 for j = 1, 3 and ψ(xj) < 0 for j = 2, 4.

Next, we consider the extension Eaψ2 on R
2
+. Since

(Eaψ2)(x1, 0) > 0 and (Eaψ2)(x2, 0) < 0,

and by continuity of Eaψ2 up to the boundary ∂R
2
+, the function Eaψ2 has at least two

nodal domains in R
2
+. But, in view of Theorem 3.9, we conclude that Eaψ2 has exactly

two nodal domains in R
2
+, which we denote by Ω+ and Ω− from now on.

By continuity of Eaψ2(x, y) again, we deduce that

(xj , ε)∈Ω+ for j = 1, 3 and (xj , ε)∈Ω− for j = 2, 4,

for all 0<ε�ε0, where ε0>0 is some sufficiently small constant. Note that the connected
open sets Ω±⊂R

2
+ must be arcwise connected. Thus we conclude that there exist two

simple continuous curves γ+, γ−∈C0([0, 1]; R2
+) with the following properties:

• γ+(0)=(x1, 0), γ+(1)=(x3, 0) and γ+(t)∈Ω+ for t∈(0, 1);
• γ−(0)=(x2, 0), γ−(1)=(x4, 0) and γ−(t)∈Ω− for t∈(0, 1).
By Lemma D.1 (based on basic topological arguments) we deduce that γ+ and γ−

must intersect in the upper half-plane R
2
+. But this contradicts Ω+∩Ω−=∅. Hence the

function ψ2 :R!R changes its sign at most twice on R.
Finally, if ψ2=ψ2(|x|) is even, then clearly ψ2 can change its sign on {x>0} at most

once, since otherwise ψ2 would change its sign at least four times on R, contradicting
the result just derived. By the remark following Theorem 3.4, we deduce that ψ2 must
change its sign at least once on R+. This completes the proof of Theorem 3.4.

4. Non-degeneracy of ground states

This section is devoted to the proof of Theorem 2.3. That is, we show that (local)
non-negative minimizers Q(x)�0 for the functional Js,α defined in (1.5) have a non-
degenerate linearization. In fact, we shall prove a slightly more general result formulated
as Lemma 4.1 below.
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Let 0<s<1 and 0<α<αmax(s) be fixed throughout this section. Suppose that
Q∈Hs(R), with Q �≡0, is a non-negative solution Q=Q(x)�0 of

(−Δ)sQ+λQ−Qα+1 = 0, (4.1)

with some positive constant λ>0. Note that, by Lemma B.4 which is based on the method
of moving planes, we have Q(x)=Q̃(|x−x0|)>0 for some x0∈R, where Q̃=Q̃(|x|)>0 is
an even and positive function strictly decreasing in |x|. Moreover, a simple rescaling
argument shows that we could assume λ=1 without loss of generality. But for the sake
of later purpose, we will keep λ>0 explicit here.

Associated with Q∈Hs(R), we define the linearized operator

L+ = (−Δ)s+λ−(α+1)Qα (4.2)

acting on L2(R). We record the following (partly immediate) facts about L+.
• Qα∈Ks, i.e., the potential V =Qα belongs to the ‘Kato-class’ with respect to

(−Δ)s. This follows from the remark following Definition 3.1 and Sobolev inequalities.
In particular, any L2-eigenfunction of L+ is continuous and bounded.

• L+ is a self-adjoint operator on L2(R) with quadratic-form domain Hs(R) and
operator domain H2s(R).

• The essential spectrum is σess(L+)=[λ,∞).
• The Morse index of L+ satisfies N−(L+)�1. Recall that N−(L+) is defined as the

number of strictly negative eigenvalues, i.e.,

N−(L+) = #{e< 0 : e is eigenvalue of L+ acting on L2(R)},
where multiplicities of eigenvalues are taken into account. To see that indeed N−(L+)�1,
we just use 〈Q,L+Q〉=−α‖Q‖α+2

α+2<0 by (4.1). Thus, by the min-max principle, the
operator L+ has at least one negative eigenvalue.

• We always have L+Q′=0, and thus span{Q′}⊆ker L+. This follows from differen-
tiating (4.1) with respect to x.

• The lowest eigenvalue e0=inf σ(L+) is simple and the corresponding eigenfunction
ψ0=ψ0(x)>0 strictly positive; see Lemma C.2.

To formulate the main result of this section, we now suppose that Q=Q(|x|) is an
even function. We introduce the Morse index of L+ in the sector of even functions by
defining

N−,even(L+) := #{e< 0 : e is eigenvalue of L+ restricted to L2
even(R)},

where multiplicities of eigenvalues are taken into account. Note that 〈Q,L+Q〉<0 with
Q=Q(|x|) even. Hence we deduce the general lower bound N−,even(L+)�1 from the
min-max principle.

The key non-degeneracy result of this section is now as follows.
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Lemma 4.1. Let Q∈Hs(R) be an even and positive solution of (4.1) with some
λ>0. Consider its associated linearized operator L+ acting on L2(R) and assume that
its Morse index in the even sector satisfies N−,even(L+)=1. Then we have

ker L+ = span{Q′}.

Remark 4.2. We will see below that the second-order condition

d2

dε2

∣∣∣∣
ε=0

Js,α(Q+εη) � 0 for all η ∈C∞0 (R)

will imply that N−,even(L+)=1. In particular, any ground state solution Q=Q(|x|)>0
will satisfy the assumption of Lemma 4.1.

Proof. By rescaling Q(x) �!λ1/αQ(λx/2s) (and likewise any element in ker L+ trans-
forms accordingly), we may assume that λ=1 holds in (4.1).

Next, we consider the orthogonal decomposition L2(R)=L2
even(R)⊕L2

odd(R). Since
Q=Q(|x|) is an even function, we note that L+ leaves the subspaces L2

even(R) and L2
odd(R)

invariant. We treat these subspaces separately as follows.
Recall that Q′∈L2

odd(R) satisfies L+Q′=0. Moreover, by Lemma B.4, we have that
Q′(x)<0 for x>0. In view of Lemma C.3 applied to L+, we conclude that Q′ is (up to
a sign) the unique ground state eigenfunction of L+ restricted to L2

odd(R). Hence we see
that kerL+|L2

odd
=span{Q′}.

It remains to show that
ker L+|L2

even
= {0}.

To prove this claim, we argue by contradiction. Suppose there exists v∈L2
even(R), with

v �≡0, such that L+v=0. Note that v is continuous and bounded due to the remarks
above. Also, since L+ is a real operator, we may assume that v is real-valued. Next, by
assumption, we have N−,even(L+)=1, and hence v must be an even eigenfunction of L+

corresponding to its second eigenvalue. By applying Theorem 3.4 to

H = (−Δ)s−(α+1)Qα,

we deduce that v=v(|x|) changes its sign exactly once as a function of |x|. That is, there
exists r∗>0 such that the following holds (after multiplying v by −1 if necessary):

v(|x|) � 0 for |x|� r∗ and v(|x|) � 0 for |x|>r∗, (4.3)

where v �≡0 on both sets {x:|x|�r∗} and {x:|x|>r∗}. Note that we have the same estimate
on the number of sign changes of v=v(|x|) on the half-line R+, as if Sturm–Liouville
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oscillation theory for ODEs were applicable. Therefore we can now proceed along the
lines of [11], where a simple non-degeneracy proof for non-linear Schrödinger ground
states was given based on a result from Sturm–Liouville theory. Adapting this argument
to our setting, we notice that a calculation yields

L+Q=−αQα+1 and L+R =−2sQ, (4.4)

where

R :=
d

dβ

∣∣∣∣
β=1

β2s/αQ(β ·) =
2s

α
Q+xQ′. (4.5)

Note that R∈L2(R), due to the decay estimate stated in Proposition 1.1. By bootstrap-
ping the equation satisfied by R, we further deduce that R∈H2s+1(R) and, in particular,
we see that R is in the domain of L+. Since L+ is self-adjoint and v∈ker L+, we obtain
from (4.4) that

〈Qα+1, v〉= 〈Q, v〉= 0.

Next, we consider the even function f∈ranL+ given by

f :=Qα+1−μQ= Q(Qα−μ),

where μ∈R is some parameter. Note that 〈v, f〉=0 for all μ∈R. Now choose μ=Q(r∗)α

with r∗>0 from (4.3). Since Q=Q(|x|)>0 is positive and strictly decreasing in |x|, we
deduce that

f(|x|) > 0 for |x|<r∗ and f(|x|) < 0 for |x|>r∗. (4.6)

Combining now (4.6) and (4.3), we see that vf�0 with vf �≡0. Hence 〈v, f〉>0. But this
violates the orthogonality condition 〈v, f〉=0. Therefore, the operator L+ does not have
a zero eigenfunction in L2

even(R). The proof of Lemma 4.1 is now complete.

Proof of Theorem 2.3

Suppose that Q=Q(x)>0 is a positive solution to (4.1) with λ=1. By Lemma B.4 and
translational invariance, we may assume that Q=Q(|x|)>0 is even.

Let
L+ = (−Δ)s+1−(α+1)Qα

be the associated linearized operator. In order to apply Lemma 4.1, it suffices to show
that N−,even(L+)=1 holds. Indeed, we recall that, by assumption in Theorem 2.3, the
function Q is a local minimizer of Js,α. Therefore, we have the second-order condition

d2

dε2

∣∣∣∣
ε=0

Js,α(Q+εη) � 0 for all η ∈C∞0 (R). (4.7)
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We claim that this implies the upper bound N−,even(L+)�N−(L+)�1. To estimate
the Morse index, we can adapt an argument for ground states of classical non-linear
Schrödinger equations (see [11] and [33]) to our setting as follows.

By Lemma 5.4 below (with λs=1 and s=s0), we obtain the following Pohozaev
identities of the form

1
2a

∫
R

|(−Δ)s/2Q|2 dx =
1
2b

∫
R

|Q|2 dx =
1

α+2

∫
R

|Q|α+2 dx =: k,

where a=α/4s>0, b=α(2s−1)/4s+1>0 and k>0 are positive constants. Then an ele-
mentary (but tedious) calculation shows that inequality (4.7) is equivalent to

k〈η, L+η〉� 1
a
|〈η, (−Δ)sQ〉|2+

1
b
|〈η, Q〉|2−|〈η, Qα+1〉|2.

Therefore 〈η, L+η〉�0 if η⊥Qα+1. By the min-max principle, we obtain that N−(L+)�1,
and hence N−,even(L+)�N−(L+)�1.

On the other hand, we recall that we always have N−,even(L+)�1, as remarked in
the beginning of this section. Thus we conclude that N−,even(L+)=1 holds, whence it
follows that kerL+=span{Q′}, due to Lemma 4.1. The proof of Theorem 2.3 is now
complete.

5. Uniqueness of ground states

In this section we prove Theorem 2.4. Our strategy is based on the non-degeneracy
result from §4 and an implicit function argument, combined with a global continuation
argument. For the reader’s orientation, we first give a brief outline of this section as
follows.

In §5.1, we fix 0<s0<1 and 0<α<αmax(s0). By an implicit function argument,
we construct (in some suitable Banach space of even functions) a locally unique branch
(Qs, λs) parameterized by s close to s0 and satisfying

(−Δ)sQs+λsQs−|Qs|αQs = 0.

Here the starting point of the branch (Q0, λ0)=(Qs=s0 , λs=s0) is assumed to satisfy some
spectral condition; see Proposition 5.2.

Then, in §5.2, we show (as a main result of this section) that the local branch
(Qs, λs) can be indeed globally continued to s=1, provided that (Q0, λ0) satisfies some
explicit conditions, such as positivity Q0=Q0(|x|)>0; see Proposition 5.13. The crucial
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and delicate point that allows us to extend to s=1 is based on suitable a-priori bounds
on regularity and spatial decay for (Qs, λs) of the form∫

R

|(−Δ)s/2Qs|2 dx∼ 1,

∫
R

|Qs|2 dx∼ 1 and λs∼ 1,

in combination with a uniform pointwise decay estimate Qs(|x|)�|x|−1 for |x|�1. The
derivation of all these bounds will cover most of this section and it requires a careful
study of the non-linear problem.

Finally, with help of Propositions 5.2 and 5.13, we are able to prove Theorem 2.4
in §5.3 below. That is, we show that the branch (Qs, λs) starting from a ground state
(Q0, λ0=1) exists and is globally unique; in particular, the assumption of having another
branch starting from a different ground state (Q̃0, λ̃0=1) leads to a contradiction. This
will follow from the global uniqueness and non-degeneracy for the limiting problem when
s=1, i.e.,

−ΔQ∗+λ∗Q∗−Qα+1
∗ = 0.

5.1. Construction of a local branch

We start with some preliminaries. Let 0<s<1 and 0<α<αmax(s) be given. We consider
solutions (Q,λ) with Q∈L2(R)∩Lα+2(R) and λ∈R+ satisfying

(−Δ)sQ+λQ−|Q|αQ= 0. (5.1)

In fact, by a bootstrap argument, we see that Q∈H2s+1(R) holds. Nevertheless, it turns
out to be convenient to work in the space L2(R)∩Lα+2(R), which is independent of s.
Since we are interested in real-valued and even solutions only, it is convenient to define
the (real) Banach space

Xα := {f ∈L2(R)∩Lα+2(R) : f is even and real-valued}, (5.2)

which we equip with the norm

‖f‖Xα := ‖f‖2+‖f‖α+2.

Recall that we make the standard abuse of notation by writing both f(x) and f(|x|)
whenever f is an even function on R.

As a next step, we will construct a local branch of solutions (Qs, λs)∈Xα×R+ of
(5.1), which is parameterized by s in some small interval. To this end, we introduce the
following assumption.
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Assumption 5.1. Let 0<s<1 and 0<α<αmax(s). Suppose that (Q,λ)∈Xα×R+

satisfies equation (5.1). We assume that the linearized operator

L+ = (−Δ)s+λ−(α+1)|Q|α

acting on L2(R) has a bounded inverse L−1
+ on L2

even(R).

Remarks. (1) We emphasize that we do not require Q∈Xα to be positive here.
(2) Since Q∈Xα is even, and hence Q⊥Q′ in L2(R), the bounded inverse L−1

+ exists
on L2

even(R), provided that L+ is non-degenerate, i.e., we have kerL+=span{Q′} for L+

acting on L2(R).
(3) By Sobolev inequalities, the invertibility of L−1

+ on L2
even(R) implies that L−1

+

exists on Xα as well.

As a next step, we establish existence and local uniqueness of a branch (Qs, λs) for
(5.1) around a solution (Q0, λ0) that satisfies Assumption 5.1.

Proposition 5.2. Let 0<s0<1 and 0<α<αmax(s0). Suppose that

(Q0, λ0)∈Xα×R+

satisfies Assumption 5.1 with s=s0 and λ=λ0. Then, for some δ>0, there exists a map
(Q,λ)∈C1(I; Xα×R+), defined on the interval I=[s0, s0+δ), such that the following
holds, where we write (Qs, λs)=(Q(s), λ(s)) in the sequel :

(i) (Qs, λs) solves equation (5.1) with λ=λs for all s∈I and (Qs, λs) satisfies As-
sumption 5.1.

(ii) There exists ε>0 such that (Qs, λs) is the unique solution of (5.1) for s∈I in
the neighborhood {(Q,λ)∈Xα×R+ :‖Q−Q0‖X +|λ−λ0|<ε}. In particular, we have that
(Qs0 , λs0)=(Q0, λ0).

(iii) For all s∈I, we have∫
R

|Qs|α+2 dx =
∫

R

|Q0|α+2 dx.

Remark 5.3. Introducing the function λs=λ(s) ensures that the above “conservation
law” for

∫
R
|Qs|α+2 dx holds. The use of this fact will become evident further below when

we derive a-priori bounds.

Proof. We use an implicit function argument as follows. First, we observe that (5.1)
can be written as

Q=
1

(−Δ)s+λ
|Q|αQ.
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For some small constant δ>0 chosen below, we consider the mapping

F : Xα×R+×[s0, s0+δ)−!Xα×R, (5.3)

which we define as

F (Q,λ, s) :=

⎛
⎝ Q− 1

(−Δ)s+λ
|Q|αQ

‖Q‖α+2
α+2−‖Qs0‖α+2

α+2

⎞
⎠ . (5.4)

As shown in Lemma E.1, the map F is well defined and C1. Also, by construction, we
have that F (Qs0 , λ0, s0)=0. To invoke an implicit function argument, we have to show
the invertibility of the Fréchet deriviative of F with respect (Q,λ) at (Q0, λ0, s0), which
we establish next.

First, we note that the Fréchet derivative of F with respect to (Q,λ) is given by

∂(Q,λ)F =

⎛
⎝ 1− 1

(−Δ)s+λ
(α+1)|Q|α 1

((−Δ)s+λ)2
|Q|αQ

(α+2)〈|Q|αQ, · 〉 0

⎞
⎠ . (5.5)

Here 〈f, · 〉 denotes the map g �!〈f, g〉. See also Lemma E.1 and its proof.
Now, we claim that the inverse (∂(Q,λ)F )−1 exists at (Qs0 , λ0, s0). Hence we have

to show that, for every f∈Xα and β∈R given, there is a unique solution (η, γ)∈Xα×R

of the system

(1+K)η+γg = f, (5.6)

(α+2)〈|Qs0 |αQs0 , η〉= β, (5.7)

where we set

K :=− 1
(−Δ)s0 +λ0

(α+1)|Qs0 |α and g :=
1

((−Δ)s0 +λ0)2
|Qs0 |αQs0 . (5.8)

Next, we note that K is a compact operator on L2
even(R). Moreover, we see that

−1 /∈σ(K) due to Assumption 5.1. Indeed, assume on the contrary that −1 is in the
spectrum σ(K) for K acting on L2

even(R). Then the self-adjoint operator

L+ = (−Δ)s0 +λ0−(α+1)|Qs0 |α (5.9)

would have an even eigenfunction v∈L2
even(R) such that L+v=0, which contradicts As-

sumption 5.1.
Thus the operator 1+K is invertible on L2

even(R). Moreover, since K: Xα!Xα

holds (see the proof of Lemma E.1 for details), we deduce that (1+K)−1 exists on the
space Xα as well. Hence we can solve (5.6) uniquely for η∈Xα to find that

η = (1+K)−1f−γ(1+K)−1g. (5.10)
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Plugging this into (5.7) yields

(α+2)〈|Qs0 |αQs0 , (1+K)−1g〉γ =−β+(α+2)〈|Qs0 |αQs0 , (1+K)−1f〉. (5.11)

To deduce unique solvability for γ∈R, it remains to show that the coefficient in front of
γ does not vanish. To see this, we observe the identity

(1+K)−1 = L−1
+ ((−Δ)s0 +λ0), (5.12)

with L+ given by (5.9). Using this identity together with L+Qs0 =−α|Qs0 |αQs0 and
equation (5.1) satisfied by Qs0 , we now easily deduce that

〈|Qs0 |αQs0 , (1+K)−1g〉=− 1
α

∫
R

|Qs0 |2 dx �= 0. (5.13)

This completes the proof that ∂(Q,λ)F is invertible at (Qs0 , λ0, s0). By applying the
implicit function theorem to the map F at (Qs0 , λ0, s0), we derive the assertions (i)–(iii)
provided that δ>0 is sufficiently small.

The proof of Proposition 5.2 is now complete.

5.2. A-priori bounds and global continuation

Let 0<s0<1 and 0<α<αmax(s0) be given. Throughout this subsection, we suppose
that (Qs, λs)∈C1(I; Xα×R+) is a local branch defined for I=[s0, s0+δ), as provided by
Proposition 5.2.

Now, we consider the corresponding maximal extension of the branch (Qs, λs) for
s∈[s0, s∗), where s∗ is given by

s∗ := sup{s0 < s̃< 1 : (Qs, λs)∈C1([s0, s̃);Xα×R+) given by Proposition 5.2

and (Qs, λs) satisfies Assumption 5.1 for s∈ [s0, s̃)}.

Clearly, we have s∗�1, and our goal will be to show that s∗=1 holds under some suitable
assumption on (Qs0 , λ0).

In order to derive suitable a-priori bounds for the maximal branch (Qs, λs), we
recall the notation a�b, which means that a�Cb, where C>0 is some constant that only
depends on the fixed quantities s0, α and (Qs0 , λ0). As usual, the constant C is allowed
to change from inequality to inequality.

As an initial step to derive a-priori bounds, we start with the following Pohozaev
identities satisfied by Qs.
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Lemma 5.4. For all s∈[s0, s∗) the following identities hold :

λs

2

∫
R

|Qs|2 dx =
as

α+2

∫
R

|Qs|α+2 dx and
1
2

∫
R

|(−Δ)s/2Qs|2 dx =
bs

α+2

∫
R

|Qs|α+2 dx,

where as=α(2s−1)/4s+1 and bs=α/4s.

Proof. By integrating (5.1) against Qs∈Hs(R), we obtain∫
R

|(−Δ)s/2Qs|2 dx+λs

∫
R

|Qs|2 dx =
∫

R

|Qs|α+2 dx. (5.14)

Next, we integrate (5.1) against xQ′s. Integration by parts yields that

〈xQ′s, |Qs|αQs〉=− 1
α+2

∫
R

|Qs|α+2 dx and 〈xQ′s, (−Δ)sQs〉= 2s−1
2
〈Qs, (−Δ)sQs〉,

where for the second identity we also use that [∇·x, (−Δ)s]=−2s(−Δ)s, which is easily
verified in Fourier space. Hence, we deduce that

2s−1
2

∫
R

|(−Δ)s/2Qs|2 dx− λs

2

∫
R

|Qs|2 dx =− 1
α+2

∫
R

|Qs|α+2 dx. (5.15)

(Note that the calculations here involving xQ′s are well defined, due to the regularity
and decay estimates from Proposition 1.1.) By combining equations (5.14) and (5.15),
we readily deduce Lemma 5.4.

Next, we derive the following straightforward a-priori bounds.

Lemma 5.5. For all s∈[s0, s∗) we have the following bounds:∫
R

|(−Δ)s/2Qs|2 dx∼ 1, λs

∫
R

|Qs|2 dx∼ 1 and 1 �
∫

R

|Qs|2 dx.

Proof. By Lemma 5.4, we obtain the desired a-priori bounds for
∫

R
|(−Δ)s/2Qs|2 dx

and λs

∫
R
|Qs|2 dx, since we have

∫
R
|Qs|α+2 dx=const. �=0 along the branch (Qs, λs) and

clearly as, bs∼1 holds for s∈[s0, s∗).
To derive the lower bound

∫
R
|Qs|2 dx�1, we recall the interpolation estimate (1.4),

which yields that

(∫
R

|Qs|2 dx

)α(2s−1)/4s+1

� 1
Cs,α

(∫
R

|Qs|α+2 dx

)(∫
R

|(−Δ)s/2Qs|2 dx

)−α/4s

� 1
C

,

with some constant C>0 independent of s. Here we used again that
∫

R
|Qs|α+2 dx=const.

and
∫

R
|(−Δ)s/2Qs|2 dx�1 from above, as well as the fact that the optimal interpolation

constants satisfy Cs,α�K by Lemma A.5 for some K>0 uniformly in s�s0>α/2(α+2).
Here the last strict inequality is due to α<αmax(s0).
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We now derive an a-priori upper bound for
∫

R
|Qs|2 dx along the branch (λs, Qs).

In fact, this result will be one of the key steps in order to extend the branch all the
way to s∗=1. The proof of the following fact requires substantially more insight into
the problem and it will also make use of some auxiliary results, which we derive further
below.

Lemma 5.6. For all s∈[s0, s∗), we have the a-priori upper bound∫
R

|Qs|2 dx � 1.

Proof. We will derive the following the differential inequality

d

ds

∫
R

|Qs|2 dx �
∫

R

|Qs|2 dx. (5.16)

Once this estimate is established, the desired a-priori bound follows from integrating this
differential inequality.

To show (5.16), we argue as follows. First, we note that

d

ds

∫
R

|Qs|2 dx = 2
〈

Qs,
dQs

ds

〉
.

Next, by differentiating the equation (5.1) satisfied by Qs with respect to s, we see that

L+

dQs

ds
=−(−Δ)s log(−Δ)Qs− dλs

ds
Qs,

with L+=(−Δ)s+λs−(α+1)|Qs|α. Recall that λs is a differentiable function of s. Also,
by Proposition 1.1, we note that Qs∈H2s+1(R) and hence (−Δ)s log(−Δ)Qs∈L2

even(R).
Since L+ is invertible on L2

even(R) and self-adjoint, we can combine the previous equations
to obtain

d

ds

∫
R

|Qs|2 dx = I+II, (5.17)

where

I =−2〈L−1
+ Qs, (−Δ)s log(−Δ)Qs〉 and II =−2

dλs

ds
〈Qs, L

−1
+ Qs〉. (5.18)

We start by estimating the term I from above. Here a calculation shows that(3)

L+R =−2sλsQs, with R :=
d

dβ

∣∣∣∣
β=1

β2s/αQs(βx) =
2s

α
Qs+xQ′s. (5.19)

(3) Note that R∈L2(R), by the decay estimate in Proposition 1.1. Moreover, we easily deduce
that R∈H2s+1(R), by analogous bootstrap arguments as done for Q.



uniqueness of ground states for fractional laplacians in R 291

Therefore we conclude that

I =
1

sλs
〈R, (−Δ)s log(−Δ)Qs〉

=
1

sλs

〈
d

dβ

∣∣∣∣
β=1

β2s/αQs(β ·), (−Δ)s log(−Δ)Qs

〉

=
1

2sλs

d

dβ

∣∣∣∣
β=1

〈β2s/αQs(β ·), (−Δ)s log(−Δ)β2s/αQs(β ·)〉

=
1

2sλs

d

dβ

∣∣∣∣
β=1

(
βα/4s+2s−1

∫
R

|Q̂s(ξ)|2|ξ|2s log(β2|ξ|2) dξ

)

=
1

2sλs

((
4s

α
+2s−1

)
〈Qs, (−Δ)s log(−Δ)Qs〉+2〈Qs, (−Δ)sQs〉

)
.

In the third equality above, we used the self-adjointness of (−Δ)s log(−Δ); whereas the
fourth equality follows from Plancherel’s identity and change of variables. Note that all
the manipulations here are well defined, due to the regularity of Qs∈H2s+1(R).

Next, we apply Lemma 5.7 (derived below) which shows that the a-priori upper
bound 〈Qs, (−Δ)s log(−Δ)Qs〉�1 holds. Moreover, we notice that

4s

α
+2s−1 � 4s0

α
+2s0−1 > 0,

due to the condition that α<αmax(s0). In summary, we deduce that

I � 1
λs

�
∫

R

|Qs|2 dx

for s0�s<s∗, where the last inequality clearly follows from Lemma 5.5.
It remains to derive an upper bound for II defined in (5.18) above. To this end, we

recall the definition of R in (5.19) which shows that

〈Qs, L
−1
+ Qs〉=− 1

2sλs
〈R,Qs〉=− 1

4sλs

d

dβ

∣∣∣∣
β=1

β4s/α〈Qs(β ·), Qs(β ·)〉

=
1

4sλs

(
1− 4s

α

) ∫
R

|Qs|2 dx.

(5.20)

Next, if we differentiate the Pohozaev identities in Lemma 5.4 with respect to s, we
obtain

dλs

ds

∫
R

|Qs|2 dx+λs
d

ds

∫
R

|Qs|2 dx =
1

2s2

α

α+2

∫
R

|Qs|α+2 dx, (5.21)

using that
d

ds

∫
R

|Qs|α+2 dx = 0.
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By combining (5.20) and (5.21), we deduce that

II =−2
dλs

ds
〈Qs, L

−1
+ Qs〉=

(
1
2s
− 2

α

)(
d

ds

∫
R

|Qs|2 dx− 1
2s2λs

α

α+2

∫
R

|Qs|α+2 dx

)

�
(

1
2s
− 2

α

)
d

ds

∫
R

|Qs|2 dx+
C

λs
,

for some constant C>0 independent of s. In the last step, we used again the fact that∫
R
|Qs|α+2 dx is a constant. Next, we recall that λ−1

s �
∫

R
|Qs|2 dx and I�

∫
R
|Qs|2 dx.

Hence, we get

d

ds

∫
R

|Qs|2 dx = I+II�
(

1
2s
− 2

α

)
d

ds

∫
R

|Qs|2 dx+C

∫
R

|Qs|2 dx,

where C>0 is some constant independent of s. Noticing again that

1−
(

1
2s
− 2

α

)
� 1−

(
1

2s0
− 2

α

)
> 0,

by the condition α<αmax(s0), we conclude that (5.16) holds. The proof of Lemma 5.6
is now complete.

Next, we establish the a-priori upper bound on 〈Qs, (−Δ)s log(−Δ)Qs〉, which was
needed in the previous proof.

Lemma 5.7. For all s∈[s0, s∗) we have

〈Qs, (−Δ)s log(−Δ)Qs〉� 1.

Proof. From the identity Qs=((−Δ)s+λs)−1|Qs|αQs we deduce that

‖(−Δ)tQs‖2 =
∥∥∥∥ (−Δ)t

(−Δ)s+λs
|Qs|αQs

∥∥∥∥
2

� ‖(−Δ)t−s(|Qs|αQs)‖2 (5.22)

for any t�0. In particular, we can choose

t := s− α

4(α+2)
,

which implies that s>t>s− 1
2s0� 1

2s0, due to the condition α<αmax(s0).
By our choice of t, the operator (−Δ)t−s on R is given by convolution with the

singular integral kernel |x|−(α+4)/2(α+2), up to a multiplicative constant C depending
only on α. Hence, by the weak Young inequality, we deduce from (5.22) the following
bound:

‖(−Δ)tQs‖2 �
∥∥|x|−(α+4)/2(α+2)∗(|Qs|αQs)

∥∥
2
�

∥∥|Qs|α+1
∥∥

(α+2)/(α+1)
� ‖Qs‖α+1

α+2 � 1,
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using the fact that
∫

R
|Qs|α+2 dx is a constant. But the last estimate implies that

〈Qs, (−Δ)s log(−Δ)Qs〉=
∫

R

|ξ|2s log(|ξ|2)|Q̂s(ξ)|2 dξ

�
∫

R

|ξ|4t|Q̂s(ξ)|2 dξ � ‖(−Δ)tQs‖22 � 1.

Here we used Plancherel’s identity together with the inequality

log |ξ|2 �C|ξ|4t−2s, (5.23)

where the constant C>0 only depends on α and s0. Indeed, this inequality can be simply
derived as follows. Clearly it suffices to show that (5.23) holds for |ξ|�1, since otherwise
the left-hand side is negative. Now, we note that

4t−2s = 2s− α

α+2
� 2s0− α

α+2
� δ

for some constant δ>0 depending only on α and s0. (To see this, simply use the strict
inequality α/(α+2)<2s0 due to the condition on α.) Since log z2�2(δ/e)−1zδ for z�1
and δ�4t−2s, we deduce that (5.23) holds for |ξ|�1. This completes the proof.

As a first application of our a-priori bounds we shall prove that the linearization of
the equation satisfied by Qs depends continuously (in a sense to be made precise) on s.
Along with the operator

L+,s = (−Δ)s+λs−(α+1)|Qs|α

which has already appeared above, we consider

L−,s = (−Δ)s+λs−|Qs|α.

Both are self-adjoint and lower semi-bounded operators in L2(R). Recall that convergence
of a sequence {An}∞n=1 of self-adjoint operators to an operator A in norm-resolvent sense
means that ∥∥∥∥ 1

An+z
− 1

A+z

∥∥∥∥
L2!L2

! 0

as n!∞, where z∈C with Im z �=0.

Lemma 5.8. Let {sn}∞n=1⊂[s0, s∗) be a sequence with sn!s̃<s∗. Then L±,sn
!L±,s̃

in norm-resolvent sense.
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Proof. By straightforward estimates, we find that norm-resolvent convergence will
follow from λs!λs̃, provided we can show that Vs=|Qs|α satisfies

‖Vs−Vs̃‖p! 0 as s! s̃ (5.24)

for some p�1 such that p>1/2s0�1/2s.
To see that we can always find such p, we argue as follows. By Lemmas 5.5 and 5.6,

we have ‖Qs‖Hs �1, and thus ‖Qs‖Hs0 �1 since s�s0. As Qs!Qs̃ in L2(R), we deduce
from the uniform bound ‖Qs‖Hs0 �1 that

‖Qs−Qs̃‖Hσ0 ! 0 as s! s̃

for any 0�σ0<s0. In particular if s0> 1
2 , then ‖Qs−Qs̃‖∞!0 by Sobolev inequalities.

Hence we can choose p=∞ in (5.24) and we conclude that norm-resolvent convergence
holds whenever s0> 1

2 . Assume now that s0� 1
2 . In this case, by Sobolev inequalities

and Hölder’s inequality, we deduce that Vs=|Qs|α satisfies (5.24) for p=2/α(1−2σ0)
with any 0�σ0<s0. But since 2/α(1−2s0)>1/2s0 due to the condition α<αmax(s0), we
can choose σ0<s0 sufficiently close to s0 such that p=2/α(1−2σ0)>1/2s0 as well. This
shows that norm-resolvent convergence also holds when s0� 1

2 .

As a result of the norm-resolvent convergence, we shall see that both the Morse index
of L+,s and the positivity of Qs are preserved along the branch. We begin by deriving
the first fact.

Corollary 5.9. We have N−,even(L+,s)=N−,even(L+,s0) for all s∈[s0, s∗).

Proof. By continuity of the eigenvalues of L+,s, any change of the Morse index along
the branch would imply that 0 must be an eigenvalue of L+,s acting on L2

even(R) for some
s∈(s0, s∗). But this contradicts Assumption 5.1.

As a next step, we wish to analyze sequences {Qsn}∞n=0 with sn!s∗. In particular,
our goal is to derive strong convergence (along subsequences) for {Qsn

}∞n=1 with respect
to the norm ‖ · ‖Xα =‖ · ‖2+‖ · ‖α+2. Recall from Lemmas 5.5 and 5.6 the a-priori bound

‖Qs‖2Hs =
∫

R

|(−Δ)s/2Qs|2 dx+
∫

R

|Qs|2 dx � 1 for s∈ [s0, s∗).

Suppose now that sn!s∗. To turn the uniform bound ‖Qsn
‖Hs �1 into strong conver-

gence of {Qsn}∞n=1 in some Lp-norm, we need a further ingredient. Indeed, since we
consider d=1 space dimension, we recall the well-known fact that the even symmetry of
the functions {Qsn}∞n=1 (unlike for radial symmetry in d�2 dimensions) is not sufficient
to gain relative compactness of {Qsn}∞n=1 in some Lp-norm. To deal with this, we will
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now impose that Qs0 =Qs0(|x|)>0 is a positive function. Then the following result shows
that Qs(|x|)>0 along the branch. This fact, in turn, will lead to monotonicity of the
functions Qs(|x|) in |x|. From this property and the a-priori bound on λs∼1, we finally
derive a uniform decay estimate of the form Qs(|x|)�|x|−1 for |x| outside a fixed compact
set, which will enable us to gain relative compactness in L2(R)∩Lα+2(R).

The fact that positivity of Qs0 implies positivity of Qs for all s is another consequence
of norm-resolvent convergence.

Corollary 5.10. Suppose that Qs0 =Qs0(|x|)>0 is positive. Then Qs=Qs(|x|)>0
for x∈R and s∈[s0, s∗).

Proof. We divide the proof into two steps as follows.

Step 1. First, we show that positivity of Qs(|x|)>0 is an “open” property along the
branch (Qs, λs). That is, if we assume that Qs̃=Qs̃(|x|)>0 for some s̃∈[s0, s∗), then

Qs = Qs(|x|) > 0 for s∈ [s0, s∗) with |s−s̃|<ε,

where ε>0 is sufficiently small. To prove this claim, we consider the family of self-adjoint
operators L−,s, introduced before Lemma 5.8, and note that

L−,sQs = 0, (5.25)

that is, Qs is an eigenfunction of L−,s with eigenvalue 0. Furthermore, by Lemma C.2,
the lowest eigenvalue of L−,s is non-degenerate and its corresponding eigenfunction can
be chosen strictly positive. In particular, the function Qs̃(|x|)>0 is the ground state
eigenfunction of L−,s̃ and 0 is the lowest eigenvalue of L−,s̃. Thus, in view of (5.25) and
Lemma C.2, it suffices to show that 0 is the lowest eigenvalue of L−,s (for s close to s̃)
and finally rule out that Qs<0 holds.

This follows from Lemma 5.8 by standard spectral arguments: Let λ1(L−,s) denote
the lowest eigenvalue of L−,s. By Lemma C.2, the eigenvalue λ1(L−,s) is non-degenerate
and its corresponding eigenfunction ψ1,s(x)>0 is strictly positive. We have already
observed that λ1(L−,s̃)=0 and Qs̃(x)=ψ1,s̃(x). From the norm-resolvent convergence,
we conclude that λ1(L−,s)!λ1(L−,s̃) as s!s̃ and that λ1(L−,s) is simple for s close to s̃.
(The last statement also follows from Lemma C.2.) Moreover, since λ1(L−,s̃) is isolated,
we can find c>0 so small that the interval Ic=(−c, c) satisfies σ(L−,s̃)∩Ic={λ1(L−,s̃)}.
Thus, by the above convergence properties, we deduce that

σ(L−,s)∩Ic = {λ1(L−,s)}

whenever |s−s̃|<ε, where ε>0 is sufficiently small. On the other hand, (5.25) shows
that 0 is an eigenvalue of L−,s, and therefore λ1(L−,s)=0 for |s−s̃|<ε. By Lemma C.2
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again, we deduce that Qs(x)=σ(s)ψ1,s(x), where σ(s)∈{1,−1} is some sign depending
on s. But since Qs!Qs̃ in L2(R) and Qs̃(x)>0, we conclude that σ(s)=1 for all s close
to s0. To summarize, we have shown that Qs(x)=ψ1,s(x)>0 for all |s−s̃|<ε, provided
that ε>0 is small and Qs̃(x)>0 holds.

Step 2. Next, we prove that positivity of Qs along the branch is a “closed” property.
That is, if Qs(|x|)>0 for all s∈[s0, s̃) with some s̃<s∗, then Qs̃(|x|)>0 as well. Indeed,
let s̃∈(s0, s∗) be given and suppose that {sn}∞n=1⊂[s0, s̃) is a sequence with sn!s̃ such
that Qsn(|x|)>0 for all n∈N. Since Qsn!Qs̃ in L2(R), we see that the limit is a non-
negative function Qs̃(|x|)�0. We note that Qs̃ �≡0 due to ‖Qs̃‖α+2=‖Qs0‖α+2 �=0. Hence
Qs̃=Qs̃(|x|)�0 is a non-negative and non-trivial solution of

Qs̃ =
1

(−Δ)s̃+λs̃
|Qs̃|αQs̃.

From this we deduce that positivity Qs̃=Qs̃(|x|)>0 holds by using Lemma A.4, which
establishes the positivity of the integral kernel for the resolvent ((−Δ)s+λ)−1 with
0<s<1 and λ>0.

By combining the results of steps 1 and 2 above, the proof is completed.

Next, we derive a uniform spatial decay estimate along the maximal branch (Qs, λs),
provided that Qs0(|x|)>0 holds initially.

Lemma 5.11. Suppose that Qs0(|x|)>0 holds. Then we have the uniform decay
estimate

0 <Qs(|x|) � 1
|x|

for |x|�R0 and s∈[s0, s∗). Here R0>0 is some constant independent of s.

Proof. For any μ>0 given, we can rewrite the equation satisfied by Qs as

Qs = ((−Δ)s+μ)−1fs, with fs(x) =Qs(x)(Qα
s (x)−λs+μ).

Note that |Q|αs =Qα
s , since Qs(|x|)>0 for s∈[s0, s∗), by Corollary 5.10.

By Lemmas 5.5 and 5.6, we have the uniform lower bound λs�1. In particular, we
can choose μ>0 fixed and independent of s such that λs�2μ for s∈[s0, s∗). Next, we
claim that the positive part f+

s :=max{fs, 0} has compact support such that

f+
s (x)≡ 0 for |x|� 1

2R0, (5.26)

where R0>0 is some large constant independent of s. Indeed, the functions Qs=Qs(|x|)
are even and positive. Hence, by Lemma B.4, we deduce that each function Qs(|x|) is
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decreasing in |x|. Also, we recall the uniform bound ‖Qs‖2�1 from Lemma 5.6. Hence,
for any |x|>0,

|x| |Qs(x)|2 � 1
2

∫
|y|�|x|

|Qs(y)|2 dy � 1
2

∫
R

|Qs(y)|2 dy � 1.

Therefore Qs(y)�|x|−1/2 for |x|>0. Moreover, we have −λs+μ�−μ<0 and Qs(|x|)>0.
These facts imply that (5.26) holds with some large constant R0>0 independent of s.

Next, by Lemma A.4, we conclude that the kernel Gs,μ of the resolvent ((−Δ)s+μ)−1

is given by a positive function Gs,μ(x)>0 that satisfies the uniform bound

0 <Gs,μ(x) � 1
|x| for |x|> 0. (5.27)

Since |x−y|� 1
2 |x| when |x|�R0 and |y|� 1

2R0, we can combine (5.26) and (5.27) to find
the bound

0 <Qs(|x|) �
∫
|y|�R0/2

Gs,μ(x−y)f+
s (y) dy � 1

|x|
∫
|y|�R0/2

f+
s (y) dy � 1

|x|

for |x|�R0. In the last step, we used the fact that fs�Qα+1
s and the uniform bound

‖Qs‖α+2�1 together with Hölder’s inequality to obtain that∫
|y|�R0/2

f+
s (y) dy �R

1/(α+2)
0 ‖Qs‖α+1

α+2 � 1.

This completes the proof of Lemma 5.11.

We are now in the position to derive the following key fact.

Lemma 5.12. Let {sn}∞n=1⊂[s0, s∗) be a sequence such that sn!s∗. Furthermore,
we suppose that Qsn

=Qsn
(|x|)>0 are positive functions. Then (after possibly passing to

a subsequence) we have that

Qsn!Q∗ in L2(R)∩Lα+2(R) and λsn!λ∗,

where λ∗>0 and Q∗=Q∗(|x|)>0 satisfy

(−Δ)s∗Q∗+λ∗Q∗−Qα+1
∗ = 0.

Moreover, we have the following estimates on the Morse index :

lim inf
n!∞ N−,even(L+,n) �N−,even(L+,∗) � 1,

where L+,n=(−Δ)sn +λn−(α+1)Qα
sn

and L+,∗=(−Δ)s∗ +λ∗−(α+1)Qα
∗ denote the lin-

earized operators associated with Qsn and Q∗, respectively.
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Remarks. (1) One key step in the proof of Lemma 5.12 will be to establish strong
convergence of {Qsn}∞n=1 in L2(R). Here, the pointwise decay bound from Lemma 5.11
will guarantee this fact. Note that the (immediate) uniform decay estimate

Qsn(x) � |x|−1/2

(see the proof of Lemma 5.11) is not sufficient to conclude strong convergence of {Qsn
}∞n=1

in L2(R). Generally speaking, the gain of relative compactness of {Qsn}∞n=1 in L2(R) is
due to the fact that we can derive a better uniform decay estimate of the form

Qsn
(|x|) � |x|−1,

which is square-integrable at infinity.
(2) By bootstrapping arguments, we can derive strong convergence of {Qsn}∞n=1 in

H2s∗(R), once strong convergence in L2(R)∩Lα+2(R) is known. However, we do not
need this refinement and hence we omit its proof.

(3) Note that we do not claim nor need uniqueness of Q∗=Q∗(|x|)>0 at this point.

Proof. Define the sequences {Qn}∞n=1 with Qn=Qsn and {λn}∞n=1 with λn=λsn .
First, by combining Lemmas 5.5 and 5.6, we obtain the uniform bounds λn∼1.

Thus, after passing to a subsequence, we may assume that λn!λ∗ with some positive
limit λ∗>0.

From Lemmas 5.5 and 5.6 we have the a-priori bound ‖Qn‖Hsn �1. Since sn�s0,
this implies in particular that ‖Qn‖Hs0 �1 holds. Hence (after passing to a subsequence)
we may assume that Qn⇀Q∗ weakly in Hs0(R) and, by local Rellich–Kondratchov com-
pactness, we deduce that Qn!Q∗ in L2

loc(R). To upgrade this fact to strong convergence
in L2(R) itself, we recall that Lemma 5.11 implies the uniform decay estimate

|Qn(x)|� 1
|x| for |x|�R0 and n � 1, (5.28)

where R0>0 is independent of n. Using this uniform decay, we easily derive strong
convergence of {Qn}∞n=1 in L2(R). Indeed, let ε>0 be given. Choose Rε�R0 so large
that

∫
|x|>Rε

|x|−2 dx�ε2 and
∫
|x|>Rε

|Q∗|2 dx�ε2. Since moreover Qn!Q∗ in L2
loc(R),

there exists n0�1 such that
∫
|x|�Rε

|Qn−Q∗|2 dx�ε2 for n�n0. Using the pointwise
bound (5.28) and the triangle inequality, we thus conclude that

‖Qn−Q∗‖L2(R) � ‖Qn−Q∗‖L2(|x|�Rε)+‖Qn−Q∗‖L2(|x|>Rε) � ε

for all n�n0. This shows that Qn!Q∗ strongly in L2(R).
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In order to see that Qn!Q∗ strongly in Lα+2(R), we first recall the uniform bound
‖Qn‖Hs0 �1. Using the condition α<αmax(s0) and Sobolev inequalities, we deduce that
‖Qn‖p�1 for some p>α+2 (with p�2/(1−2s0) if s0< 1

2 ). Thus, by Hölder’s inequality,
we deduce that Qn!Q∗ in Lα+2(R) as well.

Using now the convergence properties of {Qn}∞n=1 derived above, we conclude that
the limit Q∗∈L2(R)∩Lα+2(R) satisfies the equation

(−Δ)s∗Q∗+λ∗Q∗−Qα+1
∗ = 0. (5.29)

Note that Qn=Qn(|x|)>0 and Qn!Q∗ in L2(R), which implies that Q∗=Q∗(|x|)�0.
Furthermore, Qn!Q∗ in Lα+2(R) and ‖Qn‖α+2=‖Q0‖α+2 �=0 for all n∈N. Hence Q∗ �≡0
as well. Finally, we deduce Q∗(x)>0 by noting that Q∗=((−Δ)s∗ +λ∗)−1Qα+1

∗ and using
the positivity of the integral kernel of the resolvent ((−Δ)s∗ +λ∗)−1; see Lemma A.4.

It remains to show the claimed estimate for the Morse index of L+,∗ in the sector of
even functions. Consider the sequence {L+,n}∞n=1 of self-adjoint operators defined in the
lemma. Note that ‖Qn‖Hs0 �1 and Qn!Q∗ in L2(R). Then, by adapting the proof of
Lemma 5.8, we deduce that Qn!Q∗ in Lp(R) for some p>1/2s0�1/2s∗. In particular,
this implies that L+,n!L+,∗ in the norm-resolvent sense. Since the Morse index is lower
semi-continuous with respect to the norm-resolvent topology, we conclude that

lim inf
n!∞ N−,even(L+,n) �N−,even(L+,∗).

Furthermore, an elementary calculation shows that

〈Q∗, L+,∗Q∗〉=−α

∫
R

|Q∗|α+2 dx < 0.

Hence, by the min-max principle, we conclude that L+,∗ acting on L2
even(R) has at least

one strictly negative eigenvalue. Therefore, we obtain that

N−,even(L+,∗) � 1.

The proof of Lemma 5.12 is now complete.

As one of the main results of this section, we now prove that any maximal branch
(Qs, λs) extends to s∗=1, provided that Qs0 satisfies some explicit conditions (which in
particular hold true if Qs0 is a ground state).

Proposition 5.13. Let 0<s0<1 and 0<α<αmax(s0) be given. Suppose that

(Q0, λ0)∈Xα×R+
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satisfies Assumption 5.1 with s=s0 and λ=λ0. Furthermore, assume that Q0=Q0(|x|)
is positive and that the corresponding linearized operator L+,0 satisfies N−,even(L+,0)=1.

Then the corresponding maximal branch (Qs, λs)∈C1([s0, s∗);Xα×R+) extends to
s∗=1. Moreover, we have that

Qs!Q∗ in L2(R)∩Lα+2(R) and λs!λ∗

as s!1, where Q∗=Q∗(|x|)>0 is the unique solution of

⎧⎪⎨
⎪⎩
−ΔQ∗+λ∗Q∗−Qα+1

∗ = 0,

Q∗= Q∗(|x|) > 0,

Q∗ ∈L2(R)∩Lα+2(R),

and λ∗>0 is given by

λ∗=
(∫

R
|Q0|α+2 dx∫

R
|P |α+2 dx

)2α/(α+4)

.

Here P =P (|x|)>0 denotes the unique positive even solution in C2(R) that satisfies

−ΔP +P−Pα+1 = 0

with P!0 as |x|!∞.

Remarks. (1) The function P (x) is in fact known in closed form, i.e., we have that

P (x) =
(σ+1)1/2σ

cosh1/σ(σx)
,

where σ= 1
2α. However, this fact has no relevance in the proof below.

(2) Note that λ∗>0 only depends on α and the quantity
∫

R
|Q0|α+2 dx.

Proof. Let (Qs, λs)∈C1([s0, s∗);Xα×R+) be the maximal branch with s∗∈(s0, 1].
Let {sn}∞n=1⊂[s0, s∗) be such that sn!s∗. Define the sequences {Qn}∞n=1⊂Xα and
{λn}∞n=1⊂R+ by Qn=Qsn and λn=λsn for n∈N. By Lemma 5.12 and after passing to a
subsequence if necessary, we may assume that Qn!Q∗ in L2(R)∩Lα+2(R) and λn!λ∗
for some Q∗(|x|)>0 and λ∗>0. For the Morse index of L+,∗=(−Δ)s∗ +λ∗−(α+1)Qα

∗ on
even functions, we claim that

N−,even(L+,∗) = 1. (5.30)

Indeed, by assumption, by Corollary 5.9 and Lemma 5.12 we have

1 =N−,even(L+,s0) = lim inf
n!∞ N−,even(L+,n) �N−,even(L+,∗) � 1.
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Next, we shall use (5.30) to deduce that s∗=1. Suppose on the contrary that s∗<1
was true. Then by (5.30) we can apply Lemma 4.1 to deduce that L+,∗ is invertible on
L2

even(R). Hence (Q∗, λ∗)∈Xα×R+ satisfies Assumption 5.1. Thus, by Proposition 5.2,
we can extend the branch (Qs, λs) beyond s∗, which contradicts the maximality property
of s∗. This contradiction proves that s∗=1.

By Lemma 5.12, Q∗=Q∗(|x|)>0 solves the non-linear equation

−ΔQ∗+λ∗Q∗−Qα+1
∗ = 0. (5.31)

Note that, by bootstrapping this equation for Q∗∈L2(R)∩Lα+2(R), we conclude that
Q∗∈H2(R). Using this fact, we deduce that in fact Q∗∈C2(R) holds. Now we recall the
well-known fact that −ΔP +P−Pα+1=0 has a unique positive solution P =P (|x|)>0 in
C2(R) with P!0 as |x|!∞; see the remark above. By a simple scaling argument, we
infer that

Q∗(x) =λ
1/α
∗ P (λ1/2

∗ x). (5.32)

Furthermore, since
∫

R
|Qn|α+2 dx=

∫
R
|Qs0 |α+2 dx for all n�1 and Qn!Q∗ in Lα+2(R),

we find that ∫
R

|Q∗|α+2 dx =
∫

R

|Qs0 |α+2 dx. (5.33)

Using now (5.32) and (5.33), we see that λ∗>0 is given by the formula in Proposition 5.13.
In particular, this shows that the limit λ∗>0 is independent of the sequence {sn}∞n=1.
Furthermore, by uniqueness of Q∗ with λ∗>0 given, we conclude that the limit Q∗ is
also independent of {sn}∞n=1. Hence Qs!Q∗ in L2(R)∩Lα+2(R) and λs!λ∗ as s!1.

The proof of Proposition 5.13 is now complete.

5.3. Proof of Theorem 2.4

First, we prove uniqueness of ground states and we argue by contradiction as follows.
Let 0<s0<1 and 0<α<αmax(s0) be given. Recall our definition of the (real) Banach

space Xα of real-valued and even functions in L2(R)∩Lα+2(R); see (5.2).
Suppose that Q=Q0(|x|)>0 and Q̃0=Q̃0(|x|)>0 are two ground states for problem

(1.2) such that Q0 �≡Q̃0. First, we observe that we always have∫
R

|Q0|α+2 dx =
∫

R

|Q̃0|α+2 dx. (5.34)

Indeed, from Lemma 5.4 we find that Q0∈Hs0(R) satisfies the Pohozaev idenitites

1
2

∫
R

|Qs0 |2 dx =
as0

α+2

∫
R

|Q0|α+2 dx and
1
2

∫
R

|(−Δ)s0/2Q0|2 dx =
bs0

α+2

∫
R

|Q0|α+2 dx,
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where as0 =α(2s0−1)/4s0+1 and bs0 =α/4s0. Moreover, by assumption, the ground state
Q0∈Hs0(R) optimizes the interpolation estimate (1.4). Thus, we also find that

∫
R

|Q0|α+2 dx = Cα,s0

(∫
R

|(−Δ)s0/2Q0|2 dx

)α/4s0
(∫

R

|Q0|2 dx

)α(2s0−1)/4s0+1

,

with Cα,s0 >0 being the optimal constant for (1.4) when s=s0. Combining now the last
three equations, we conclude that

∫
R
|Q0|α+2 dx=f(α, s0), for some function f(α, s0) that

only depends on α and s0. By repeating the same arguments for the ground state Q̃s0 ,
we thus deduce that

∫
R
|Q0|α+2 dx=

∫
R
|Q̃0|α+2 dx holds.

Next, by Theorem 2.3, we see that both Q0∈Xα and Q̃0∈Xα satisfy Assumption 5.1
with s=s0 and λ=1. Hence, by Proposition 5.13, there exist two global branches

(Qs, λs)∈C1([s0, 1);Xα×R+) and (Q̃s, λ̃s)∈C1([s0, 1);Xα×R+),

which solve equation (5.1) and we have (Qs0 , λs0)=(Q0, 1) and (Q̃s0 , λ̃s0)=(Q̃0, 1). Note
that, by the local uniqueness stated in Proposition 5.2, the branches (Qs, λs) and (Q̃s, λ̃s)
cannot intersect. Moreover, by Proposition 5.13, we have the following facts.

• Qs!Q∗ in L2(R)∩Lα+2(R) and λs!λ∗ as s!1.
• Q̃s!Q̃∗ in L2(R)∩Lα+2(R) and λ̃s!λ̃∗ as s!1.
Here λ∗>0 and λ̃∗>0 are given by the formula in Proposition 5.13. Furthermore, the

functions Q∗=Q∗(|x|)>0 and Q̃∗=Q̃∗(|x|)>0 are the unique even and positive solutions
in L2(R)∩Lα+2(R) of the non-linear equations

−ΔQ∗+λ∗Q∗−Qα+1
∗ = 0 and −ΔQ̃∗+λ̃∗Q̃∗−Q̃α+1

∗ = 0,

respectively. However, by Proposition 5.13 and equation (5.34), we deduce that λ∗=λ̃∗,
which implies that

Q∗≡ Q̃∗,

due to the uniqueness result for the limiting equation as stated in Proposition 5.13. Next,
we remark that Q∗ has a non-degenerate linearized operator

L+ =− d2

dx2
+λ∗−(α+1)Qα

∗ ;

see, e.g., [11]. Hence, we can invoke an implicit function argument around (Q∗, λ∗) to
construct a locally unique branch (Qs, λs)∈C1((1−δ, 1];Xα×R+), with some δ>0 small,
such that

(−Δ)sQs+λsQs−Qα+1
s = 0,
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and (Qs, λs) is the unique solution for s∈(1−δ, 1] in the neighborhood

N = {(Q,λ)∈Xα×R+ : ‖Q−Q∗‖Xα +|λ−λ∗|<ε},
where ε>0 is a small constant. Since Qs!Q∗ and Q̃s!Q∗ in L2(R)∩Lα+2(R) and both
λs!λ∗ and λ̃s!λ∗ as s!1, we conclude that the branches (Qs, λs) and (Q̃s, λ̃s) must
intersect at some s∈[s0, 1). But this is a contradiction to the local uniqueness of the
branches (Qs, λs) and (Q̃s, λ̃s), as given by Proposition 5.2. This proves uniqueness of
ground states as stated in Theorem 2.4.

Finally, we establish uniqueness of optimizers for the Gagliardo–Nirenberg inequality
(1.4). Here we simply note that, by rearrangement inequalities, we have

Js,α(v∗) �Js,α(v), (5.35)

where v∗=v∗(|x|)�0 denotes the symmetric-decreasing rearrangement of v∈Hs(R). By
[16] we see that strict inequality holds in (5.35), unless v(x) equals v∗(|x|) up to a complex
phase and spatial translation. Since v minimizes Js,α and so does v∗, we deduce that
v∗=v∗(|x|)�0 solves the corresponding Euler–Lagrange equation

(−Δ)sv∗+λv∗−μ(v∗)α+1 = 0,

with some positive constants λ>0 and μ>0. By a simple rescaling argument and unique-
ness of the ground state Q=Q(|x|)>0, we see that v∗(|x|)=aQ(b|x|) for some constants
a>0 and b>0.

The proof of Theorem 2.4 is now complete.

Appendix A. Some uniform bounds

In this appendix, we derive some uniform bounds (with respect to s) for the heat kernel
e−t(−Δ)s

with 0<s<1. Moreover, as a a direct consequence, we obtain corresponding
uniform bounds for the resolvent ((−Δ)s+λ)−1.

Although many of the following bounds can be directly inferred from the literature
for each 0<s<1 individually, we were not able to find a reference which yields the desired
bounds in a uniform fashion for s0�s<1 with s0>0 fixed. Also, we mention that it is
straightforward to generalize the following arguments to any space dimension. However,
due to notational convenience, we have decided to focus on the 1-dimensional case in
what follows.

Consider the heat kernel e−t(−Δ)s

on R with 0<s<1. That is, we consider the
convolution operator with convolution kernel given by

P (s)(x, t) =
1
2π

∫
R

e−t|ξ|2s

e−iξx dξ, (A.1)
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where t>0 is a parameter. Note the scaling property

P (s)(x, t) = t−1/2sP (s)(t−1/2sx, 1) for x∈R and t > 0.

Moreover, it is obvious that P (s)(x, t) is an even function of x. We first record the
following known (but not completely obvious) positivity and monotonicity result.

Lemma A.1. Let 0<s<1 and t>0 be fixed. Then

P (s)(x, t) > 0 for x∈R and
d

dx
P (s)(x, t) < 0 for x> 0.

Proof. We give the following (fairly simple) proof, which mainly rests on Bernstein’s
theorem about the Laplace transform.

First, by the scaling property of P (s)(x, t), we may assume that t=1 holds. Now we
consider the non-negative function f(E)=Es on the positive real line (0,∞). Using that
0<s<1, it is easy to see that f ′(E) is completely monotone (i.e., we have (−1)nf (n)(E)�0
for all n∈N). This fact, in turn, implies that the map E �!e−f(E) is completely monotone
as well. Hence, by Bernstein’s theorem, we infer that

e−f(E) =
∫ ∞

0

e−τE dμf (τ)

for some non-negative measure μf depending on f . Setting E=|ξ|2 and recalling the
inverse Fourier transform of the Gaussian e−τ |ξ|2 , we obtain the following “subordination
formula” given by

P (s)(x, 1) =
∫ ∞

0

1√
2τ

e−x2/4τ dμs(τ) (A.2)

with some non-negative measure μs�0 and μs �≡0. From this formula we readily deduce
that P (s)(x, 1)>0 for x∈R and

d

dx
P (s)(x, 1) < 0 for x> 0.

As remarked above, this yields the desired result for all t>0.

Next, we derive the following pointwise estimate for P (s)(t, x).

Lemma A.2. For 0<s0<1 fixed, we have the pointwise bound

P (s)(x, t) �C min{t−1/2s, |x|−1}

for x∈R, t>0 and s0�s<1. Here the constant C>0 depends only on s0.
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Remark A.3. By a classical result in [8], we can obtain the following bounds

A

|x|1+2s
�P (s)(x, t= 1) � B

|x|1+2s
for |x|� 1,

where the constants A>0 and B>0 depend on s. However, the arguments given there do
not provide any insight on how to obtain uniform decay bounds with respect to s�s0>1.

Proof. First, we easily obtain the bound

P (s)(x, t) �
∫

R

e−t|ξ|2s

dξ =
1
s
Γ
(

1
2s

)
t−1/2s �Ct−1/2s,

with some constant C>0 depending only on s0. Furthermore, integration by parts yields
that

xP (s)(x, t) =−i

∫
R

(
d

dξ
e−t|ξ|2s

)
e−ixξ dξ.

Hence, we find that

|xP (s)(x, t)|�
∫

R

2st|ξ|2s−1e−t|ξ|2s

dξ =
∫

R

e−|u| du = 2,

which completes the proof.

Now, we consider the kernel for the resolvent ((−Δ)s+λ)−1 on R with λ>0. By
functional calculus, we have the general formula

1
(−Δ)s+λ

=
∫ ∞

0

e−λte−t(−Δ)s

dt. (A.3)

We have the following properties of the integral kernel associated with

1
(−Δ)s+λ

.

Lemma A.4. For 0<s<1 and λ>0 set

Gs,λ(x) =
1
2π

∫
R

1
|ξ|2s+λ

e−iξx dx.

Then the following properties hold :
(i) Gs,λ∈Lp(R) for 1<p<∞ with 1−1/p<2s.
(ii) Gs,λ(x)>0 for x∈R and Gs,λ(x) is an even function which is strictly decreasing

in |x|.
(iii) For 0<s0<1 fixed, we have

‖Gs,λ‖p � C

(
p

p−1

)1/p

λ(1−1/p)/2s−1Γ
(

1− 1
2s

(
1− 1

p

))

for s0�s<1 and 1<p<∞ with 1−1/p<2s. Here the constant C>0 only depends on s0.



306 r. l. frank and e. lenzmann

(iv) For 0<s0<1 fixed, we have the pointwise bound

0 <Gs,λ(x) � C

λ|x| ,

for |x|>0 and s0�s<1, where the constant C>0 only depends on s0.

Proof. As for property (i), this will clearly follow once we have deduced that (iii)
holds. To see that (ii) holds, we simply recall formula (A.3) and use the corresponding
properties of P (s)(t, x) in Lemma A.1. To prove (iii), we note that (A.3) yields

‖Gs,λ‖p �
∫ ∞

0

e−λt‖P (s)( · , t)‖p dt.

From Lemma A.2 we conclude that

‖P (s)( · , t)‖p �C

(∫
|x|<t1/2s

t−p/2s dx+
∫
|x|�t1/2s

|x|−p dx

)1/p

�C

(
p

p−1

)1/p

t−(1−1/p)/2s,

with 1<p<∞ and where C>0 only depends on s0. A straightforward combination of
these bounds yields the desired estimate, provided that 1−1/p<2s holds.

To establish the pointwise bound stated in (iv), we simply use (A.3) in combination
with Lemma A.2.

We conclude this section by deriving a uniform bound for the optimal constants
Cα,s>0 in the Gagliardo–Nirenberg inequality (in d=1 dimension)∫

R

|f |α+2 dx �Cα,s

(∫
R

|(−Δ)s/2f |2 dx

)α/4s(∫
R

|f |2 dx

)α(2s−1)/4s+1

,

where 0<s<1 and 0<α<αmax(s). We have the following uniform bound.

Lemma A.5. Let 0<α<∞ be given. Then there is a constant Kα>0 such that
Cα,s�Kα for α/2(α+2)�s<1.

Proof. Let s0=α/2(α+2) and note that 0<s0< 1
2 . By Sobolev inequalities, we have

‖f‖α+2�K̃‖(−Δ)s0/2f‖2 for some constant K̃>0 depending only on α. Next, we use that
�H�θH1/θ+(1−θ)�1/(1−θ) for any non-negative operator H�0 and any real numbers
�>0 and 0<θ<1. Evaluating this operator inequality on a function f and optimizing
with respect to �, we find that

〈f,Hf〉� 〈f,H1/θf〉θ‖f‖2(1−θ)
2 .

Given s>s0, we apply this to H=(−Δ)s0 with θ=s0/s. This yields

‖f‖α+2 � K̃‖(−Δ)s0/2f‖2 � K̃‖(−Δ)s/2f‖s0/s
2 ‖f‖1−s0/s

2 ,

whence the result follows with Kα=K̃α+2.
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Appendix B. Regularity, symmetry and monotonicity

Let 0<s<1 and 0<α<αmax(s) be fixed throughout this section. We consider (not nec-
essarily real-valued) solutions Q=Q(x) in the distributional sense of the equation

(−Δ)sQ+λQ−|Q|αQ= 0, (B.1)

where λ>0 is given. Again, we could assume that λ=1 by a rescaling argument, but we
keep λ>0 explicit below.

We start with a simple regularity result used in §5.

Lemma B.1. If Q∈L2(R)∩Lα+2(R) solves (B.1), then Q∈Hs(R).

Remark. Formally, this regularity result follows from integrating (B.1) against Q.
However, this argument is not legitimate, since we only assume that (−Δ)sQ∈H−2s(R)
a priori.

Proof. Using that Q=((−Δ)s+λ)−1|Q|αQ for Q∈L2(R)∩Lα+2(R), we deduce that

‖(−Δ)s/2Q‖2 =
∥∥∥∥ (−Δ)s/2

(−Δ)s+λ
|Q|αQ

∥∥∥∥
2

�λ

∥∥∥∥ 1
(−Δ)s/2+1

|Q|αQ

∥∥∥∥
2

.

Now, we invoke Lemma A.4, part (iii), with s0= 1
2s and use Young’s inequality. Indeed,

since 1+ 1
2 =1/p+(α+1)/(α+2) implies that 1−1/p=α/(α+2)<2s as α<αmax(s), we

deduce that ∥∥∥∥ 1
(−Δ)s/2+1

|Q|αQ

∥∥∥∥
2

�s

∥∥|Q|αQ
∥∥

(α+2)/(α+1)
= ‖Q‖α+1

α+2.

Therefore Q∈L2(R) satisfies ‖(−Δ)s/2Q‖2<∞ and hence Q∈Hs(R).

Next, we proceed with the following improved regularity result.

Lemma B.2. If Q∈Hs(R) solves (B.1), then Q∈H2s+1(R).

Remark B.3. If α�1 is an integer in equation (B.1), it is easy to see that Q∈Hk(R)
for all k�1. See also [22] for an analyticity result of Q(x) in this case.

Proof. First, we remark that Q∈L∞(R). Of course, this fact immediately follows
if s> 1

2 , due to Sobolev inequalities. To see that Q∈L∞(R) also when 0<s� 1
2 , we can

use the Lp-bounds for the resolvent ((−Δ)s+λ)−1 derived in Lemma A.4. Then, by
iterating the identity Q=((−Δ)s+λ)−1|Q|αQ sufficiently many times, we conclude that
‖Q‖∞<∞. (Alternatively, we could use that Qα∈Ks and use the remarks in §3 to infer
that Q∈L∞(R) holds.)
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Given Q∈L∞(R), we can now show that Q∈H2s+1(R) as follows. Since Q∈L2(R),
it remains to derive the bound ‖(−Δ)s+1/2Q‖2<∞. We treat the cases s� 1

2 and 0<s< 1
2

separately as follows.

Case s� 1
2 . As usual, this case is straightforward to handle. Indeed, we notice that

‖(−Δ)sQ‖2 =
∥∥∥∥ (−Δ)s

(−Δ)s+λ
|Q|αQ

∥∥∥∥
2

�λ

∥∥|Q|αQ
∥∥

2
�λ ‖Q‖α

∞‖Q‖2 <∞.

Hence we have Q∈H2s(R) and in particular Q∈H1(R), since s� 1
2 by assumption. Next,

we proceed to find that

‖(−Δ)s+1/2Q‖2 =
∥∥∥∥ (−Δ)s+1/2

(−Δ)s+λ
|Q|αQ

∥∥∥∥
2

�λ,α

∥∥∇(|Q|αQ)
∥∥

2
�λ ‖Q‖α

∞‖∇Q‖2 <∞,

where we used that
∣∣∇(|Q|αQ)

∣∣�(α+1)|Q|α|∇Q| a.e. in R. Thus, we have shown that
Q∈H2s+1(R), provided that s� 1

2 holds.

Case 0<s< 1
2 . First, we recall that the well-known identity

‖(−Δ)σ/2u‖22 =
22σ−1

√
π

Γ
(

1
2 (1+2σ)

)
|Γ(−σ)|

∫∫
R2

|u(x)−u(y)|2
|x−y|1+2σ

dx dy

for any 0<σ<1. From this we conclude that

‖(−Δ)σ/2(|Q|αQ)‖2 �α ‖Q‖α
∞‖(−Δ)σ/2Q‖2, (B.2)

where we use the pointwise inequality

∣∣|Q|α(x)Q(x)−|Q|α(y)Q(y)
∣∣ �α max{|Q|α(x), |Q|α(y)}|Q(x)−Q(y)|.

Recall that 0<s< 1
2 by assumption, and let N�2 be the unique integer such that

1/(N+1)�s<1/N . By using estimate (B.2) and Q∈L∞(R), we conclude that

‖(−Δ)(k+1)s/2Q‖2 =
∥∥∥∥ (−Δ)s/2(−Δ)ks/2

(−Δ)s+λ
|Q|αQ

∥∥∥∥
2

�k,s,λ,α ‖(−Δ)ks/2(|Q|αQ)‖2

�k,s,λ,α ‖Q‖α
∞‖(−Δ)ks/2Q‖2 �k,s,λ,α ‖(−Δ)ks/2Q‖2

for k=1, ..., N . By iteration and since Q∈L2(R), we thus obtain that

‖Qs‖H(N+1)s �s,k,α ‖Qs‖Hs <∞.

Since (N+1)s�1, we deduce that Q∈H1(R) holds. Given this fact, we can now conclude
that Q∈H2s+1(R) in the same fashion as done above for s� 1

2 .
The proof of Lemma B.2 is now complete.
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Next, we turn to symmetry and monotonicity results about solutions of (B.1). In-
deed, by adapting the recent moving plane arguments developed by L. Ma and L. Zhao
in [26] for the non-local Pekar–Choquard equation, we can derive the following symmetry
and monotonicity result.

Lemma B.4. If Q∈Hs(R), with Q�0 and Q �≡0, solves (B.1), then we have

Q(x) = Q̃(|x−x0|)

with some x0∈R and the function Q̃(r) satisfies Q̃(r)>0 and Q̃′(r)<0 for r>0.

Proof. To deduce Lemma B.4 with the slightly weaker statement that Q̃(r) is (not
necessarily strictly) decreasing, we can directly apply the moving plane arguments devel-
oped in [26]. More precisely, by following [26, §5], we only have to verify that the kernel
K=K(x−y) for the resolvent ((−Δ)s+1)−1 on R satisfies the following conditions:

(1) K(|z|) is real-valued and even;
(2) K(|z|)>0 for z∈R;
(3) K(|z|) is monotone decreasing in |z|.
Indeed, we have all these facts about K(x−y) due to Lemma A.4, which is based

on the properties of the heat kernel e−t(−Δ)s

on R.
Finally, we show that Q̃′(r)<0 for r>0. Without loss of generality, we may assume

that x0=0, and hence Q(x)=Q̃(|x|)>0. By differentiating (B.1) with respect to x, we
obtain

L+Q′= 0,

where
L+ = (−Δ)s+1−(α+1)Qα.

Note that Q′∈L2
odd(R) and Q′(x)=Q̃′(r)�0 for x=r>0, since Q̃(r) is monotone decreas-

ing. In view of Lemma C.3 applied to L+, we deduce that Q′∈L2
odd(R) is the ground state

eigenfunction of L+ restricted to L2
odd(R). Thus we either have Q′(x)<0 or Q′(x)>0

for x>0, where the latter alternative is clearly ruled out. Hence Q′(x)=Q̃′(r)<0 for
x=r>0.

Appendix C. The Kato class Ks and
Perron–Frobenius theory for H=(−Δ)s+V

In this section, we collect some basic results about fractional Schrödinger operators

H = (−Δ)s+V acting on L2(R).
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Although most of our discussion generalizes to higher space dimensions d�1, we shall
content ourselves with the 1-dimensional case. In §3, we defined Ks as the Kato-class
with respect to (−Δ)s; see Definition 3.1. In particular, the condition V ∈Ks guarantees
that the heat semi-group e−tH maps L2(R) to L∞(R)∩C0(R) for t>0. In particular, any
L2-eigenfunction of H is bounded and continuous. See [10] for more details.

First, we derive the following sufficient condition in terms of Lp-spaces for a potential
V to be in Ks. (Although the following result may be known in the literature, we were
not able to find a suitable reference.)

Lemma C.1. Let 0<s<1 and V : R!R be given. Then the following holds.
If 0<s� 1

2 and V ∈Lp(R) for some p>1/2s, then V ∈Ks. If 1
2 <s<1 and V ∈Lp(R)

for some p�1, then V ∈Ks.

Proof. In view of Definition 3.1, we have to show that

lim
E!∞

∥∥((−Δ)s+E)−1|V |∥∥
L∞!L∞ = 0. (C.1)

Using that

((−Δ)s+E)−1 =
∫ ∞

0

e−Ete−t(−Δ)s

dt

for E>0 and Hölder’s inequality, we obtain

∥∥((−Δ)s+E)−1|V |∥∥
L∞!L∞ � ‖V ‖p

∫ ∞

0

e−Et‖e−t(−Δ)s‖Lp!L∞ dt.

Next, let P (s)(x, t) denote the kernel of e−t(−Δ)s

on R. By Young’s inequality, we have
‖e−t(−Δ)s‖Lp!L∞ �‖P (s)( · , t)‖q with 1/p+1/q=1. Next, we find that

‖P (s)( · , t)‖q �C

(∫
|x|<t1/2s

t−q/2s dx+
∫
|x|�t1/2s

tq

|x|q(1+2s)
dx

)1/q

�Ct−(q−1)/2sq,

where the constant C>0 only depends on s. Indeed, this follows from the simple bound
P (s)(x, t)�Ct−1/2s for all x∈R from Lemma A.2, combined with the s-dependent bound
stated in Remark A.3 and the scaling property P (s)(x, t)=t−1/2sP (s)(t−1/2sx, 1) for t>0.
Since 1/p=(q−1)/q, the previous bound for ‖P (s)( · , t)‖q implies that

∥∥((−Δ)s+E)−1|V |∥∥
L∞!L∞ �C‖V ‖p

∫ ∞

0

e−Ett−1/2sp dt.

From this we deduce that (C.1) holds if p>1/2s for s� 1
2 , or if p�1 for s> 1

2 .

As a next result, we show that fractional Schrödinger operators H=(−Δ)s+V enjoy
the following Perron–Frobenius property.
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Lemma C.2. Let 0<s<1 and consider H=(−Δ)s+V acting on L2(R), where we
assume that V ∈Ks. Suppose that e=inf σ(H) is an eigenvalue. Then e is simple and
its corresponding eigenfunction ψ=ψ(x)>0 is positive (after replacing ψ by −ψ if nec-
essary).

Proof. By Lemma A.1, the operator e−t(−Δ)s

acting on L2(R) is positivity improving
for t>0. By this, we mean that if f�0 and f �≡0, then e−t(−Δ)s

f>0.
Next, we consider H=(−Δ)s+V acting on L2(R). Since V ∈Ks, it follows that

V is an infinitesimally bounded perturbation of (−Δ)s. Hence we can apply standard
Perron–Frobenius-type arguments (see, e.g., [32]) to deduce that the largest eigenvalue
of e−tH is simple and its corresponding eigenfunction strictly positive. By functional
calculus, this fact is equivalent to saying that the lowest eigenvalue of H is simple and
has a positive eigenfunction.

Lemma C.3. Let H=(−Δ)s+V be as in Lemma C.2. Moreover, we assume that
V =V (|x|) is even and let Hodd denote the restriction of H to L2

odd(R). If e=inf σ(Hodd)
is an eigenvalue, then e is simple and the corresponding odd eigenfunction ψ=ψ(x)
satisfies ψ(x)>0 for x>0 (after replacing ψ by −ψ if necessary).

Proof. This result follows by a slight twist of standard abstract Perron–Frobenius
arguments.

Let (−Δ)s
odd denote the restriction of (−Δ)s to L2

odd(R). By odd symmetry, we find
that e−t(−Δ)s

odd acts on f∈L2
odd(R) according to

(e−t(−Δ)s
oddf)(x) =

∫ ∞

0

Kt,s(x, y)f(y) dy. (C.2)

Here the integral kernel Kt,s(x, y) is given by

Kt,s(x, y) =P (s)(x−y, t)−P (s)(x+y, t), (C.3)

with P (s)(x, t) denoting the Fourier transform of e−t|ξ|2s

in R. Now, we claim that
Kt(x, y)>0 holds for 0<x, y<∞. Indeed, recall that P (s)(x, t) is even in x, positive
and strictly decreasing with respect to |x|; see Lemma A.1. Hence if we write z=x−y

and z′=x+y for x, y>0, we easily check that |z|<|z′| holds. Therefore we deduce that
Kt,s(x, y)>0 is a strictly positive kernel on L2(R+). Hence e−t(−Δ)s

odd can be identified
with a positivity improving operator on L2(R+).

Now, we consider Hodd=(−Δ)s
odd+V with V =V (|x|) even. Using standard Perron–

Frobenius arguments (see the proof of Lemma C.2 and the reference there), we deduce
that the largest eigenvalue of e−tHodd on L2(R+) is simple and its corresponding eigen-
function satisfies ψ0=ψ0(x)>0 for x>0. By functional calculus, this fact now implies
Lemma C.3 about Hodd.
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Appendix D. A topological lemma

The following auxiliary result was needed in §3.

Lemma D.1. Let x1<x2<x3<x4 be real numbers. Suppose that γ, γ̃: [0, 1]!R2
+ are

simple (i.e. injective) continuous curves such that
(i) γ(0)=(x1, 0), γ(1)=(x3, 0) and γ(t)∈R

2
+ for t∈(0, 1);

(ii) γ̃(0)=(x2, 0), γ(1)=(x4, 0) and γ(t)∈R
2
+ for t∈(0, 1).

Then γ and γ̃ intersect in R
2
+, i.e., we have γ(t)=γ̃(t∗) for some t, t∗∈(0, 1).

Proof. We define the continuous curve γ̂: [0, 1]!R2
+ by setting

γ̂(t) :=
{

γ(2t) for 0� t � 1
2 ,

((2t−1)(x1−x3)+x3, 0) for 1
2 <t � 1.

Note that γ̂(0)=γ̂(1)=(x1, 0). Clearly γ̂ is a Jordan curve (i.e., a simple and closed
continuous curve) in R

2. By Jordan’s curve theorem (see [27] for a simple proof based on
Brouwer’s fixed point theorem), the set A=R

2\γ̂([0, 1]) has exactly two open connected
components in R

2. Let us denote these two components by B and C in what follows.
Moreover, we have that B, say, is bounded, whereas the component C is unbounded.
Finally, the Jordan curve theorem states that γ̂([0, 1])=∂B=∂C holds. Next, we consider
the sets

Nε,+(x2) = {(x, y)∈R
2 :

√
(x−x2)2+y2 <ε and y > 0},

Nε,−(x2) = {(x, y)∈R
2 :

√
(x−x2)2+y2 <ε and y < 0},

where ε>0 is given. Since x1<x2<x3 by assumption and by construction of γ̂, we
have that (x2, 0)∈γ̂([0, 1]). Suppose now that (x̃, ỹ)∈Nε,−(x2), where ε>0 is arbitrary.
Clearly, we can connect the point (x̃, ỹ) with (x4, 0) by a continuous curve in the lower
half-plane without intersecting the Jordan curve γ̂. Furthermore, it is obvious that (x4, 0)
belongs to the unbounded component C (by connecting it to (x4, y) with y!−∞ without
intersecting γ̂). Hence, we conclude that Nε,−(x2)⊂C for any ε>0. On the other hand,
we recall that ∂A=γ̂([0, 1]). Since Nε,−(x2)∩B=∅ for all ε>0, we find that N+,ε(x2)⊂B

for some ε>0 sufficiently small.
Now we conclude as follows. First, we note that Nε,+(x4)⊂C for ε>0 sufficiently

small, since C is open and (x4, 0)∈C. Second, from γ̃(0)=(x2, 0) and γ̃(1)=(x4, 0) and
by continuity, we deduce from γ̃(t)∈R

2
+ for t∈(0, 1) that

γ̃(t)∈N+,ε(x2)⊂B for t close to 0 and γ̃(t)∈Nε,+(x4)⊂C for t close to 1

for some ε>0 sufficiently small. Hence there exists t∗∈(0, 1) such that γ̃(t∗)∈γ̂([0, 1]).
But since γ̃(t∗) lies in the upper half-plane R

2
+, we actually deduce that γ̃ must intersect

γ in R
2
+.
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Appendix E. Regularity of F

We define the map

F (Q,λ, s) :=

⎛
⎝ Q− 1

(−Δ)s+λ
|Q|αQ

‖Q‖α+2
α+2−c0

⎞
⎠ , (E.1)

for Q∈L2(R)∩Lα+2(R), s0�s<1 and λ>0. Here c0∈R is some fixed constant.

Lemma E.1. Let 0<s0<1 and 0<α<αmax(s0). Consider the real Banach space
Xα=L2(R)∩Lα+2(R) equipped with the norm ‖ · ‖Xα =‖ · ‖2+‖ · ‖α+2. Define F (Q,λ, s)
as above. Then the map F : Xα×R+×[s0, 1)!Xα×R is C1.

Proof. We start by showing that F : Xα×R+×[s0, 1)!Xα×R is well defined. From
Lemma A.4 together with Young’s and Hölder’s inequalities we find that

∥∥∥∥ 1
(−Δ)s+λ

|Q|αf

∥∥∥∥
q

�λ,s,p ‖Q‖α
r ‖f‖r, (E.2)

where 1<p<∞ and 1�q, r�∞ satisfy

1
q

+1− 1
p

=
α+1

r
and 1− 1

p
< 2s. (E.3)

In particular, if we choose r=α+2 and q=2, we find that

1− 1
p

=
α

2(α+2)
<s0 < 2s,

since α<αmax(s0). Furthermore, by setting r=α+2 and q=α+2, we see that

1− 1
p

=
α

α+2
< 2s0 � 2s,

due to α<αmax(s0). Hence we can apply (E.2) to conclude that F (Q,λ, s) is well defined.

Next, we turn to the Fréchet differentiability of F . (Recall that we restrict to real-
valued functions.) First, we consider the second component of the map F =(F1, F2),
which is given by

F2(Q,λ, s) := ‖Q‖α+2
α+2−c0,

with some fixed constant c0∈R. It is easy to see that F2(Q,λ, s) is Fréchet differentiable
with

∂F2

∂Q
= (α+2)〈|Q|αQ, · 〉, ∂F2

∂λ
= 0 and

∂F2

∂s
= 0,
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where 〈f, · 〉 denotes the map g �!〈f, g〉. Moreover, it is straightforward to check that
∂F2/∂Q depends continuously on Q with respect to the topology in X=L2(R)∩Lα+2(R).
Let us now turn to the Fréchet differentiability of the first component

F1(Q,λ, s) := Q− 1
(−Δ)s+λ

|Q|αQ.

We claim that

∂F1

∂Q
= 1− 1

(−Δ)s+λ
(α+1)|Q|α,

∂F1

∂λ
=

1
((−Δ)s+λ)2

|Q|αQ

and
∂F1

∂s
=

(−Δ)s log(−Δ)
((−Δ)s+λ)2

|Q|αQ.

Indeed, it follows from standard arguments (e.g., Sobolev embeddings and Hölder’s in-
equality) combined with (E.2) that the derivatives ∂F1/∂Q, ∂F1/∂λ and ∂F1/∂s exist
and are given as above. For instance, to prove this claim for ∂F1/∂s we argue as follows.
Let (Q,λ, s)∈X×R+×[s0, 1) be fixed and suppose that s+h∈[s0, 1) with h∈R and h �=0.
We have to show that

F1(Q,λ, s+h)−F1(Q,λ, s) =
∂F1

∂s
(Q,λ, s)h+r(h),

where |h|−1r(h)!0 in Xα as h!0. To show this fact, we consider the function

f(ξ, s) :=
1

|ξ|2s+λ
for ξ ∈R and s∈ [s0, 1).

An elementary calculation yields

∂f

∂s
=−|ξ|

2s log |ξ|2
(|ξ|2s+λ)2

and
∂2f

∂s2
= 2

|ξ|4s(log |ξ|2)2
(|ξ|2s+λ)3

− |ξ|
2s(log |ξ|2)2
(|ξ|2s+λ)2

.

In particular, for any 1
2s0>σ>0 and s�s0, we have the following bounds:

∣∣∣∣∂f

∂s

∣∣∣∣ �s0,σ
|ξ|2s+σ+1
(|ξ|2s+λ)2

�σ,s0,λ
1

|ξ|2s0−σ+1
,∣∣∣∣∂2f

∂s2

∣∣∣∣ �s0,σ
|ξ|4s+σ+1
(|ξ|2s+λ)3

+
|ξ|2s+σ+1
(|ξ|2s+λ)2

�δ,s0,σ
1

|ξ|2s0−σ+1
.

Next, by Sobolev inequalities, we obtain

‖u‖Xα �α ‖((−Δ)sα/2+1)u‖2 with sα =
α

2(α+2)
. (E.4)
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Note that sα<s0 since α<αmax(s0). Now, by Plancherel’s identity and Taylor’s theorem
applied to f(ξ, s) and estimate (E.2), we deduce (with ∂F1/∂s given above) the following
estimate:∥∥∥∥F1(Q,λ, s+h)−F1(Q,λ, s)− ∂F1

∂s
(Q,λ, s)h

∥∥∥∥
Xα

�α h2 sup
ξ∈R

∣∣∣∣(|ξ|sα +1)
∂2f

∂s2
(ξ, s)(|ξ|sα+ε+1)

∣∣∣∣
∥∥∥∥ 1

(−Δ)(sα+ε)/2+1
|Q|αQ

∥∥∥∥
2

�α,λ,s0,σ h2 sup
ξ∈R

( |ξ|2sα+σ+1
|ξ|2s0−σ+1

)
‖Q‖α+1

α+2 �α,λ,s0,σ h2‖Q‖α+1
Xα ,

with some small constant σ>0 such that s0>sα+2σ holds, which is possible since sα<s0.
Also, we used above that

∥∥((−Δ)(sα+ε)/2+1)−1|Q|α|Q|∥∥
2
�sα,ε‖Q‖α+1

α+2 by (E.2). Thus
we conclude that ∂F1/∂s exists and is given as claimed.

Let us now turn to the continuity of ∂F1/∂Q, ∂F1/∂λ and ∂F1/∂s. Again, this
follows from standard arguments in combination with (E.2). For example, to show that
∂F1/∂Q depends continuously on (Q,λ, s), we can argue as follows. Let (Q,λ, s)∈Xα×
R+×[s0, 1) be fixed and suppose that ε>0 is given. We have to find δ>0 such that∥∥∥∥

(
∂F1

∂Q
(Q,λ, s)− ∂F1

∂Q
(Q̃, λ̃, s̃)

)
f

∥∥∥∥
Xα

� ε‖f‖Xα , (E.5)

whenever ‖Q−Q̃‖Xα +|λ−λ̃|+|s−s̃|�δ and (Q̃, λ̃, s̃)∈Xα×R+×[s0, 1). Indeed, by using
(E.4), we see that (E.5) follows if we can show that

‖(As,λ|Q|α−As̃,λ̃|Q̃|α)f‖2 � ε‖f‖Xα , (E.6)

where we set

As,λ :=
(−Δ)sα/2+1
(−Δ)s+λ

.

Next, we note that As̃,λ̃=As̃,λ−(λ−λ̃)Bs̃,λ,λ̃ with

Bs̃,λ,λ̃ =
(−Δ)sα/2+1

((−Δ)s̃+λ̃)((−Δ)s̃+λ)
.

Furthermore, we observe that

As,λ|Q|α−As̃,λ|Q̃|α = (As,λ−As̃,λ)|Q|α+As,λ(|Q̃|α−|Q|α).

Hence the left-hand side of (E.6) can be estimated as follows

LHS of (E.6) � I+II+III,
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where

I =
∥∥(As,λ−As̃,λ)|Q|αf

∥∥
2
, II =

∥∥As,λ(|Q̃|α−|Q|α)f
∥∥

2

and

III =
∥∥(λ−λ̃)Bs̃,λ,λ̃|Q̃|αf

∥∥
2
.

To estimate I, we recall the bounds for f(ξ, s) derived above and we find (with σ>0 so
small that s0>sα+2σ) the following bound

I � sup
ξ∈R

∣∣(f(ξ, s)−f(ξ, s̃))(|ξ|sα +1)(|ξ|sα+σ+1)
∣∣∥∥∥∥ 1

(−Δ)(sα+σ)/2+1
|Q|αf

∥∥∥∥
2

�s0,α,σ,λ |s−s̃| sup
ξ∈R

( |ξ|2sα+σ+1
|ξ|2s0−σ+1

)
‖Q‖α

α+2‖f‖α+2

�s0,α,σ,λ |s−s̃| ‖Q‖α
Xα‖f‖Xα

� 1
3ε‖f‖Xα ,

provided that |s−s̃|�δ for some δ>0. Here we also used (E.2).
To control II, we choose again σ>0 so small that s0>sα+σ, which yields

II �s0,α,σ,λ sup
ξ∈R

∣∣∣∣ (|ξ|sα +1)(|ξ|sα+σ+1)
|ξ|2s0−σ+λ

∣∣∣∣
∥∥∥∥ 1

(−Δ)(sα+σ)/2+1
(|Q̃|α−|Q|α)f

∥∥∥∥
2

�s0,α,σ,λ

∥∥|Q̃|α−|Q|α∥∥
(α+2)/α

‖f‖α+2.

Suppose now that 0<α�1. Then
∣∣|Q̃|α−|Q|α∣∣�|Q̃−Q|α a.e. in R. On the other hand, if

we have α>1, we deduce that
∣∣|Q̃|α−|Q|α∣∣�α(|Q̃|α−1+|Q|α−1)|Q̃−Q| a.e. in R. Hence,

in either case, we can apply Hölder’s inequality to conclude that

II �s0,α,σ,λ,‖Q‖Xα ‖Q̃−Q‖min{α,1}
Xα ‖f‖Xα � 1

3ε‖f‖Xα ,

provided that ‖Q̃−Q‖Xα �δ for some δ>0.
Finally, we remark that we readily deduce that

III �s,α,λ |λ̃−λ| ‖Q‖α
α+2‖f‖α+2 � 1

3ε‖f‖Xα ,

provided that |λ̃−λ|�δ for some δ>0. This completes the proof that ∂F1/∂Q depends
continuously on (Q,λ, s).

The arguments that show continuity for the derivatives ∂F1/∂λ and ∂F2/∂s are very
similar to the estimates given above. Therefore we omit the details, and the proof of
Lemma E.1 is now complete.
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Note added in proof

Recently, the results of this paper have been generalized to N�2 dimensions by the
authors together with L. Silvestre in [15].
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