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UNIQUENESS OF NONNEGATIVE MATRIX FACTORIZATIONS BY
RIGIDITY THEORY\ast 
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Abstract. Nonnegative matrix factorizations are often encountered in data mining applications
where they are used to explain datasets by a small number of parts. For many of these applications
it is desirable that there exists a unique nonnegative matrix factorization up to trivial modifications
given by scalings and permutations. This means that model parameters are uniquely identifiable
from the data. Rigidity theory of bar and joint frameworks is a field that studies uniqueness of
point configurations given some of the pairwise distances. The goal of this paper is to use ideas from
rigidity theory to study uniqueness of nonnegative matrix factorizations in the case when nonnegative
rank of a matrix is equal to its rank. We characterize infinitesimally rigid nonnegative factorizations,
prove that a nonnegative factorization is infinitesimally rigid if and only if it is locally rigid and a
certain matrix achieves its maximal possible Kruskal rank, and show that locally rigid nonnegative
factorizations can be extended to globally rigid nonnegative factorizations. These results give so far
the strongest necessary condition for the uniqueness of a nonnegative factorization. We also explore
connections between rigidity of nonnegative factorizations and boundaries of the set of matrices of
fixed nonnegative rank. Finally we extend these results from nonnegative factorizations to completely
positive factorizations.

Key words. nonnegative matrix factorizations, rigidity theory, semialgebraic sets, completely
positive factorizations
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1. Introduction. Nonnegative matrix factorization of size r decomposes a ma-
trix M \in \BbbR m\times n

\geq 0 as M = AB, where A \in \BbbR m\times r
\geq 0 and B \in \BbbR r\times n

\geq 0 . The smallest r \in \BbbN 
such that M has a size-r nonnegative factorization is called the nonnegative rank
of M . Approximations by matrices of low nonnegative rank are ubiquitous in data
mining applications where they are used to explain a dataset by a small number of
parts, the number of parts being equal to nonnegative rank of the approximation.
For example, Lee and Seung [20] used nonnegative matrix factorizations for studying
databases of face images. In this application, rows of M correspond to different pixels
of an image and columns of M correspond to different images. A size-r nonnegative
factorization finds r basis images (corresponding to columns of A) such that every
original image is a nonnegative linear combination of these basis images (nonnega-
tive coefficients are given by columns of B). Another popular application is topic
modeling [32], where the matrix M gives frequencies of words in documents, and
a nonnegative matrix factorization decomposes this matrix with respect to topics.
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Nonnegative matrix factorizations and nonnegative rank appear also in complexity
theory [33], computational biology [8], music analysis [27], blind source separation [6],
and spectral data analysis [24]. For many of these applications it is desirable that
there exists an essentially unique nonnegative factorization that explains the data, i.e.,
model parameters are identifiable from the data. We say essentially unique because
nonnegative matrix factorizations are never completely unique: Given a nonnegative
factorization AB, one obtains a new factorization (AC)(C - 1B) by multiplying A and
B by a scaling or permutation matrix and its inverse correspondingly.

The uniqueness of nonnegative factorizations was first addressed by Donoho and
Stodden [10] for black and white images with P parts such that each part can appear
in A articulations. They showed that separability and complete factorial sampling
guarantee uniqueness of nonnegative matrix factorization. Separability requires that
one of the factors contains the r \times r identity matrix as a submatrix, and complete
factorial sampling requires that the database contains all AP images, where each
of the P parts appears in each of the A articulations. Another sufficient condition
appears in the work of Gillis [15] and requires M to have r nonzero columns each
with r  - 1 zero entries with different sparsity patterns. Theis, Stadlthanner, and
Tanaka [28] prove uniqueness under a sparsity assumption on the nonnegative factors.
Ding et al. show that nonnegative matrix factorizations are unique assuming that
one of the factors is orthogonal [9]. Many authors have established guarantees for
identifiability under volume minimization or maximization of the polytope associated
to one of the factors [4, 31, 13, 21, 11]. The first necessary condition was given by
Laurberg et al. [19] and requires the rows of A and columns of B to be boundary
closed. More precisely, for every i \not = j \in [r] there must exist a row ak of A such that
aki = 0 and akj \not = 0 (and similarly for columns of B). A comprehensive review on
uniqueness of nonnegative matrix factorizations is given by Fu et al. [12]. Despite
the recent progress on uniqueness of nonnegative matrix factorizations, the current
sufficient conditions either are relatively restrictive or require additional assumptions
on nonnegative factors, and little is known about necessary conditions.

The goal of this paper is to study the uniqueness of nonnegative matrix factor-
izations by building on the rigidity theory of bar and joint frameworks, which studies
uniqueness of point configurations given some pairwise distances between the points.
This approach has already been successfully adapted to investigating the uniqueness
of low-rank matrix completion [26]. Similarly to rigidity theory, we define infinitesi-
mally, locally, and globally rigid nonnegative matrix factorizations. We consider the
case when nonnegative rank is equal to rank. Before going into more details, we
give a brief overview of the implications between these notions. Global rigidity is
the same as the uniqueness of a nonnegative matrix factorization. Local rigidity is
a necessary condition for global rigidity, and infinitesimal rigidity is a sufficient con-
dition for local rigidity. We give a characterization of infinitesimal rigidity that can
be checked computationally (Proposition 3.3). We show that infinitesimal rigidity
implies local rigidity and that a locally rigid nonnegative matrix factorization that
is not infinitesimally rigid implies that the Kruskal rank of a specified matrix is not
maximal (Proposition 4.8). These results lead to Algorithm 4.1 for determining local
rigidity of a nonnegative matrix factorization (one possible output of the algorithm is
that local rigidity of the matrix cannot be determined) and to a necessary condition
for uniqueness of nonnegative factorizations that strengthens the necessary condition
in [19, Theorem 3] (Corollary 4.10). A next step will be to use rigidity theory to
study sufficient conditions for global rigidity. To do this, we believe that one has to
come up with an analogue of a stress matrix in rigidity theory, similarly to how we
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136 ROBERT KRONE AND KAIE KUBJAS

have developed an analogue of a rigidity matrix in this work.
In more detail, in the rigidity theory of frameworks and low-rank matrix com-

pletion, infinitesimal motions are required to have derivatives of pairwise distances
or inner products equal to zero. A framework is called infinitesimally rigid if all its
infinitesimal motions are trivial ones. Checking infinitesimal rigidity is equivalent to
checking the rank of a rigidity or a completion matrix. In the nonnegative matrix
factorization case, infinitesimal motions are additionally required to preserve nonneg-
ativity of factors. Now checking infinitesimal rigidity amounts to checking whether the
positive span of a matrix is isomorphic to a specified linear subspace of \BbbR r2 (Propo-
sition 3.3). The difference with the frameworks and low-rank matrix completion case
is that instead of a linear span one has to consider the positive span of a rigidity
matrix. Hence a linear algebra problem becomes a polyhedral geometry problem. We
also give purely combinatorial necessary conditions for infinitesimal rigidity that fol-
low from this characterization (Theorem 3.4 and Lemmas 3.9 and 3.10). Infinitesimal
rigidity always implies local rigidity, and although the converse is not always true, as
we will see in Example 4.11, if a nonnegative factorization is locally rigid and a cer-
tain matrix achieves its maximal possible Kruskal rank, then it is infinitesimally rigid
(Proposition 4.8). We also show that every locally rigid nonnegative factorization can
be extended to globally rigid nonnegative factorization by adding at most r strictly
positive rows to A and at most r strictly positive columns to B (Corollary 4.7).

Matrices of size m\times n and nonnegative rank at most r form a semialgebraic set,
which we denote by \scrM m\times n

\leq r . We explore connections between rigidity of nonnegative

matrix factorizations and boundaries of the set \scrM m\times n
\leq r . The first motivation for this

is that a matrix with a unique nonnegative matrix factorization always lies on the
boundary of \scrM m\times n

\leq r . The second motivation is that understanding boundaries of a
semialgebraic set is often easier than deriving a semialgebraic description of the set,
and sometimes boundaries provide the first step towards obtaining a semialgebraic
description. This was the case for matrices of nonnegative rank at most 3 [18]. This
semialgebraic description gives an algorithm, polynomial in m and n, to decide if a
rank-3 matrix has nonnegative rank 3 by checking one condition for each possible
boundary component. A semialgebraic description of the set \scrM m\times n

\leq r would in general
allow one to check directly whether a matrix has nonnegative rank at most r with-
out constructing a nonnegative factorization of the matrix. Neither boundaries nor
a semialgebraic description of \scrM m\times n

\leq r is known for r \geq 4. Vavasis showed that com-
puting nonnegative rank is NP-hard [30], and the best known algorithm for deciding

whether an m\times n matrix has nonnegative rank at most r runs in time (mn)O(r2), as
shown in the work of Moitra [22]. A necessary and sufficient condition for a matrix
to lie on the boundary of \scrM m\times n

\leq 3 is that it contains a zero or all its size-3 nonnegative
factorizations are infinitesimally rigid [23]. This is not true for r > 3. Example 4.11
provides a nonnegative matrix factorization that is locally and globally rigid, and
hence on the boundary, but not infinitesimally rigid. Furthermore, in section 5.2 we
will see matrices on the boundary of \scrM m\times n

\leq r with nonnegative factorizations that are
not even locally rigid.

We finish the paper by extending our results to completely positive factorizations.
Let M be a nonnegative real symmetric matrix. The completely positive rank of M
is the smallest r such that M = AAT for some nonnegative n \times r matrix A [1]. We
consider real symmetric matrices whose completely positive rank is equal to their rank.
We define infinitesimally, locally, and globally rigid completely positive factorizations,
and show that results analogous to the nonnegative factorizations case hold.
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The outline of our paper is the following. In section 2, we give preliminaries
on rigidity theory (section 2.1), geometric characterizations of nonnegative rank via
nested polytopes (section 2.2), and nonnegative rank boundaries (section 2.3). In
section 3, we study infinitesimally rigid factorizations. In section 4, we study locally
rigid nonnegative factorizations. In section 5, we study connections between rigidity
and boundaries of \scrM m\times n

\leq r . In section 6, we adapt these results on nonnegative rank
of general matrices to the case of completely positive rank on symmetric matrices. In
Appendix A, we show that in the case of 5 \times 5 matrices of nonnegative rank 4, for
every zero pattern that satisfies the necessary condition in Theorem 3.4, there exists
an infinitesimally rigid nonnegative factorization (A,B) that realizes the zero pattern.
Code for computations in this paper is available at

https://github.com/kaiekubjas/nonnegative-rank-four-boundaries

2. Preliminaries.

2.1. Rigidity theory. The goal of rigidity theory is to determine whether n
points in \BbbR d can be determined uniquely up to rigid transformations (translations,
rotations, reflections) given a partial set of pairwise distances between them. We will
introduce rigidity theory following [26, section 2] and discuss the connection between
the rigidity theory and uniqueness of low-rank matrix completions established by
Singer and Cucuringu [26, sections 3 and 4]. This subsection can be skipped at the
first reading and used as a reference.

A bar and joint framework G(p) in \BbbR d consists of a graph G = (V,E), a set of
distances \{ dij \in \BbbR \geq 0 : (i, j) \in E\} , and a set of points p1, . . . , p| V | \in \BbbR d such that
\| pi - pj\| = dij for all (i, j) \in E. One can think of the distance constraints as bars that
are joining corresponding points. Consider a motion of the bar and joint framework
parametrized by t, i.e., pi(t) is the position of the ith point at time t. To preserve the
distances given by E, the motion has to satisfy

d

dt
\| pi  - pj\| 2 = 0 for all (i, j) \in E.

Denoting the velocity of pi by \.pi for i = 1, . . . , | V | , these constraints can be rewritten
as

(2.1) (pi  - pj)
T ( \.pi  - \.pj) = 0 for all (i, j) \in E,

or in matrix form as RG(p) \.p = 0, where RG(p) is an | E| \times n| V | matrix and \.p =
( \.pT1 , . . . , \.p

T
n )

T . The matrix RG(p) is called the rigidity matrix of the bar and joint
framework.

A motion satisfying (2.1) is called an infinitesimal motion. Trivial motions are
motions given by rotation and translation of the entire framework, also referred to
as rigid transformations. A trivial motion satisfies \.pi = Dpi + b with D \in \BbbR d\times d

skew-symmetric and b \in \BbbR d, and every trivial motion is infinitesimal. A bar and
joint framework is called infinitesimally rigid if all its infinitesimal motions are trivial.

There are (d - 1)d
2 degrees of freedom choosing a skew-symmetric matrix D (rotations)

and d degrees of freedom choosing a vector b (translations). Every trivial motion is
in the kernel of the rigidity matrix RG(p), so the framework is infinitesimally rigid if

and only if the dimension of the kernel of the rigidity matrix RG(p) is equal to
d(d+1)

2 .
A framework G(p) is locally rigid if there exists a neighborhood \scrN of the frame-

work G(p) such that G(p) is the only framework up to rigid transformations with the
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138 ROBERT KRONE AND KAIE KUBJAS

same distance constraints in the neighborhood \scrN . A framework G(p) is regular if
rankRG(p) = max\{ rankRG(q) : \| qi  - qj\| = dij for all (i, j) \in E\} .

Theorem 2.1 ([2]). A framework is infinitesimally rigid if and only if it is regular
and locally rigid.

A framework is called generic if the coordinates of the points p1, . . . , p| V | are
algebraically independent over \BbbQ . Any generic framework is regular. Theorem 2.1
implies that local rigidity is a generic property in the sense that if generic G(p) is
locally rigid, then most frameworks G(q) are locally rigid. Hence one can talk about
local rigidity of graphs. This also allows one to check with probability one whether a
framework is locally rigid by choosing a random configuration p1, . . . , p| V | and checking

whether the dimension of the kernel of the rigidity matrix RG(p) is equal to
d(d+1)

2 .
Finally, a framework G(p) is globally rigid if all other frameworks in \BbbR d that have

the same distance constraints are related to G(p) by rigid transformations. Global
rigidity is also a generic property, and there are necessary and sufficient results using
ranks of stress matrices for checking generic global rigidity. However, since we focus
on infinitesimal and local rigidity of nonnegative factorizations in this paper, we do
not present them here.

Singer and Cucuringu established a connection between the rigidity theory and
low-rank matrix completion [26]. Let M be an m\times n matrix of rank r, and let (A,B)
give a rank-r factorization of M . Let the rows of A be aT1 , . . . , a

T
m \in \BbbR r and the

columns of B be b1, . . . , bn \in \BbbR r. Then Mij = aTi bj .
The observed entries of M define a bipartite graph G = (V,E) on m+n vertices.

The vertices V correspond to a1, . . . , am, b1, . . . , bn and the edges E correspond to
observed entries of M . Instead of distance constraints, one fixes inner products Mij =
aTi bj for (i, j) \in E. The graph G, the inner products \{ Mij \in \BbbR : (i, j) \in E\} , and
the points a1, . . . , am, b1, . . . , bn \in \BbbR r define a framework. Consider a deformation
of a framework parametrized by t. To preserve the inner products Mij = aTi bj for
(i, j) \in E, the deformation has to satisfy

(2.2) aTi
\.bj + \.aTi bj = 0 for all (i, j) \in E,

where \.a and \.b are velocities of a and b. The same constraints can be written in a
matrix form using the r \times (m+ n) completion matrix CG(a, b).

A deformation satisfying (2.2) is called an infinitesimal deformation. A trivial
deformation is one given by \.ai = DTai and \.bj =  - Dbj with D \in \BbbR r\times r, and every
trivial deformation is infinitesimal. The framework G(a, b) is called infinitesimally
completable if all its infinitesimal motions are trivial. Since there are r2 degrees of
freedom choosing an invertible matrix D and every trivial deformation is in the kernel
of the completion matrix CG(a, b), then a nontrivial infinitesimal deformation exists
if and only if the dimension of the kernel of the completion matrix CG(a, b) is equal
to r2.

A framework G(p) is locally completable if there exists a neighborhood \scrN of the
framework G(p) such that G(p) is the only framework in the neighborhood \scrN up
to trivial deformations with the same inner products. As in the rigidity theory of
bar and joint frameworks, local completability of a generic framework is equivalent
to infinitesimal completability, and hence local completability is a generic property.
Therefore one can talk about local completability of a bipartite graph. For the low-
rank matrix completion problem this implies that although one does not know the
factor matrices A and B, one can check with probability one whether a partial matrix
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is locally completable by checking whether the partial matrix with the same underlying
graph constructed from generic A and B is locally completable.

A framework is globally completable if it is the only framework up to trivial
deformations giving the same inner products. Singer and Cucuringu also conjecture
a sufficient condition for global completability using rank of stress matrices.

In sections 3 and 4, we will establish the connection between rigidity theory and
nonnegative matrix factorizations. Although a framework is defined similarly to the
low-rank matrix completion setting, the definition of infinitesimal rigidity is different
because of the nonnegativity requirement of the factorization. Essentially, a linear
algebra problem becomes a convex geometry problem: Instead of computing the span
of a completion matrix, one has to compute the conic hull of a factorization matrix.

2.2. Geometric characterization of nonnegative rank. Nonnegative rank
can be characterized geometrically via nested polyhedral cones. We describe two
equivalent constructions from the literature for matrices of equal rank and nonnegative
rank.

The first description is due to Cohen and Rothblum [7]. It defines P as the convex
cone spanned by the columns of M and Q as the intersection of \BbbR m

\geq 0 and the column
span of M . Let (A,B) be a rank-r factorization of M , and let \Delta be the simplicial cone
spanned by the columns of A. Since A and M have the same column span, the cones
P , \Delta , and Q all span the same dimension-r subspace of \BbbR m. If A is nonnegative,
then \Delta is contained in the positive orthant, so \Delta \subseteq Q. If B is nonnegative, then
each column of M is a conic combination of columns of A with coefficients given by
columns of B, hence P \subseteq \Delta . Conversely, one can construct a size-r nonnegative
factorization (A,B) from a dimension-r simplicial cone \Delta that is nested between P
and Q by taking the generating rays of \Delta to be the columns of A. Therefore the
matrix M has nonnegative rank r if and only if there exists a simplicial cone \Delta such
that P \subseteq \Delta \subseteq Q. Gillis and Glineur defined the restricted nonnegative rank of M as
the smallest number of rays of a cone that can be nested between P and Q [16], which
is an upper bound on the nonnegative rank in the case that the rank and nonnegative
rank differ.

The work of Vavasis [30] presents a second description of the same nested cones
up to a linear transformation. Fix a particular rank factorization (A,B) of M (not
necessarily nonnegative). All rank factorizations of M have the form (AC,C - 1B),
where C \in \BbbR r\times r is an invertible matrix. Let P be the cone spanned by the columns of
B; let \Delta be the cone spanned by the columns of C; let Q be the cone that is defined
by \{ x \in \BbbR r : Ax \geq 0\} . The linear map A sends these three polyhedral cones to their
counterparts in the first construction.

Zeros in a nonnegative factorization correspond to incidence relations between
the three cones P , \Delta , and Q. In particular, a zero in A means that a ray of \Delta lies on
a facet of Q. A zero in B means that a ray of P lies on a facet of \Delta .

One often considers nested polytopes instead of nested cones. One gets nested
polytopes from nested cones by intersecting the cones with an affine plane, which is
usually defined by setting the sum of the coordinates to 1.

Below we present a different geometric picture to help understand when a rank-
r matrix has nonnegative rank r and specifically when it lies on the boundary of
the semialgebraic set. We will, however, at times refer to the nested polytopes
P \subseteq \Delta \subseteq Q.

2.3. Nonnegative rank boundaries. Fixing m, n, and r, let \BbbR m\times n denote the
set of real m\times n matrices, and let \BbbR m\times n

\leq r denote the subset with rank at most r. The
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set \BbbR m\times n
\leq r is algebraic, meaning it is cut out by polynomial equations on the entries,

namely, by the (r + 1)\times (r + 1) minors. There is an algebraic map

\mu : \BbbR m\times r \times \BbbR r\times n \rightarrow \BbbR m\times n

given by matrix multiplication, and \BbbR m\times n
\leq r is its image. Let \scrM m\times n

\leq r be the subset of

\BbbR m\times n
\leq r consisting of the matrices that also have nonnegative rank at most r. This

set is the image of \mu restricted to the m \times r and r \times n matrices with nonnegative
entries. Certain combinations of these inequalities when mapped forward produce the
polynomial inequalities that describe \scrM m\times n

\leq r as a subset of \BbbR m\times n
\leq r (see Proposition

5.3). A set such as \scrM m\times n
\leq r that is described by a finite number of polynomial equa-

tions and inequalities is called a semialgebraic set. Its relative boundary has a finite
number of (algebraic) boundary components, each of which having one of the defining
equations attaining equality. The boundary components are themselves irreducible
semialgebraic sets, each of dimension one lower than \scrM m\times n

\leq r . Some of the boundary

components of \scrM m\times n
\leq r are straightforward: for a matrix M to have a nonnegative

rank, each of its entries must be greater than or equal to zero. These inequalities
define the trivial boundary components of \scrM m\times n

\leq r .

Some boundary components of \scrM m\times n
\leq r consist of matrices that have infinitesi-

mally rigid factorizations. Such factorizations are locally unique, so they are impor-
tant for understanding which matrices have unique nonnegative factorizations. Using
the ideas of rigidity theory, we show in section 3 that infinitesimally rigid factoriza-
tions are characterized by certain patterns of zero entries in the factors. We give
several necessary conditions on zero patterns that can result in infinitesimally rigid
factorizations. These results generalize the previously known full characterization of
such zero patterns for r = 3 [18]. All boundary components of \scrM m\times n

\leq 3 come from
infinitesimally rigid factorizations, and there is only one zero pattern up to row and
column permutation and transposition. For higher rank, characterizing these zero
patterns is more complicated. In addition, we show in sections 4.2 and 5.2 that for
r \geq 4 there are other kinds of boundary components with no analogue in the rank-3
case, and some of these components do not lead to locally unique factorizations.

We will show in section 5 that when a matrix M lies in the relative interior of
\scrM m\times n

\leq r , the set of rank-r nonnegative factorizations has the full dimension, so it is
not uniquely decomposable. On the other hand, if M is positive and lies on the rel-
ative boundary, then the nonnegativity constraints cut down the set of nonnegative
factorizations to lower dimension. On some types of boundary components, the set of
factorizations of M is cut down to a single point, meaning the factorization is locally
unique. Moreover if M lies on no other boundary components, this factorization is
globally unique. Understanding the boundary components of \scrM m\times n

\leq r then also pro-
vides an understanding of which matrices have unique nonnegative factorizations. The
equations and inequalities describing the boundary components of each type provide
semialgebraic conditions that can be checked on a matrix of rank r to determine if it
has a unique nonnegative rank-r factorization.

3. Infinitesimally rigid factorizations. In this section, we will establish a
connection between rigidity theory and nonnegative matrix factorizations. The setup
is similar to the low-rank matrix completion case, although there are three main
differences: The graph G is always a complete bipartite graph, there are additional
nonnegativity constraints, and the space of ``trivial"" deformations is much smaller.
We will assume that nonnegative rank of a matrix is equal to its rank.
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Let G = (V,E) be the complete bipartite graph on m + n vertices. As before,
the vertices V correspond to a1, . . . , am, b1, . . . , bn and the edges E correspond to
the entries of a matrix M . We consider an infinitesimal motion of a framework
parametrized by t. In addition to preserving the inner products Mij = aTi bj for all
i \in [m], j \in [n], also ai and bj need to stay positive. Hence an infinitesimal motion
has to satisfy

aTi
\.bj + \.aTi bj = 0 for (i, j) \in [m]\times [n],(3.1)

ai + t \.ai \geq 0 for i \in [m] and t \in [0, \epsilon ), bj + t\.bj \geq 0 for j \in [n] and t \in [0, \epsilon )(3.2)

for some \epsilon > 0.
As before, let A and B be the rank-r matrices with rows aT1 , . . . , a

T
m and col-

umns b1, . . . , bn, respectively. Similarly, define \.A and \.B to be the matrices with rows
\.aT1 , . . . , \.a

T
m and columns \.b1, . . . , \.bn, respectively. Then M = AB and (3.1) can be

expressed as A \.B + \.AB = 0. For the equation to hold, the column span of \.A must be
contained in that ofA, and similarly for the row spans of \.B andB. Therefore \.A = AD1

and \.B =  - D2B for r \times r matrices D1 and D2. Moreover  - AD2B +AD1B = 0, and
the fact that A and B are full rank implies that D1 = D2. Therefore every solution
to (3.1) has the form \.ai = DTai and \.bj =  - Dbj with D \in \BbbR r\times r. Conversely it can
be checked that any a1, . . . , am, b1, . . . , bn with derivatives of this form satisfy (3.1).
The set of matrices D \in \BbbR r\times r that define infinitesimal motions is

W(A,B) := \{ D \in \BbbR r\times r | \exists \epsilon > 0 such that A+ tAD \geq 0, B  - tDB \geq 0 for t \in [0, \epsilon )\} .

If matrix D is diagonal, then \.ai = DTai and \.bj =  - Dbj always define an infini-
tesimal motion, and such a motion is called trivial.

Definition 3.1. A framework is infinitesimally rigid if all its infinitesimal mo-
tions are trivial.

An infinitesimal motion does not necessarily correspond to any actual smooth
path through (A,B) in the space of nonnegative factorizations of M , but only to a
tangent direction that does not violate nonnegativity. Thus infinitesimal rigidity is not
a necessary (and also not a sufficient) condition for the uniqueness of a nonnegative
matrix factorization. However, every infinitesimally rigid nonnegative factorization
is locally rigid (Proposition 4.2), and local rigidity is a necessary condition for the
uniqueness of a nonnegative matrix factorization. In fact, when Kruskal rank of a
certain matrix is maximal possible, then a locally rigid nonnegative factorization is
infinitesimally rigid (Proposition 4.8). These results allow us to state in section 4 so
far the strongest necessary condition for the uniqueness of a nonnegative factorization.

Example 3.2. A rank-3 matrix M with positive entries is on the boundary of
\scrM m\times n

3 if and only if all nonnegative factorizations of M are infinitesimally rigid.
This follows from the analysis of Mond, Smith, and van Straten in [23, Lemma 4.3].
One can show that a size-3 infinitesimally rigid nonnegative factorization has up to
permuting rows of A, permuting columns of B, simultaneously permuting columns of
A and rows of B, and switching A and BT the following form:

(3.3)

\left(           

0 \cdot \cdot 
\cdot 0 \cdot 
\cdot \cdot 0
\cdot \cdot 0
\cdot \cdot \cdot \cdot \cdot 
...

. . .
...

\cdot \cdot \cdot \cdot \cdot 

\right)           

\left(   0 \cdot \cdot \cdot \cdot \cdot \cdot \cdot 

\cdot 0 \cdot 
...

. . .
...

\cdot \cdot 0 \cdot \cdot \cdot \cdot \cdot 

\right)   .D
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We will now study the set W(A,B) of matrices D \in \BbbR r\times r that define infinitesimal
motions. The inequality ai + tDTai \geq 0 is trivially satisfied for t \in [0, \epsilon ) and some
\epsilon > 0 for all positive coordinates of ai. Hence a row aTi of A defines an inequality on
the jth column of D if and only if the jth coordinate of ai is zero. The corresponding
inequality is dTj ai \geq 0, where dj denotes the jth column of D. For each i = 1, . . . ,m,
let Si \subseteq \{ 1, . . . , r\} be the set of entries of ai that are zero. Then D \in W(A,B) satisfies
dTj ai \geq 0 for all j \in Si. Equivalently \langle aieTj , D\rangle \geq 0, where \langle \cdot , \cdot \rangle denotes the entrywise
inner product on r \times r matrices.

On the other hand, a column bi of B defines an inequality on the jth row of  - D
if and only if the jth coordinate of bi is zero. This inequality is  - d\prime jbi \geq 0, where
d\prime j denotes the jth row of D. For each i = 1, . . . , n, let Ti \subseteq \{ 1, . . . , r\} be the set
of entries of bi that are zero. Then D \in W(A,B) satisfies  - d\prime jbi \geq 0 or, equivalently,

\langle  - ejb
T
i , D\rangle \geq 0 for j \in Ti.

Hence W(A,B) is a polyhedral cone, and we have described it in terms of its
facet inequalities, but it will often be easier to work with its dual cone. For each
i = 1, . . . ,m, define \scrA i = \{ aieTj | j \in Si\} , and for each i = 1, . . . , n, define \scrB i =

\{  - ejb
T
i | j \in Ti\} . Then

W\vee 
(A,B) = cone(\scrA 1 \cup \cdot \cdot \cdot \cup \scrA m \cup \scrB 1 \cup \cdot \cdot \cdot \cup \scrB n).

Proposition 3.3. A nonnegative factorization (A,B) is infinitesimally rigid if

and only if W\vee 
(A,B) is isomorphic to \BbbR r2 - r (meaning W\vee 

(A,B) is an (r2 - r)-dimensional

real vector space).

Proof. If the cone W(A,B) consists only of r \times r diagonal matrices, then the dual
cone W\vee 

(A,B) consists of all r \times r matrices that are zero along the diagonal. This is a
linear space of dimension r2  - r. Conversely, if W(A,B) contains other matrices, then
its dimension is strictly larger than r. Hence the dimension of the largest subspace
contained in W\vee 

(A,B) is strictly less than r2  - r.

Proposition 3.3 gives an algorithm for checking whether a nonnegative factoriza-
tion is infinitesimally rigid. For example, open source tool Normaliz [3] allows one to
compute the largest linear subspace contained in a cone given by its extremal rays.
However, Proposition 3.3 does not give insight into how to construct infinitesimally
rigid nonnegative matrix factorizations. To solve this problem, we give a completely
combinatorial necessary condition for a nonnegative matrix factorization to be in-
finitesimally rigid. In Appendix A, we will use this result to construct infinitesimally
rigid nonnegative matrix factorizations for 5\times 5 matrices of nonnegative rank 4, which
is the first nontrivial case.

Theorem 3.4. If (A,B) is an infinitesimally rigid nonnegative rank-r factoriza-
tion, then

\bullet A and B have at least r2  - r + 1 zeros in total, and
\bullet for every distinct pair i, j taken from 1, . . . , r, there must be a row of A with
a zero in position i and not in position j. Similarly for the columns of B.

Proof. A nonnegative factorization (A,B) being infinitesimally rigid is equivalent

to W\vee 
(A,B)

\sim = \BbbR r2 - r. To express \BbbR r2 - r as the convex cone of a finite number of vectors

requires at least r2  - r + 1 vectors. The size of the generating set defining W\vee 
(A,B) is

equal to the total number of zeros in A and B.
The vectors coming from A are nonnegative, and the ones from B are nonpositive.

IfW\vee 
(A,B)

\sim = \BbbR r2 - r, for each coordinate there must be at least one vector with a strictly
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positive value there, and one with a strictly negative value. To get a positive value
in coordinate dij requires A to have a row with zero in the jth entry and a nonzero
value in the ith entry. Similarly for columns of B.

The second condition is a necessary condition for the uniqueness of nonnegative
matrix factorization; see [19, 15].

Example 3.5. Let r = 3. The zero pattern (3.3) is the unique zero pattern with
seven zeros that fulfills the conditions in Theorem 3.4, up to allowed permutations.

We conclude this section with some properties of infinitesimally rigid nonnegative
factorizations.

Corollary 3.6. If (A,B) is an infinitesimally rigid nonnegative rank-r factor-
ization with exactly r2  - r + 1 zeros, then AB is strictly positive.

Proof. If (A,B) is infinitesimally rigid, then the dual cone W\vee 
(A,B) is equal to

the space of matrices with zero diagonal of dimension r2  - r. The zeros of A and B
correspond to the elements of a distinguished generating set of W\vee 

(A,B) as described

above. A generating set of size r2 - r+1 is minimal, so the only linear relation among
the generators must be among all r2  - r + 1.

If AB has a zero in entry ij, then row ai of A and column bj of B have zeros in
complementary positions so that ai \cdot bj = 0. Since the support of bj is contained in the
set of columns for which ai is zero, the outer product matrix aTi b

T
j can be expressed

as a nonnegative combination of the dual vectors coming from ai. Similarly, the
matrix  - aTi b

T
j can be expressed as a nonnegative combination of the dual vectors

coming from bj . Summing these gives a linear relation among a strict subset of the
generators, which is a contradiction.

Corollary 3.7. If (A,B) is an infinitesimally rigid nonnegative factorization,
then there is at least one zero in every column of A and in every row of B.

Proof. It follows directly from Theorem 3.4.

Corollary 3.8. If M is strictly positive and (A,B) is an infinitesimally rigid
nonnegative rank-r factorization of M , then there are at most r - 2 zeros in every row
of A and in every column of B.

Proof. Since M is positive, no row of A or column of B can contain only zeros.
If a row of A contains r  - 1 zeros, then there has to be a row of B that does not
contain any zeros, because otherwise AB would have a zero entry. This contradicts
Corollary 3.7.

Lemma 3.9. If (A,B) is an infinitesimally rigid nonnegative rank-r factorization
with r2  - r + 1 zeros, then there are at most r  - 1 zeros in every column of A and in
every row of B.

Proof. As in the proof of Corollary 3.6, the only linear relation among the gen-
erators of W\vee 

(A,B) must be among all r2  - r + 1 generators. If there were r zeros in

the same column of A, then there would be r generators of W\vee 
(A,B) contained in an

(r  - 1)-dimensional subspace, implying a smaller linear relation, which is impossible.
Similarly for the case of r zeros in a row of B.

This argument can be generalized to forbid other configurations of zeros that
concentrate too many generators of W\vee 

(A,B) into too small a support.

Lemma 3.10. Let (A,B) be an infinitesimally rigid nonnegative rank-r factoriza-
tion with r2  - r + 1 zeros. Let \alpha , \beta \subseteq [r] and suppose A has a k \times | \alpha | submatrix of
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zeros with columns \alpha , and B has a | \beta | \times \ell submatrix of zeros with rows \beta . Then

k| \alpha | + \ell | \beta | \leq (r  - | \alpha | )| \alpha | + (r  - | \beta | )| \beta |  - | \alpha \setminus \beta | | \beta \setminus \alpha | .

Proof. As in the proof of Corollary 3.6, a generating set of size r2 - r+1 is minimal,
so the only linear relation among the generators must be among all r2  - r + 1. It
can be checked that the zeros of A described above correspond to k| \alpha | generators of
W\vee 

(A,B) supported on entries ([r] \setminus \alpha )\times \alpha . Similarly the zeros of B correspond to \ell | \beta | 
generators supported on entries \beta \times ([r] \setminus \beta ). The intersection of these two supports
is (\beta \setminus \alpha ) \times (\alpha \setminus \beta ). The number of generators cannot exceed the number of entries
they are supported on, which gives the inequality.

Lemma 3.9 is the special case when \alpha is a singleton and \beta is empty, or the reverse,
and this case seems to be the most applicable condition when r is small.

4. Locally rigid factorizations.

4.1. Definition and properties.

Definition 4.1. A nonnegative factorization (A,B) is locally rigid if all non-
negative factorizations of AB in a neighborhood of (A,B) are obtained by scaling the
columns of A and rows of B.

If a matrix has a unique size-r nonnegative factorization, then this factorization
has to be locally rigid. We recall that the second condition in Theorem 3.4 is a
necessary condition for the uniqueness of a nonnegative matrix factorization by [19,
Theorem 3]. In fact, it is a necessary condition for local rigidity of a nonnegative
matrix factorization using the argument in [15, Remark 7].

It concludes from the definition of an infinitesimally rigid nonnegative factor-
ization that all nonnegative factorizations in some neighborhood are obtained from
scalings.

Proposition 4.2. If nonnegative factorization (A,B) is infinitesimally rigid, then
it is locally rigid.

We will see in the next subsection that the converse is true if a certain matrix
achieves its maximal possible Kruskal rank.

Example 4.3. It follows from the discussion in Example 3.2 that if M lies on the
boundary of \scrM m\times n

3 , then all its nonnegative factorizations are locally rigid. This
can also be seen using the geometric characterization of boundaries in [18, Corollary
4.4]. Namely, a matrix with positive entries lies on the boundary of \scrM m\times n

3 if and
only if for every nonnegative factorization of the matrix the corresponding geometric
configuration satisfies that (i) every vertex of the intermediate triangle lies on an edge
of the outer polygon, (ii) every edge of the intermediate triangle contains a vertex
of the inner polygon, and (iii) a vertex of the intermediate triangle coincides with a
vertex of the outer polygon or an edge of the intermediate triangle contains an edge
of the inner polygon. Such geometric configurations are isolated for fixed inner and
outer polygons, and hence the corresponding nonnegative factorizations are locally
rigid.

In the rest of the subsection, we will explore modifications of locally rigid non-
negative matrix factorizations.

Lemma 4.4. Let (A,B) be a locally rigid factorization. Let (A\prime , B\prime ) be a factor-
ization that is obtained from (A,B) by erasing all rows of A and columns of B that
do not contain any zero entries. Then (A\prime , B\prime ) is locally rigid.
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We will postpone the proof of Lemma 4.4 until section 5.1, where we take a more
geometric view on rigidity.

Lemma 4.5. Let (A,B) be a nonnegative factorization. For \varepsilon > 0 small enough,
there exists A\prime obtained from A by adding at most r strictly positive rows and B\prime ob-
tained from B by adding at most r strictly positive columns such that any nonnegative
factorization of A\prime B\prime is in the \varepsilon -neighborhood of (A\prime P, P - 1B\prime ) for some r \times r scaled
permutation matrix P .

Proof. Consider the geometric configuration of cones in \BbbR r corresponding to the
factorization (A,B). Since (A,B) is a nonnegative factorization, the intermediate cone
is spanned by the unit vectors. We add r strictly positive rows to A that correspond
to hyperplanes at most a distance \delta from the facets of the intermediate cone. We add
r strictly positive columns to B that correspond to points that are at most a distance
\delta from the vertices of the intermediate cone. Neither of these operations changes
incidence relations between the three cones. The new outer cone is contained in a
(1 + \delta ) times larger copy of the intermediate cone, and the new inner cone contains
a (1  - \delta ) times smaller copy of the intermediate cone. For \varepsilon small enough, there
exists \delta such that the only other cones with r rays that can be nested between a
larger and a smaller copy of the intermediate cone give factorizations that are in the
\varepsilon -neighborhood of (A\prime P, P - 1B\prime ).

Definition 4.6. A nonnegative factorization (A,B) is globally rigid if all non-
negative factorizations of AB are obtained by scaling and permuting the columns of
A and rows of B.

Corollary 4.7. Given a locally rigid nonnegative factorization (A,B), then by
adding at most r strictly positive rows to A and at most r strictly positive columns to
B, one can get a globally rigid nonnegative matrix factorization.

4.2. When is infinitesimal rigidity equivalent to local rigidity? Let Z(A,B)

be a matrix with columns equal to the elements of \scrA 1 \cup \cdot \cdot \cdot \cup \scrA m \cup \scrB 1 \cup \cdot \cdot \cdot \cup \scrB n. Let
c be the number of columns of Z(A,B). Let the Kruskal rank be the maximal value
k such that any k columns are linearly independent. We denote the Kruskal rank of
Z(A,B) by K-rank(Z(A,B)). We will show that if K-rank(Z(A,B)) = min(c, r2 - r), then
local rigidity implies infinitesimal rigidity. This result can be seen as an adaptation
of Theorem 2.1 by Asimow and Roth to nonnegative matrix factorizations.

Proposition 4.8. If (A,B) is a nonnegative factorization that is locally rigid but
not infinitesimally rigid, then K-rank(Z(A,B)) < min(c, r2  - r).

Proof. We assume that (A,B) is a nonnegative factorization that is locally rigid
but not infinitesimally rigid. We will show that r < dimW(A,B) < r2. The first
inequality follows immediately from the fact that (A,B) is not infinitesimally rigid.
The second inequality follows from the fact that (A,B) is locally rigid by applying
either Proposition 5.6 or the following argument, which does not require the machinery
of section 5.

Since (A,B) is not infinitesimally rigid there exists D \in W(A,B) that is not di-
agonal. If ( \.ai)j = (DTai)j is strictly positive for all (i, j) such that (ai)j is zero and

(\.bj)i = ( - Dbj)i is strictly positive for all (i, j) such that (bj)i is zero, then the cor-
responding motion gives nonnegative factorizations for all t \in [0, \epsilon ) for some \epsilon small
enough. Hence a necessary condition for a locally rigid nonnegative factorization
that is not infinitesimally rigid is that ( \.ai)j = (DTai)j = 0 for some (i, j) such that

(ai)j = 0 or (\.bj)i = ( - Dbj)i = 0 for some (i, j) such that (bj)i = 0. Moreover, there
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exists at least one pair (i, j) such that for all D \in W(A,B) we have (ai)j = (DTai)j = 0
or (bj)i = ( - Dbj)i = 0, because otherwise one could take a conic combination of ma-
trices D with (DTai)j = 0 and ( - Dbj)i = 0 for different (i, j) to get an element of
W(A,B) with no (DTai)j = 0 or ( - Dbj)i = 0.

Without loss of generality we assume that (ai)j = (DTai)j = 0 for allD \in W(A,B).
Hence aie

T
j and  - aie

T
j both belong to the dual cone W\vee 

(A,B). Since the dual cone has

a nontrivial lineality space, dimW(A,B) < r2.
From the fact that r < dimW(A,B) < r2, it follows that the dual cone, W\vee 

(A,B),

has dimension-k lineality space with 0 < k < r2  - r. A generating set of W\vee 
(A,B) has

a subset of size at least k + 1 that generates the lineality space, and any k + 1 of
those generators are linearly dependent. Therefore Z(A,B) has k+1 columns that are
linearly dependent, so K-rank(Z(A,B)) \leq k < r2  - r. Because k + 1 \leq c, this also
implies K-rank(Z(A,B)) < c.

Corollary 4.9. If a nonnegative factorization (A,B) is locally rigid, then WV
(A,B)

\sim = \BbbR r2 - r or K-rank(Z(A,B)) < min(c, r2  - r).

Since local rigidity is a necessary condition for global rigidity, the conditions in
Corollary 4.9 are necessary for the uniqueness of a nonnegative factorization. We will
also state Corollary 4.10, which is a simplified version of Corollary 4.9. Corollary 4.10
directly strengthens the necessary condition for uniqueness in [19, Theorem 3] that
states that the support of any column of A cannot be contained in the support of
any other column of A and the support of any row of B cannot be contained in the
support of any other row of B.

Corollary 4.10. If (A,B) is a globally rigid nonnegative factorization, then the
support of any column of A cannot be contained in the support of any other column of
A, the support of any row of B cannot be contained in the support of any other row of
B, and the matrices A and B have at least r2 - r+1 zeros in total or K-rank(Z(A,B)) <
min(c, r2  - r).

Separability-based sufficient conditions for uniqueness, e.g., in [10] and [19], sat-
isfy the additional condition that A and B have at least r2 - r+1 zeros in total, because
the separability condition guarantees that one of the factors has at least r2  - r zeros,
and there is at least one additional zero coming from the zero pattern in the other
factor. It is unknown which of the two additional conditions is satisfied by sufficiently
scattered-based sufficient conditions, discussed in [12]. Our methods do not compare
directly with methods that guarantee identifiability under further assumptions such
as orthogonality of a factor, maximal sparseness, or volume minimization or maxi-
mization of the polytope associated to one of the factors.

Corollary 4.9 together with the necessary condition for uniqueness from [19, The-
orem 3] gives Algorithm 4.1 for determining infinitesimal and local rigidity of a non-
negative matrix factorization.

To test global rigidity of a size-r nonnegative matrix factorization (A,B), one can
run a program that searches numerically for size-r nonnegative matrix factorizations
of the matrix AB. If (A,B) is not globally rigid, then we do not expect the program
to output precisely (A,B) up to permutations and scalings. On the contrary, if the
program outputs only (A,B) up to permutations and scalings over multiple runs, then
this provides evidence towards (A,B) being globally rigid. This approach is further
discussed in Appendix A.

In the rest of the section, we present a locally rigid factorization which is not
infinitesimally rigid. The example we present is a modification of an example by
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Algorithm 4.1 Local rigidity of a size-r nonnegative matrix factorization (A,B).

1: procedure LocalRigidityNMF(A,B, r)
2: if the support of any column of A (resp., row of B) is contained in the support

of any other column of A (resp., row of B) then
3: return (A,B) is not locally rigid.
4: else
5: Construct the matrix Z(A,B). Let c be the number of columns of Z(A,B).
6: if the Kruskal rank of Z(A,B) is equal to min(c, r2  - r) then
7: construct the polyhedral coneWV

(A,B) spanned by the columns of Z(A,B).

8: if WV
(A,B) is isomorphic to \BbbR r2 - r then

9: return (A,B) is locally and infinitesimally rigid.
10: else
11: return (A,B) is not locally rigid.
12: end if
13: else
14: return (A,B) is not infinitesimally rigid; local rigidity cannot be de-

termined.
15: end if
16: end if
17: end procedure

Shitov [25] that he uses to show that nonnegative rank depends on the field. His
example is a matrix of nonnegative rank 5; we present a geometric configuration
corresponding to a matrix of nonnegative rank 4. Checking local rigidity involves
studying signs of second derivatives in addition to the requirements on zeros and first
derivatives.

Example 4.11. The outer polytope Q = conv(\Omega 1,\Omega 2, Ai, Bi, Ci : 1 \leq i \leq 3) is a
modification of a simplex. Let \varepsilon = 1/20. Three vertices of this simplex are replaced
by small triangles conv(Ai, Bi, Ci), where

A1 = (0, 1/3 + \varepsilon , 1/3 - \varepsilon , 1/3), B1 = (0, 1/3, 1/3 + \varepsilon , 1/3 - \varepsilon ), C1 = (0, 1/3 - \varepsilon , 1/3, 1/3 + \varepsilon ),

A2 = (1/3, 0, 1/3 + \varepsilon , 1/3 - \varepsilon ), B2 = (1/3 - \varepsilon , 0, 1/3, 1/3 + \varepsilon ), C2 = (1/3 + \varepsilon , 0, 1/3 - \varepsilon , 1/3),

A3 = (1/3 - \varepsilon , 1/3, 0, 1/3 + \varepsilon ), B3 = (1/3 + \varepsilon , 1/3 - \varepsilon , 0, 1/3), C3 = (1/3, 1/3 + \varepsilon , 0, 1/3 - \varepsilon ).

The last vertex of the simplex is replaced by a small edge conv(\Omega 1,\Omega 2). The vertices
\Omega 1 and \Omega 2 are points on the line

1

(1 + (0.416827 - 1)t)
(1/3, 1/3 - 2t, 1/3 + t, 0.416827t)

that are sufficiently close to and on the opposite sides of (1/3, 1/3, 1/3, 0). For exam-
ple, one can take t to be equal to 1/40 and  - 1/40. Here 0.416827 is an approximate
number, and we will explain later how to get the exact value.

The intermediate simplex \Delta is conv(\Omega , V1, V2, V3), where

V1 = (0, 1/3, 1/3, 1/3), V2 = (1/3, 0, 1/3, 1/3),

V3 = (1/3, 1/3, 0, 1/3), \Omega = (1/3, 1/3, 1/3, 0).

The vertex \Omega lies on the edge conv(\Omega 1,\Omega 2) of the outer polytope. All other vertices
Vi lie on the triangles conv(Ai, Bi, Ci).
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148 ROBERT KRONE AND KAIE KUBJAS

(a) P \subseteq Q (b) \Delta \subseteq Q (c) P \subseteq \Delta 

Fig. 1. The pairwise inclusions of the three polytopes P \subseteq \Delta \subseteq Q in Example 4.11.

The inner polytope P is conv(W,Wi, Fij , H : 1 \leq i \leq 3, 1 \leq j \leq 2), where

W1 = (1 - 3\varepsilon )V1 + \varepsilon V2 + \varepsilon V3 + \varepsilon \Omega , W2 = \varepsilon V1 + (1 - 3\varepsilon )V2 + \varepsilon V3 + \varepsilon \Omega ,

W3 = \varepsilon V1 + \varepsilon V2 + (1 - 3\varepsilon )V3 + \varepsilon \Omega , W = \varepsilon V1 + \varepsilon V2 + \varepsilon V3 + (1 - 3\varepsilon )\Omega ,

F11 = 0.81V2 + 0.01V3 + 0.18\Omega , F12 = 0.14V2 + 0.20V3 + 0.66\Omega ,

F21 = 0.43V1 + 0.22V3 + 0.35\Omega , F22 = 0.20V1 + 0.49V3 + 0.31\Omega ,

F31 = 0.11V1 + 0.87V2 + 0.02\Omega , F32 = 0.43V1 + 0.12V2 + 0.45\Omega ,

H = 1/3V1 + 1/3V2 + 1/3V3.

It has one vertex close to every vertex of the intermediate simplex: The vertex W is
close to \Omega , and the vertices Wi are close to Vi. Moreover, there are two vertices on
each facet of the intermediate simplex besides the facet that is opposite to \Omega : The
vertices Fij lie on the facet of the simplex spanned by all vertices but Vi. The interior
polytope also contains the vertex H that lies on the facet of the intermediate simplex
that is opposite to \Omega .

The pairwise inclusions of the three polytopes are depicted in Figure 1. The
matrix M corresponding to this geometric configuration is obtained by evaluating the
facets of the outer polytope Q at the vertices of the inner polytope P . The facets of
Q can be found using, for example, polymake [14]. The matrix A in the nonnegative
factorization is obtained by evaluating the facets of Q at the vertices of B; the matrix
B is obtained by evaluating the facets of Q at the vertices of P . The nonnegative
factorization has the following zero pattern (after removing rows of A and columns of
B that do not contain zeros):\left(      

0 \cdot \cdot \cdot 
\cdot 0 \cdot \cdot 
\cdot \cdot 0 \cdot 
\cdot \cdot \cdot 0
\cdot \cdot \cdot 0

\right)      
\left(    
0 0 \cdot \cdot \cdot \cdot \cdot 
\cdot \cdot 0 0 \cdot \cdot \cdot 
\cdot \cdot \cdot \cdot 0 0 \cdot 
\cdot \cdot \cdot \cdot \cdot \cdot 0

\right)    .

The number of zeros in this factorization is 12, so this factorization is not infinites-
imally rigid. We will show that it is locally rigid, i.e., that \Delta is the only simplex
that can be nested between P and Q. The proof is analogous to the proof in [25].
We present it here so that the reader is able to directly check the correctness of our
example.

Since P and Q are constructed such that they are close to \Delta , any other simplex
\Delta \prime that can be nested between P and Q must be close to \Delta . We will give a parame-
trization of simplices and show that any simplex \Delta \prime close to \Delta can be parametrized
in such a way.
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We restrict our analysis to the affine plane in \BbbR 4 defined by x1+x2+x3+x4 = 1.
Let \omega be a point on this plane such that \| \Omega  - \omega \| < \varepsilon . Let fij = (Fij  - (0, 0, 0, vij))/
(1 - vij), where vij are parameters. Let Hi(\omega , v) be the hyperplane through fi1, fi2, \omega .
Define the point Vi(\omega , v) as the intersection of the hyperplanes xi = 0 and Hj(\omega , v)
for j \not = i. Define \Delta (\omega , v) = conv(V1(\omega , v), V2(\omega , v), V3(\omega , v), \omega ). Then \Delta = \Delta (\Omega , 0).

Since \Delta \prime is close to \Delta , the facet of \Delta \prime opposite to the vertex V \prime 
i intersects the line

of fi1's and the line of fi2's. Moreover, the points where the facet of \Delta \prime intersects
these lines correspond to nonnegative vij , because Fij \in P \subset \Delta \prime correspond to zero
parameters, and going outwards from P on the line of fij 's increases the value of the
parameters vij . Furthermore, since maximal simplices inside Q have vertices on the
boundary of Q, we can assume that this is the case for \Delta \prime , and hence \Delta \prime = \Delta (\omega , v)
for some \omega \in Q and v \geq 0.

Let \Psi (\omega , v) = det(V1(\omega , v), V2(\omega , v), V3(\omega , v), H). We note that \Psi (\Omega , 0) = 0 and
det(V1, V2, V3,\Omega ) > 0. To show that \Delta is the only simplex that can be nested between
P and Q it is enough to show that for all other \Delta (\omega , v) close to \Delta with \omega \in Q and
v \geq 0, we have H \not \in \Delta (\omega , v). This is equivalent to \Psi (\omega , v) < 0 and (\Omega , 0) being a
local maximum of \Psi when \omega \in Q and v \geq 0. It can be checked that the partial
derivatives \partial \Psi /\partial vij and the directional derivatives in the directions from (\Omega , 0) to
(Ai, 0), (Bi, 0), (Ci, 0) are negative at (\Omega , 0). Finally, on the line

1

(1 + (0.416827 - 1)t)
(1/3, 1/3 - 2t, 1/3 + t, 0.416827t),

we have \Psi \prime = 0 and \Psi \prime \prime < 0. In fact, the number 0.416827 is an approximation of the

solution for x in the equation \partial \Psi ((1/3,1/3 - 2t,1/3+t,xt),v)
\partial t | (t=0,v=0) = 0.

This example is a modification of an infinitesimally rigid example with 13 zeros
where a vertex of the outer polytope is replaced with an edge conv(\Omega 1,\Omega 2). The
corresponding nonnegative factorization would have an extra row in A with zero in
the last column. The vertex of the intermediate simplex that for the infinitesimally
rigid configuration coincides with the vertex of the outer polytope now lies on the new
edge. The only difference between the two examples is that theoretically one can now
move the vertex of the intermediate simplex also along the edge conv(\Omega 1,\Omega 2), but in
fact this is not possible, because the local maximum of \Psi on conv(\Omega 1,\Omega 2) is \Omega . By
the results of Mond, Smith, and van Straten [23], it is not possible to construct an
analogous example for polygons.

5. Rigidity and boundaries. In this section we use \scrM m\times n
r to denote the

set of m \times n matrices with rank and nonnegative rank both equal to exactly r. A
matrix of nonnegative rank 3 is on the boundary of \scrM m\times n

3 if and only if it has a
zero entry or all its nonnegative factorizations are infinitesimally rigid. The goal of
this section is to study the connection between boundaries of \scrM m\times n

r and rigidity
theory for r \geq 4. We already saw in Example 4.11 that there exist locally rigid
nonnegative matrix factorizations that are not infinitesimally rigid. Combining this
with results in section 5.1, one can show that there exists a matrix on the boundary
of \scrM m\times n

4 for m,n large enough that has a locally rigid nonnegative factorization but
no infinitesimally rigid nonnegative factorizations. Furthermore, in section 5.2 we
will show that there exist strictly positive matrices on the boundary of \scrM m\times n

r for
r \geq 4 that have nonnegative factorizations that are not locally rigid. There exists a
neighborhood of such a factorization whose dimension is strictly between r and r2,
the minimal and maximal dimensions of spaces of factorizations.
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5.1. Geometry of nonnegative matrix factorizations. As in section 2.3 let
\mu be the usual matrix multiplication map, but now restrict the domain to pairs of
matrices with full rank r:

\mu : \BbbR m\times r
r \times \BbbR r\times n

r \rightarrow \BbbR m\times n
r .

The image of \mu is \BbbR m\times n
r , the set of m \times n matrices with rank r. The positive or-

thant (\BbbR m\times r
r )\geq 0 \times (\BbbR r\times n

r )\geq 0 is mapped onto \scrM m\times n
r , the set of rank-r matrices with

nonnegative rank r. The trivial boundary of \scrM m\times n
r consists of such matrices with at

least one zero entry.
Fix a rank-r matrix M with strictly positive entries and a rank factorization

(A,B) with M = AB. The set of all rank factorizations of M is the fiber

\mu  - 1(M) = \{ (AC,C - 1B) | C \in \BbbR r\times r invertible\} .

This set is a real r2-dimensional smooth irreducible variety. Let

F := \{ (C,C - 1) | C \in \BbbR r\times r invertible\} \subseteq \BbbR r\times r \times \BbbR r\times r.

F is the graph of the inverse function on r \times r matrices. The injective linear map

\nu (A,B) : \BbbR r\times r \times \BbbR r\times r \rightarrow \BbbR m\times r \times \BbbR r\times n,

(C,D) \mapsto \rightarrow (AC,DB)

sends F to \mu  - 1(M). The image of \nu (A,B) is the subspace of pairs (\alpha , \beta ) such that the
columns of \alpha are in the column span of A and the rows of \beta are in the row span of B.

Proposition 5.1. The map \mu : \BbbR m\times r
r \times \BbbR r\times n

r \rightarrow \BbbR m\times n
r is a fiber bundle, with

fiber F .

Proof. A matrix M \in \BbbR m\times n
r has a set of r linearly independent columns. Given

a rank factorization (A,B) of M , the same set of columns is linearly independent in
B. Call the r \times r submatrix they form C. Then (AC,C - 1B) is a rank factorization
of M with C - 1B having the r \times r submatrix in these columns equal to the identity,
and this is the unique factorization of M with that property. Let K be the subset of
\BbbR m\times r

r \times \BbbR r\times n
r of pairs (\alpha , \beta ) in which \beta has this particular submatrix equal to the

identity.
All matrices in \BbbR m\times n

r have a unique factorization in K unless there is linear
dependence among the chosen columns. Such exceptions form a lower-dimensional
subset, so in particular M has a neighborhood X of matrices with factorizations in
K. Then \mu  - 1(X) has product structure (\mu  - 1(X) \cap K)\times F by map

((\alpha , \beta ), (\gamma , \gamma  - 1)) \mapsto \rightarrow (\alpha \gamma , \gamma  - 1\beta )

which can be checked that it is continuous with continuous inverse. This proves the
fiber bundle structure of \mu .

A factorization (AC,C - 1B) of M is a nonnegative factorization of M if AC \in 
(\BbbR m\times r

r )\geq 0 and C - 1B \in (\BbbR r\times n
r )\geq 0. Let c1, . . . , cr denote the columns of C and

c\prime 1, . . . , c
\prime 
r the rows of C - 1. The inequality Aci \geq 0 gives m linear inequalities on

ci and defines a polyhedral cone in \BbbR r with at most m facets, which we will denote
PA. Similarly c\prime iB \geq 0 defines a polyhedral cone PBT in (\BbbR r)\ast with at most n facets.
The nonnegative factorizations of M then correspond to the set F \cap (P\times r

A \times P\times r
BT ).

Let U(A,B) := (P\times r
A \times P\times r

BT ), which is itself a polyhedral cone.
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Fixing M and a rank factorization (A,B), the injective linear map \nu (A,B) that
sends F to \mu  - 1(M) also maps cone U(A,B) to (\BbbR m\times r

r )\geq 0 \times (\BbbR r\times n
r )\geq 0 \cap im(\nu (A,B)).

The boundary of U(A,B) maps to pairs of matrices that have at least one zero entry.
Because M is assumed to have positive entries, im(\nu (A,B)) is not contained in a coor-
dinate hyperplane of (\BbbR m\times r

r )\times (\BbbR r\times n
r ). Therefore the interior of U(A,B) maps to pairs

of matrices with positive entries. Sometimes it will be convenient to work in one or
the other system of coordinates.

Remark 5.2. PA is the outer cone, Q, and PBT is dual to the inner cone, P , in
the second geometric characterization in section 2.2.

If (A,B) is a nonnegative factorization of M , then (AD,D - 1B) is as well for any
diagonal matrix D with positive diagonal entries. We will generally be interested only
in factorizations modulo this scaling.

Now we have introduced the tools for proving Lemma 4.4.

Proof of Lemma 4.4. Let (A,B) be a locally rigid factorization. Let (A\prime , B\prime ) be
a factorization that is obtained from (A,B) by erasing all rows of A and columns of
B that do not contain any zero entries.

For the sake of contradiction, assume that (A\prime , B\prime ) is not locally rigid. Equiva-
lently every neighborhood of (I, I) in F \cap U(A\prime ,B\prime ) contains a pair (C,C - 1), where C
is not diagonal. This implies that there is a row ai of A with positive entries and a
column cj of C such that aicj < 0 , or there is a column bi of B with positive entries
and a row c\prime j of C

 - 1 such that c\prime jbi < 0. Let c\mathrm{m}\mathrm{a}\mathrm{x} be the maximal entry of A and B; let
c\mathrm{m}\mathrm{i}\mathrm{n} be the minimal nonzero entry of A and B. Consider the \varepsilon -neighborhood of (I, I)
where \varepsilon = c\mathrm{m}\mathrm{i}\mathrm{n}

c\mathrm{m}\mathrm{i}\mathrm{n}+(r - 1)c\mathrm{m}\mathrm{a}\mathrm{x}
. For any (C,C - 1) in this neighborhood, every nondiagonal

entry of C is greater than  - \varepsilon and every diagonal entry is greater than 1 - \varepsilon . Since A
and B are nonnegative, we have aicj \geq  - (r - 1)\varepsilon c\mathrm{m}\mathrm{a}\mathrm{x}+(1 - \varepsilon )cmin = 0 , and similarly
c\prime jbi \geq 0 for all i, j.

Proposition 5.3. Positive M \in \scrM m\times n
r lies on the boundary of \scrM m\times n

r if and
only if every nonnegative factorization (A,B) of M has at least one zero entry.

Proof. Suppose M has a strictly positive rank factorization (A,B). Then (A,B)
has a relatively open neighborhood W contained in \mu  - 1(M)\cap (\BbbR m\times r

r )>0 \times (\BbbR r\times n
r )>0.

Since \mu is a fiber bundle, it is an open mapping. Therefore \mu (W ) is an open neigh-
borhood of M in \scrM m\times n

r , so M is in the interior.
Suppose M does not have any strictly positive rank factorizations. Equivalently

F does not intersect the interior of U(A,B). We will construct a rank-r matrix M \prime 

arbitrarily close to M with rank+(M
\prime ) > r. For cone PA \subseteq \BbbR r, let P\vee 

A \subseteq (\BbbR r)\ast denote
the dual cone, which consists of all linear functionals that are nonnegative on PA, and
similarly let P\vee 

BT be the dual cone of PBT . Neither the cone PA nor PBT contains a
line since after a change of coordinates each is a subspace intersected with a positive
orthant. Therefore we can choose functionals x and y in the interiors of P\vee 

A and P\vee 
BT ,

respectively. The functional x has the property that for any nonzero v \in PA, xv > 0,
and similarly for y with respect to PBT .

Let X be the m\times r matrix with x in every row, and Y the r\times n matrix with y in
every column. Choose vectors v and w in the interiors of PA and PBT , respectively.
Let A\prime = A - \epsilon X and B\prime = B - \epsilon Y for \epsilon > 0 chosen small enough so that v and w are
still in the interiors of PA\prime and P(B\prime )T , respectively. Then U(A\prime ,B\prime ) contains the point
given by r copies of v and r copies of w that is in U(A,B).

Let (C,D) be any nonzero point on the boundary of U(A,B), so either aicj = 0 for
some row ai of A and column cj of C or dibj = 0 for some row di of D and column
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bj of B. Without loss of generality assume the first case. Letting a\prime i denote the ith
row of A\prime we have a\prime icj = aicj  - \epsilon xcj < 0 because cj \in PA. This implies (C,D) is
outside of the cone U(A\prime ,B\prime ). Since U(A\prime ,B\prime ) \setminus \{ 0\} intersects the interior of U(A,B) but
not its boundary, it must be contained in the interior of U(A,B). Since F does not
intersect the interior of U(A,B) or the origin, it does not intersect U(A\prime ,B\prime ). Therefore
M \prime = A\prime B\prime has rank+(M

\prime ) > r.
Note that M \prime = M  - \epsilon (XB+AY )+ \epsilon 2(XY ), which can be made arbitrarily close

to M in 2-norm by choosing \epsilon small enough. For sufficiently small \epsilon , A\prime and B\prime have
full rank since this is an open condition, so rank(M \prime ) = r.

Proposition 5.4. Positive M has a strictly positive rank factorization if and
only if the set of nonnegative rank factorizations of M contains a nonempty subset
that is open in the Euclidean subspace topology on \mu  - 1(M) (or equivalently the Zariski
closure of \mu  - 1(M) \cap (\BbbR m\times r

r )\geq 0 \times (\BbbR r\times n
r )\geq 0 is \mu  - 1(M)).

Proof. First we show that the set F is not contained in any facet hyperplane of
U(A,B). Every facet H of U(A,B) is defined by a linear equation involving either only
the first set of coordinates or only the second set. Consider the former case without
loss of generality. Recall that F is the graph of the inverse function on r\times r matrices,
so the first set of coordinates is algebraically independent in F . Therefore H \cap F has
strictly lower dimension than F .

Suppose an open neighborhood of F is contained in U(A,B). If the neighborhood
is contained in the boundary of U(A,B), then F is contained in the hyperplane of one of
the facets since F is irreducible. As shown above, this cannot happen, so there must
be a point on F in the interior of U(A,B). Conversely, if F \cap int(U(A,B)) is nonempty,
it is open in the subspace topology on F since int(U(A,B)) is open.

Suppose rank+(M) = r, and that (A,B) is a nonnegative factorization. The
point (I, I) \in F has \nu (A,B)(I, I) = (A,B). To understand the possible boundary
components of sets of matrices with rank and nonnegative rank equal to r, it is
sufficient to understand the ways that F and U(A,B) can intersect in a neighborhood
of (I, I). It is not true that if F and int(U(A,B)) are disjoint in a neighborhood of
(I, I), then M is on the boundary of \scrM m\times n

r ; they may intersect elsewhere. However,
the following corollary to Lemma 4.5 demonstrates that we can always construct
M \prime = A\prime B\prime that has M as a submatrix, is on the boundary, and for which U(A\prime ,B\prime )

agrees with U(A,B) in a neighborhood of (I, I).

Corollary 5.5. Suppose positive matrix M has a nonnegative factorization (A,B)
such that all nonnegative factorizations of M in a neighborhood of (A,B) have at least
one zero entry. Then there is a matrix A\prime \in \BbbR m\prime \times r

r obtained by adding at most r
strictly positive rows A and a matrix B\prime \in \BbbR r\times n\prime 

r obtained by adding at most r strictly
positive columns to B, such that M \prime = A\prime B\prime is on the nontrivial boundary of \scrM m\prime \times n\prime 

r .

We now consider the tangent space of F at (I, I), and how it intersects U(A,B).
The tangent space of F at (I, I) is

T(I,I)F = \{ (D, - D) | D \in \BbbR r\times r\} .

The cone W(A,B) from section 3 is the projection to the first \BbbR r2 factor of tangent
directions (D, - D) such that the line (I + tD, I  - tD) stays in U(A,B) for t \in [0, \epsilon )
for some \epsilon > 0. The tangent directions along the diagonal matrices D always lie in
W(A,B). We recall that a nonnegative factorization (A,B) is infinitesimally rigid if
W(A,B) consists only of the diagonal matrices, and it is locally rigid if a neighborhood
of (I, I) in F \cap U(A,B) has dimension r, the minimal possible dimension.
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P

Q

Δ

P

Q
Δ

Fig. 2. On the left are the nested polytopes P \subseteq \Delta \subseteq Q corresponding to factorization (A,B) of
M from Example 5.7. The arrows indicate a tangent direction in W(A,B). On the right is a nearby

factorization (AC,C - 1B) with (C,C - 1) in the interior of U(A,B).

Proposition 5.6. If W(A,B) has full dimension r2, then M is in the interior of
\scrM m\times n

r .

Proof. As in the proof of Proposition 5.4, if W(A,B) has full dimension, then the
tangent space T(I,I)F intersects the interior of U(A,B) in a neighborhood of (I, I).
This implies that F itself intersects the interior of U(A,B). By Propositions 5.3 and
5.4, M is in the interior of \scrM m\times n

r .

In Example 4.11, a neighborhood of (I, I) in F \cap U(A,B) has dimension r, but
dimW(A,B) > r. In general, if r < dimW(A,B) < r2, then this value may differ from
the dimension of a neighborhood of (I, I) in F \cap U(A,B) in either direction.

Example 5.7. Consider the following rank-3 matrix with nonnegative rank-3 fac-
torization

M =

\left(  2 1 1
1 2 1
1 1 2

\right)  =

\left(  0 1 1
1 0 1
1 1 0

\right)  \left(  0 1 1
1 0 1
1 1 0

\right)  .

Here W\vee 
(A,B) is the conic combination of the 6 vectors\left(  0 0 0

1 0 0
1 0 0

\right)  ,

\left(  0 1 0
0 0 0
0 1 0

\right)  ,

\left(  0 0 1
0 0 1
0 0 0

\right)  ,

\left(  0  - 1  - 1
0 0 0
0 0 0

\right)  ,

\left(  0 0 0
 - 1 0  - 1
0 0 0

\right)  ,

\left(  0 0 0
0 0 0
 - 1  - 1 0

\right)  
corresponding to the 6 zeros in A and B. This forms a 5-dimensional subspace of
\BbbR 9 and W(A,B) is the orthogonal complement which is a space of dimension 4 (the 3
trivial diagonal directions plus 1),

W(A,B) =

\left\{   
\left(  d1  - t t

t d2  - t
 - t t d3

\right)  \bigm| \bigm| \bigm| \bigm| \bigm| t, d1, d2, d3 \in \BbbR 

\right\}   .

However, any neighborhood of (I, I) in F \cap U(A,B) has full dimension 9. In fact M

is not on the algebraic boundary of \scrM 3\times 3
3 . The geometry of the nested polytopes of

this example is shown in Figure 2.

Suppose that factorization (A,B) is not locally rigid, so F \cap U(A,B) has dimension
larger than r in a neighborhood of (I, I). If we suppose also that (A,B) is a boundary
factorization, then locally F \cap U(A,B) cannot exceed the cone W(A,B), which represents
the local intersection of the tangent space T(I,I) and U(A,B) (in contrast to Example
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5.7). Within this situation, there are two broad cases to consider: either F \cap U(A,B) is
equal to W(A,B) in a neighborhood of (I, I), or it is strictly contained in W(A,B). We
will study the first case in section 5.2. An example of the second case is the locally
rigid nonnegative factorization that is not infinitesimally rigid in Example 4.11.

5.2. Partially infinitesimally rigid factorizations. Here we present a con-
struction to produce matrices of rank r > 3 that are on the nontrivial boundary of
nonnegative rank r and have a positive dimensional set of nonnegative factorizations.

Definition 5.8. A nonnegative factorization (A,B) is partially infinitesimally
rigid if W(A,B) is equal to F \cap U(A,B) in a neighborhood of (I, I), and dimW(A,B) < r2.

Partially infinitesimally rigid factorizations generalize infinitesimally rigid factor-
izations. When dimW(A,B) exceeds r, the factorization (A,B) is not rigid. In the
examples we have encountered, the nonnegative factorizations in a neighborhood of
(A,B) have some columns of A fixed, while others have freedom.

For F to contain the cone W(A,B), it must contain its affine hull, so we first
examine the question, what affine linear spaces passing through (I, I) are contained
in F? A line through (I, I) has the form

(I + tD, I + tE).

To be contained in F , it must be that (I + tD)(I + tE) = I. This holds exactly when
E =  - D and D2 = 0. Therefore an affine linear space in F through (I, I) has the
form

\{ (I +D, I  - D) | D \in V \} ,

where V is some linear space of r \times r matrices D satisfying D2 = 0.
One way to produce such a space V is to choose a subspace S \subseteq \BbbR r and define

VS = \{ D \in \BbbR r\times r | imD \subseteq S \subseteq kerD\} .

However, not all spaces V have this form, as the following example shows. We do not
know a full characterization of such spaces V .

Example 5.9. Let V be the space

V =

\left\{       
\left(    
0 s t 0
0 0 0 t
0 0 0  - s
0 0 0 0

\right)    
\bigm| \bigm| \bigm| \bigm| \bigm| s, t \in \BbbR 

\right\}       .

Each matrix D \in V has imD = kerD = \langle e1, te2  - se3\rangle , so there is no uniform space
S \subseteq \BbbR 4 such that imD \subseteq S \subseteq kerD for all D \in V .

We focus on the case of a space VS with S a coordinate subspace of \BbbR r because
we have a simple procedure to create factorizations (A,B) for which W(A,B) has this
form.

Proposition 5.10. Let (A,B) be an infinitesimally rigid nonnegative rank-r fac-
torization. There is a partially infinitesimally rigid nonnegative rank-(r + 1) factor-
ization (A\prime , B\prime ), where A\prime is an n\times (r+1) matrix obtained from A by adding a positive
column and B\prime is an (r + 1) \times (m + 1) matrix obtained from B by adding a row of
zeros and then a positive column.

D
ow

nl
oa

de
d 

03
/2

2/
21

 to
 1

30
.2

33
.1

91
.4

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIQUENESS OF NMF BY RIGIDITY THEORY 155

Proof. Let S be \langle e1, . . . , er\rangle . Then VS consists of matrices that are supported
only in the first r entries of the last column. We will construct the positive column
added to A such that

W(A\prime ,B\prime ) = \langle e1eT1 , . . . , er+1e
T
r+1\rangle + VS ,

This is equivalent to showing that W\vee 
(A\prime ,B\prime ) is equal to the space of (r + 1)\times (r + 1)

matrices supported on the off-diagonal entries of the first r columns.
The positive column added to B\prime is only to bring B\prime up to full rank, r + 1. It

does not contribute to W\vee 
(A\prime ,B\prime ) and will not arise again in the proof.

First we show that the linear span of W\vee 
(A\prime ,B\prime ) is equal to this space of matrices.

We characterize the generating set of W\vee 
(A\prime ,B\prime ) coming from the zeros of A\prime and B\prime .

The natural embedding of each generator of W\vee 
(A,B) of the form  - eib

T
j is a generator

of W\vee 
(A\prime ,B\prime ) since the columns of B\prime are the columns of B with a zero entry added

to the end. Each generator of the form aTj e
T
i corresponds to aTj e

T
i + aj,r+1er+1e

T
i in

W\vee 
(A\prime ,B\prime ). In addition, W\vee 

(A\prime ,B\prime ) has generator  - er+1b
T
j for each j = 1, . . . ,m coming

from the new zero row added to B\prime . It follows that W\vee 
(A\prime ,B\prime ) is contained in the

space claimed. The generators of the form  - er+1b
T
j span V T

S since B has full rank

r. Under the natural projection \BbbR (r+1)\times (r+1) \rightarrow \BbbR r\times r, the generating set of W\vee 
(A\prime ,B\prime )

maps to the generating set of W\vee 
(A,B) and zero, which span the r \times r matrices with

zero diagonal. Therefore W\vee 
(A\prime ,B\prime ) spans the matrices supported on the off-diagonal

entries of the first r columns.
To prove that W\vee 

(A\prime ,B\prime ) is a linear space, we show that zero is a strictly positive
combination of the generators, and therefore zero is in the relative interior. Since
W\vee 

(A,B) is a linear space, zero is a positive combination of its generators,

0 =

n\sum 
j=1

\sum 
i\in Sj

ci,ja
T
j e

T
i  - 

m\sum 
j=1

\sum 
i\in Tj

di,jeib
T
j ,

where Sj is the set of zeros in aj and Tj the set of zeros in bj . Let v denote the same
positive combination of the corresponding generators of W\vee 

(A\prime ,B\prime ),

v =

n\sum 
j=1

\sum 
i\in Sj

ci,j(a
T
j e

T
i + aj,r+1er+1e

T
i ) - 

m\sum 
j=1

\sum 
i\in Tj

di,jeib
T
j

=

n\sum 
j=1

\sum 
i\in Sj

ci,jaj,r+1er+1e
T
i .

The matrix v is strictly positive on the first r entries of the last row and zero elsewhere,
and its positive entries depend on the new positive entries chosen for A\prime . The convex
cone cone(b1, . . . , bm) \subseteq \BbbR r is full dimensional and contained in the positive orthant.
Choose a vector w in the interior of the cone, so it can be expressed as a strictly
positive combination of the columns of B. We choose the entries a1,r+1, . . . , an,r+1 so
that

n\sum 
j=1

\sum 
i\in Sj

ci,jaj,r+1ei = w.
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Then  - er+1w
T is a positive combination of the generators of W\vee 

(A\prime ,B\prime ) of the form

 - er+1b
T
j and

v  - er+1w
T = 0.

Thus zero is a positive combination of all the generators.
Finally, to conclude that (A\prime , B\prime ) is partially infinitesimally rigid, we show that

W(A\prime ,B\prime ) is contained in F . After modding out by the diagonal scaling directions,
W(A\prime ,B\prime ) is equal to VS , so its elements square to zero.

A nontrivial algebraic boundary component of \scrM m\times n
r consisting of matrices with

infinitesimally rigid factorizations (A,B) is defined by r2  - r + 1 zero conditions on
(A,B). The above construction gives a recipe to produce nontrivial algebraic bound-
ary components consisting of matrices with partially infinitesimally rigid decomposi-
tions (A,B) that are also defined by zero conditions on (A,B). However, the number
of zero conditions is generally fewer. On the other hand, each matrix has a higher
dimensional space of nonnegative factorizations.

The following example demonstrates a matrix and its partially infinitesimally
rigid factorization on the algebraic boundary of \scrM m\times n

4 . While infinitesimally rigid
factorizations for rank 4 have at least 13 zeros, this example has only 10. The space of
nonnegative factorizations in its neighborhood after modding out by diagonal scaling
is 3 rather than zero.

Example 5.11. Let M \in \scrM 4\times 3
3 be the matrix with nonnegative factorization

A =

\left(    
0 1 2
1 0 2
2 1 0
1 2 0

\right)    , B =

\left(  0 1 1
1 0 1
1 1 0

\right)  .

It can be checked that W(A,B) consists only of the diagonal, so this factorization is
infinitesimally rigid. While M is not on the boundary because it has only 3 columns,
it could be expanded into a boundary instance by adding positive rows and columns
per Lemma 4.5.

We apply the construction of Proposition 5.10 to get M \prime = A\prime B\prime with

A\prime =

\left(    
0 1 2 1
1 0 2 1
2 1 0 1
1 2 0 2

\right)    , B\prime =

\left(    
0 1 1 1
1 0 1 1
1 1 0 1
0 0 0 1

\right)    .

It can be checked that, modulo the diagonal, W(A\prime ,B\prime ) is the space of matrices sup-
ported on entries (1, 4), (2, 4), (3, 4), so the factorization is partially infinitesimally
rigid. M \prime is also not on the boundary of \scrM 4\times 4

4 but can be expanded into a boundary
instance with the same zero pattern. In the space of nonnegative factorizations of
M \prime in a neighborhood of (A\prime , B\prime ), the last column of A\prime has full dimensional freedom,
while the other entries are fixed except for the diagonal action. The variation of the
last column of A\prime varies the last column of B\prime , while the other entries of B\prime are also
unchanged.

The geometric picture of nested polytopes, P \prime \subseteq \Delta \prime \subseteq Q\prime , for (A\prime , B\prime ) is shown
in Figure 3. The 3-simplex \Delta \prime shares a facet \Delta with P \prime . Slicing along the affine span
of \Delta recovers the nested polygons P \subseteq \Delta \subseteq Q associated to (A,B). The facet \Delta of
\Delta \prime is locked in place by this lower dimensional configuration. On the other hand, the
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(a) P \prime \subseteq \Delta \prime \subseteq Q\prime (b) P \subseteq \Delta \subseteq Q

Fig. 3. In Example 5.11, slicing the nested polytopes for (A\prime , B\prime ) along the hyperplane of facet
\Delta of produces the nested polytopes for (A,B).

vertex of \Delta \prime opposite \Delta is locally free to move in a 3-dimensional neighborhood of its
position.

We note that in Figure 8 of [23] Mond, Smith, and van Straten allude to the
existence of configurations like Example 5.7, but they do not elaborate further on
their properties or construction.

Question 5.12. Are there nontrivial boundary components of \scrM m\times n
r for r \geq 4

consisting of matrices with nonisolated partially infinitesimally rigid factorizations
that do not come from the construction of Proposition 5.10 or its dual?

6. Symmetric matrices and completely positive rank. In this section we
adapt our results to the case of symmetric matrices. Let M be an n \times n real non-
negative symmetric matrix. The completely positive rank of M , denoted cp-rankM ,
is the smallest r such that M = AAT for some nonnegative n \times r matrix A [1]. For
fixed r and n we examine the set of symmetric matrices M with rank and completely
positive rank both equal to r, as a subset of the symmetric n\times n matrices of rank r.

Let M have rank r, and let A be a symmetric rank factor of M , meaning that
M = AAT and A is an n\times r matrix. The set of all symmetric rank factors of M is

\{ AC | C \in O(r)\} ,

where O(r) is the orthogonal group on \BbbR r, which consists of the matrices C that
satisfy C - 1 = CT . Fixing A, we can then identify O(r) with the set of rank factors
of M by the linear map C \mapsto \rightarrow AC. Let

UA = \{ D \in \BbbR r\times r | AD \geq 0\} .

M has completely positive rank r if and only if O(r) \cap UA is not empty.
Now we suppose that cp-rankM = r. To understand the rigidity of a nonnegative

factor A, we study C in a neighborhood of I \in O(r) that satisfy AC \geq 0. The
infinitesimal motions of A consist of the tangent directions such that

aTi \.aj + \.aTi aj = 0 for (i, j) \in [n]\times [n],(6.1)

ai + t \.ai \geq 0 for i \in [n] and t \in [0, \epsilon ).(6.2)
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The tangent space of O(r) at I, denoted TI O(r), consists of all skew symmetric r\times r

matrices D, which we identify with \BbbR (
r
2) by the coordinates above the diagonal, dij

with i < j. The directions that satisfy equations (6.1) are AD, where D \in TI O(r).
Let WA \subseteq TI O(r) be the cone of tangent directions such that A(I + tD) is an
infinitesimal motion. As in the nonsymmetric case, WA is cut out by linear inequalities
coming from the zero entries of A. If row aTi has a zero in entry j, it imposes condition
dTj ai \geq 0, where dj is the jth column of D. Unlike in the nonsymmetric case, a factor
A of M has no trivial deformations, so we have the following definitions.

Definition 6.1. A nonnegative factor A is locally rigid if it is an isolated solution
to M = AAT and A \geq 0. A is infinitesimally rigid if it has no infinitesimal motions.

All of the theorems from section 3 have analogous statements for symmetric ma-
trices and completely positive rank. The corresponding results follow.

Proposition 6.2. A is infinitesimally rigid if and only if W\vee 
A

\sim = \BbbR (
r
2).

Theorem 6.3. If A is an infinitesimally rigid nonnegative rank-r factor, then
\bullet A has at least (r2  - r)/2 + 1 zeros, and
\bullet for every distinct pair i, j taken from 1, . . . , r, there must be a row of A with
a zero in position i and not in position j.

Proof. If W\vee 
A

\sim = \BbbR (
r
2), then it must have at least

\bigl( 
r
2

\bigr) 
+ 1 cone generators. The

generators of W\vee 
A are in bijection with the zeros in A.

For each coordinate dij with i < j there must be at least one generator of W\vee 
A

with a strictly positive value there, and one with a strictly negative value. Since A is
nonnegative, to get a positive value in coordinate dij requires A to have a row with
zero in the jth entry and a positive value in the ith entry. To get a negative value
requires A to have a row with zero in the ith entry and a positive value in the jth
entry, since dji =  - dij .

Corollary 6.4. If A is an infinitesimally rigid nonnegative rank-r factor with
exactly (r2  - r)/2 + 1 zeros, then M is strictly positive.

Proof. If A is infinitesimally rigid, then the dual cone W\vee 
A

\sim = \BbbR (r2 - r)/2. If A has
only (r2  - r)/2 + 1 zeros, the corresponding generating set of W\vee 

A is minimal, so the
only linear relation among the generators must be among all (r2  - r)/2.

If AAT has a zero in entry ij, then rows ai and aj of A have zeros in comple-
mentary positions so that aia

T
j = 0. Since the support of aj is contained in the set

of columns for which ai is zero, the outer product matrix aTi aj can be expressed as
a nonnegative combination of the dual vectors coming from ai. Similarly, the matrix
 - aTi aj can be expressed as a nonnegative combination of the dual vectors coming from
aj . Summing these gives a linear relation among a strict subset of the generators,
which is a contradiction.

Corollary 6.5. If A is an infinitesimally rigid nonnegative factor, then there is
at least one zero in every column of A.

Corollary 6.6. If M is strictly positive and A is an infinitesimally rigid non-
negative rank-r factor of M , then there are at most r  - 2 zeros in every row of A.

Proof. Since M is positive, no row of A can contain only zeros. If a row of A
contains r  - 1 zeros, then there is a column of A that does not contain any zero,
because otherwise AAT would have a zero entry. This contradicts Corollary 6.5.
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Lemma 6.7. If A is an infinitesimally rigid nonnegative rank-r factor with (r2  - 
r)/2 + 1 zeros, then there are at most r  - 1 zeros in every column of A.

Proof. As in the proof of Corollary 6.4, the only linear relation among the gen-
erators of W\vee 

(A,B) must be among all (r2  - r)/2 + 1 generators. If there were r zeros

in the same column of A, then there would be r generators of W\vee 
A contained in an

(r - 1)-dimensional subspace, implying a smaller linear relation, which is impossible.

Lemma 6.8. Let A be an infinitesimally rigid nonnegative rank-r factorization
with (r2  - r)/2 + 1 zeros. Let \alpha \subseteq [r] and suppose A has a k\times | \alpha | submatrix of zeros
with columns \alpha . Then

k \leq (r  - | \alpha | ).

Proof. As in the proof of Corollary 3.6, a generating set of size (r2  - r)/2 + 1 is
minimal, so the only linear relation among the generators must be among all of them.
It can be checked that the zeros of A described above correspond to k| \alpha | generators
of W\vee 

A supported on entries ([r] \setminus \alpha ) \times \alpha . The number of generators cannot exceed
the number of entries they are supported on, which gives the inequality

k| \alpha | \leq (r  - | \alpha | )| \alpha | .

Let ZA be the matrix whose columns are the generators of WV
A , and let c be the

number of columns of this matrix.

Proposition 6.9. Let M be a rank-r matrix. If AAT is a size-r completely
positive factorization of M that is locally rigid but not infinitesimally rigid, then
K- rank(ZA) < min(c,

\bigl( 
r
2

\bigr) 
).

The proof of this proposition is analogous to the proof of Proposition 4.8. We
remark that most other conclusions of sections 4 and 5 can also be extended to the
symmetric case, but we leave this to the enterprising reader.

Proposition 6.9 together with Proposition 6.2 gives Algorithm 6.1 for determining
infinitesimal and local rigidity of a nonnegative matrix factorization.

Algorithm 6.1 Local rigidity of a size-r completely positive factorization given by
AAT .

1: procedure LocalRigidityCPF(A, r)
2: Construct the matrix ZA. Let c be the number of columns of ZA.
3: if the Kruskal rank of ZA is equal to min(c,

\bigl( 
r
2

\bigr) 
) then

4: construct the polyhedral cone WV
A spanned by the columns of ZA.

5: if WV
A is isomorphic to \BbbR (

r
2) then

6: return AAT is infinitesimally and locally rigid.
7: else
8: return AAT is neither infinitesimally nor locally rigid.
9: end if

10: else
11: return AAT is not infinitesimally rigid; local rigidity cannot be deter-

mined.
12: end if
13: end procedure
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Appendix A. Infinitesimally rigid factorizations for 5 \times 5 matrices of
nonnegative rank 4. In this appendix, we will present infinitesimally rigid fac-
torizations for 5 \times 5 matrices with positive entries and of nonnegative rank 4. In
particular, we will show that for every zero pattern with 13 zeros satisfying the con-
ditions of Theorem 3.4, there exists an infinitesimally rigid nonnegative factorization
realizing this zero pattern.

We consider zero patterns up to the action that permutes the rows of A, simulta-
neously permutes the columns of A and the rows of B, permutes the rows of B, and
transposes AB. As the first step, we use Macaulay2 [17] to construct an orbit repre-
sentative under this action for all zero patterns with 13 zeros satisfying the conditions
of Theorem 3.4. There are 15 such orbit representatives.

Then for every zero pattern we construct random realizations by choosing nonzero
entries uniformly at random between 1 and 1000. Finally, we use Normaliz [3] to find
nonnegative factorizations that are infinitesimally rigid based on Definition 3.1. For
each of the 15 zero patterns, we are able to construct an infinitesimally rigid realiza-
tion:

\left(      
104184 229176 94392 336996 77040
94663 117528 485070 3404 7979
535318 168896 1169348 255210 182576
156494 310908 1119179 316225 460213
763917 337540 876372 1016103 574666

\right)      =

\left(      
0 0 396 108
0 0 4 555
0 470 0 812
455 0 0 926
194 761 550 0

\right)      
\left(    

0 260 681 695 985
847 0 978 543 366
217 522 0 851 191
169 208 874 0 13

\right)    ,

\left(      
210729 402419 94831 122655 193579
242132 124696 781275 579876 739205
618738 197370 434676 846486 1143228
50400 233301 221994 60009 34134
107007 33966 457653 315558 360201

\right)      =

\left(      
0 0 221 407
0 764 0 143
0 444 918 0

249 0 0 225
189 336 27 0

\right)      
\left(    

0 149 681 241 91
275 0 979 759 958
541 215 0 555 782
224 872 233 0 51

\right)    ,

\left(      
573705 806520 167622 246500 531659
397096 39600 299176 63720 274120
131646 403260 30269 226915 264510
9114 85160 311182 827468 851798

147857 3200 351037 599025 697755

\right)      =

\left(      
0 0 425 921
0 472 0 80
0 1 391 163
862 0 98 0
640 199 0 0

\right)      
\left(    

0 5 361 894 927
743 0 603 135 525
93 825 0 580 538
580 495 182 0 329

\right)    ,

\left(      
30893 319912 149770 873 111428
383490 87990 5580 628440 587250
560076 1030324 331070 288045 350647
203830 305184 277512 264376 205933
90911 142936 500784 618842 609633

\right)      =

\left(      
0 0 356 9
0 870 0 30
0 302 469 731

403 0 0 374
852 190 147 0

\right)      
\left(    

0 0 516 566 511
422 73 0 719 675
73 878 416 0 313
545 816 186 97 0

\right)    ,

\left(      
553924 99854 348351 183860 20114
401268 3372 802602 250881 155672
1091328 648606 538803 176341 151574
472277 506248 136080 591292 591056
377978 477454 470565 322776 461574

\right)      =

\left(      
0 0 113 634
0 671 0 562
0 71 759 576

697 0 0 270
346 520 267 0

\right)      
\left(    
401 724 0 736 848
0 0 774 131 232

896 850 255 0 178
714 6 504 290 0

\right)    ,

\left(      
292425 60900 31581 170931 7358
8056 89782 548546 684912 505520
98680 758632 1234092 742008 1123962
428876 6358 306000 865802 851174
888312 823270 758974 620872 1215638

\right)      =

\left(      
0 0 525 13
0 106 0 751
0 888 56 795
578 0 0 500
568 866 720 0

\right)      
\left(    
742 11 0 709 983
76 847 839 0 759
557 116 45 303 0
0 0 612 912 566

\right)    ,

\left(      
348984 214425 353658 81504 608634
333621 42811 108265 141389 79520
457700 5980 467723 866662 841426
91308 220419 483054 706686 1353778
342940 384918 120318 550726 945556

\right)      =

\left(      
0 0 867 288
0 112 0 295

937 0 0 460
832 102 761 0
110 898 298 0

\right)      
\left(    

0 0 319 786 898
358 348 0 517 710
72 243 286 0 702
995 13 367 283 0

\right)    ,
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88076 294646 658787 902872 244559
2216 4216 596705 652698 250465

279360 180864 769506 1051380 391634
553284 826606 765406 293965 883775
696039 897917 148301 832169 169525

\right)      =

\left(      
0 0 454 713
0 8 0 711

288 0 0 926
239 998 232 0
541 37 830 0

\right)      
\left(    
970 628 0 699 257
277 527 733 0 824
194 649 146 547 0
0 0 831 918 343

\right)    ,

\left(      
948201 723609 958755 591858 397953
222448 218040 30429 348793 15825
329588 7189 623001 12012 469185
467424 160704 115092 835504 343912
1114797 932972 975775 997164 636096

\right)      =

\left(      
0 0 867 753
0 211 0 189

429 0 553 0
556 864 0 0
552 270 738 923

\right)      
\left(    

0 0 207 28 502
541 186 0 949 75
596 13 966 0 459
573 946 161 786 0

\right)    ,

\left(      
264293 89201 411390 21016 54492
255674 383544 693861 252463 211653
212205 6665 216806 6450 103802
469696 393840 450523 564374 956188
288927 197161 105742 300945 433801

\right)      =

\left(      
0 0 239 284
0 351 0 893
86 0 215 0
598 954 0 175
154 545 31 0

\right)      
\left(    

0 0 526 75 637
474 360 0 531 603
987 31 798 0 228
100 288 777 74 0

\right)    ,

\left(      
3230 104329 410573 875858 188790
22527 66939 204273 81606 13419
123988 34611 82056 713192 305348
596448 338171 559708 395192 624199
1460035 246567 270382 584688 1302924

\right)      =

\left(      
0 0 870 323
0 21 0 201
139 0 789 0
623 36 0 556
639 911 480 0

\right)      
\left(    
892 249 0 272 965
977 96 242 0 639
0 0 104 856 217
10 323 991 406 0

\right)    ,

\left(      
64244 119613 501370 37843 259408
85315 371265 69495 801995 33660
83956 5004 737712 957860 230056
46287 566084 451221 397664 269200
144598 34999 923447 1330101 293244

\right)      =

\left(      
0 0 523 41
0 510 0 565

772 0 0 556
64 656 417 0
853 13 77 901

\right)      
\left(    

0 0 867 576 298
0 718 0 550 66

111 228 949 0 496
151 9 123 923 0

\right)    ,

\left(      
310392 195156 317952 492156 169188
82320 581120 90160 709152 19024
519783 180720 1398418 74387 728134
70245 244363 505935 527965 176138
451143 501811 582768 158964 396949

\right)      =

\left(      
0 0 276 756
0 656 0 784

901 0 619 16
440 202 0 669
135 493 539 0

\right)      
\left(    

0 0 975 71 387
0 703 0 303 29

837 288 837 0 613
105 153 115 651 0

\right)    ,

\left(      
72200 697140 19076 191446 252354
341204 824131 90064 90804 450580
292600 86846 319858 425581 57573
493288 887466 592538 286784 604086
809126 281001 625050 719417 276676

\right)      =

\left(      
0 0 76 822
0 433 0 644
490 0 308 79
934 626 0 570
831 377 539 0

\right)      
\left(    

0 0 495 221 68
788 651 208 0 584
950 66 251 994 0
0 842 0 141 307

\right)    ,

\left(      
279265 274840 187355 655433 214052
270970 68600 734264 1018514 89856
341531 544696 235555 187012 948873
417526 121556 855865 841310 486784
15933 287113 730363 580464 439746

\right)      =

\left(      
0 0 236 707
0 702 0 686

849 0 507 136
684 725 0 470
47 914 326 0

\right)      
\left(    
339 109 235 0 576
0 0 787 588 128
0 865 0 132 907

395 100 265 883 0

\right)    .

We conjecture that the 15 nonnegative factorizations above are in fact globally
rigid based on the following evidence. For each of the 15 matrices above we ran the
program by Vandaele et al. [29] with the simulated annealing heuristic ``sa"" ten times.
Each run consisted of at most ten attempts, and the target precision was 10 - 15. In 13
out of the 15 cases at least one out of ten runs would find a nonnegative factorization
of size 4. Each time when a size-4 nonnegative factorization was found, it was the
same as the original factorization. On average 6.3 runs were successful finding a size-4
nonnegative factorization. For the third and ninth matrices, none of the runs found
a size-4 nonnegative factorization. The algorithm was much slower for the eighth
matrix than for any other matrix on the list. Although only three runs found a
nonnegative factorization of target precision in this case, all other solutions looked
similar to the original solution as well. This suggests that the algorithm converges
slowly for this matrix. In summary, in each of the cases, either this program could not
find a nonnegative factorization of target precision or it would find the nonnegative
factorization that we started with. If these matrices would have other nonnegative
factorizations, we find it unlikely that this would be the case.
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Vandaele et al. discuss in [29, section 2] that A and B positive are known to
increase the number of factorizations of AB, and hence factoring AB is usually easier.
This suggests that matrices with small factorization spaces are the most difficult for
exact nonnegative matrix factorization algorithms. Hence one application of the 15
matrices above could be as benchmark matrices for nonnegative matrix factorization
algorithms.

We also constructed orbit representatives for all zero patterns with 13 zeros sat-
isfying the conditions of Theorem 3.4 and Lemma 3.9 for larger matrices such that
every row of A contains a zero, and the number of columns of B is five or every column
of B contains a zero. The number of such zero patterns for each matrix size is listed
in Table 1.

Table 1
Number of zero patterns with 13 zeros satisfying the conditions of Theorem 3.4 and Lemma 3.9

for different matrix sizes such that every row of A contains a zero, and the number of columns of
B is five or every column of B contains a zero.

5 \times 5 6 \times 5 6 \times 6 7 \times 5 7 \times 6 8 \times 5 9 \times 5
15 26 14 24 11 10 2

Differently from the 5\times 5 case, not all of these zero patterns automatically satisfy
the necessary condition in Lemma 3.10, which is more difficult to check than the
necessary conditions in Theorem 3.4 and Lemma 3.9. In the case of 6 \times 5 matrices,
one out of 26 zero patterns fails the necessary condition in Lemma 3.10. It is\left(        

0 0 \cdot \cdot 
0 0 \cdot \cdot 
0 \cdot \cdot \cdot 
\cdot 0 \cdot \cdot 
\cdot \cdot 0 \cdot 
\cdot \cdot \cdot 0

\right)        
\left(    
\cdot \cdot 0 \cdot \cdot 
\cdot \cdot \cdot 0 \cdot 
0 0 \cdot \cdot \cdot 
\cdot \cdot \cdot \cdot 0

\right)    .

For the rest of the 25 zero patterns, Huanhuan Chen constructs infinitesimally rigid
realizations in his Master's thesis [5]. He also shows that for larger factorizations there
does not exist an infinitesimally rigid factorization realizing every pattern of r2 - r+1
zeros satisfying the conditions of Theorem 3.4 and Lemma 3.10. He gives a stronger
necessary condition for an infinitesimally rigid realization to exist and conjectures
that this condition is also sufficient.

Acknowledgments. We thank two anonymous referees, Huanhuan Chen, Nico-
las Gillis, Ivan Izmestiev, and Arnau Padrol for helpful comments and suggestions.
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