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UNIQUENESS OF POSITIVE RADIAL SOLUTIONS
OF Au + f(u) = 0 IN R" , II

KEVIN McLEOD

Abstract. We prove a uniqueness result for the positive solution of A« +
f(u) = 0 in R" which goes to 0 at oo . The result applies to a wide class of
nonlinear functions /, including the important model case f(u) = -u + up ,
1 < p < (n + 2)l(n - 2). The result is proved by reducing to an initial-boundary
problem for the ODE u" + (n - l)/r + f(u) = 0 and using a shooting method.

1. Introduction

Let n > 1 be a real parameter, and let / : [0, oo) -» R satisfy
(i) feCx([0,oo)), f(0) = 0, f'(0) = -m<0,and

(ii) for some a > 0, f(u) < 0 for 0 < u < a, f(u) > 0 for u > a and
f'(a)>0.

We wish to study the question of uniqueness for solutions of the boundary
value problem

(1) u" + —l-u' + f(u) = 0   forr>0,

(2) u'(0) = 0,    w(r)->0   asr^oo,
(3) w(r)>0   forr>0.

The problem (l)-(3) will be referred to as (GS), since a solution of (l)-(3)
can be considered (at least when n > 2 is an integer) as a positive, radially
symmetric solution u(X) = u(\\X\\) of Au + f(u) = 0 in K", and in many
physical situations such a positive solution will represent the state of lowest
energy, or ground state, of the system.

Due to its large number of applications, (GS) has attracted considerable at-
tention from mathematicians in recent years. In particular, the existence ques-
tion is now well understood. We will mention here a special case of a result
of Berestycki and Lions [1] which gives very simple conditions under which a
solution of (GS) exists.

Theorem A. In addition to (i) and (ii), let f satisfy
(iii) for some ß > a, F(ß) = 0, where F(u) = /0" f(s)ds, and
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496 KEVIN McLEOD

(iv)   lim^oo f(u)/ul = 0, where l = (n + 2)/(n - 2) if n > 2, and I can
be any finite real number if 1 < n < 2.

Then (GS) has at least one solution.
As an example, existence holds for the model case f(u) = -u + up (p > 1)

when 1 < p < (n + 2)/(n - 2). (It follows from the Pohozaev identity [10] that
(GS) has no solution when n > 2, f(u) = -u+up and p > (n+2)/(n-2)). The
proof of Theorem A in [1] uses PDE techniques; a similar theorem is proved by
ODE methods in [2]. For a recent, simple existence proof which is less general
but which still covers the model case, see [8].

The first uniqueness result for (GS) was proved by Coffman [3], who stud-
ied the model case with n = p = 3. Coffman's method was generalized in
[7], where a result similar to Theorem 1 below was proved, with the restriction
that a > n - 2 when n > 2. This assumption meant that uniqueness for the
model case could only be proved in [7] for 1 < p < n/(n - 2), and not even
for all of this range when n > 4. The next development was due to Kwong
[5], who introduced two important new ideas: replacing certain complicated
differential identities in [7] by arguments using Sturm oscillation, and a contin-
uation argument in which the parameter n is varied continuously from « < 2
(where the result is relatively simple) to larger values of n. Kwong applied
his method only to the model case, but there it gave uniqueness for the full
range 1 < p < (n + 2)/(n - 2). For a general /, Kwong's argument gives
Theorem 1 with the additional requirement that / be convex. Recently, using
different methods, Zhang [11] has succeeded in proving Theorem 1 assuming
that / is convex for u > a. The final proof of Theorem 1 resulted from com-
bining a simplified version of Kwong's continuation argument with an essential
idea from [11], which appears here as Lemma 10. Kwong and Zhang have also
obtained further results related to Theorem 1 [6].

We now state the main result of the present paper. We first introduce a
modified version of the 7-function from [7]: for k > 0, we define
(4) I(u, k) = kuf'iu) - (k + 2)fi(u).
Theorem 1. Let f satisfy conditions (i) and (ii), and suppose that for each U > a
there is a k = k(U) > 0, continuously depending on U, such that

(5) l(u,k)>0   forO<u<U and
(6) l(u,k)<0   foru>U.
Then (GS) has at most one solution.

The proof of this theorem will be given in §4. Since the main hypothesis can
be hard to check directly, we will indicate in the final section of the paper how
Theorem 1 can be applied to some specific functions. In the same section, we
will state some additional results which follow from the proof of Theorem 1.

2. Preliminary results
It has become standard to study the uniqueness problem for (GS) by consid-

ering the initial value problem

(7) u" + ^—-^-u' + fi(u) = 0   foxr>0,

(8) u(0) = a>0,     u'(0) = 0,
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(9) u extends maximally to the right with u > 0.
The solution of this problem (which is unique [2]) will be denoted either by
u(r) or u(r, a). We define

S+ = {a > 0 : u(r, a) remains bounded away from 0},
S° = {a > 0 : u(r, a) solves (GS)},

S~ = {a > 0 : u(R, a) = 0 for some (first) R = R(a) > 0}.
In case a e S°, we will also set R(a) = oo. The variation ô(r) = ô(r, a) =
du/da satisfies

(10) ô" + —l-ô' + f'(u)ô = 0,

(11) S(0)=1,    S'(0) = 0.
The following lemmas collect some well-known facts concerning the solutions

of (7) and (10). For additional proofs of these results, the reader may consult
[2] or [9].
Lemma 1. (a) The sets S+, S~ and S° are disjoint and cover the interval
(0, oo), with (0, a] e S+. In particular, if u is a solution of (GS), then
u(0) > a. Also, S+ and S~ are both open in (0, oo).

(b) Any solution u with w(0) e S°uS~ is monotone decreasing. In particular,
any solution of (GS) is monotone decreasing.

(c) If u is a solution of (GS), then for any e e (0, m),
limsxxou(r)er^m~e < oo,    limsup|M/(r)|er

r—>oo r—>oo

and
\u'(r)\       ,-yj—m   as r —> oo.
u(r)

(d) If u is a solution of(l) with u(0) e S+ then u has an infinite number of
local maxima and minima. Furthermore, if w(rn) is a local minimum of u then
u(r) > u(rQ) for r > ro, while if u(tq) is a local maximum then u(r) < u(ro)
for r> r0.
Lemma 2. (a) If m(0) e S° U S~ , then ô has only a finite number of critical
points and a finite number of zeroes in (0,7?).

(b) If w(0) G S°, then as r -> oo either
S(r) -> ±oo,    S'(r) -> ±oo with S(r)S'(r) > Ofor large r,

or
Sir)->0,    S'(r) -» 0 with S(r)S'(r) < 0 for large r.

In the second case, for any s e (0, m),

limsup \ô(r)\er^^E < oo,    limsup \S'(r)\ery/iR=i < oo.
r—*oo r—*oo

Proof. From (10), if u is small enough that f'(u) < 0, then any positive
critical point of ô can only be a local minimum. Similarly, any negative critical
value can only be a local maximum. Thus, ô can have at most one critical point
after f'(u) = 0 for the last time. Since critical points of ô axe isolated, ô can
have at most a finite number of critical points, and hence a finite number of
zeroes.
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The proof of part (b) is standard, using the fact that u(r) is small for large
r, so that one has essentially f'(u) = -m .

Our next lemma gives a first relation between the sign of S(R) and the local
behaviour of solutions of (7)-(9).

Lemma 3. (a) Let ao e S~ and suppose that ô(R(a0)) < 0. Then R(a) is a
decreasing function of a near ao.

(b) Let ao e S° and suppose that ô(r) —> -oo as r —> oo. Then for some
e > 0 the interval (oq, oq + e) is contained in S~ , while (ao - e, ao) c S+.
Similarly, if ô(r) —► +oo, some right neighbourhood of ao is contained in S+,
while a left neighbourhood is contained in S~ .
Proof, (a) From the implicit function theorem applied to u(R(a), a) = 0, we
see that R(a) is a differentiable function of a for a e S~ , and that

u'(R(a), a)R'(a) + S(R(a),a) = 0.

Since u'(R(a), a) < 0, the assumption S(R(a0), a0) < 0 gives R'(ao) < 0.
(b) Suppose f'(u) < 0 for u £ [0,y), and let 7?i be fixed so large that

u(r, Oq) < \y when r > Rx. If 3(r) —► -oo as r —► oo, we see from Lemma
2(b) that for some R2 > Rx we have ô(R2) < 0 and ô'(R2) < 0. Thus, for
a > ao but close to ao, we have

(12) u(R2, a) < u(R2, ao),    u'(R2, a) < u'(R2, a0).

If a G S+ , there would be a subsequent point R-¡ > R2 at which u(R-¡, a) =
u(Ri, ao), while if a e S°, both u(r, a) and u(r, ao) approach 0 as r -* oo.
In either case, by (12), the function w(r) = u(r, a) - u(r, a0) must have a
negative minimum after R2 . However, w satisfies

w» + 1zlw> + f'(0(r))w = 0,

where 6(r) is between u(r, a) and u(r, a0), so that f'(0(r)) < 0 in (7?2, R3),
and any negative critical point of w in this interval could only be a maximum.
Thus, a i S+ U 5° and so a € S~ .

The other cases are all similar. In the two cases in which u(R2, a) >
u(R2, ao), a must be taken sufficiently close to oo so that u(R2, a) <y.

Lemma 3 shows that information about u(r, a) can be obtained from an
analysis of 6(r, a). In particular, information on the number of zeroes of 6
plays a crucial role in the proof of Theorem 1. The following terminology is
due to Kwong [5].

Definition. Let a e S° U S~ . a is said to be admissible if ô(r, a) has exactly
one zero in [0, R). a is said to be strictly admissible if a is admissible and
in addition «5(7?, a) < 0 (or S(r) —* -00 as r -» 00, in case a e S°).

In the remaining sections of the paper, we will show that, under the hypothe-
ses of Theorem 1, every a e S° U S~ is strictly admissible. Theorem 1 then
follows easily. The heart of the argument is Lemma 8, in which we show that
admissibility implies strict admissibility. The full proof of Lemma 8 uses the
oscillation results of §3, but we can finish the present section by proving a lemma
which implies Lemma 8 in case ô(r) = 0 at some r where u(r) < a.
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Lemma 4. Suppose that a G S0 U S~ and that ô(r) -»0 as r -> R. Then if
rx G (0, R) is such that ô(rx) = 0, we have u(rx) > a.
Proof. Assume for contradiction that S(rx) = 0 and u(rx) < a. Without loss
of generality, we may assume that rx is the last zero of ô in (0, R), and that
ô < 0 in (rx, R). From the equations satisfied by u and ô , we obtain

[(rn-xu')(rn-x8')\ = -r2n-2[f(u)S' + fi'(u)u'S]
=-r2n-2[f(u)S]'.

Integrating from rx to some r2 G (rx, R) and then integrating by parts, we
obtain

r2"-2u'(r2)ô'(r2) - r2n-2u'(rx)Ô'(rx)

= -[s2n-2f(u(s))ô(s)Yr] + (2n - 2) r s2n-3f(u(s))ô(s) ds.
Jr¡

Now let r2 -> R. If R < oo we note that ö'(R) > 0 (since ô < 0 in (rx, R)
and ô(R) = 0), while if R = oo we apply Lemmas 1(c) and 2(b). Noting also
that fi(u(r)) < 0 in (n , R), we obtain

0 > R2"-2u'(R)ô'(R) - r2"-2u'(rx)ô'(rx)

= (2/1 - 2) /   s2"-3f(u(s))ô(s)ds>0.TV,
(If R = oo, the term R2n-2u'(R)S'(R) is to be interpreted as 0.) This is a
contradiction, and the lemma is proved.

3. Oscillation and disconjugacy
The oscillation result we need is the following lemma, which is nothing more

than a special case of the Sturm Comparison Theorem. Part (b) is perhaps less
well known than part (a), but can be proved by the same methods.

Lemma 5. Let Y and Z be nontrivial solutions of

(13) Y" + ?—±Y' + g(r)Y = 0,

(14) Z" + ?—±Z' + G(r)Z = 0

respectively on some interval (p, v) c (0, oo), where g and G are continuous
on (p, v), G> g on (p,v) and G ^ g. If either

(a) p > 0 and Y(p) = Y(v) = 0,or
(b) p = 0, Y and Z are continuous at p and Y'(p) = Z'(p) = Y(v) = 0,

then Z has at least one zero in (p,v). The same conclusions hold if G = g
on (p, v), provided Y and Z are linearly independent.

Remark. In the situation of Lemma 5, we will say that Z oscillates faster than
Y (orthat Y oscillates slower than Z) on (p,v).

Definition. Suppose that (13) has at least one solution which does not vanish
in some neighbourhood of oo . Define

p = inf{r G (0, oo) : there is a solution of (13) with no zeroes in (r, oo)}.
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The interval (p, oo) will be called the disconjugacy interval of (13).

Clearly, no solution of ( 13) can have two zeroes in (p, oo), for if a solution
vanishes at rx and r2 in (p, oo) then any linearly independent solution would
vanish in (rx, r2) and the disconjugacy interval could not be any larger than
(ri, oo). On the other hand, if p > 0 any solution of (13) with a zero in (0, p)
must have a subsequent zero, or the disconjugacy interval would be larger than
(p, oo). Thus the last zero of any solution of (13) must lie in [p, oo). In the
next lemma, we distinguish those solutions whose last zero is precisely at p.

Lemma 6. Let g(r) be continuous on (0, oo), and suppose that g(r) < 0 for
large r. Let the disconjugacy interval of (13) be (p, oo) with p > 0, and
suppose that ( 13) has a solution which goes to 0 as r —> oo. If Y is a nontrivial
solution o/(13) such that Y(p) = 0, then Y has no subsequent zeroes and
Y(r) —> 0 as r —> oo. Conversely, if Y is a nontrivial solution of (13) with a
zero in (p, oo), then Y does not approach zero as r -> oo.
Proof. Let Ro > p be so large that g(r) < 0 in (7?o, oo). From (13) we see
that at any critical point in (R0, oo), a nontrivial solution of (13) must turn
away from the r-axis. It follows that any nontrivial solution can have at most
one critical point in (7?0, oo), and so is ultimately monotone. In addition, the
solution Y2 of (13) with Y2(Ro) = 0, Y2(Ro) = 1 has no critical point in
(Ro, oo), and so does not approach 0 as r-»oo.

Now let Yx be a solution of (13) such that Yx(r) —> 0 as r —> oo. Then any
other such solution must be a multiple of Yx, and any solution not a multiple
of Yx is of the form cx Yx + c2 Y2 with c2 ^ 0, and so does not approach 0 as
r -» oo . Let px be the last zero of Yx . By the remarks preceding the lemma,
Px > P ■ We claim that px = p, which will imply the conclusion of the lemma.

Suppose for contradiction that px > p. For small e > 0 the solution I3
of (13) with Yi(px - e) = 0, Y¡(px - e) = I has Y3(px) > 0, so Y3 is not
a multiple of Yx and Y3 does not go to 0 as r —> 00. The last zero of Y2
before Rq (if there is one) cannot be at px (since Y2 is not a multiple of Yx )
or in (pi, Ro) (by Lemma 5). Therefore, if e is sufficiently small, Y2 < 0 on
[px - e, Ro). We now write I3 = cxYx + c2Y2 . Evaluating at px shows that
c2 < 0. Since Yx -> 0 while Y2 is positive and bounded away from 0 for large
r, Y3 must eventually become negative. But this implies (for e small) that Y¡
has two zeroes in (p, 00).

Remark. If the disconjugacy interval of (13) is (p, 00) and g < G < 0 on
this interval, then the disconjugacy interval of (14) cannot be any larger than
(p, 00). Specifically, if Y and Z are solutions of (13) and (14) with Y(p) =
Z(p) = 0, then Y -* 0 as r —> 00, by Lemma 6, and an analysis of the
Wronskian of Y and Z shows that if Z > 0 on (p, 00) then Z -> 0 as
r —> 00. In case Y and Z both decay exponentially fast at oc (which is the
only case we will use) the proof is similar to the standard proof of Lemma 5; if
either Y ox Z decays less rapidly, the analysis is slightly more delicate.

4. Proof of Theorem 1

Recall that our aim is to show that every a e S° U S~ is strictly admissible.
As a first application of our oscillation results, we will show that for every such
a the variation S(r, a) has at least one zero in (0,7?). In this proof, we first
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use an auxiliary function which will prove to be very useful in the remainder of
the paper. For k > 0 we define

(15) V(r) = vx(r) = vx(r, a) = ru'(r) + ku(r).

A calculation using (7) shows that vx is a solution of

(16) «" + —-v' + fi'(u)v = I(u, X),

which can be written as

(17) v»+TLzlv' +
r

in any interval in which v ^ 0.

Lemma 7. Under the assumptions of Theorem I, for any a G S°l)S~ the varia-
tion S(r, a) has at least one zero in (0,7?).
Proof. Suppose ó never vanishes in (0, R). Then ô > 0 in (0, R), since
r5(0) = 1. Let k = k(a) be the value corresponding to U = a in the hypothesis
of Theorem 1. Note that a > a by Lemma 1(a). Then I(u,k) > 0 for
0 < u < a = u(0), so if I(u, k) ^ 0, comparison of (10) and (17) shows
that vx oscillates more slowly than ô as long as vx > 0. But vx(0) > 0 and
vx(R) < 0 (using Lemma 1(c) in case R = oo), so vx must have a zero in
(0,7?), which is a contradiction. (In case I(u, k) = 0, ô must be a positive
multiple of vx and so again ô(R) < 0.)

Lemma 8. Suppose f satisfies the hypotheses of Theorem 1 and let a G S° l)S~
be admissible. Then a is strictly admissible.
Proof. Suppose that a is admissible but not strictly admissible. Then ô has
exactly one zero in (0, 7?) and 3(r) -► 0 as r -> 7?. Let rx be the zero of ô,
and note by Lemma 4 that u(rx) > a . Let kx = k(u(rx)). Then I(u, kx) < 0
for u > u(rx), so comparison of (10) and (17) shows that if vX{ > 0 in (0, rx]
it would oscillate faster than S in this interval. But this contradicts Lemma
5(b), and we conclude that the first zero of vXi occurs in (0, rx].

Now let k2 = k(u(0)). As in the proof of Lemma 7, vXl oscillates more
slowly than S in (0, rx ) (as long as vXl > 0) and so the first zero of vXl occurs
at or after rx. It follows that there is some value of k between kx and k2 such
that the first zero of vx occurs exactly at rx. Since k(U) depends continuously
on U, this value of k can be chosen as k(u(r)) for some r G [0, rx], and then
I(u, k) is nonnegative at rx and remains nonnegative in [rx, oo). In some
interval to the right of rx, then, we have I(u, k) > 0 and vx < 0, and as long
as these inequalities persist, vx oscillates more quickly than ô .

Suppose first that vx has no zero beyond rx. Then neither has S, which
oscillates more slowly than vx . If R < oo, this shows that a is strictly admis-
sible. If 7? = oo then vx —> -oo as r —> oo by Lemma 1(c) so, by Lemma 6,
rx is an interior point of the disconjugacy interval for (17). The disconjugacy
interval of the less oscillatory equation (10) cannot be any shorter than that of
(17) so, by Lemma 6 again, S(r) -> -oo as r —> oo, and again a is strictly
admissible.

If on the other hand ^(^2) = 0 for some r2 > rx, then vx oscillates more
slowly than ô between r2 and any subsequent zero of vx.  Since ô has no

/'(«)
I(u, k) v = 0
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subsequent zeroes neither does vx, so vx(r) > 0 for r close to 7?. It is clear
from (15), however, that vx < 0 for r close to R, so this case cannot occur
and the lemma is proved.

Lemma 9. The set of (strictly) admissible a e S° U S~ is both open and closed
in S°\JS-.
Proof. By Lemma 7, the set of nonadmissible a's consists of those a for which
S(r, a) has at least two zeroes in (0,7?). This set is open, by the continuity
of ô on a, so the set of admissible a's is closed. However the set of strictly
admissible a's is open. This is clear from continuity if a G S~ , while if a G S°
we can find 7?o so large that S(r, a) < 0, ö'(r, a) < 0 and f'(u(r)) < 0 for
r > i?o. By continuity, if we perturb a slightly we will still have ô'(Rq) < 0,
and since ô can then have no subsequent critical point the perturbed a is still
strictly admissible. The result now follows from Lemma 8.

It should be clear that Lemma 9 will allow us to apply some type of contin-
uation argument. It is also clear, however, that we must show that we can start
somewhere; i.e. that the set of admissible a's is not empty. Our final lemma,
due to Zhang [11], shows that the smallest a in S° U S~ is admissible. (Of
course, if no such a exists then S+ = (0, oo), S° = 0 and Theorem 1 is
trivially true.)

Lemma 10. The value ao = inf(5° U S~) is admissible.
Proof. Note that in fact ao G S° (since S~ is open) and assume that ô(r, ao)
has two or more zeroes in (0, oo) ; let the first two zeroes of S(r, ao) be at rx
and r2. Then ô(r, ao) > 0 in (0, rx), S(r, ao) < 0 in (rx, r2) and ô(r, ao) >
0 in some interval to the right of r2. For a < ao but close enough to Oo,
then, the solution u(r, a) will intersect u(r, ao) at least twice. Let the first
two intersections be at yx(a) and y2(a). Note that y2(a) < r0(a), where r0(a)
is the first minimum of u(r, a), for if u(r0, a) > u(r0, ao) then by Lemma
1(b) (d) there can be no further intersection after r0 .

Now decrease a continuously to a. The intersection points yx and y2
will vary continuously with a and cannot coalesce (for otherwise u(r, a) and
u(r, ao) would become tangent, contradicting uniqueness). Note that the func-
tion w(r) = u(r) - a satisfies

(18) w" + —[-w' + f'(6(r))w = 0,

where 9(r) is between a and u(r). For a close to a, the solutions of (18)
behave very much like the solutions of

^ + ̂ V + /'(a)* = 0.
In particular, solutions of (18) will oscillate more quickly than solutions of

l/p> + !Lzlw' + ̂ f'(a)¥ = o
(recall that f'(a) > 0). But this means that as a -»• a the second intersection
of u(r, a) with the horizontal line u = a remains bounded, and hence so do
r0(a) and V2(a). Since yx and y2 neither coalesce nor become unbounded,
we see that for all a G (a, a0)   u(r, a) intersects u(r, ao) at least twice.
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However, for a close to a, u(r, a) remains close to u(r, a) = a in any
bounded interval, and its derivative remains close to u'(r,a) — 0. Since
u'(r, ao) is bounded away from 0 in any compact interval not containing the
origin, it follows that for a close to a, u(r, a) can intersect u(r, ao) only
once, and the lemma is proved.

The proof of Theorem 1 is now straightforward. Since ao is admissible,
it is strictly admissible by Lemma 8. By Lemma 3(b), for some e > 0 the
interval (ao, ao + e) is contained in S~ . Using Lemma 9, we see that every
a G (ao, ao + e) is strictly admissible, so R(a) is a strictly decreasing function
of a on this interval, by Lemma 3(a). As we continue to raise a, Lemmas 10
and 3(b) show that a continues to be strictly admissible and 7?(a) continues
to decrease. Thus (ao, oo) c S~ , and every a G S° U S~ is strictly admissible.
The proof of Theorem 1 is complete.

5. Examples and additional results
We will show first how the main hypothesis of Theorem 1 can be easily

verified for a large class of functions. The following theorem is essentially
Theorem 2 of [7].
Theorem 2. Suppose f satisfies (i) and (ii) and that there is some x > 1 such
that

(19) u~zf(u) is increasing for u > 0,    and
(20) u(u~zf(u))' is decreasing for u > a.

(In case x = I, we require u(u~xf(u))' to be strictly decreasing for u > a.)
Then (GS) has at most one solution.
Proof. Define J(u, x) = uf'(u) - xf(u) and observe that (19) implies
(21) 0<u(u-xf(u))' = Wz3(u,x).

Further, if x = 1 and uf'(u) - f(u) = 0 for some u = uo> a, then uf'(u) -
f(u) < 0 for all u > Uo, contradicting (21). Thus, when x = 1 ,

(22) J(u,l) = ufi'(u)-f(u)>0   foxu>0.
Now let a > x. For 0 < u < a, f(u) < 0, and so J(u, a) > J(u, x) > 0.

Note also that J(a, a) = af'(a) > 0. For u > a we have

u(u-"f(u))' = u(ux-"u-xf(u))' = uT-a[u(u-Tf(u))' + (x- o)u~rf(u)].

Since the quantity in square brackets is decreasing for u > a, if (u~af(u))'
ever vanishes, it remains nonpositive from then on. The same is therefore true
of J(u,o) = ua+x(u-af(u))'.

We show next that for each U > a there is a o > x (a > 1) such that
J(U,o) = 0. Thus, fix U>a. From (21) and (22) we have Uf'(U)-xf(U)>
0, with strict inequality if x = 1. In particular, f'(U)>0. Now, for s > x,
consider the linear function of s

/M - Vf'iV)-sfiV) _ KV**)
[) fi'iu) f(U) ■

/(t) > 0 (> 0 if x = 1) and d//ds < 0. It follows that /(o) = 0 for some
cr in the required range.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



504 KEVIN McLEOD

The proof of Theorem 2 is completed by putting k = 2/(a - 1) where a
is the value found above, and noting that I(u,k) = kJ(u, a) satisfies the
requirements of Theorem 1.

Example. Let / be a general "polynomial",
V

f(u) = Y,aku>»,
k=x

where 1 = px < p2 < ■ ■ ■ < pv = p . It can be easily checked by differentiation
that / will satisfy (19) and (20) with the choice x = p, provided ax < 0,
ak < 0 for 2 < k < v - 1 and a„ > 0. In fact, (u~pfi(u))' > 0, which
shows that f'(u) > 0 whenever f(u) > 0. Thus / also satisfies (i) and (ii),
so uniqueness holds for such functions.

We next give a theorem which can be interpreted as a uniqueness result for the
Dirichlet problem in a finite ball. Recall that in proving Theorem 1, we actually
proved that every a G S° 1>S~ was strictly admissible, and that therefore S~ is
an interval and 7?(a) is a strictly decreasing function of a on S~ . It follows
that for each fixed 7? > 0 there is at most one value of a for which 7?(a) = 7?,
which proves the next theorem.

Theorem 3. Let f satisfy the hypotheses of Theorem 1. Then for each 7? > 0
the problem

u" + ^—!-w' + f(u) = 0,
w>0,    w'(0) = 0,    u(R) = 0

has at most one solution

Finally, as pointed out in [5 and 7], our methods may also be applied to the
exterior Neumann problem

u"+r^-u' +f(u) = 0,

u> 0 on (b,R),    u'(b) = 0,     u(R) = 0,
where 0 < b < 7? < oo . Uniqueness will again hold if / satisfies the hypotheses
of Theorem 1. For this problem, existence is known to hold for the model case
for all p > 1 in all dimensions [4], and we obtain uniqueness also for all p > 1.
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