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Abstract

We study quasistationary distributions on a drifted Brownian motion killed at 0, when
+∞ is an entrance boundary and 0 is an exit boundary. We prove the existence of a
unique quasistationary distribution and of the Yaglom limit.
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1. Introduction

We study quasistationary distributions (QSDs) for a drifted Brownian motion killed at 0,
when +∞ is an entrance boundary according to Feller’s classification. The most recent results
for the existence and uniqueness of QSDs when 0 is a regular-type boundary are given in [7],
and sufficient conditions are stated in [1] when 0 is an exit-type boundary.

This paper is related to [1]. We state the existence of a unique QSD when 0 is an exit-
type boundary and +∞ is an entrance boundary, under the most general conditions. Also, the
existence of theYaglom limit is shown. In Section 2 the main hypothesis and some preliminary
results are provided. In Section 3 the required elements of spectral theory are introduced.
Finally, in Section 4 we summarize the main theorems on the existence of a unique QSD and
the existence of the Yaglom limit.

The most technically difficult result is Theorem 3.2, which states the integrability of the
eigenfunctions. The key to its proof is an increasing property of the eigenfunctions, which is
established in (3.2).

2. One-dimensional diffusion processes killed at the origin

Let X be a one-dimensional drifted Brownian motion in (0,∞), i.e.

dXt = dBt − α(Xt ) dt, X0 = x > 0, (2.1)

where α ∈ C1(0,∞) and (Bt )t≥0 is a standard one-dimensional Brownian motion. We
note that the drift α can explode at the origin. A pathwise solution of X in (2.1) exists
up to the explosion time τ . We denote by Ty the first time the process hits y ∈ (0,∞)
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720 J. LITTIN C.

(see [5, Chapter VI, Section 3]) before the explosion, so Ty = inf{0 ≤ t < τ : Xt = y}. We
denote by

T∞ = lim
n→∞ Tn and T0 = lim

n→∞ T1/n.

Since α is regular in (0,∞), τ = T0 ∧ T∞.

2.1. Main hypothesis

Let γ (x) = 2
∫ x

1 α(z) dz for x ∈ (0,∞). Associated to α, we consider the following
functions defined for x ∈ (0,∞):

�1(x) =
∫ x

1
eγ (z) dz,

κ(x) =
∫ 1

x

e−γ (z)
∫ z

x

eγ (y) dy dz,

J (x) =
∫ x

1
e−γ (z)

∫ z

1
eγ (y) dy dz.

Here �1(x) is the scale function and µ(dx) = e−γ (x) dx is the speed measure for X.
Observe that, under the condition α ∈ C1(0,∞), γ (y) is finite for all y > 0, and both∫ b

a
eγ (y) dy < ∞ and

∫ b
a

e−γ (y) dy < ∞ for all 0 < a < b < ∞.
Let us state the following conditions on α.

(H1) Almost-sure absorption at 0: for all x > 0, Px(τ = T0 < T∞) = 1.

(H2) J (+∞) < ∞.

(H3) µ((0, δ)) = ∞ for all δ > 0.

It is well known (see, for example, [5, Chapter VI, Theorem 3.2]) that (H1) holds if and only
if �1(+∞) = ∞ and κ(0+) < ∞. Also, note that (H1) can be written as Px(limt→∞Xt∧τ =
0) = 1.

As a direct consequence of hypotheses (H1) and (H2), +∞ is an entrance boundary according
to Feller’s classification (see [6, Chapter 15, Table 7.1] for details). Under hypotheses (H1)
and (H3), 0 is an exit boundary according to Feller’s classification (see [6, Chapter 15, Table 6.2]
for details).

Hypothesis (H) is said to hold when α ∈ C1(0,∞) and (H1), (H2), and (H3) are satisfied.
Note that, under (H), the function

�(x) =
∫ x

0
eγ (z) dz for all x ∈ (0,∞)

is finite. We also obtain some additional properties on the functions already defined, which we
summarize in the next lemma.

Lemma 2.1. Assume that (H) holds. Then the following relations are satisfied:

(i) �1(0+) > −∞,

(ii) µ((δ,∞)) < ∞ for all δ > 0,

(iii)
∫ ∞

0 e−γ (y)�(y) dy = ∫ ∞
0 eγ (z)

∫ ∞
z

e−γ (y) dy dz < ∞.
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Proof. (i) For all 0 < δ < 1, we have(∫ δ

0
eγ (y) dy

)(∫ 1

δ

e−γ (z) dz

)
<

∫ δ

0
eγ (y)

(∫ 1

y

e−γ (z) dz

)
dy < κ(0+) < ∞.

Since 0 <
∫ 1
δ

eγ (z) dz < ∞, the result is shown.
(ii) Since

∫M
δ

e−γ (y) dy < ∞ for all 0 < δ < M < ∞, it is enough to show that∫ ∞
M

e−γ (y) dy < ∞ for some M > δ. From the condition �1(+∞) = ∞, there exists M
greater than 1 such that �1(x) > 1 for all x > M , so we have∫ ∞

M

e−γ (y) dy < �1(M)

∫ ∞

M

e−γ (y) dy <
∫ ∞

M

e−γ (y)�1(y) dy < J(+∞) < ∞.

(iii) From properties (i) and (ii), we have∫ ∞

0
e−γ (y)�(y) dy =

∫ 1

0
e−γ (z)�(y) dy +

∫ ∞

1
e−γ (y)�(y) dy

< κ(0+)+ J (+∞)+
(∫ ∞

1
e−γ (y) dy

)(∫ 1

0
eγ (y) dy

)
< ∞.

2.2. Preliminary results

Let

λ∗ := lim inf
t→∞ − log Px(T0 > t)

t
= sup{λ : Ex(e

λT0) < ∞}. (2.2)

In fact, the right-hand equality follows from Fubini’s theorem. Also, by irreducibility, both
expressions on the right-hand side do not depend on x (see claim 1 in the proof of Theorem 2.1
below), so λ∗ is well defined.

The next lemma gives some additional information about λ∗ when +∞ is an entrance
boundary.

Lemma 2.2. Assume that (H) holds. Then

λ∗ > 1

2
∫ ∞

0 eγ (z)
∫ ∞
z

e−γ (y) dy dz
> 0.

Proof. The proof is analogous to that of Proposition (7.6) of [1]. We have Jδ(x) =∫ x
0 eγ (y) dy

∫ ∞
y

e−γ (z) dz+ δ, with δ > 0. From (H2), Jδ(∞) < ∞, and from a straightforward
computation we get LJδ = 1

2J
′′
δ − J ′

δ = − 1
2 and

∫ 1/ε
ε

|J ′
δ(s)|2 ds < ∞ for all ε > 0.

By Itô’s formula,

Ex(e
aTε∧T1/ε∧t Jδ(XTε∧T1/ε∧t )) = Jδ(x)+ Ex

(∫ Tε∧T1/ε∧t

0
eas(aJδ(Xs)+ LJδ(Xs)) ds

)
.

For 0 < a ≤ 1/2Jδ(+∞), it is clear that Jδ(Xs)+ LJδ(Xs) ≤ 0, so

δ Ex(e
aTε∧T1/ε∧t ) ≤ Ex(e

aTε∧T1/ε∧t Jδ(XTε∧T1/ε∧t )) ≤ Jδ(x).

Let t → ∞ and ε → 0. From the monotone convergence theorem we obtain

Ex(e
aT0) ≤ Jδ(x)

δ
< ∞ for all a ∈

(
0,

1

2Jδ(∞)

]
.

Finally, since the result is true for all δ > 0, we conclude the proof by taking δ → 0+.

https://doi.org/10.1239/jap/1346955329 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955329


722 J. LITTIN C.

We recall that a probability measure ν is a QSD if Eν(Xt ∈ A | T0 > t) = ν(A) for all Borel
subsets A ⊆ (0,∞). It is known (see [2] and [3]) that if ν is a QSD then Pν(T0 > t) = e−λ(ν)t
for some 0 < λ(ν) ≤ λ∗, where λ(ν) is the survival rate of T0 starting from ν. Then, each
QSD is necessarily associated to a λ ∈ (0, λ∗]. Theorem 2.1 below shows that, when ∞ is an
entrance boundary, any QSD ν satisfies λ(ν) = λ∗, but before presenting this result we recall
the next definition.

Definition 2.1. X comes down from ∞ if, for some y > 0, limx→∞ Px(Ty ≤ t) > 0.

Theorem 2.1. Let hypothesis (H) hold. Then no QSD is associated to some λ ∈ (0, λ∗).

Proof. We verify this result by proving the following four claims.

Claim 2.1. If Ex0(e
λT0) = ∞ for some x0 > 0 then Ex(eλT0) = ∞ for all x > 0.

Proof. For x > x0, the claim follows straightforwardly since Ex(eλT0) > Ex0(e
λT0). For

0 < x < x0, we have

Ex(e
λT0) > Ex(e

λT0 1{T0>Tx0 }) = Ex(e
λTx0 1{T0>Tx0 })Ex0(e

λT0) ≥ Px(Tx0 < T0)Ex0(e
λT0).

Since 0 < Px(Tx0 < T0) = �(x)/�(x0) < 1, the claim follows.

Claim 2.2. Let x0 > 0 and λ > 0 such that Ex0(e
λT0) < ∞. Then X comes down from ∞ if

and only if supx>0 Ex(eλT ) < ∞.

Proof. Let us prove the ‘if’ part. We know that Ex(eλT ) < ∞ for all x > 0. From [1,
Proposition 7.6] we know that, for all λ > 0, there exists yλ such that supx>yλ Ex(eλTyλ ) < ∞.
By monotonicity and the strong Markov property, supx>0 Ex(eλT0) < ∞.

Let us now prove the ‘only if’ part. Let y > x > 0. By using the Markov inequality we
have

Px(Ty > t) ≤ e−λt Ex(e
λTy ) ≤ e−λt sup

x>0
Ex(e

λTy ) < 1

for large enough t . The latter implies that X comes down from ∞ (see Definition 2.1). This
completes the proof of the claim.

Claim 2.3. Assume that (H) holds. If λ > 0 satisfies supx>0 Ex(eλT ) < ∞ then there does not
exist a QSD associated to λ.

Proof. Assume that πλ is a QSD associated to λ. Then Pπλ(T0 > t) = e−λt . Now, for all
t > 0, it is satisfied:

∞ > sup
x>0

Ex(e
λT0)

≥ Eπλ(e
λT0)

=
∫ ∞

0
Ex(e

λT0)πλ(dx)

≥ λ

∫ ∞

0

(∫ t

0
eλs Px(T0 > s) ds

)
πλ(dx).

By Fubini’s theorem, the term on the right-hand side becomes

λ

∫ t

0

(∫ ∞

0
πλ(dx)Px(T0 > s)

)
eλs ds = λ

∫ t

0
e−λseλs ds = λt.

The inequality holds for t > 0, which is a contradiction, and so the claim is proven.
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Claim 2.4. If X comes down from ∞ then, for all λ ∈ (0, λ∗), we have supx>0 E(eλT0) < ∞.

Proof. From claims 2 and 3, it is sufficient to show that, for λ ∈ (0, λ∗), Ex(eλT0) < ∞
holds for some (for all) x > 0 . From (the lim inf) definition in (2.2), for all ε > 0, there exists
t0 such that, for all t > t0, it holds that λ∗ > − log Px(T > t)/t > λ∗ − ε, or, equivalently,
Px(T > t) < e−(λ∗−ε)t for all t > t0. By choosing 0 < ε < λ∗ − λ we obtain

Ex(e
λT0) = 1 + λ

∫ ∞

0
eλs Px(T0 > s) ds

= 1 + λ

(∫ t0

0
eλs Px(T0 > s) ds +

∫ ∞

t0

eλs Px(T0 > s) ds

)

< 1 + λt0eλt0 +
∫ ∞

t0

e(λ−λ∗+ε)s ds

< ∞,

proving the claim.

This completes the proof of Theorem 2.1.

3. L2 and spectral theory of the diffusion process

3.1. Spectral theory and the Sturm–Liouville problem

As in [1], we will give an L2 version of the semigroup Pt and its associated generator L.
The analysis is based on the theory of the Sturm–Liouville problem, which has recently been
studied in detail in [8].

Let µ be the speed measure of the process. For f, g ∈ L2(µ), define

(f, g)µ =
∫ ∞

0
f (s)g(s)µ(ds).

Let ACloc(0,∞) be the space of locally absolutely continuous functions on (0,∞), letDmax =
{f, eγ (e−γ f ′)′ ∈ ACloc(0,∞) ∩ L2(µ)}, and let D0 = {f ∈ Dmax : has compact support}.
Consider the following operators on L2(µ): Lmaxf = − 1

2 eγ (e−γ f ′)′ for f ∈ Dmax and
L0f = − 1

2 eγ (e−γ f ′)′ for f ∈ D0. Note that these expressions are defined µ-almost
everywhere in both cases. For f, g in D0, (L0f, g)µ = (f ′, g′)µ is a symmetric form on D0.

Following Lemma 10.3.1 of [8], letDmin andDmax be dense in L2(µ), let L0 be closable so
that its closure, denoted by Lmin-, is closed, symmetric, and densely defined (on D0), and let
Lmin and Lmax satisfy L∗

min = Lmax and L∗
max = Lmin. Then, for any self-adjoint extension

L of Lmin, we have Lmin ⊆ L = L∗ ⊆ Lmax.
We will see that in our case, Lmin is itself a self-adjoint operator with no proper self-adjoint

extensions onL2(µ), i.e. if L is a self-adjoint extension of Lmin, it satisfies Lmin = L = L∗ =
Lmax. For this purpose, it is necessary to give an appropriate classification of the endpoints 0
and ∞. We introduce the following notions for the endpoint 0.

Definition 3.1. (i) 0 is a regular endpoint if
∫ d

0 e−γ (s) ds < ∞ holds for some (and, therefore,
for all) d > 0. If an endpoint is not regular, it is called singular.

(ii) 0 is a limit circle (LC) endpoint if all the solutions of the equation − 1
2 eγ (e−γ f ′)′ = λf ,

λ ∈ C, are in L2(µ, (0, d)) for some 0 < d < ∞. If 0 is not an LC, it is called a limit
point (LP).
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(iii) 0 is an oscillatory (O) endpoint if there exists a nontrivial real-valued solution to
− 1

2 eγ (e−γ f ′)′ = λf, λ ∈ R, with an infinite number of 0s in any neighborhood of the origin.
Otherwise, we say that 0 is a nonoscillatory (NO) endpoint.

Similar definitions hold for +∞. We recall that the LC/LP classifications are independent
of λ, but the O/NO classifications depend on λ in general. It is clear that, under hypothesis (H),
both endpoints are singular; in fact,

∫ d

0
e−γ (s) ds = ∞ and

∫ ∞

d

eγ (s) ds = ∞ for all 0 < d < ∞.

In the next result we show that 0 and ∞ are also LP endpoints.

Lemma 3.1. Assume that (H) holds. Then 0 and +∞ are of LP type.

Proof. Since the classification does not depend on the value of λ, we will use λ = 0. In
this case, the solutions are linear combinations of f1(x) = 1 and f2(x) = �(x). The case 0
is trivial since

∫ d
0 |f1(s)|2e−γ (s) ds = ∫ d

0 e−γ (s) ds = ∞ for all d > 0. For the +∞ case, note
that

∫ ∞
d
(eγ (s)/�(s)2) ds = 1/�(d) < ∞ and 0 < e−γ (d)�2(d) < ∞ for all 0 < d < ∞.

Then, for M > 0, we have

M =
∫ M+d

d

(
1{e−γ (s)�2(s)>1} + 1{e−γ (s)�2(s)≤1}

)
ds

≤
∫ M+d

d

e−γ (s)�2(s) ds +
∫ M+d

d

eγ (s)

�(s)2
ds

≤
∫ ∞

d

e−γ (s)�2(s) ds + 1

�(d)
.

Since the inequality holds for all M > 0, letting M → ∞ we conclude that the integral on the
right-hand side diverges.

Theorem 10.4.1 of [8] states that if (and only if) 0 and ∞ are LP endpoints then Lmin is
itself a self-adjoint operator and has no proper self-adjoint extensions onL2(µ) (see above). We
conclude that L0 is a symmetric, closable, densely defined operator on L2(µ), whose smallest
closure Lmin (denoted by L in the sequel) is a self-adjoint operator with no proper extensions,
and it is also Markovian. Hence, L is a regular Dirichlet form and possesses the local property
(see, for example, [1] and [4, Theorem 2.1.2]). We recall that the approach is the same as that
in [1] if D0 is replaced by C∞

0 (0,∞) (which is included in D0). Then, Theorem 6.2.2 of [4]
applied as in [1] gives the existence of a nonpositive self-adjoint operator L on L2(µ) with
domain D(L) ⊇ C∞

0 ((0,∞)) such that, for f, g ∈ C((0,∞))
0 , E(f, g) = −2(f,Lg)µ (see [4,

Theorem 1.3.1]). We point out that, for g ∈ C∞
0 ((0,∞)), Lg = 1

2g
′′ − αg′. Moreover, L is

the generator of a strongly continuous symmetric semigroup of contractions on L2(µ) denoted
by (Pt : t ≥ 0). This semigroup is sub-Markovian, that is, 0 ≤ Pt ≤ 1, µ-almost everywhere
if 0 ≤ f ≤ 1 (see [4, Theorem 1.4.1]).

Following [1], it can be shown that the semigroupPt and the semigroup induced by the strong
Markov process (Xt∧τ ) coincides on the set of smooth and compactly supported functions. Also,
from [1] we know that, when absorption is sure, that is, (H1) holds, the semigroup coincides
with the semigroup of X killed at 0, that is, Ptf (x) = Ex(f (Xt ) 1{T0>t}).

Now we will show the discreteness of the spectrum and the main theorem of this section.

https://doi.org/10.1239/jap/1346955329 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955329


Uniqueness of QSDs and discrete spectra 725

Proposition 3.1. Assume that (H) holds. Then −L has a purely discrete spectrum. The
eigenvalues

−∞ < λ0 < λ1 < · · · < λ2 < · · ·
are simple, limn→∞ λn = +∞, and the eigenfunction ψn associated to λn has exactly n roots
belonging to (0,∞) and a orthonormal basis of L2(µ). In particular, we can take ψλ0 strictly
positive.

Proof. Recall that we are analyzing the nontrivial solutions of the equation

(e−γ ψ ′
λ)

′ = −2λe−γ ψλ.

Let σe = σe(L) denote the essential spectrum and σd = σd((L)) denote the discrete part of the
spectrum. From part 8 of Theorem 10.4.1 of [8], we know that if (at least) one endpoint is LP,
then either σe or σd is nonempty. Let σ0 = inf σe. The result will be shown once we prove that
σ0 = +∞. Since σ0 is such that the all the nontrivial solutions of Lψλ = −λψλ are NO for
λ < σ0 and O for λ < σ0, we need to prove that the solutions are NO for each λ > 0.

Using the same argument as in Theorem 3.16 of [7], we find that between a local minimum xi
and a local maximum xi ∈ (0,∞), there exists exactly one solution to the equation ψλ(x) = 0,
and also ψλ(xi) < 0 and ψλ(xi) > 0. Moreover, for each pair of consecutive xi and xi local
extrema, we have

1

2λ
<

∫ xi

xi

�(s)e−γ (s) ds.

Then the relation∫ ∞

0
�(s)e−γ (s) ds >

∫ ∞

ε

�(s)e−γ (s) ds >
∑
(xi ,xi )

∫ xi

xi

�(s)e−γ (s) ds ≥ 1

2λ
#(xi, xi)

is satisfied for all ε > 0, where #(xi, xi) denotes the number of solutions to ψλ(x) = 0 in
(ε,∞). So, the number of roots in [ε,∞) is bounded uniformly by 2λ

∫ ∞
0 �(s)e−γ (s) ds + 1.

The result follows by letting ε → 0+.

A direct consequence of the previous proof is the inequality λn ≥ n/(2
∫ ∞

0 �(s)e−γ (s) ds).
Indeed, it is implied by the fact that ψλn has exactly n roots. Also, we can erase the term +1 if
we already know that ψλ has a finite number of 0s.

Theorem 3.1. It holds that

(Ptf, g)µ =
∑
i≥0

e−λi t (ψλi , f )µ(ψλi , g)µ for all f, g ∈ L2(µ),

Ptf =
∑
i≥0

e−λi t (ψλi , f )µψλi (x) for all f ∈ L2(µ),

lim
t→∞ eλ0t (g, Ptf )µ = (ψλ0 , f )µ(ψλ0 , g)µ for all f, g ∈ L2(µ), f ≥ 0, g ≥ 0. (3.1)

Proof. It is straightforward from the L2 version of the process.

Theorem 3.1 is similar to Theorem 3.2 of [1], with the main difference being that here we do
not impose extra conditions on α to get a discrete spectrum. In fact, we only assume regularity
on α to guarantee the existence of a diffusion process, a hypothesis that is often assumed to
avoid technical problems.
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The next step is to prove the existence (and, as we will see below, also uniqueness) of QSDs.
The function e−γ ψλ0 is a natural candidate for being a QSD; in fact, for all f ∈ L2(µ), we
have

(ψλ0 , Ptf )µ = (ψλ0 , f )µ.

Then, e−γ ψλ0 satisfies the necessary condition on a restricted set of functions. We need to
prove the following two facts: (i) ψλ0 ∈ L1(µ) and (ii) λ0 > 0. The latter assertion follows
from (3.1). In fact, since ψλ0 is a positive element in L2(µ), we can take f = g = ψλ0 in (3.1)
to obtain

0 = lim
t→∞(Ptψλ0 , ψλ0)µ = lim

t→∞ e−λ0t |ψλ0 |2L2(µ)
.

This implies that λ0 > 0.
It remains to prove the integrability of ψλ0 . In Theorem 3.2 we will prove that all the

eigenfunctions are in L1(µ). First, let us collect some elementary properties of the eigen-
functions.

• +∞ is an LP, and from [8, Lemma 10.4.1] we know that, for all g ∈ Dmax,
limx→∞ e−γ [ψ ′

λk
g − g′ψλk ](x) = 0. If we choose g ∈ Dmax such that g(x) = 1

for large x (the existence of such a g is guaranteed by
∫ ∞

1 12e−γ (s) < ∞), we obtain
limx→∞ e−γ ψ ′

λk
(x) = 0.

• Since ψλ0 > 0, and it satisfies (e−γ (x)ψ ′
λ0
(x))′ = −2λ0e−γ (x)ψλ0(x), x > 0, we obtain

e−γ (x)ψ ′
λ0
(x) > limx→∞ e−γ ψ ′

λ0
(x) = 0. In particular, ψλ0 is an increasing function.

• The last assertion implies the existence of the limit ψλ0(0+) = limx→0 ψλ0(x) and also
that its value is 0. In fact, if the limit is greater than 0 we obtain

∫ 1
0 ψ

2
λ0
(s)e−γ (s) ds >

ψ2
λ0
(0+) ∫ 1

0 e−γ (s) ds = ∞, which is a contradiction.

For ψλi , i ≥ 1, we can state similar results; in fact, without loss of generality, we can suppose
that ψλi > 0 in (0, x1,i ), where x1,i denotes the smallest positive solution of ψλi = 0, in which
case ψ ′

λi
(x1,i ) < 0 (or, equivalently, e−γ (x1,i )ψ ′

λi
(x1,i ) < 0) and e−γ ψ ′

λi
decreases in (0, x1,i ).

Moreover, there exists 0 < x∗
0,i < x1,i such that e−γ ψ ′

λi
(x∗

0,i ) = 0 (because otherwise we obtain
ψλi (0+) > 0, which is a contradiction). Then, for x ∈ (0, x∗

0,i ), ψ
′
λi
(x) > ψ ′

λi
(x∗

0,i ) = 0, so
we conclude that ψλi is positive and increasing for some neighborhood of 0.

3.2. Integrability of the eigenfunctions

First, let us note that, for all δ > x and k ≥ 0,

∫ ∞

x

|ψλi (s)|e−γ (s) ds ≤
√∫ ∞

x

e−γ (y) dy

√∫ ∞

x

ψλi (y)
2e−γ (y) dy

<

√∫ ∞

x

e−γ (y) dy

< ∞.

Then,
∫ ∞

0 |ψλi (s)|e−γ (s) ds converges if and only if
∫ x

0 |ψλi (s)|e−γ (s) ds for some (and, there-
fore, for all) x > 0. The next theorem shows that, in fact, all the eigenfunctions are absolutely
integrable with respect to the measure µ.

Theorem 3.2. Let hypothesis (H) hold. Then, for all k ≥ 0, ψλk ∈ L1(µ).
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Proof. Let us recall the equation

(e−γ (x)ψ ′
λi
(x))′ = −2λie

−γ (x)ψλi (x).

Let x0,0 = x̂∗
0,0 and x0,i = min(x∗

0,i , x̂
∗
0,i ), where x̂∗

0,i is the solution to the equation
2λi

∫ x
0 e−γ (s)�(s) ds = 1, and x∗

0,i denotes the smallest solution to e−γ ψ ′
λi
(x) = 0.

Take g ∈ Dmax such that g(x) = −�(x) for x ∈ (0, x∗
0,i ). By integration by parts,

ψλi (x)− e−γ (x)ψ ′
λi
�(x)− (e−γ (ε)ψ ′

λi
(ε)�(ε)− ψλi (ε)) = 2λi

∫ x

ε

�(s)ψλi (s)e
−γ (s) ds.

Letting ε → 0+, since 0 is an LP endpoint, Lemma 10.4.1 of [8] implies that

e−γ [ψ ′
λi
�− ψλi�

′](ε) → 0+.

By the monotone convergence theorem,∫ x

ε

�(s)ψλi (s)e
−γ (s) ds →

∫ x

0
�(s)ψλi (s)e

−γ (s) ds.

So, we obtain

ψλi (x)− e−γ (x)ψ ′
λi
(x)�(x) = 2λi

∫ x

0
�(s)ψλi (s)e

−γ (s) ds.

We know that in (0, x0,i ), ψλi is positive and increasing, so the following inequality holds:

ψλi (x)− e−γ (x)ψ ′
λi
(x)�(x) ≤ 2λiψλi (x)

∫ x

0
�(s)e−γ (s) ds.

Using the fact that ψλi (x) = −(1/2λi)(e−γ (x)ψ ′
λi
(x))′eγ (x) and multiplying by 2λie−γ (x), we

obtain

2λi�(x)e
−γ (x)(e−γ (x)ψ ′

λi
(x))+ (e−γ (x)ψ ′

λi
(x))′

(
1 − 2λi

∫ x

0
�(s)e−γ (s) ds

)
≥ 0.

Dividing by (1 − 2λi
∫ x

0 �(s)e
−γ (s) ds)2 (which is strictly positive in (0, x0,i )), and by noting

that (1 − 2λi
∫ x

0 �(s)e
−γ (s) ds)′ = −2λi�(x)e−γ (x), we deduce that

( e−γ (x)ψ ′
λi
(x)

1 − 2λi
∫ x

0 �(s)e
−γ (s) ds

)′
≥ 0. (3.2)

Then, for 0 < x < y < x0,i , the following inequality is satisfied:

e−γ ψ ′
λi
(0+) < e−γ ψ ′

λi
(x)

1 − 2λi
∫ x

0 �(s)e
−γ (s) ds

<
e−γ ψ ′

λi
(y)

1 − 2λi
∫ y

0 �(s)e
−γ (s) ds

< ∞.

The right-hand inequality follows from∣∣∣∣e−γ (x)ψ ′
λ(x)

2λi

∣∣∣∣ =
∣∣∣∣
∫ ∞

x

e−γ (y)ψλi (y) dy

∣∣∣∣ ≤
∫ ∞

x

e−γ (y)|ψλi (y)| dy < ∞ for all x > 0.
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It guarantees the integrability of ψλi because

∫ x0,i /2

0
|ψλi (s)|e−γ (s) ds =

∫ x0,i /2

0
ψλi (s)e

−γ (s) ds

= e−γ ψ ′
λi
(0+)− e−γ ψ ′

λi
(x0,i/2)

2λi

≤ e−γ ψ ′
λi

(
x0,i

2

)
2λi

∫ x0,i /2
0 �(s)e−γ (s) ds

1 − 2λi
∫ x0,i /2

0 �(s)e−γ (s) ds

< ∞.

4. QSDs and the Yaglom limit

4.1. Existence

In the previous section we showed thatψλ0 is a strictly positiveµ-integrable function. Then,
by standard methods, for instance, as in Theorem 5.2 of [1], the normalized measure defined
by e−γ ψλ0 is a QSD. From Theorem 2.1, a QSD exists only if it is associated to the value λ∗.
Hence, we have proven the following result.

Theorem 4.1. If hypothesis (H) holds then there exists a unique QSD given by

ν(dx) = ψλ0(x)

(1(0,∞), ψλ0)µ
dx.

Moreover, λ0 = λ∗.

In our case, i.e. one-dimensional diffusions killed at 0 verifying hypothesis (H), we will use
the same arguments as in the proof of Theorem 5.3 of [1] to show the existence of a Yaglom
limit. To achieve this, we first need to study in detail the behavior of the transition density of the
diffusion process. We recall Theorem 2.3 of [1], which states that hypothesis (H1) guarantees
that, for all x > 0 and t > 0, there exists a density r(t, x, y) that satisfies

Ex(f (Xt ) 1{T0>t}) =
∫ ∞

0
r(t, x, y)f (y)µ(dy). (4.1)

Moreover, we also have the following result on the density r(t, x, y) of (4.1). Under
hypothesis (H), the density satisfies

r(t, x, y) =
∑
k≥0

e−λktψλk (x)ψλk (y) uniformly on compact sets of (0,∞)3. (4.2)

The proof of this property is similar to that of Proposition 3.3 of [1], since it only uses the
discrete spectrum property. Let us state the last required property on the density r(t, x, y), in
order to obtain the Yaglom limit property similarly as was done in Theorem 5.2 of [1].

Proposition 4.1. Assume that hypothesis (H) holds. Then r(t, x, y) ∈ L2(µ) for all t > 0 and
x > 0. Moreover, there exists a function B(t) ≥ 0, limt→∞ B(t) = 0, such that∫ ∞

0
r2(t, x, y)µ(dy) < r(t, x, x)B(t) < ∞ for all t > 0, x > 0.
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Proof. From relation (4.2) and the Cauchy–Schwartz inequality, we obtain

r2(t, x, y) ≤
∑
k≥0

e−λktψ2
λk
(x)

∑
k≥0

e−λktψ2
λk
(y) = r(t, x, x)

∑
k≥0

e−λktψ2
λk
(y),

where the series are convergent. Moreover, on any compact set K of R
+, we obtain∫

K

r2(t, x, y)µ(dy) ≤ r(t, x, x)

∫
K

∑
k≥0

e−λktψ2
λk
(y)µ(dy).

By Tonelli’s theorem,∫
K

∑
k≥0

e−λktψ2
λk
(y)µ(dy) =

∑
k≥0

e−λkt
∫
K

ψ2
λk
(y)µ(dy) ≤

∑
k≥0

e−λkt ,

since |ψλk |L2(µ) = 1. On the other hand, we know that k/(2
∫ ∞

0 e−γ (s)�(s) ds) = kJ is a
lower bound for λk , so e−λkt ≤ e−kJ t and, moreover, there exists k0 such that λk0 ≥ k0J ≥ λ0.
It follows that

∑
k≥0

e−λkt ≤ e−λ0t + · · · + e−λk0−1t +
∑
k≥k0

e−tkJ ≤ e−λ0t

(
k0 + 1

1 − e−J t

)
= B(t).

We obtain, for any compact set K , the inequality∫
K

r2(t, x, y)µ(dy) ≤ r(t, x, x)B(t).

Since the bound on the right-hand side does not depend on K , letting it to tend to R
+ yields

the result.

Theorem 4.2. Assume that hypothesis (H) holds. Then, for all x > 0 and all Borel subsets
A ⊆ (0,∞),

lim
t→∞ eλ0t Px(T0 > t) = ψλ0(x)(ψλ0 , 1)µ,

lim
t→∞ eλ0t Px(Xt ∈ A, T0 > t) = ν(A)ψλ0(x)(ψλ0 , 1)µ.

We also have
lim
t→∞ eλ0t Px(Xt ∈ A | T0 > t) = ν(A),

that is, ν is the Yaglom limit distribution. Moreover, any measure ρ with compact support in
(0,∞) satisfies

lim
t→∞ eλ0t Pρ(T0 > t) = (ψλ0 , 1)µ

∫
ψλ0ρ,

lim
t→∞ eλ0t Px(Xt ∈ A, T0 > t) = ν(A)(ψλ0 , 1)µ

∫
ψλ0ρ,

lim
t→∞ eλ0t Pρ(Xt ∈ A | T0 > t) = ν(A).

Proof. The same proof as in [1] works because r(t, x, y) fulfills all the required properties.
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