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Uniqueness of Radial Solutions of SemilinearElliptic EquationsTran. Amer. Math. Soc. 333, 1992, 339-363Man Kam Kwong �Mathematics and Computer Science DivisionArgonne National Laboratory, Argonne, IL 60439-4801andYi Li yDepartment of MathematicsUniversity of Chicago, Chicago, IL 60637AbstractE. Yanagida recently proved that the classical Matukuma equation with agiven exponent has only one �nite mass solution. We show how similar ideascan be exploited to obtain uniqueness results for other classes of equations aswell as Matukuma equations with more general coe�cients. One particularexample covered is �u + up � u = 0, with p > 1. The key ingredients of themethod are energy functions and suitable transformations. We also study gen-eral boundary conditions, using an extension of a recent result by Bandle andKwong. Yanagida's proof does not extend to solutions of Matukuma's equa-tion satisfying other boundary conditions. We treat these with a completelydi�erent method of Kwong and Zhang.AMS(MOS) Subject Classi�cation. Primary 34B15. Secondary 35J25,35J65.Key Words and Phrases. Semilinear elliptic equation, boundary valueproblem, uniqueness, radial solution, positive solution, energy function.Proposed Running Head. Uniqueness of Radial Solutions�This work was supported by the Applied Mathematical Sciences subprogram of theO�ce of Energy Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.yThis work was supported by NSF Grant NSF-DMS 8603627.1



1 IntroductionIn a recent preprint, E. Yanagida established the uniqueness of the �nitemass solution of the equation�u(x) + up(x)1 + jxj2 = 0; x 2 Rn; (1:1)where n � 3 and 1 < p < (n+ 2)=(n� 2). This equation was �rst proposedby Matukuma [18] as a mathematical model of a globular cluster of stars.The question of existence and symmetry properties of ground states has beenstudied extensively by Li and Ni [16, 17], Ni and Yotsutani [21], and Noussairand Swanson [22]. Yanagida's uniqueness proof made some innovative useof the Pohozaev identity. The complexity of the identity, however, has nothelped to elucidate the ingenious underlying arguments. We �nd that similartechniques are applicable to a wider class of problems. We give severalexamples in this paper.In Section 2, we consider the Dirchlet problem for equations of the formu00(x) + f(u(x)) + g(x)u(x) = 0; x 2 (a; b): (1:2)The coe�cient g(x) is assumed to be ^-shaped. The energy function for thisequation is particularly simple, and the proof serves to illustrate the mainideas without additional computational technicalities.In Section 3, we use the same method together with the classical Kelvintransformation (made famous by Fowler in his extensive study of the Emden-Fowler equation) to study equations of the form �u+ up + q(jxj)u = 0.Specializations to constant q(jxj) give a simpler alternative proof of the resultin [15] as well as an a�rmative answer to the open conjecture concerningthe uniqueness of the positive solution of�u+ up + u = 0; u(x) = 0 on @Bb; (1:3)where the exponent p 2 (1; (n + 2)=(n � 2)) is subcritical and @Bb is thesphere of radius b in Rn. This equation has been studied by Brezis andNirenberg in their well-known paper [3]. L. Zhang has recently informedus that he also had solved the conjecture using a di�erent method. Ourresult allows a coe�cient in the linear term and covers Dirichlet problemson annular regions. 2



In Section 4 we �rst extend a result in Bandle and Kwong [2] to enableus to apply the preveious results to boundary value problems with moregeneral homogeneous conditions. We also give other results for situationswhere the extended Bandle-Kwong theorem may not work.In Section 5 we indicate how Yanagida's proof also works for more generalcoe�cients in the Matukuma equation. The Kelvin transformation againhelps to clarify the arguments.In Section 6 we consider other boundary value problems on the gen-eralized Matukuma's equation, with a general exponent that need not besubcritical. Yanagida's method is tied to the asymptotic behavior of theground state and therefore is no longer applicable. We establish uniquenessunder a stronger condition on the coe�cient. The method used is that ofKwong and Zhang [15]. Further extensions of the method are also indicated.In Section 7 we establish a uniqueness result on �xed-end boundary valueproblems and give some examples that are not covered by the results in theprevious sections but can be treated by using extensions of the argumentspresented here and in previous work. Some of our assertions are not for-mulated in the most general form possible, but only with respect to theexamples.Acknowledgment. Most of the complicated analytic computation neededfor this research has been performed with the help of the symbolic algebrasoftware MAPLE. These include the various transformations on the equa-tions and the veri�cation of the uniqueness criteria.
3



2 The Emden-Fowler Equation { Dirchlet Prob-lemIn this section, we prove a uniqueness result for boundary value problemsof the form u00(x) + f(u(x)) + g(x)u(x) = 0; x 2 (a; b); (2:1)u(a) = 0; u(b) = 0: (2:2)Here (a; b) is a bounded interval, and f(u), and g(x) are continuous func-tions. To ensure that solutions of initial value problems are unique anddepend continuously on the initial conditions, we require that f(u) be lo-cally Lipschitz continuous. Denote by F (u) the inde�nite integral of f(u):F (u) = Z u0 f(s) ds: (2:3)We assume that f(u) is superlinear, in other words,f(u)u > 0 is a strictly increasing function of u: (2:4)The condition we shall impose on q(r) isthere is a point c 2 [a; b] such that g(x) isnondecreasing in [a; c] and nonincreasing in [c; b]: (2:5)For convenience, we call condition (2.5) the ^-property of g(x). Note that(2.5) includes the special cases when g(x) is nondecreasing or nonincreasingin the entire interval [a; b] (corresponding to c = b or c = a, respectively).It is natural to ask whether a _-property on g(x) can work just as well togive uniqueness. We shall give a counterexample in Section 3. On the otherhand, in Section 7, we shall see that uniqueness may still hold for many_-shaped g(x).Note that even though f(u) = up does not satisfy (2.4), with 0 < p < 1(and more generaly for sublinear equations such that f(u)=u is a nonincreas-ing function of u), uniqueness has been shown to prevail. Therefore (2.4) isnot a necessary condition. All powers of u with exponents larger than unitysatisfy (2.4), as do sums of positive multiples of powers. Strict monotonicity4



on the functions involved is imposed to rule out the linear case, for whichuniqueness is certainly not valid. There is obviously room for weakening thestrictness requirement, but to simplify the presentation, we will not pur-sue this issue. The following property of superlinearity is well known androutinely applied. We outline a brief proof for the sake of easy reference.Lemma 1 Let u(x) and U(x) be two distinct solutions of (2.1). If u(x) �U(x) in some subinterval [c; d] of (a; b), and u0(c)=u(c)� U 0(c)=U(c), thenu0(d)=u(d)> U 0(d)=U(d): (2:6)Furthermore, if u(x) vanishes at some point � > d, then U(x) must intersectu(x) in (d; �). Likewise, if u0(c)=u(c) � U 0(c)=U(c) and u(x) vanishes atsome point � < c, then U(x) must intersect u(x) in (�; c).Proof. By rewriting the respective di�erential equations in the \linear"forms u00 + [f(u)=u + g(x)]u = 0 and U 00 + [f(U)=U + g(x)]U = 0, we seethat the second has a larger coe�cient for the linear term. Hence, accordingto the oscillation theory of linear di�erential equations, u(x) oscillates moreslowly than U(x) in [c; d]. The conclusions are then simple consequences ofSturm's comparison theorem.The rest of this section is devoted to proving the following theorem.Extensions to more general boundary value problems and to equations ob-tained by replacing the linear term in (2.1) with other powers uq are givenin Section 4.Theorem 1 Under the assumptions (2.4), and (2.5), the boundary valueproblem (2.1)-(2.2) has at most one positive solution.The ^-condition on g(x) appears at �rst to be similar to that in thewell-known Moroney uniqueness criterion (see Kwong [11, 14] for improvedversions). However, what makes (2.5) interesting is that there is no re-striction on the location of the point c. Even in the particular cases whenc = a or b, the result is unexpected because for general superlinear equa-tions, monotonicity alone of the coe�cient g(x) is not su�cient for theuniqueness of the Dirichlet problem. The Moroney condition works only for5



Neumann-Dirichlet problems, and extension to the full Dirichlet problemrequires additional monotonicity requirements on g(x).Suppose there are two distinct solutions, u(x) and U(x), to the boundaryvalue problem. Let us derive a contradiction. First we observe that u(x) andU(x) must intersect somewhere inside (a; b). Suppose instead that u(x) <U(x) in (a; b). Then by Lemma 1, U(x) oscillates faster than u(x); andhence by Sturm's separation theorem, U(x) must have a zero within the twoconsecutive zeros a and b of u(x). This contradicts the fact that U(x) > 0inside (a; b).Let us next dispose of the case in which u(x) and U(x) intersect exactlyonce at � 2 (a; b). Suppose the solutions have been named such thatu0(a) < U 0(a): (2:7)Then we have u(x) < U(x) for x 2 (a; �) and u(x) > U(x) for x 2 (�; b).De�ne r(x) = u0(x)=u(x) and R(x) = U 0(x)=U(x). We claim that r(x) 6=R(x) in (a; b). Suppose the contrary, that there exists a point � such thatr(�) = R(�). If � > �, we see from Lemma 1 that U(x) must bend downto intersect u(x) at least one more time in (�; b). This contradicts theassumption that � is the only intersection point. Likewise, if � < �, Lemma 1gives the contradiction that U(x) must meet u(x) again in (a; �).Since r(�) > R(�), we have r(x) > R(x) for all x 2 (a; b). It follows uponintegrating the inequality that the ratio u(x)=U(x) is a strictly increasingfunction of x in (a; b). De�ne  = u(c)U(c) : (2:8)Then u(x)U(x) < ; for x < c; (2:9)and u(x)U(x) > ; for x > c: (2:10)Let us study the energy functionE(u(x)) = u02(x) + 2F (u(x)) + g(x)u2(x); (2:11)6



de�ned for any given solution u(x). Di�erentiating (2.11) givesE 0 = g0(x)u2; (2:12)and so u0 2(b) = u02(a) + Z ba g0(x)u2(x) dx: (2:13)For simplicity we have assumed that g(x) is di�erentiable. The proof stillworks in the general case by interpreting integrals such as the one in (2.13)in the Stieljes sense.Applying the same computation to U(x) and multiplying the resultingidentity by 2, we obtain2U 0 2(b) = 2U 02(a) + Z ba g0(x)2U2(x) dx: (2:14)Let us compare the various terms in (2.13) and (2.14). A contradictionis eventually derived by �rst showing that the lefthand side of (2.13) is notless than that of (2.14), and then showing that the righthand side of (2.13)is not larger than that of (2.14), with strict inequality in at least one of thecases.Taking the limit of (2.9) with x! b and using L'Hospital's rule, we seethat u02(b) � 2U 0 2(b): (2:15)Note that equality holds if c = b. The same arguments apply to the otherendpoint a, except that the direction of the inequality is reversed:u0 2(a) � 2U 0 2(a): (2:16)Also note that strict inequality must be true in at least one of (2.15) and(2.16). Finally the integral in (2.14) is smaller than that in (2.13) because,by (2.5), (2.9), and (2.10), the integrand in the following integral is alwaysnegative: Z ba g0(x) �u2(x)� 2U2(x)� dx: (2:17)This completes the proof for the case of a single intersection point.Now suppose that u(x) and U(x) intersect more than once in (a; b). Weuse a continuous deformation argument to reduce this to the former case.7



This technique will be used again in the proof of Theorem 4 in Section 4.We assume that u0(a) < U 0(a). We use a shooting argument. We let u(x;�)be the solution of (2.1) satisfying the initial conditionsu(a;�) = 0; and u0(a;�) = �: (2:18)The original u(x) is then imbedded as a member of this family of solutions,namely, u(x) = u(x; u0(a)). As � is altered, u(x;�) varies continuously. Westart with � equal to the initial slope of the given solution u(x) and decreaseit progressively. Let us track the position of the second intersection pointof u(x; �) and U(x). By assumption, initially this point is in the interior of(a; b). As � varies, the point moves continuously along the curve of U(x). Itcannot reach the left endpoint a because (as we will show in a moment) twointersection points cannot occur too close together. If it reaches b for some �,then we have two distinct solutions U(x) and u(x;�) of the Dirichlet problemthat intersect exactly once in (a; b), a case already shown to be impossible.We have implicitly used the fact that the part of u(x; �) between a andthe �rst intersection point can never touch the r-axis, a consequence of theuniqueness result for initial value problems.Hence we conclude that the second intersection point is in the interior ofthe interval (a; b) no matter what � is. By choosing � > 0 su�ciently small,we can make the �rst intersection point of u(x;�) and U(x) arbitrarilyclose to b. The distance between the �rst and second intersection pointsis then arbitrarily small. This means that the function v(x) = u(x;�) �U(x) oscillates very fast within a short distance. This function satis�es thedi�erential equationv00(x) + �f(u(x))� f(U(x))u(x)� U(x) + g(x)�v(x) = 0: (2:19)By the Lipschitz continuity of f(u), the fraction in the coe�cient of v(x) isbounded; hence the entire coe�cient is bounded. A simple Sturm compar-ison argument (or an application of the well-known Lyapunov inequality)shows that oscillation within an arbitrarily short interval is impossible. Wethus have a contradiction, and the proof of the theorem is complete.8



3 The Equation �u+ up + q(r)u = 0The study of the uniqueness of the ground state of the equation�u+ up � u = 0; in Rn; (3:1)as well as solutions of the Dirichlet problem on any �nite ball, started withthe paper of Co�man [6], carried on by McLeod and Serrin [19], and com-pleted by Kwong [12]; refer to [12] and [15] for more details. More recentwork has been done by Chen and Lin [5], who also made use of the Pohozaevinequality.In [3], Brezis and Nirenberg studied the nonlinear eigenvalue problem onthe unit ball B: �u+ up� + �uq = 0 in B; u > 0 in B; (3:2)with the Dirichlet boundary conditionu = 0 on @B; (3:3)where 1 < q < p� = (n+ 2)=(n� 2). Using variational techniques, they ob-tained necessary and su�cient conditions on the value of � for the existenceof a solution. What is most interesting is that the necessary and su�cientrange depends on the value of q as well as on n. Two or three cases can bedistinguished according to whether n � 4 or n = 3. For all values of n, thecuto� value of q for the �rst case is n=(n� 2), whereas for n = 3, the valueq = 1 is in a category by itself. Atkinson and Peletier [1] made a furtherstudy of the equation using the shooting method. They showed that whenq > 1, uniqueness is generally not true.Here we are concerned only with the case where the lower-order term uqis linear. The pertinent existence result in [3] follows.Theorem (Brezis and Nirenberg) Let q = 1 in equation (3.2). Forn = 3, the boundary value problem (3.2)-(3.3) has a solution if and only if� 2 (�2=4; �2). For n � 4, the same boundary value problem has a solutionif and only if � 2 (0; �1), where �1 is the �rst eigenvalue of the Laplacian�� with the Dirichlet boundary condition (3.3).9



A question left open was whether the solution guaranteed by the theoremis unique. Numerical evidence points to an a�rmative answer.In this section we use the techniques presented in Section 2 to derive ageneral result covering both of these cases, providing a simpler alternativeproof of the results in [12] and an a�rmative answer to the Brezis andNirenberg conjecture. Our method allows us to include a coe�cient q(r) inthe linear term. In the next section we extend our results to boundary valueproblems in an annular region with more general boundary conditions.We study the following equation on a ball of radius b :�u+ up + q(r)u = 0; u > 0 in Bb; p > 1; (3:4)with a radially symmetric coe�cient q(r); r = jxj, and subject to the bound-ary condition u = 0 on @Bb: (3:5)The condition we impose on q(r) ishr�q(r)� Lr��2i has the ^-property; (3:6)where � and L are constants given by� = 2(n� 1)(p� 1)p+ 3 ; L = 2m(mp+m� p� 3)(p+ 3)2 : (3:7)Direct computation will verify that when q(r) is a negative constant,then (3.6) is satis�ed for all p > 1, whereas when q(r) is a positive constant,(3.6) is satis�ed only for subcritical exponents, 1 < p < (n + 2)=(n � 2).Although for the sake of simplicity Theorem 2 is stated only for a �niteball, it is not di�cult to see that the same result holds for ground states(solutions de�ned in the entire Rn such that limr!1 u(r) = 0). Hence ourresult here applies to both (3.1) and (3.2). It is known from a result of Ni andNussbaum [20] (see also Budd and Norbury [4]) that in the remaining caseof positive constant q(t) and supercritical p, uniqueness is no longer valid.The expression in (3.6) satis�es the _-property instead. This furnishes thecounterexample promised in the last section.10



Theorem 2 Let n � 3. Under the hypothesis (3.6), the problem (3.4)-(3.5)has at most one radially symmetric solution.From a well-known theorem of Gidas, Ni, and Nirenberg [9, 10], we knowthat when q(r) is a constant or a nonnegative nonincreasing function, all so-lutions of the boundary value problem must be radially symmetric; thenwe obtain absolute uniqueness. The interesting recent work of Dancer [8]illustrates how the lack of symmetry in the spatial domain a�ects unique-ness. Proof. For radially symmetric solutions, (3.4) reduces to an ordinarydi�erential equation u00(r) + mr u0(r) + up + q(r)u = 0; (3:8)where m = n� 1, with boundary conditionsu0(0) = 0; u(b) = 0: (3:9)We apply the classical transformationu(r) = v(r)r� ; (3:10)with � = 2mp+ 3 ; (3:11)to obtain r�v00 +Kr��1v0 + vp + hr�q(r)� Lr��2i v = 0; (3:12)where K = m(p� 1)p+ 3 ; (3:13)and � and L are given by (3.7). The equation looks complicated, but eachcoe�cient is just a multiple (either by a constant or by q(r)) of some powerof r. The constant � in (3.10) has been chosen as in (3.11) in order that,in (3.12), the derivative of the coe�cient of v00 is twice the coe�cient ofv0. This makes the derivative of the following energy function particularlysimple: E(v) = t�v02 + 2vp+1p+ 1 + G(r)v2; (3:14)11



where G(r) is the expression inside the square brackets in (3.12). Moreprecisely, dE(v)dr = G0(r)v2: (3:15)It is now clear that we are in a completely analogous situation to that ofthe last section, and the same arguments apply to give the required unique-ness conclusion. One technical point we must address is that G(r) can tendto �1 as r ! 0, if the exponent of r in the second term is negative. This,however, does not pose any real di�culty because the term is multiplied byv2(r) which tends to 0 fast enough to cancel out the singularity; indeed wehave limr!0G(r)v2(r) = 0. We omit the detailed veri�cation.Corollary 1 If p is subcritical and r�q(r) is nondecreasing, then (3.4)-(3.5)has a unique solution.Proof. By assumption, the �rst term, r�q(r), in G(r) is increasing. Thatthe constant L is positive follows from the assumptions that m > 2 andp > 1; so the second term in G(r) is negative. Using the fact that p issubcritical, one can easily see that the exponent in r��2 is negative. As aresult, the second term in G(r) is also increasing. Hence (3.6) is satis�ed.Note that if we convert v(r) back to u(r), then (3.14) and (3.15) becomethe familiar Pohozaev identity. Hence the use of the Kelvin transformationis in essence equivalent to the use of Pohozaev's identity. The treatment ofa much simpler situation in the foregoing section brought out the desirablecharacteristic of an energy function that makes the proof successful { thederivative of the energy is a suitable multiple of the square of the solutionfunction. This led us to look for a desirable form of the di�erential equationwith such an energy function. We came up with equations of the form (3.12),which we recognized to be one obtainable from (3.4).It is worthwhile to evaluate and compare the approach of this paperand the Co�man-Kolodner approach used in [12]. At �rst sight, the newmethod appears to be far superior to the old one. It is much simpler and isapplicable to equations having a coe�cient q(x). Later we will also see thatthe new proof works without change for the Dirichlet problem, while that in12



[12] is hopelessly bonded to the Neumann-Dirichlet problem. However, therecent work of Kwong and Zhang [15] and Chen and Lin [5] demonstratedthat the Co�man-Kolodner method can be used to deal with �u+ f(u) = 0for a wide class of nonlinear f(u). A simple example is f(u) = up�uq , withp > q > 1. We attempted but failed to modify the new method to treatq > 1. Furthermore, the result of Kwong and Zhang is the only known onethat covers functions that are neither superlinear nor sublinear. In Section 6we give a further application of the Co�man-Koldner approach in the studyof the generalized Matukuma equation, for which the new method is utterlyinadequate. In conclusion, each of the two methods has its own merits anddrawbacks. Both deserve to be kept inside our toolbox.By choosing an appropriate � in (3.11), we can also reduce equations ofthe form u00(r) + mr u0(r) + rup + q(r)u = 0 (3:16)to one amenable with our technique. More generally, equations of the formu00 + A(r)u0 +B(r)up + C(r)u = 0 (3:17)can be �rst transformed tou00 + �(x)up + q(x)u = 0 (3:18)by a change of the independent variable. Next, the change of the dependentvariable, u(x) = [�(x)]�1=(p+3)v(x) brings the equation into a new one havingan energy function of the type required in our proof. We state below oneuniqueness criterion obtained by this method on equations with q(x) = 0,and skip the less elegant result for the most general situation.Theorem 3 Suppose that(p+ 3)2�2�000� 3(p+ 3)(p+ 5)��0�00 + 2(p+ 4)(p+ 5)[�0]3 (3:19)is negative in (a; c) and positive in (c; b) for some c 2 [a; b]. Then thedi�erential equation u00(r) + �(x)up(r) = 0 (3:20)has at most one nonnegative solution satisfying the Robin boundary condi-tions (4.1) and (4.2). 13



A test class of coe�cients that can be used to try out this criterion is�(r) = �r� + �r� ; �1 < �; �; �; � <1: (3:21)We can take � = 1 since the criterion is invariant under constant multiples.We can also assume � = 1 using a (horizontal) scaling argument. The actualcomputation is very involved. We have investigated the case � = 0, withthe help of the algebraic manipulation software MAPLE. With � = r� + 1the expression in (3.19) turns out to be �r2 timesk(R) = 2(p+ 2� + 3)(p+ �+ 3)R2�(� � 1)(p+ 3)(p�+ 4p+ 9� + 12)R+(� � 1)(�� 2)(p+ 3)2; (3.22)where R = r2. The uniqueness condition of Theorem 3 requires that k(R)has at most one positive root and the coe�cient of R2 is positive. For1 � � � 2, the last term of k(R) is negative and so the criterion is satis�ed.For � < 1, the uniqueness criterion is satis�ed only if k(R) does not havetwo distinct real roots. We computed the discriminant and obtained thenicely factored form� = (p+ 3)2(p+ 5)�2(�� 1)(p�+ 13�+ 7p+ 19); (3:23)which is nonpositive if � � �(7p+ 19)=(p+ 13). We have thus establisheduniqueness for the range � 7p+ 19p+ 13 � � � 2: (3:24)There is no reason to believe that this range is optimal.Related but independent results for the same class of coe�cients havebeen obtained by Kwong in [14]. The uniqueness range �2 � � � 2 hasalready been established.Two other interesting examples not included in the results of [14] are�(r) = (1 + r2)2 (3:25)and �(r) = r + 1r : (3:26)14



In the latter case, the expression in (3.19), after multiplying by r6=2 andsubstituting R for r2, isk(R) = (p2+9p+20)R3�(9p2+69p+132)R2�(3p2+9p�6)R�(p2+3p+2):(3:27)It is required to show that k(R) has only one positive root (for all p). AtR = 0, k(0) < 0. Therefore, k(R) has either one or three (counting multipleroots) positive roots. On the other hand, k0(0) < 0. A simple picture isenough to convince one that the existence of three positive roots will implythe existence of three positive critical points, contradicting the fact thatk(R) is only cubic.

15



4 General Homogeneous Boundary ConditionsWe wish to extend the results obtained in the previous two sections to covermore general boundary conditions, those of the homogenous and separatedtype: u0(a) +Au(a) = 0; (4:1)and u0(b) + Bu(b) = 0: (4:2)Boundary conditions of the type (4.1) or (4.2) has been called the Robintype. The cases A = 1 and B = 1 are taken to mean the usual Dirchletboundary conditions, u(a) = 0 and u(b) = 0, respectively.To this end, we �rst obtain an extension of a result by Bandle and Kwong[2], who con�rmed a conjecture raised and partially resolved by Co�manand Marcus in [7] concerning the universal uniqueness property of Dirchletboundary value problems for superlinear equations:Suppose it is known that given any bounded interval (a; b), theDirichlet problem has a unique positive solution. It is also knownthat every solution of a given Neumann-Dirichlet problem can beextended to the left until the solution crosses the r-axis. Thenthe Neumann-Dirichlet problem has also a unique solution.In our improved version, we replaced the second boundary value problemby any Robin problem, and we require only the uniqueness of the Dirchletproblem for one suitable interval. Our proof is di�erent from that in [2]. Weformulate our result for second-order equations of the Emden-Fowler type,namely, those in which u0 does not appear explicitly. There is no loss ofgenerality since a change of the independent variable can transform moregeneral equations into this type.Theorem 4 Suppose that the di�erential equationu00(r) + f(r; u) = 0 (4:3)16



is superlinear, namely, that f(r; u)=u is a positive strictly increasing functionof u for each �xed r. Let u(r) be a positive solution of (4.3) on a boundedinterval (a; b) satisfying the boundary conditions (4.1) and (4.2). Supposethat u(r) can be extended to a solution of (4.3) in a larger interval (a1; b1) �(a; b) such that u(a1) = u(b1) = 0, and it is known that this is the onlypositive solution of the Dirichlet problem on (a1; b1). Then u(r) is the uniquesolution of the original Robin boundary value problem on (a; b).Proof. Suppose that there is another solution U(r) and that U(a) > u(a).The case U(a) < u(a) can be treated similarly. We extend U(r) to be de�nedon (a1; b1). By Lemma 1, U(r) must intersect u(r) once inside (a; b). Weclaim that they must intersect at least one more time at or before b1, andbefore U(r) changes sign. If they do not, then u(r) > U(s) for all r 2 [b; b1].This contradicts the second part of Lemma 1. Likewise u(r) and U(r) mustintersect once more in [a1; a). In other words, u(r) and U(r) intersect atleast three times in [a1; b1]. We next invoke the continuous deformationargument, already used once in the proof of Theorem 1, to construct asecond positive solution to the Dirichlet problem on (a1; b1), thus arrivingat a contradiction. We keep track only of that portion of U(r) between its�rst and third intersection points with u(r).We deform the solution U(r) by pulling the �rst intersection point to-wards a1, always making sure that U(r) remains distinct from u(r) (bykeeping the value jU 0(r) � u0(r)j at the �rst intersection point away from0). Since the two solutions cannot be tangent to each other at any pointand U(r) cannot be tangent to the r-axis, the intersection points can vanishonly through one of the endpoints. Either the �rst or the third intersectionpoint will reach the (left or right, respectively) endpoint �rst. Without lossof generality we may assume that it is the �rst intersection point, and sonow we have U(a1) = u(a1).Let us �rst consider the situation in which U 0(a1) > u0(a1). We nowdeform U(r) by progressively increasing U 0(a1) towards 1. We claim thatif U 0(a) is su�ciently large, either U(r) > u(r) for all r 2 (a1; b1] or U(r)crosses the r-axis somewhere in (a1; b1) before intersecting u(r) for a thirdtime. In other words, the third intersection point must eventually disappear(and that can happen only through b1). It then follows from continuitythat there must be some intermediate choice of U 0(a1) for which the thirdintersection point is exactly at b1, giving another solution to the Dirichlet17



problem on (a1; b1). We give only a heuristic argument for verifying theclaim. It is not hard to put it in a rigorous form. First of all, when allthree intersection points are present, the second one cannot be too closeto the right endpoint b1, because oscillation of the di�erence u(r) � U(r)cannot occur within too short a distance. Now if U 0(a1) is su�ciently large,then the maximum of U(r) must be very large; otherwise f(r; u) will remainuniformly bounded and therefore will not be large enough to change U 0(x)from U 0(a) to 0 at the maximum. If U(r) is not larger than u(r) for all r,then by the mean value theorem somewhere between the maximum of U(r)and the second intersection point, the slope U 0(r) must be very negative.It then follows that the slope U 0(r) at the second intersection point mustbe very negative, so much so that U(r) will not have enough room to bendupwards; it must therefore cross the r-axis within a very short distance fromthe second intersection point.Let us now consider the situation in which U 0(a1) < u0(a1). We deformU(r) by progressively decreasing U 0(a1). When U 0(a1) is very small, we seethat the second intersection point will be very close to the right endpoint b1.A simple Sturm comparison argument shows that U(r) will not be able tointersect u(r) again within the short distance before b1. In other words, thesecond intersection point has disappeared. Thus there must be an interme-diate choice of U 0(a1) for which the second intersection point is exactly atb1, and we again have a contradiction.We now have the following extension of Theorem 1:Theorem 5 If in addition to the hypotheses of Theorem 1,g(a) � 0 and g(b) � 0; (4:4)then equation (2.1) has at most one positive solution satisfying the Robinboundary conditions (4.1) and (4.2).Proof. We enlarge the domain of g(x) to (�1;1) by de�ning g(x) = g(a)for x < a, and g(x) = g(b) for x > b. We can easily see that any solution ofthe boundary value problem can be extended to some larger interval (a1; b1)as required in Theorem 4. The conclusion of the theorem then follows fromTheorems 1 and 4. 18



Because of the presence of the �rst-order term in (3.8), extendability ofa solution satisfying the Robin conditions may not be always guaranteed.We therefore include the extendability assumption for the general case inthe formulation of the extension of Theorem 2.Theorem 6 Let n � 3. Suppose that (3.6) holds on (0;1) and that allsolutions of the boundary value problem for the equation (3.8) with boundaryconditionsu0(a) +Au(a) = 0; u0(b) +Bu(b) = 0; 0 < a < b <1; (4:5)can be extended to a solution of (3.8) on a larger interval (a1; b1) � (a; b)with u(a1) = u(b1) = 0. Then (3.8) has at most one solution satisfying (4.5).A special case where extendability of the solution holds is when A � 0, pis subcritical and q(r) � 0 is nondecreasing.Proof. We need establish the assertion only for the special case. If a = 0,we are back to Theorem 2. If a � 0, then the fact u00 +mu0=r < 0 impliesthat u0(r) < 0 for r < a. If u(r) does not vanish between 0 and a, itmust cut the u-axis with a positive slope, and it is easy to see that thiscontradicts the singularity of the �rst-order term. The extendabilty of u(r)beyond b is a well-known fact concerning the oscillation of the solutions ofthe Emden-Fowler equation (3.8).Another example for which extendability can be established occurs whenall solutions of the linear part of (3.8), namely, U 00 +mU 0=r + q(r)U = 0,are oscillatory. It then follows from the Sturm comparison theorem that allsolutions of (3.8) must be oscillatory.An interesting comparison theorem can be derived from Theorem 6, ac-cording to the work in [13]. Supposek1(r) � 1 and k2(r) � 1 are nondecreasing on [0;1): (4:6)Let u1(r) and u2(r) be positive solutions in an interval (a; b) of the followingequations, respectively:u001(r) + mr u01(r) + k1(r)up1 + q(r)u1 = 0; (4:7)19



and u002(r) + mr u02(r) + k1(r)up2 + k2(r)q(r)u2 = 0: (4:8)Let u(r) be a solution of (3.8) in the same interval, and let u(r) have a �nitezero when extended beyond the right endpoint b. Furthermore, assume thatall three solutions satisfy the same initial conditionsu(a) = u1(a) = u2(a); u0(a) = u01(a) = u02(a): (4:9)Theorem 7 Suppose that (4.6) and (3.6) hold on (0;1) and that u(r),u1(r), and u2(r) are solutions of (3.8), (4.7), and (4.8), respectively, suchthat (4.9) holds and u(r) has a �nite zero beyond b. Thenu(x) � u1(x); x 2 (a; b): (4:10)Furthermore, if u0(a) � 0, thenu(x) � u2(x); x 2 (a; b): (4:11)Proof. We refer to [14] for the proof.A situation in which the extendability hypothesis of Theorem 4 maynot be automatically guaranteed by the form of the equations in Theorem 6arises when the coe�cient g(x) of (2.1) is negative. Comparison of the energyfunction at the endpoints is complicated by the fact that the term involvingg(x)u2(x) no longer drops out at the boundary. We are able to obtain onlya less satisfactory result. We can relax one but not both of the boundaryconditions to that of the Robin type, and we need more assumptions on thefunctions f(u) and q(x). On the other hand, under these more restrictiverequirements, we can replace the linear term in (2.1) with one having anexponent less than unity. More precisely, we consider equations of the formu00(x) + f(u(x)) = G(x)uq(x); x 2 (a; b); G(x)� 0; 0 � q � 1; (4:12)subject to the boundary conditionsu(a) = 0; and u0(b) +Bu(b) = 0: (4:13)The case q = 0 can be considered as an Emden-Fowler equation with aforcing term. 20



We require in addition to (2.4) thatF (u)uq+1 is a strictly increasing function of u (4:14)and, in place of (2.5), the stronger condition thatG(x) = �g(x) is nondecreasing in (a; b): (4:15)Theorem 8 Under the assumptions (2.4), (4.14), and (4.15), the boundaryvalue problem (4.12)-(4.13) has at most one positive solution.Proof. Superlinearity holds by virtue of the sign of G(x) and the value of q.Suppose there are two distinct solutions, u(x) and U(x), to the boundaryvalue problem.De�ne r(x) = u0(x)=u(x) and R(x) = U 0(x)=U(x) as in the proof ofTheorem 1. The second boundary condition in (4.13) becomesr(b) = R(b): (4:16)Let our solutions be named such thatu0(a) < U 0(a): (4:17)By Lemma 1, r(x) > R(x) for x in a small right neighborhood (a; a + �)of a. We may as well assume that the inequality holds throughout the entireinterval (a; b). Indeed, if there is a � 2 (a; b) for which r(�) = R(�), wesimply replace the original boundary value problem by one de�ned on thesubinterval (a; �).We proceed as in the proof of Theorem 1, replacing the de�nition ofE(u) by E(u) = u022 + F (u)� Guq+1q + 1 (4:18)and noting that (2.8) and (2.9) hold with c = b. The two energy identities(2.13) and (2.14) becomeE(u(b)) = u02(a)� Z ba G0(x)uq+1(x)dxq + 1 (4:19)21



q+1E(U(b)) = q+1U 0 2(a)� Z ba G0(x)q+1U q+1(x)dxq + 1 : (4:20)At x = b, uq+1(b) = q+1U q+1(b); (4:21)but u02(b) � q+1U 0 2(b): (4:22)By (4.14), F (u(b))uq+1(b) � F (U(b))U q+1(b) : (4:23)It follows from this inequality and (4.21) thatF (u(b)) � 2F (U(b)): (4:24)We thus see that E(u(b))� 2E(U(b)): (4:25)At other endpoint a, since u(a) � U(a),u0 2(a) � U 0 2(a) < q+1U 0(a): (4:26)A contradiction is then obtained as in the proof of Theorem 1.
22



5 The Generalized Matukuma EquationIn this section we consider the equation�u(x) + q(jxj)up(x) = 0; x 2 Rn; (5:1)where n � 3, 1 < p < (n+2)=(n�2), and q(r) > 0 is a C1 function. In viewof symmetry, we can turn to the equivalent ordinary di�erential equationu00(r) + n� 1r u0(r) + q(r)up(r) = 0; u0(0) = 0; r > 0: (5:2)There are three types of solution: (1) those with a �nite zero, (2) those witha �nite mass, and (3) those with an in�nite mass. The existence of each typeof solution and its dependence on the initial height u(0) were studied in greatdetail by Ni and Yotustani [21]. Yanagida [24] gave an a�rmative answerto the conjecture concerning the uniqueness of the solution with �nite massin the special case that q(r) = 1=(1+ r2). His proof actually works withoutmuch change for more general coe�cients.The transformation u(r) = c1v(r)r1�n=2; (5:3)r = c2es; (5:4)where c1 and c2 are appropriate constants, gives the new equationv00(s)� v(s) + (es)� q (es) vp = 0; (5:5)where � = (n+ 2)� p(n� 2)2 > 0: (5:6)Following Yanagida, we take one of the solutions with �nite mass anddenote it by �(s). The initial condition u0(0) = 0 and the �niteness of masstranslate into lims!�1 �(s) = 0: (5:7)Now the problem is reduced to one that is \symmetrical" with respect to�1and 1, in the sense that the two \endpoints" are no longer distinguishable.23



The property of the coe�cient that makes Yanagida's proof work is that thefunction Q(s) = 2p+ 1 (es)� q (es) (5:8)satis�es the ^-condition. This is equivalent to the simpler condition that(r�q(r))0 changes sign once for r > 0: (5:9)Let � be a point such thatQ0(s) � 0 for s < � and Q0(s) � 0 for s > �: (5:10)Note that � is not unique since Q0(s) may vanish in an entire interval.The energy identity for equation (5.5) isv0 2(s)� v2(s) +Q(s)vp+1 = Z s�1Q0(t)vp+1(t) dt: (5:11)Assertion (ii) of Yanagida's Lemma 2.2 is equivalent toz(r) = �0(r) + �(r) > 0 for all r > 0: (5:12)This can be veri�ed directly by observing that (5.5) gives z0�z = �00�� < 0and that lims!1 z(s) = 0. Upon reection, we also have�0(r)� �(r) < 0 for all r > 0: (5:13)This is, in fact, equivalent to the fact that u0(r) < 0.Let  (s) be another solution of �nite mass. By virtue of superlinear-ity, we see that  (s) must intersect �(s) at least once. As in [24], weproceed to show that �(s) and  (s) cannot intersect for a second time.Suppose they do. From the intermediate value theorem, there must bea �rst point s1, between the �rst and the second intersection points, atwhich �0(s1)=�(s1) =  0(s1)= (s1). We may assume that s1 � �. Thecontrary case can be reduced to the present one by a reection. Beforethe �rst intersection point, the two ratios �0(s)=�(s) and  0(s)= (s) can-not coincide. Suppose the contrary and there exists a point � < s1 atwhich �0(�)=�(�) =  0(�)= (�). Integrating �00(s) (s) � �(s) 00(s) over(�1; �) gives �0(�) (�) � �(�) 0(�) = 0. On the other hand, using thedi�erential equation to eliminate �00(s) and  00(s) shows that the expression24



�00(s) (s) � �(s) 00(s) is nonnegative and nontrivial in (�1; �), an obvi-ous contradiction. As in the proof in Section 2, we conclude that the ratio�(s)= (s) is a monotone function in (�1; s1):�(s) (s) � �(s1) (s1) = : (5:14)Multiplying the energy identity satis�ed by  (s) with the constant p+1,and then subtracting the identity satis�ed by �(s), we obtain�p�1 � 1���0 2(s)� �2(s)� � 0: (5:15)This contradicts (5.12) and (5.13).Again we see that the ratios �0(s)=�(s) and  0(s)= (s) actually must bedi�erent for all s 2 (�1;1). Thus �(s)= (s) is a monotone function forall s 2 (�1;1). Let � = �(�) (�): (5:16)Extending (5.11) to the whole r-axis and using the fact that �(s);  (s)! 0as s!1, we see that Z 1�1 Q0(t)�p+1(t) dt = 0 (5:17)and Z 1�1Q0(t) p+1(t) dt = 0: (5:18)Incidentally, (5.17) implies that if G(t) is monotone, or equivalently if G0(t)does not change sign, then (5.1) does not have a �nite mass solution. Sub-tract the �rst identity from �p+1 times of the second one. We obtain acontradiction because by (5.10), the di�erence of the lefthand side of (5.17)and (5.18) is a strictly positive number.We have thus proved an extension of Yanagida's result.Theorem 9 Suppose that (5.9) holds. Then the di�erential equation (5.1)can have at most one positive solution with �nite mass.25



6 The Matukuma Equation { General BoundaryConditionsA natural question to ask next is whether uniqueness still holds for otherboundary value problems on the Matukuma equation. For example, is thereonly one solution that vanishes on the sphere of given radius b and is positivein the interior of the ball? More generally, given 0 < a < b <1, we considersolutions of u00(r) + n� 1r u0(r) + q(r)up(r) = 0; p > 1; (6:1)such that u(a) = u(b) = 0; and u(r) > 0 for r 2 (a; b): (6:2)Results in this section do not require p to be subcritical. If a is chosento be 0, the singularity of the second term in (6.1) dictates that the onlypossible boundary condition at a is of the Neumann typeu0(0) = 0: (6:3)In this case, a restriction on the upper bound of p (which may be di�erentfrom the critical value (n + 2)=(n � 2), depending on the actual form ofq(r)) is perhaps needed, but only for ensuring the existence of a solution tothe boundary value problem, rather than being required by the uniquenessproof.Theorem 4 can be used to replace the Dirichlet condition with one of theRobin type, under suitable conditions.Yanagida's technique does not appear to be extendable to general bound-ary conditions. The main obstacle is that (5.12) and (5.13) are no longervalid. The method also fails to include supercritical p.Instead we turn to an alternative approach that Kwong and Zhang [15]recently applied to equations of the form �u + f(u) = 0. We will deriveseveral uniqueness criteria. The �rst is a stronger form of (5.9). We requirethat (5.9) holds for all � > 0, not just for the particular one given by (5.6).It is easy to see that an equivalent condition isrq0(r)q(r) is nonincreasing in (a; b): (6:4)26



This is reminiscent of the condition imposed on f(u) in [15]. The method isactually applicable to include the case b = 1, but we consider only �nite bhere for the sake of simplicity.The ideas will only be sketched since the method is similar to that of theresult in [15]. The Kolodner-Co�man method reduces the proof of unique-ness to showing that given any solution u(r) of the boundary value problem,the solution w(r) of the linearized equationL[w] = w00 + n � 1r w0 + pq(r)up�1w = 0; (6:5)w(a) = 0; w0(a) = 1; (6:6)changes sign exactly once in (a; b]. By superlinearity, w(r) must change signat least once. What remains is to make sure that w(r) does not change signfor a second time. When the interval is su�ciently short, this situation isknown to be valid. For the simpler equation �u + f(u) = 0, this fact isimplied by Theorem 1.7 of Ni and Nussbaum [20]. Lemma 12 in [2] con�rmsthis assertion for general equations. A continuation argument then lets usextend this assertion to general (a; b) provided we can show that under nocircumstances can w(r) have exactly one zero inside (a; b) and w(b) = 0.In [15], this crucial step is implemented by establishing Lemma 7, which isstated below in a more general form.Lemma 2 Suppose that w(b) = 0 and that w(r) has only one zero � inside(a; b). Let z(r) be a C2 function de�ned in [a; b] such thatL[z(r)] � 0 for r � �� 0 for r � �: (6.7)If either z(a) > 0 or z0(a) > 0, then z(b) > 0.Proof. The proof makes use of Sturm's comparison theorem. We examinethe oscillation of z(r) as we move from the endpoint a towards b. At thebeginning, L[z(r)] has the correct sign to ensure that z(r) oscillates fasterthan w(r); thus, z(r) has a zero before �. Once passed �, z(r) < 0; nowthe comparison theorem works in the reverse way, and z(r) oscillates moreslowly than w(r). As a result, z(r) cannot have another zero before �. Butonce passed �, L[z] changes sign, and z(r) changes pace. Hence z(r) has a27



zero between the two zeros, � and b, of w(r). After this second zero of z(r),the oscillation slows down again and z(r) cannot have a zero before or atb. We thus conclude that z(r) changes exactly twice in [a; b], and thereforez(b) > 0.If we can construct a suitable function z(r) satisfying (6.7), with z(a) > 0but z(b) < 0, then Lemma 2 implies that w(r) cannot have a zero at b, andthe uniqueness proof is complete. In [15], the function z = ru0+ �u, with asuitable choice of the constant � was used.For the Matukuma equation, direct computation givesL[ru0 + �u] = ��(p� 1)� 2� rq0(r)q(r) � q(r)up: (6:8)We now choose � so that the expression inside the square brackets vanishesat �. By virtue of (6.4) the righthand side of (6.8) has exactly the requiredsign property (6.7), and z(a) = au0(a) > 0, and z(b) = bu0(b) < 0. We havethus proved uniqueness under condition (6.4).By experimenting with more general trial functions of the form z =h(r)u0 + k(r)u, we have come up with two other useful ones for which thecorresponding expression L[z] is particularly simple:L[rmu0 + �u] = ��(p� 1)� 2mrm�1 � rmq0(r)q(r) � q(r)up (6:9)and L[r2�mu0 + (m� 1)r1�mu+ �u] ="�(p� 1) + (mp+m� p� 3)r1�m � r2�mq0(r)q(r) # q(r)up: (6.10)They give rise, respectively, to the criteriarm�1 �rq0(r)q(r) + 2m� is nonincreasing in (a; b) (6:11)and 1rm�1 �rq0(r)q(r) � (mp+m� p� 3)� is nonincreasing in (a; b): (6:12)28



A positive linear combination of the comparison functionsz = (�r+ �rm + 'r2�m); �; �; � � 0; (6:13)can also be used.Theorem 10 Let 0 < a � b < 1. If the coe�cient q(r) satis�es any oneof the conditions (6.4), (6.11), or (6.12) (or more generally if some positivelinear combination of the expressions in these conditions is nonincreasing),then (6.1) has at most one solution satisfying (6.2). If a = 0, the sameconclusion is valid for the boundary condition (6.3).Simple examples of functions that satisfy (6.4) include all powers (posi-tive or otherwise) of r and 1=(1+ r�) for all �. Products of positive powersof functions that satisfy (6.4) also satisfy (6.4). It is also easy to see that ifq(r) satis�es (6.4), so does q(1=r).Coe�cients of the formq(r) = � + 11 + r2 ; � > 0; (6:14)have been studied by Toland [23]. However, the condition (6.4) is not satis-�ed unless b is small. Theorem 3 of Section 3 also fails. It is interesting toask whether uniqueness is still valid for these equations.Theorem 10 furnishes a complete description on the structure of thesolutions of the Matukuma equation.Theorem 11 Under the same hypotheses of Theorem 10, there exists a pos-itive extended number � that divides the solutions of (5.2) into three types:1. If u(0) = �, the solution �(r), which we call the ground state, is anentire (positive for all r > 0) solution that decays with the fastest rateas r!1.2. If u(0) > �, the solution is an entire solution that decays with a rateslower than that of the ground state (the ratio u(r)=�(r) goes to 1 ass!1). 29



3. If u(0) < �, the solution has a �nite zero, which is a strictly decreasingfunction of u(0).In the case that � =1, the �rst two types are void.To close the section, we point out a major di�erence between the resulthere and that obtained in [15] and indicate some further extensions. Whatthe proof exploits is the sign property, not the actual magnitude, of therighthand side of (6.7). In the case of all the identities used in this section,the value of u(r) at each r plays no role. In [15], the righthand side of thecorresponding (6.7) has the required sign property only if we know that u(r)is nonincreasing in the interval [a; b]. For this reason, the result there is onlyestablished when a Neumann condition is satis�ed at the left endpoint a.On the other hand, the function f(u) in [15] is allowed to assume negativevalues for u small, and that monotonicity requirement on uf 0(u)=f(u) isrelaxed when f(u) < 0.In searching for other comparison functions for Lemma 2, we have triedz = h(r)u0+k(r)u, with any h(r) and k(r) = mh(r)=2r�h0(r)=2+�. Directcomputation givesL[z] = ��(p� 1) + m(p� 1)h(r)2r � (p+ 3)h0(r)2 � h(r)q0(r)q(r) � q(r)up� �h000(r)2 + m(m� 2)(h(r)� rh0(r))2r3 �u: (6.15)In fact, the test functions used above are the three linearly independentsolutions of the di�erential equation obtained by equating the coe�cientsof u in (6.15) to zero. It is interesting to see what uniqueness criterioncan be obtained by choosing other h(t). The existence of the second termin the righthand side, however, means that, in general, uniqueness resultsobtained by using (6.15) apply only to Neumann-Dirichlet problems. Takea very simple example: n = 3 and h(t) = t3. L[z] has the correct sign for asuitable choice of � ifq(r) and r2�rq0(r)q(r) + p+ 112 � (6:16)are both nonincreasing in (a; b); hence the Neumann-Dirichlet problem hasat most one solution. 30



Another possible extension of the method is to equations of the moregeneral form �u+ f(jxj; u) = 0: (6:17)In particular, uniqueness of the radially symmetry solution can be provedfor Neumann-Dirichlet problems for�u+ q(jxj)up � u = 0; p > 1; (6:18)when q(r) is nonincreasing and satis�es (6.4). The monotonicity of q(r) isneeded in two places. First it implies that u(r) is a nonincreasing functionin (a; b). Then it gives the appropriate structure of the righthand side of(6.7) so that � can be chosen as desired to make the proof successful. Weomit the straightforward details.
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7 Further Examples and ExtensionsEven though Theorem 1 is false in general for coe�cients satisfying the_-property, uniqueness can still be proved in some speci�c situations. Thetypes of result obtained in this section are less satisfactory and apply tocoe�cients with rather special structures. For this reason, we have refrainedfrom formulating general propositions, other than Theorem 12, and merelyindicate the ideas in some examples.We �rst observe that a proof similar to that of Theorem 1 gives thefollowing \uniqueness" result for �xed-end boundary value problems, whichis of interest in itself.Theorem 12 Let u(x) � 0 and U(x) be two solutions ofu00(x) + f(u(x)) + g(x)u(x) = 0; x 2 (a; b); (7:1)in the interval (a; b) with the assumptions on the initial valuesu(a) = U(a) > 0; u0(a) < 0; jU 0(a)j < ju0(a)jor U 0(a) = �u0(a): (7:2)If the coe�cient q(r) is nonnegative and the uniqueness criteria of Theo-rem 1, (2.4), (4.14), and (2.5), are satis�ed, then u(x) and U(x) cannotintersect again in (a; b].As a consequence, given any two �xed-end conditionsu(a) = � > 0; u(b) = � > 0; (7:3)there are at most two solutions to the boundary value problem. Suppose thereare two distinct solutions, denoted by u1(x) and u2(x). At a (or b), the twoinitial slopes, u01(a) and u02(a), cannot both be negative; however, they canboth be positive. In case u01(a) is negative, thenju01(a)j < u02(a): (7:4)Proof. At a, r(a) = u0(a)=u(a) < U 0(a)=U(a) = R(a). We need to showthat r(x) 6= R(x) for all x > a. This will imply the �rst conclusion of thetheorem. Indeed, if u(x) and U(x) intersect before b, the intermediate valuetheorem will entail the existence of an interior point � at which r(�) = R(�).32



The case in which u(x) and U(x) intersection at b right on the r-axis canbe treated in the same way if the point c in (3.6) is di�erent from b. Theremaining case is done by using a limiting argument as in the proof ofTheorem 1.Suppose that there is an interior point at which r(x) = R(x). Take thesmallest of such points. Since we wish to make use of the analogy withTheorem 1 and there is no danger of confusion, let us rename this point b.Then u(x) < U(x) for all x 2 (a; b]; hence the ratio  = u(c)=U(c) � 1.Following the proof of Theorem 1, we consider the energy functions andderive a contradiction using (2.13) and (2.14). The initial condition (4.17)ensures that E(u(a)) � E(U(a))� E(U(a)). The rest of the proof runs inexactly the same way as that of Theorem 1.Let us turn our attention to the �xed-end boundary value problem. Itfollows easily from the �rst conclusion of the theorem that not both u01(a)and u02(a) can be negative.We claim that u1(x) and u2(x) cannot intersect other than at the end-points. Suppose they do at some � 2 (a; b). By applying the �rst conclusionto the subinterval (�; b), we see that the slopes u01(�) and u02(�) cannot bothbe negative. By applying the �rst conclusion now to the problem on (a; �)(after doing a reection), we see that the two slopes at � cannot be bothpositive either. Suppose u01(�) < 0 < u02(�). Using the �rst conclusion onthe subinterval (�; b), we see that we must have ju01(�)j < ju02(�)j. Consider-ing the other subinterval gives exactly the opposite inequality, and thus wehave a contradiction.Now suppose there is a third solution u3(r). By what we proved in thelast paragraph, none of the three solutions can intersect in the open interval(a; b). Without loss of generality we may assume that u1(r) < u2(r) <u3(r), for all r 2 (a; b). A standard Sturm comparison argument using thesuperlinearity of the equation show that u3(r)�u2(r) must oscillate strictlyfaster than u2(r) � u1(r), contradicting the fact that both functions havethe same zeros in [a; b].This theorem has an obvious application in determining the structure ofthe solutions shot out from a �xed initial height at a �xed point a. We donot pursue the straighforward details. Instead we use Theorem 12 to study(3.8) with a symmetric and ^̂ -shaped q(r).33



Example 1. Consider (3.8) on a symmetric interval (�b; b), with a sym-metric q(r): q(r) = q(�r); and q(r) is ^-shaped in (0; b): (7:5)In particular, if q(r) is nondecreasing in (0; b), then q(r) has the _-propertyin (�b; b). We show that the Dirichlet problem of (3.8) on (�b; b) has aunique solution which therefore must be symmetric with respect to the ori-gin. Of course we still have, by Theorem 1, uniqueness and symmetry ofthe solution if q(r) is assumed to be nonincreasing in (0; b); the symmetryconclusion agrees with a result of Gidas, Ni, and Nirenberg in [10]Suppose there is a nonsymmetric solution u(x). By reection, u2(x) =u(�x) is a distinct solution that intersects u(x) at x = 0. Also u0(0) =�u02(0). Applying the last conclusion of Theorem 12 to (0; b) gives a con-tradiction. Existence of a solution is well-known.Example 2. Take (a; b) = (0; 4). Choose q(r) to be any function such thatq(0) = 1, q(1), q(4) � 19 , r2q(r) is nondecreasing in (0; 1) andq(r) has the ^-property in (1; 3).As an example we can choose q(r) to be (3 � 2x)=3 in (0; 1) and any non-decreasing function in (1; 3); then q(r) has the _-property. We can stillestablish uniqueness.We �rst claim that the maximum of a solution u(x) must occur in [1; 4).Suppose the contrary and u(x) attains its maximum at � < 1. By scaling(compressing horizontally) the part of u(x) in (�; 4), and reecting, we obtaina function that �ts into (0; �) and satis�es a di�erential equation similar to(3.8) but with a larger factor in the reaction term. We can now compare thisfunction with the original u(x) in (0; �). The scaling factor is so large that wecan easily conclude that the scaled function must oscillate faster than u(x),but this contradicts the fact that both functions require the same distance� from their respective maximum to vanish.Next we make use of the Kolodner-Co�man method. According to themethod, we will have uniqueness if we can show that corresponding to anysolution u(x) of the Dirichlet problem, a solution w(r) of the �rst variationalequation w00(r) + hpup�1(r) + q(r)iw(r) = 0 (7:6)34



cannot change sign more than once in (a; b). By the Sturm separation the-orem, we need only look at the particular solution w(r) such that w(�) = 0.The required property of w(r) can be proved by examining the oscillatorybehavior of w(r) in each of the subintervals (0; �) and (�; b). By Theo-rem 1 of [14], the monotonicity of r2q(r) in (0; �) implies that w(r) cannotchange sign in (0; �). On the other hand, Theorem 12 implies that w(r)cannot change sign in (�; b). Hence the only change of sign occurs at �, anduniqueness of the Dirichlet problem is established.Example 3. The equationu00(x) + x4(u5 + u) = 0 (7:7)has been shown in [14] to have the uniqueness property for Dirichlet prob-lems. The change of variablesu(x) = v(t)px ; t = x2; (7:8)transforms the equation intov00(t) + v5(t) + � 316t2 + t4� v(t) = 0: (7:9)The coe�cient of v(t) satis�es the _-property but is positive for all s. Con-trast this with the counterexample in Section 3 for which the coe�cientchanges sign.References[1] Atkinson, F. V., and Peletier, L. A., Emden-Fowler equations involvingcritical exponents, Nonlinear Analysis, 10 (1986), 755-776.[2] Bandle, C., and Kwong, Man Kam, Semilinear elliptic problems inannular domains, ZAMP (J. of Applied Math. and Phy.), 40 (1989),245-257.[3] Brezis, H., and Nirenberg, L., Positive solutions of nonlinear ellip-tic equations involving critical Sobolev exponents, Comm. Pure Appl.Math., 36 (1983), 437-477. 35
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