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Abstract

E. Yanagida recently proved that the classical Matukuma equation with a
given exponent has only one finite mass solution. We show how similar ideas
can be exploited to obtain uniqueness results for other classes of equations as
well as Matukuma equations with more general coefficients. One particular
example covered i1s Au + v & u = 0, with p > 1. The key ingredients of the
method are energy functions and suitable transformations. We also study gen-
eral boundary conditions, using an extension of a recent result by Bandle and
Kwong. Yanagida’s proof does not extend to solutions of Matukuma’s equa-
tion satisfying other boundary conditions. We treat these with a completely
different method of Kwong and Zhang.
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1 Introduction

In a recent preprint, E. Yanagida established the uniqueness of the finite
mass solution of the equation

u”(z)

Au(z) +
where n > 3 and 1 < p < (n+ 2)/(n — 2). This equation was first proposed
by Matukuma [18] as a mathematical model of a globular cluster of stars.
The question of existence and symmetry properties of ground states has been
studied extensively by Li and Ni [16, 17], Ni and Yotsutani [21], and Noussair
and Swanson [22]. Yanagida’s uniqueness proof made some innovative use
of the Pohozaev identity. The complexity of the identity, however, has not
helped to elucidate the ingenious underlying arguments. We find that similar
techniques are applicable to a wider class of problems. We give several
examples in this paper.

In Section 2, we consider the Dirchlet problem for equations of the form
u(@) + f(u(x)) + g(x)u(z) =0, € (a,b). (1.2)

The coefficient ¢g(2) is assumed to be A-shaped. The energy function for this
equation is particularly simple, and the proof serves to illustrate the main
ideas without additional computational technicalities.

In Section 3, we use the same method together with the classical Kelvin
transformation (made famous by Fowler in his extensive study of the Emden-
Fowler equation) to study equations of the form Aw+ w? + ¢(|z|)u = 0.
Specializations to constant ¢(|z|) give a simpler alternative proof of the result
in [15] as well as an affirmative answer to the open conjecture concerning
the uniqueness of the positive solution of

Au+uP +u=0, u(z)=0ondb, (1.3)

where the exponent p € (1,(n + 2)/(n — 2)) is subcritical and 9By is the
sphere of radius & in R®. This equation has been studied by Brezis and
Nirenberg in their well-known paper [3]. L. Zhang has recently informed
us that he also had solved the conjecture using a different method. Our
result allows a coefficient in the linear term and covers Dirichlet problems
on annular regions.



In Section 4 we first extend a result in Bandle and Kwong [2] to enable
us to apply the preveious results to boundary value problems with more
general homogeneous conditions. We also give other results for situations
where the extended Bandle-Kwong theorem may not work.

In Section 5 we indicate how Yanagida’s proof also works for more general
coeflicients in the Matukuma equation. The Kelvin transformation again
helps to clarify the arguments.

In Section 6 we consider other boundary value problems on the gen-
eralized Matukuma’s equation, with a general exponent that need not be
subcritical. Yanagida’s method is tied to the asymptotic behavior of the
ground state and therefore is no longer applicable. We establish uniqueness
under a stronger condition on the coefficient. The method used is that of
Kwong and Zhang [15]. Further extensions of the method are also indicated.

In Section 7 we establish a uniqueness result on fixed-end boundary value
problems and give some examples that are not covered by the results in the
previous sections but can be treated by using extensions of the arguments
presented here and in previous work. Some of our assertions are not for-
mulated in the most general form possible, but only with respect to the
examples.

Acknowledgment. Most of the complicated analytic computation needed
for this research has been performed with the help of the symbolic algebra
software MAPLE. These include the various transformations on the equa-
tions and the verification of the uniqueness criteria.



2 The Emden-Fowler Equation — Dirchlet Prob-
lem

In this section, we prove a uniqueness result for boundary value problems
of the form

u’(z)+ fu(z)) + g(2)u(z) =0, =z € (a,b), (2.1)
uw(a) =0, wu(b)=0. (2.2)

Here (a,b) is a bounded interval, and f(u), and g(z) are continuous func-
tions. To ensure that solutions of initial value problems are unique and
depend continuously on the initial conditions, we require that f(u) be lo-
cally Lipschitz continuous. Denote by F(u) the indefinite integral of f(u):

Flu) = / f(s) ds. (2.3)
0
We assume that f(u) is superlinear, in other words,

f(w)

> 0 is a strictly increasing function of u. (2.4)
u

The condition we shall impose on ¢(r) is
there is a point ¢ € [a, b] such that g(z) is

nondecreasing in [a,¢] and nonincreasing in [c, b]. (2.5)

For convenience, we call condition (2.5) the A-property of g(z). Note that
(2.5) includes the special cases when g(z) is nondecreasing or nonincreasing
in the entire interval [a,b] (corresponding to ¢ = b or ¢ = a, respectively).
It is natural to ask whether a V-property on g(z) can work just as well to
give uniqueness. We shall give a counterexample in Section 3. On the other
hand, in Section 7, we shall see that uniqueness may still hold for many
V-shaped g(z).

Note that even though f(u) = u” does not satisfy (2.4), with 0 < p < 1
(and more generaly for sublinear equations such that f(u)/u is a nonincreas-
ing function of u), uniqueness has been shown to prevail. Therefore (2.4) is
not a necessary condition. All powers of u with exponents larger than unity
satisfy (2.4), as do sums of positive multiples of powers. Strict monotonicity



on the functions involved is imposed to rule out the linear case, for which
uniqueness is certainly not valid. There is obviously room for weakening the
strictness requirement, but to simplify the presentation, we will not pur-
sue this issue. The following property of superlinearity is well known and
routinely applied. We outline a brief proof for the sake of easy reference.

Lemma 1 Let u(x) and U(z) be two distinct solutions of (2.1). If u(z) <
U(x) in some subinterval [c,d] of (a,b), and u'(c)/u(c) > U'(¢)/U(c), then

u'(d)/u(d) > U'(d)/U(d). (2.6)

Furthermore, if u(x) vanishes at some point T > d, then U(x) must intersect
w(x) in (d, 7). Likewise, if v'(¢)/u(c) < U'(¢)/U(c) and u(z) vanishes at

some point 0 < ¢, then U(x) must intersect u(x) in (o,c).

Proof. By rewriting the respective differential equations in the “linear”
forms u” + [f(uw)/u+ g(z)ju = 0 and U” 4 [f(U)/U 4 g(2)]U = 0, we see
that the second has a larger coeflicient for the linear term. Hence, according
to the oscillation theory of linear differential equations, u(x) oscillates more
slowly than U(z) in [c,d]. The conclusions are then simple consequences of
Sturm’s comparison theorem. 1

The rest of this section is devoted to proving the following theorem.
Extensions to more general boundary value problems and to equations ob-
tained by replacing the linear term in (2.1) with other powers u? are given
in Section 4.

Theorem 1 Under the assumptions (2.4), and (2.5), the boundary value
problem (2.1)-(2.2) has at most one positive solution.

The A-condition on g(z) appears at first to be similar to that in the
well-known Moroney uniqueness criterion (see Kwong [11, 14] for improved
versions). However, what makes (2.5) interesting is that there is no re-
striction on the location of the point ¢. Even in the particular cases when
¢ = a or b, the result is unexpected because for general superlinear equa-
tions, monotonicity alone of the coefficient g(z) is not sufficient for the
uniqueness of the Dirichlet problem. The Moroney condition works only for



Neumann-Dirichlet problems, and extension to the full Dirichlet problem
requires additional monotonicity requirements on g(z).

Suppose there are two distinct solutions, u(z) and U(z), to the boundary
value problem. Let us derive a contradiction. First we observe that u(z) and
U(z) must intersect somewhere inside (a,b). Suppose instead that u(z) <
U(z) in (a,b). Then by Lemma 1, U(z) oscillates faster than u(z); and
hence by Sturm’s separation theorem, U(z) must have a zero within the two
consecutive zeros ¢ and b of u(z). This contradicts the fact that U(z) > 0

inside (a,b).

Let us next dispose of the case in which u(2) and U(z) intersect exactly
once at o € (a,b). Suppose the solutions have been named such that

u'(a) < U'(a). (2.7)

Then we have u(z) < U(z) for € (a,0) and u(z) > U(z) for z € (0,b).
Define r(2) = v/(z)/u(z) and R(2) = U'(2)/U(z). We claim that r(z) #
R(z) in (a,b). Suppose the contrary, that there exists a point p such that
r(p) = R(p). If p > o, we see from Lemma 1 that U(z) must bend down
to intersect u(x) at least one more time in (o,b). This contradicts the
assumption that o is the only intersection point. Likewise, if p < o, Lemma 1
gives the contradiction that U(z) must meet u(z) again in (a,0).

Since r(c) > R(c), we have r(x) > R(x) for all # € (a,b). It follows upon
integrating the inequality that the ratio w(z)/U(2) is a strictly increasing
function of z in (a,b). Define

v = g((cc)) (2.8)

o L (2.9)
U(z)

" Ue) L e e (2.10)
U(z)

Let us study the energy function

E(u(x)) = u(z) + 2F(u(x)) + g(2)u’(2), (2.11)



defined for any given solution u(z). Differentiating (2.11) gives
E' = ¢'(2)u?, (2.12)

and so )
u'2(b):u'2(a)+/a ¢'(2)u(z) d. (2.13)

For simplicity we have assumed that g(«) is differentiable. The proof still
works in the general case by interpreting integrals such as the one in (2.13)
in the Stieljes sense.

Applying the same computation to U(z) and multiplying the resulting
identity by v2, we obtain

S0 =0 + [ e ) de (2.14)

Let us compare the various terms in (2.13) and (2.14). A contradiction
is eventually derived by first showing that the lefthand side of (2.13) is not
less than that of (2.14), and then showing that the righthand side of (2.13)
is not larger than that of (2.14), with strict inequality in at least one of the
cases.

Taking the limit of (2.9) with 2 — b and using L’Hospital’s rule, we see
that
u'?(b) > y2U'2(b). (2.15)

Note that equality holds if ¢ = b. The same arguments apply to the other
endpoint a, except that the direction of the inequality is reversed:

u'?(a) < 720" *(a). (2.16)

Also note that strict inequality must be true in at least one of (2.15) and
(2.16). Finally the integral in (2.14) is smaller than that in (2.13) because,
by (2.5), (2.9), and (2.10), the integrand in the following integral is always
negative:

/ab ¢(2) (w(2) =720 (2)) do. (2.17)

This completes the proof for the case of a single intersection point.

Now suppose that u(z) and U(z) intersect more than once in (a,b). We
use a continuous deformation argument to reduce this to the former case.



This technique will be used again in the proof of Theorem 4 in Section 4.
We assume that v'(¢) < U'(a). We use a shooting argument. We let u(z; o)
be the solution of (2.1) satisfying the initial conditions

u(a;a) =0, and v'(a;0) = a. (2.18)

The original u(z) is then imbedded as a member of this family of solutions,
namely, u(2) = u(z,u'(a)). As « is altered, u(z; a) varies continuously. We
start with a equal to the initial slope of the given solution u(z) and decrease
it progressively. Let us track the position of the second intersection point
of u(z,a) and U(x). By assumption, initially this point is in the interior of
(a,b). As « varies, the point moves continuously along the curve of U(z). It
cannot reach the left endpoint a because (as we will show in a moment) two
intersection points cannot occur too close together. If it reaches b for some @,
then we have two distinct solutions U(z) and u(z; @) of the Dirichlet problem
that intersect exactly once in (a,b), a case already shown to be impossible.
We have implicitly used the fact that the part of u(z,a) between a and
the first intersection point can never touch the r-axis, a consequence of the
uniqueness result for initial value problems.

Hence we conclude that the second intersection point is in the interior of
the interval (@, b) no matter what a is. By choosing o > 0 sufficiently small,
we can make the first intersection point of w(z;«a) and U(z) arbitrarily
close to b. The distance between the first and second intersection points
is then arbitrarily small. This means that the function v(z) = u(2; o) —
U(z) oscillates very fast within a short distance. This function satisfies the
differential equation

" f(u(2)) - f(U(z))
SO+ | T T o

+g(z)| v(z) = 0. (2.19)

By the Lipschitz continuity of f(u), the fraction in the coefficient of v(x) is
bounded; hence the entire coefficient is bounded. A simple Sturm compar-
ison argument (or an application of the well-known Lyapunov inequality)
shows that oscillation within an arbitrarily short interval is impossible. We
thus have a contradiction, and the proof of the theorem is complete.



3 The Equation Au+ u? +g(r)u=0

The study of the uniqueness of the ground state of the equation
Au+v’ —u=0, in R", (3.1)

as well as solutions of the Dirichlet problem on any finite ball, started with
the paper of Coffman [6], carried on by McLeod and Serrin [19], and com-
pleted by Kwong [12]; refer to [12] and [15] for more details. More recent
work has been done by Chen and Lin [5], who also made use of the Pohozaev
inequality.

In [3], Brezis and Nirenberg studied the nonlinear eigenvalue problem on
the unit ball B:

Aut+u? + A ul =0 in B, u>0in B, (3.2)
with the Dirichlet boundary condition
w=0 ondB, (3.3)

where 1 < ¢ < p* = (n+2)/(n — 2). Using variational techniques, they ob-
tained necessary and sufficient conditions on the value of A for the existence
of a solution. What is most interesting is that the necessary and sufficient
range depends on the value of ¢ as well as on n. Two or three cases can be
distinguished according to whether n > 4 or n = 3. For all values of n, the
cutoff value of ¢ for the first case is n/(n — 2), whereas for n = 3, the value
g = 1is in a category by itself. Atkinson and Peletier [1] made a further
study of the equation using the shooting method. They showed that when
g > 1, uniqueness is generally not true.

Here we are concerned only with the case where the lower-order term u?
is linear. The pertinent existence result in [3] follows.

Theorem (Brezis and Nirenberg) Let ¢ = 1 in equation (3.2). For
n = 3, the boundary value problem (3.2)-(3.3) has a solution if and only if
A€ (n2/4,7%). For n >4, the same boundary value problem has a solution
if and only if A € (0,1), where Ay is the first eigenvalue of the Laplacian
—A with the Dirichlet boundary condition (3.3).



A question left open was whether the solution guaranteed by the theorem
is unique. Numerical evidence points to an affirmative answer.

In this section we use the techniques presented in Section 2 to derive a
general result covering both of these cases, providing a simpler alternative
proof of the results in [12] and an affirmative answer to the Brezis and
Nirenberg conjecture. Our method allows us to include a coefficient ¢(r) in
the linear term. In the next section we extend our results to boundary value
problems in an annular region with more general boundary conditions.

We study the following equation on a ball of radius b :
Au+uP +q(r)u=0, u>0in By, p>1, (3.4)

with a radially symmetric coefficient ¢(r),r = |z|, and subject to the bound-
ary condition

w=0 on dBy. (3.5)
The condition we impose on ¢(r) is
[rﬁq(r) - Lrﬁ_z] has the A-property, (3.6)

where 3 and L are constants given by

2(n - 1)(p—1)
p+3

2m(mp+ m —p—3)
(p+3)?

8= . L= (3.7)

Direct computation will verify that when ¢(r) is a negative constant,
then (3.6) is satisfied for all p > 1, whereas when ¢(r) is a positive constant,
(3.6) is satisfied only for subcritical exponents, 1 < p < (n + 2)/(n — 2).
Although for the sake of simplicity Theorem 2 is stated only for a finite
ball, it is not difficult to see that the same result holds for ground states
(solutions defined in the entire R™ such that lim, .., u(r) = 0). Hence our
result here applies to both (3.1) and (3.2). It is known from a result of Ni and
Nussbaum [20] (see also Budd and Norbury [4]) that in the remaining case
of positive constant ¢(¢) and supercritical p, uniqueness is no longer valid.
The expression in (3.6) satisfies the V-property instead. This furnishes the
counterexample promised in the last section.

10



Theorem 2 Let n > 3. Under the hypothesis (3.6), the problem (3.4)-(3.5)
has at most one radially symmetric solution.

From a well-known theorem of Gidas, Ni, and Nirenberg [9, 10], we know
that when ¢(r) is a constant or a nonnegative nonincreasing function, all so-
lutions of the boundary value problem must be radially symmetric; then
we obtain absolute uniqueness. The interesting recent work of Dancer [8]
illustrates how the lack of symmetry in the spatial domain affects unique-
ness. Proof. For radially symmetric solutions, (3.4) reduces to an ordinary
differential equation

u”(r) + %u’(r) +uP + q(r)u =0, (3.8)
where m = n — 1, with boundary conditions

u'(0) =0, wu(b)=0. (3.9)

u(r) = v::), (3.10)
with
2m (3.11)
o= —-:, .
p+3
to obtain
o’ 4 KP4+ 0P 4+ [TB(Z(T) - LTﬁ_Q] v =0, (3.12)
where ( 1)
. m\p—
T3 (3.13)

and [ and L are given by (3.7). The equation looks complicated, but each
coefficient is just a multiple (either by a constant or by ¢(r)) of some power
of . The constant a in (3.10) has been chosen as in (3.11) in order that,
in (3.12), the derivative of the coefficient of v” is twice the coefficient of
v'. This makes the derivative of the following energy function particularly

simple:

E(v) = 1% + ?T + G, (3.14)

11



where G(r) is the expression inside the square brackets in (3.12). More
precisely,
dE(v)
dr

=G (r)v? (3.15)

It is now clear that we are in a completely analogous situation to that of
the last section, and the same arguments apply to give the required unique-
ness conclusion. One technical point we must address is that G/(r) can tend
to —oo as r — 0, if the exponent of r in the second term is negative. This,
however, does not pose any real difficulty because the term is multiplied by
v?(r) which tends to 0 fast enough to cancel out the singularity; indeed we
have lim,_o G(r)v*(r) = 0. We omit the detailed verification. 1

Corollary 1 If p is suberitical and r°q(r) is nondecreasing, then (3.4)-(3.5)
has a unique solution.

Proof. By assumption, the first term, 7°¢(r), in G(r) is increasing. That
the constant L is positive follows from the assumptions that m > 2 and
p > 1; so the second term in G(r) is negative. Using the fact that p is
subcritical, one can easily see that the exponent in 7°~2 is negative. As a
result, the second term in G(r) is also increasing. Hence (3.6) is satisfied. 1

Note that if we convert v(r) back to u(r), then (3.14) and (3.15) become
the familiar Pohozaev identity. Hence the use of the Kelvin transformation
is in essence equivalent to the use of Pohozaev’s identity. The treatment of
a much simpler situation in the foregoing section brought out the desirable
characteristic of an energy function that makes the proof successful — the
derivative of the energy is a suitable multiple of the square of the solution
function. This led us to look for a desirable form of the differential equation
with such an energy function. We came up with equations of the form (3.12),
which we recognized to be one obtainable from (3.4).

It is worthwhile to evaluate and compare the approach of this paper
and the Coffman-Kolodner approach used in [12]. At first sight, the new
method appears to be far superior to the old one. It is much simpler and is
applicable to equations having a coefficient ¢(z). Later we will also see that
the new proof works without change for the Dirichlet problem, while that in

12



[12] is hopelessly bonded to the Neumann-Dirichlet problem. However, the
recent work of Kwong and Zhang [15] and Chen and Lin [5] demonstrated
that the Coffman-Kolodner method can be used to deal with Au+ f(u) =0
for a wide class of nonlinear f(u). A simple example is f(u) = u? —u?, with
p > q > 1. We attempted but failed to modify the new method to treat
g > 1. Furthermore, the result of Kwong and Zhang is the only known one
that covers functions that are neither superlinear nor sublinear. In Section 6
we give a further application of the Coffman-Koldner approach in the study
of the generalized Matukuma equation, for which the new method is utterly
inadequate. In conclusion, each of the two methods has its own merits and
drawbacks. Both deserve to be kept inside our toolbox.

By choosing an appropriate a in (3.11), we can also reduce equations of
the form

u”(r) + %u’(r) + 77w 4+ g(r)u=0 (3.16)
to one amenable with our technique. More generally, equations of the form
"+ A(r)u' + B(r)u? + C(r)u =0 (3.17)

can be first transformed to
u" 4+ p(x)u” + q(z)u=0 (3.18)

by a change of the independent variable. Next, the change of the dependent
variable, u(z) = [p(2)]~V/(P*3)p(z) brings the equation into a new one having
an energy function of the type required in our proof. We state below one
uniqueness criterion obtained by this method on equations with ¢(z) = 0,
and skip the less elegant result for the most general situation.

Theorem 3 Suppose that

(P+3)°0%0" = 3(p+3)(p+ 5" + 200+ H)(p+ 5T (3.19)

is negative in (a,c) and positive in (c,b) for some ¢ € [a,b]. Then the
differential equation

u"(r) + p(z)uP(r) =0 (3.20)

has at most one nonnegative solution satisfying the Robin boundary condi-
tions (4.1) and (4.2).

13



A test class of coefficients that can be used to try out this criterion is
p(r)=Ar® +urf,  —oo < A\, a,f < 0. (3.21)

We can take A = 1 since the criterion is invariant under constant multiples.
We can also assume p = 1 using a (horizontal) scaling argument. The actual
computation is very involved. We have investigated the case f = 0, with
the help of the algebraic manipulation software MAPLE. With p = r* 4 1
the expression in (3.19) turns out to be ar? times

k(R)=2(p+2a+3)(p+ a+3)R?
—(a—=1)(p+3)(pa+4p+9a+12)R
+Ha—1)(a—2)(p+3)* (3.22)

where R = r%. The uniqueness condition of Theorem 3 requires that k(R)
has at most one positive root and the coefficient of R? is positive. For
1 < o <2, the last term of k(R) is negative and so the criterion is satisfied.
For @ < 1, the uniqueness criterion is satisfied only if k(R) does not have
two distinct real roots. We computed the discriminant and obtained the
nicely factored form

A= (p+3)*(p+5)a’(a—1)(pa+ 13a+7p+19), (3.23)

which is nonpositive if & > —(7p + 19)/(p + 13). We have thus established
uniqueness for the range

Tp+ 19
p+13

<a <2 (3.24)

There is no reason to believe that this range is optimal.

Related but independent results for the same class of coefficients have
been obtained by Kwong in [14]. The uniqueness range —2 < a < 2 has
already been established.

Two other interesting examples not included in the results of [14] are

p(r) = (1+ %) (3.25)
and |
p(r)y=r+ o (3.26)



In the latter case, the expression in (3.19), after multiplying by r¢/2 and
substituting R for r?, is

E(R) = (p*+9p+20)R> — (9p* +69p+132)R? — (3p* +9p—6) R — (p*+3p+2).

(3.27)
It is required to show that k(R) has only one positive root (for all p). At
R =10, k(0) < 0. Therefore, k(R) has either one or three (counting multiple
roots) positive roots. On the other hand, &(0) < 0. A simple picture is
enough to convince one that the existence of three positive roots will imply
the existence of three positive critical points, contradicting the fact that

k(R) is only cubic.

15



4 General Homogeneous Boundary Conditions

We wish to extend the results obtained in the previous two sections to cover
more general boundary conditions, those of the homogenous and separated

type:

u'(a) + Au(a) = 0, (4.1)

and
u'(b) + Bu(b) = 0. (4.2)

Boundary conditions of the type (4.1) or (4.2) has been called the Robin
type. The cases A = 0o and B = oo are taken to mean the usual Dirchlet
boundary conditions, u(a) = 0 and u(b) = 0, respectively.

To this end, we first obtain an extension of a result by Bandle and Kwong
[2], who confirmed a conjecture raised and partially resolved by Coffman
and Marcus in [7] concerning the universal uniqueness property of Dirchlet
boundary value problems for superlinear equations:

Suppose it is known that given any bounded interval (a,b), the
Dirichlet problem has a unique positive solution. It is also known
that every solution of a given Neumann-Dirichlet problem can be
extended to the left until the solution crosses the r-axis. Then
the Neumann-Dirichlet problem has also a unique solution.

In our improved version, we replaced the second boundary value problem
by any Robin problem, and we require only the uniqueness of the Dirchlet
problem for one suitable interval. Our proof is different from that in [2]. We
formulate our result for second-order equations of the FEmden-Fowler type,
namely, those in which «' does not appear explicitly. There is no loss of
generality since a change of the independent variable can transform more
general equations into this type.

Theorem 4 Suppose that the differential equation

u"(r)+ f(r,u) =0 (4.3)
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is superlinear, namely, that f(r,u)/u is a positive strictly increasing function
of u for each fized v. Let u(r) be a positive solution of (4.3) on a bounded
interval (a,b) satisfying the boundary conditions (4.1) and (4.2). Suppose
that u(r) can be extended to a solution of (4.3) in a larger interval (ay,b1) D
(a,b) such that u(ay) = u(by) = 0, and it is known that this is the only
positive solution of the Dirichlet problem on (aq1,b1). Then u(r) is the unique
solution of the original Robin boundary value problem on (a,b).

Proof. Suppose that there is another solution U(r) and that U(a) > u(a).
The case U(a) < u(a) can be treated similarly. We extend U(r) to be defined
on (a1,b1). By Lemma 1, U(r) must intersect u(r) once inside (a,b). We
claim that they must intersect at least one more time at or before by, and
before U(r) changes sign. If they do not, then u(r) > U(s) for all r € [b, by].
This contradicts the second part of Lemma 1. Likewise u(r) and U(r) must
intersect once more in [aq,a). In other words, u(r) and U(r) intersect at
least three times in [a1,b1]. We next invoke the continuous deformation
argument, already used once in the proof of Theorem 1, to construct a
second positive solution to the Dirichlet problem on (aq,bq), thus arriving
at a contradiction. We keep track only of that portion of U(r) between its
first and third intersection points with u(r).

We deform the solution U(r) by pulling the first intersection point to-
wards ap, always making sure that U(r) remains distinct from wu(r) (by
keeping the value |U'(r) — u/(r)| at the first intersection point away from
0). Since the two solutions cannot be tangent to each other at any point
and U(r) cannot be tangent to the r-axis, the intersection points can vanish
only through one of the endpoints. Either the first or the third intersection
point will reach the (left or right, respectively) endpoint first. Without loss
of generality we may assume that it is the first intersection point, and so
now we have U(ay) = u(ay).

Let us first consider the situation in which U'(a;) > w'(a1). We now
deform U(r) by progressively increasing U’(a1) towards co. We claim that
if U'(a) is sufficiently large, either U(r) > u(r) for all » € (aq,b4] or U(r)
crosses the r-axis somewhere in (a1,bq) before intersecting u(r) for a third
time. In other words, the third intersection point must eventually disappear
(and that can happen only through by). It then follows from continuity
that there must be some intermediate choice of U’(ay) for which the third
intersection point is exactly at by, giving another solution to the Dirichlet
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problem on (ai,b1). We give only a heuristic argument for verifying the
claim. Tt is not hard to put it in a rigorous form. First of all, when all
three intersection points are present, the second one cannot be too close
to the right endpoint by, because oscillation of the difference u(r) — U(r)
cannot occur within too short a distance. Now if U’(aq) is sufficiently large,
then the maximum of U(r) must be very large; otherwise f(r,u) will remain
uniformly bounded and therefore will not be large enough to change U’(z)
from U'(a) to 0 at the maximum. If U(r) is not larger than u(r) for all r,
then by the mean value theorem somewhere between the maximum of U(r)
and the second intersection point, the slope U’(r) must be very negative.
It then follows that the slope U’(r) at the second intersection point must
be very negative, so much so that U(r) will not have enough room to bend
upwards; it must therefore cross the r-axis within a very short distance from
the second intersection point.

Let us now consider the situation in which U'(ay) < u/(ay). We deform
U(r) by progressively decreasing U’(ay). When U'(aq) is very small, we see
that the second intersection point will be very close to the right endpoint by.
A simple Sturm comparison argument shows that U(r) will not be able to
intersect u(r) again within the short distance before by. In other words, the
second intersection point has disappeared. Thus there must be an interme-
diate choice of U’(ay) for which the second intersection point is exactly at
b1, and we again have a contradiction. 1

We now have the following extension of Theorem 1:

Theorem 5 If in addition to the hypotheses of Theorem 1,
g@)>0 and  g(b)> 0, (4.4)

then equation (2.1) has at most one positive solution satisfying the Robin
boundary conditions (4.1) and (4.2).

Proof. We enlarge the domain of g(z) to (—o00,00) by defining ¢(z) = g(a)
for 2 < a, and g(z) = g(b) for x > b. We can easily see that any solution of
the boundary value problem can be extended to some larger interval (aq, b;)
as required in Theorem 4. The conclusion of the theorem then follows from
Theorems 1 and 4. 1
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Because of the presence of the first-order term in (3.8), extendability of
a solution satisfying the Robin conditions may not be always guaranteed.
We therefore include the extendability assumption for the general case in
the formulation of the extension of Theorem 2.

Theorem 6 Let n > 3. Suppose that (3.6) holds on (0,00) and that all
solutions of the boundary value problem for the equation (3.8) with boundary
conditions

u'(a)+ Au(a) =0, u/(b)+ Bu(b)=0, 0<a<b< oo, (4.5)

can be extended to a solution of (3.8) on a larger interval (ay,b1) D (a,b)
with u(ay) = u(by) = 0. Then (3.8) has at most one solution satisfying (4.5).

A special case where extendability of the solution holds is when A <0, p
is subcritical and q(r) > 0 is nondecreasing.

Proof. We need establish the assertion only for the special case. If @ = 0,
we are back to Theorem 2. If a > 0, then the fact «” + mu'/r < 0 implies
that w/(r) < 0 for » < a. If u(r) does not vanish between 0 and a, it
must cut the w-axis with a positive slope, and it is easy to see that this
contradicts the singularity of the first-order term. The extendabilty of u(r)
beyond b is a well-known fact concerning the oscillation of the solutions of
the Emden-Fowler equation (3.8). 1

Another example for which extendability can be established occurs when
all solutions of the linear part of (3.8), namely, U” + mU’/r + ¢(r)U = 0,
are oscillatory. It then follows from the Sturm comparison theorem that all
solutions of (3.8) must be oscillatory.

An interesting comparison theorem can be derived from Theorem 6, ac-
cording to the work in [13]. Suppose

ki(r) > 1 and ko(r) > 1 are nondecreasing on [0, 00). (4.6)

Let u1(r) and uz(r) be positive solutions in an interval (a,b) of the following
equations, respectively:

() + S () + ()] + g(r)us = 0 (1.7
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and

u(r) + “u(r) + ka(r)uh + ka(r)g(r)us = 0. (48)

Let u(r) be a solution of (3.8) in the same interval, and let u(r) have a finite
zero when extended beyond the right endpoint b. Furthermore, assume that
all three solutions satisfy the same initial conditions

u(a) = wi(a) = us(a), '(a) = vi(a) = wh(a). (1.9)

Theorem 7 Suppose that (4.6) and (3.6) hold on (0,00) and that u(r),
uq(r), and uy(r) are solutions of (3.8), (4.7), and (4.8), respectively, such
that (4.9) holds and u(r) has a finite zero beyond b. Then

w(z) > wi(z), =€ (a,b). (4.10)
Furthermore, if u'(a) <0, then

uw(z) > ug(x), € (a,b). (4.11)
Proof. We refer to [14] for the proof. 1

A situation in which the extendability hypothesis of Theorem 4 may
not be automatically guaranteed by the form of the equations in Theorem 6
arises when the coefficient g(z) of (2.1) is negative. Comparison of the energy
function at the endpoints is complicated by the fact that the term involving
g(z)u*(z) no longer drops out at the boundary. We are able to obtain only
a less satisfactory result. We can relax one but not both of the boundary
conditions to that of the Robin type, and we need more assumptions on the
functions f(u) and ¢(z). On the other hand, under these more restrictive
requirements, we can replace the linear term in (2.1) with one having an
exponent less than unity. More precisely, we consider equations of the form

u’(z) + f(u(z)) = G(z)ul(z), € (a,b),G(z)>0,0<¢< 1, (4.12)
subject to the boundary conditions
u(a) =0, and «'(b)+ Bu(b) = 0. (4.13)

The case ¢ = 0 can be considered as an Emden-Fowler equation with a
forcing term.
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We require in addition to (2.4) that

F(u)

uq+1

is a strictly increasing function of u (4.14)

and, in place of (2.5), the stronger condition that

G(z) = —g(2) is nondecreasing in (a, b). (4.15)

Theorem 8 Under the assumptions (2.4), (4.14), and (4.15), the boundary
value problem (4.12)-(4.13) has at most one positive solution.

Proof. Superlinearity holds by virtue of the sign of G(z) and the value of ¢.

Suppose there are two distinct solutions, u(z) and U(z), to the boundary
value problem.

Define r(z) = u'(z)/u(z) and R(z) = U'(z)/U(z) as in the proof of

Theorem 1. The second boundary condition in (4.13) becomes

r(b) = R(D). (4.16)
Let our solutions be named such that

u'(a) < U'(a). (4.17)

By Lemma 1, 7(2z) > R(z) for « in a small right neighborhood (a,a + ¢)
of a. We may as well assume that the inequality holds throughout the entire
interval (a,b). Indeed, if there is a 7 € (a,b) for which (1) = R(7), we
simply replace the original boundary value problem by one defined on the
subinterval (a, 7).

We proceed as in the proof of Theorem 1, replacing the definition of
E(u) by
u'? Guit!
Flu)y= —+ F(u) —
(=5 + Fw - T4

and noting that (2.8) and (2.9) hold with ¢ = b. The two energy identities
(2.13) and (2.14) become

(4.18)

B(uf)) = (o) - [ CETLOE

T (4.19)
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b g+1lp7g+1
Y HLE(U (b)) = 47102 (a) / Gla)y™ U (w)dx (4.20)
a qg+1
Atz =0,
WH(b) = 47 ), (421)
but
u'?(b) > y1HU 2 (b). (4.22)
By (4.14),
F(u(b)) _ FU))
> . 4.2
W)~ T (D) (4.23)
It follows from this inequality and (4.21) that
F(u(b)) > y*F(U(b)). (4.24)
We thus see that
E(u(b)) > v*E(U(b)). (4.25)
At other endpoint «a, since u(a) < U(a),
w'?(a) < U'?(a) <470 (a). (4.26)

A contradiction is then obtained as in the proof of Theorem 1. H
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5 The Generalized Matukuma Equation

In this section we consider the equation
Au(a) + q(lel)u(2) = 0, @ € R", (5.1)

where n > 3,1 <p < (n+2)/(n—2),and ¢(r) > 0is a C'! function. In view
of symmetry, we can turn to the equivalent ordinary differential equation

n—1

u”(r) +

u'(r)+ q(r)uP(r) =0, «'(0)=0, r>0. (5.2)

There are three types of solution: (1) those with a finite zero, (2) those with
a finite mass, and (3) those with an infinite mass. The existence of each type
of solution and its dependence on the initial height «(0) were studied in great
detail by Ni and Yotustani [21]. Yanagida [24] gave an affirmative answer
to the conjecture concerning the uniqueness of the solution with finite mass
in the special case that ¢(r) = 1/(1+ r?). His proof actually works without
much change for more general coeflicients.

The transformation

r = co€’, (5.4)
where ¢; and ¢y are appropriate constants, gives the new equation
v(s) = v(s) + (€°)"q(e*) 0" =0, (5.5)
where

(n+2)—p(n-2)
2

n= > 0. (5.6)

Following Yanagida, we take one of the solutions with finite mass and
denote it by ¢(s). The initial condition «'(0) = 0 and the finiteness of mass
translate into

lim ¢(s)=0. (5.7)

s—+oo

Now the problem is reduced to one that is “symmetrical” with respect to —oo
and oo, in the sense that the two “endpoints” are no longer distinguishable.
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The property of the coeflicient that makes Yanagida’s proof work is that the

function 5
Q(s) = P (e*)"q(€”) (5.8)

satisfies the A-condition. This is equivalent to the simpler condition that
(rq(r)) changes sign once for r > 0. (5.9)
Let o be a point such that
Q'(s) > 0 for s < o and Q'(s) <0 for s > 0. (5.10)

Note that ¢ is not unique since @’(s) may vanish in an entire interval.

The energy identity for equation (5.5) is

'2(s) — v3(s) + Q(s)or ! = / Q'(1)oP (1) dt. (5.11)

— 00

Assertion (ii) of Yanagida’s Lemma 2.2 is equivalent to
z(r) = ¢'(r)+ ¢(r) > 0 for all r > 0. (5.12)

This can be verified directly by observing that (5.5) gives 2/ —z = ¢/ —¢ < 0
and that lim,_.., 2(s) = 0. Upon reflection, we also have

&' (r)— ¢(r) < 0 for all 7 > 0. (5.13)

This is, in fact, equivalent to the fact that «/(r) < 0.

Let 1(s) be another solution of finite mass. By virtue of superlinear-
ity, we see that t(s) must intersect ¢(s) at least once. As in [24], we
proceed to show that ¢(s) and (s) cannot intersect for a second time.
Suppose they do. From the intermediate value theorem, there must be
a first point sy, between the first and the second intersection points, at
which ¢'(s1)/¢(s1) = ¥'(s1)/¢(s1). We may assume that s; < o. The
contrary case can be reduced to the present one by a reflection. Before
the first intersection point, the two ratios ¢'(s)/¢(s) and ¥'(s)/¥(s) can-
not coincide. Suppose the contrary and there exists a point 7 < s; at
which (7)/6(r) = ¥/(7)/(r). Integrating ¢"(s)(s) — ¢(s)"(s) over
(—o0,7) gives ¢'(T)w(1) — &(7)¢'(1) = 0. On the other hand, using the

differential equation to eliminate ¢"'(s) and ¢”(s) shows that the expression
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¢"(s)(s) — ¢(s)"(s) is nonnegative and nontrivial in (—oc0, ), an obvi-
ous contradiction. As in the proof in Section 2, we conclude that the ratio
@(s)/1(s) is a monotone function in (—o0, s1):

B(s) _ ols1)
0(s) 7 ()

Multiplying the energy identity satisfied by t(s) with the constant y?P*!,
and then subtracting the identity satisfied by ¢(s), we obtain

(7771 = 1) (¢/%(s) - 6%(s)) > 0. (5.15)

This contradicts (5.12) and (5.13).

(5.14)

Again we see that the ratios ¢'(s)/¢(s) and 1'(s)/1(s) actually must be
different for all s € (—o0,00). Thus ¢(s)/1(s) is a monotone function for
all s € (—00,00). Let

¢(o)

5= o) (5.16)

Extending (5.11) to the whole r-axis and using the fact that ¢(s), ¥ (s) — 0
as s — o0, we see that

| @metiwa=o (5.17)
and -
/_ Q'(1)P (1) di = 0. (5.18)

Incidentally, (5.17) implies that if G/(t) is monotone, or equivalently if G'(¢)
does not change sign, then (5.1) does not have a finite mass solution. Sub-
tract the first identity from ¢P*! times of the second one. We obtain a
contradiction because by (5.10), the difference of the lefthand side of (5.17)
and (5.18) is a strictly positive number.

We have thus proved an extension of Yanagida’s result.

Theorem 9 Suppose that (5.9) holds. Then the differential equation (5.1)
can have at most one positive solution with finite mass.
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6 The Matukuma Equation — General Boundary
Conditions

A natural question to ask next is whether uniqueness still holds for other
boundary value problems on the Matukuma equation. For example, is there
only one solution that vanishes on the sphere of given radius b and is positive
in the interior of the ball? More generally, given 0 < a < b < 0o, we consider
solutions of

)+ ) + gy =0, p> 1, (6.1)

such that
uw(a) = u(b) =0, and u(r) > 0 for r € (a,b). (6.2)

Results in this section do not require p to be subcritical. If a is chosen
to be 0, the singularity of the second term in (6.1) dictates that the only
possible boundary condition at @ is of the Neumann type

u/'(0) = 0. (6.3)

In this case, a restriction on the upper bound of p (which may be different
from the critical value (n + 2)/(n — 2), depending on the actual form of
q(r)) is perhaps needed, but only for ensuring the existence of a solution to
the boundary value problem, rather than being required by the uniqueness
proof.

Theorem 4 can be used to replace the Dirichlet condition with one of the
Robin type, under suitable conditions.

Yanagida’s technique does not appear to be extendable to general bound-
ary conditions. The main obstacle is that (5.12) and (5.13) are no longer
valid. The method also fails to include supercritical p.

Instead we turn to an alternative approach that Kwong and Zhang [15]
recently applied to equations of the form Awu 4 f(u) = 0. We will derive
several uniqueness criteria. The first is a stronger form of (5.9). We require
that (5.9) holds for all n > 0, not just for the particular one given by (5.6).
It is easy to see that an equivalent condition is

is nonincreasing in (a,b). (6.4)
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This is reminiscent of the condition imposed on f(u) in [15]. The method is
actually applicable to include the case b = oo, but we consider only finite b
here for the sake of simplicity.

The ideas will only be sketched since the method is similar to that of the
result in [15]. The Kolodner-Coffman method reduces the proof of unique-
ness to showing that given any solution u(r) of the boundary value problem,
the solution w(r) of the linearized equation

-1
Llw] = v + nTw’ + pg(r)u’"'w = 0, (6.5)

w(a) =0, w'(a)=1, (6.6)

changes sign exactly once in (a,b]. By superlinearity, w(r) must change sign
at least once. What remains is to make sure that w(r) does not change sign
for a second time. When the interval is sufliciently short, this situation is
known to be valid. For the simpler equation Au + f(u) = 0, this fact is
implied by Theorem 1.7 of Ni and Nussbaum [20]. Lemma 12 in [2] confirms
this assertion for general equations. A continuation argument then lets us
extend this assertion to general (a,b) provided we can show that under no
circumstances can w(r) have exactly one zero inside (a,b) and w(b) = 0.
In [15], this crucial step is implemented by establishing Lemma 7, which is
stated below in a more general form.

Lemma 2 Suppose that w(b) = 0 and that w(r) has only one zero p inside
(a,b). Let z(r) be a C? function defined in [a,b] such that

Liz(r)] 0
0

forr
forr

(AVARVAN
(AVARVAN

p
p- (6.7)

If either z(a) > 0 or z'(a) > 0, then z(b) > 0.

Proof. The proof makes use of Sturm’s comparison theorem. We examine
the oscillation of z(r) as we move from the endpoint a towards b. At the
beginning, L[z(r)] has the correct sign to ensure that z(r) oscillates faster
than w(r); thus, z(r) has a zero before p. Once passed p, z(r) < 0; now
the comparison theorem works in the reverse way, and z(r) oscillates more
slowly than w(r). As a result, z(r) cannot have another zero before p. But
once passed p, L[z] changes sign, and z(r) changes pace. Hence z(r) has a
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zero between the two zeros, p and b, of w(r). After this second zero of z(r),
the oscillation slows down again and z(r) cannot have a zero before or at
b. We thus conclude that z(r) changes exactly twice in [a,b], and therefore

2(b) > 0. 1

If we can construct a suitable function z(r) satisfying (6.7), with z(a) > 0
but z(b) < 0, then Lemma 2 implies that w(r) cannot have a zero at b, and
the uniqueness proof is complete. In [15], the function z = ru’ 4+ fu, with a
suitable choice of the constant 8 was used.

For the Matukuma equation, direct computation gives

!
Lird + pu]l = |B(p—1)—2— T;](ES) q(r)uP. (6.8)
We now choose 3 so that the expression inside the square brackets vanishes
at p. By virtue of (6.4) the righthand side of (6.8) has exactly the required
sign property (6.7), and z(a) = au'(a) > 0, and z(b) = bu/(b) < 0. We have
thus proved uniqueness under condition (6.4).

By experimenting with more general trial functions of the form z =
h(r)u' 4+ k(r)u, we have come up with two other useful ones for which the
corresponding expression L[z] is particularly simple:

Lir™u' + pu] = [ﬁ(p — 1) = 2mr™ 1t — ] q(r)u? (6.9)

and

Lr*™ ' 4 (m — D)™™ 4 Bu)] =

[ﬂ(p— D+ (mp+m—p=3)r'~"—

They give rise, respectively, to the criteria

!
rmt (7‘(](_(7)‘) + Qm) is nonincreasing in (a, b) (6.11)
q(r
and
1 /
e (% —(mp+m—p— 3)) is nonincreasing in (a,b).  (6.12)
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A positive linear combination of the comparison functions
z=(Ar 4+ pr™ 4+ or*™) A p,v >0, (6.13)

can also be used.

Theorem 10 Let 0 < a < b < co. If the coefficient q(r) satisfies any one
of the conditions (6.4), (6.11), or (6.12) (or more generally if some positive
linear combination of the expressions in these conditions is nonincreasing),
then (6.1) has at most one solution satisfying (6.2). If a = 0, the same
conclusion is valid for the boundary condition (6.3).

Simple examples of functions that satisfy (6.4) include all powers (posi-
tive or otherwise) of r and 1/(1+ r*) for all k. Products of positive powers
of functions that satisfy (6.4) also satisfy (6.4). It is also easy to see that if
q(r) satisfies (6.4), so does ¢(1/7).

Coeflicients of the form

g(r) = o+ a >0, (6.14)

1472’
have been studied by Toland [23]. However, the condition (6.4) is not satis-
fied unless b is small. Theorem 3 of Section 3 also fails. It is interesting to
ask whether uniqueness is still valid for these equations.

Theorem 10 furnishes a complete description on the structure of the
solutions of the Matukuma equation.

Theorem 11 Under the same hypotheses of Theorem 10, there exists a pos-
itive extended number p that divides the solutions of (5.2) into three types:

1. If u(0) = p, the solution ¢(r), which we call the ground state, is an
entire (positive for all v > 0) solution that decays with the fastest rate
as v — o0,

2. If u(0) > p, the solution is an entire solution that decays with a rate
slower than that of the ground state (the ratio u(r)/¢(r) goes to oo as
§— 00).
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3. Ifu(0) < p, the solution has a finite zero, which is a strictly decreasing
function of u(0).

In the case that p = 0o, the first two types are void.

To close the section, we point out a major difference between the result
here and that obtained in [15] and indicate some further extensions. What
the proof exploits is the sign property, not the actual magnitude, of the
righthand side of (6.7). In the case of all the identities used in this section,
the value of u(r) at each r plays no role. In [15], the righthand side of the
corresponding (6.7) has the required sign property only if we know that u(r)
is nonincreasing in the interval [a, b]. For this reason, the result there is only
established when a Neumann condition is satisfied at the left endpoint a.
On the other hand, the function f(u) in [15] is allowed to assume negative
values for u small, and that monotonicity requirement on wf’'(u)/f(u) is
relaxed when f(u) < 0.

In searching for other comparison functions for Lemma 2, we have tried
z = h(r)u' 4+ k(r)u, with any h(r) and k(r) = mh(r)/2r —h'(r)/2+ 5. Direct

computation gives

L = [ﬁ(p T m(p —Qi)h(T) — (p+ 32)h’(7‘) B h(g)((i/)(r) q(r)u?
B [h//;(r) N m(m — 2)(£L£§) —rh'(r)) w. (6.15)

In fact, the test functions used above are the three linearly independent
solutions of the differential equation obtained by equating the coeflicients
of w in (6.15) to zero. It is interesting to see what uniqueness criterion
can be obtained by choosing other h(t). The existence of the second term
in the righthand side, however, means that, in general, uniqueness results
obtained by using (6.15) apply only to Neumann-Dirichlet problems. Take
a very simple example: n = 3 and h(¢) = ¢>. L[z] has the correct sign for a
suitable choice of g if

q(r) and r? (T(j(/i;) + p—|—211) (6.16)

are both nonincreasing in (a,b); hence the Neumann-Dirichlet problem has
at most one solution.
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Another possible extension of the method is to equations of the more
general form

Au+ f(lz|,u) = 0. (6.17)

In particular, uniqueness of the radially symmetry solution can be proved
for Neumann-Dirichlet problems for

Au+q(lz)uP —u =0, p>1, (6.18)

when ¢(r) is nonincreasing and satisfies (6.4). The monotonicity of ¢(r) is
needed in two places. First it implies that u(r) is a nonincreasing function
in (a,b). Then it gives the appropriate structure of the righthand side of
(6.7) so that 8 can be chosen as desired to make the proof successful. We
omit the straightforward details.
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7 Further Examples and Extensions

Even though Theorem 1 is false in general for coefficients satisfying the
V-property, uniqueness can still be proved in some specific situations. The
types of result obtained in this section are less satisfactory and apply to
coefficients with rather special structures. For this reason, we have refrained
from formulating general propositions, other than Theorem 12, and merely
indicate the ideas in some examples.

We first observe that a proof similar to that of Theorem 1 gives the
following “uniqueness” result for fixed-end boundary value problems, which
is of interest in itself.

Theorem 12 Let u(z) > 0 and U(z) be two solutions of
u"(z) + f(u(z)) + g(2)u(z) =0, =z € (a,b), (7.1)
in the interval (a,b) with the assumptions on the initial values
uw(a) =U(a) >0, u'(a)<0, |U'(a)l<|u(a)lorU'(a)=—u(a). (7.2)

If the coefficient q(r) is nonnegative and the uniqueness criteria of Theo-
rem 1, (2.4), (4.14), and (2.5), are satisfied, then u(z) and U(z) cannot
intersect again in (a,b].

As a consequence, given any two fived-end conditions
wa)=a >0, u(b)=p>0, (7.3)

there are at most two solutions to the boundary value problem. Suppose there
are two distinct solutions, denoted by ui(z) and uz(x). At a (orb), the two
initial slopes, v (a) and ul(a), cannot both be negative; however, they can
both be positive. In case ui(a) is negative, then

|ut (a)] < uy(a). (7.4)

Proof. At «a, r7(a) = v/'(a)/u(a) < U'(a)/U(a) = R(a). We need to show
that r(z) # R(z) for all 2 > a. This will imply the first conclusion of the
theorem. Indeed, if u(z) and U(z) intersect before b, the intermediate value
theorem will entail the existence of an interior point p at which r(p) = R(p).

32



The case in which u(2) and U(«) intersection at b right on the r-axis can
be treated in the same way if the point ¢ in (3.6) is different from b. The
remaining case is done by using a limiting argument as in the proof of
Theorem 1.

Suppose that there is an interior point at which r(z) = R(z). Take the
smallest of such points. Since we wish to make use of the analogy with
Theorem 1 and there is no danger of confusion, let us rename this point b.
Then u(z) < U(z) for all € (a,b]; hence the ratio v = u(¢)/U(c) > 1.
Following the proof of Theorem 1, we consider the energy functions and
derive a contradiction using (2.13) and (2.14). The initial condition (4.17)
ensures that E(u(a)) < E(U(a)) < yE(U(a)). The rest of the proof runs in
exactly the same way as that of Theorem 1.

Let us turn our attention to the fixed-end boundary value problem. It
follows easily from the first conclusion of the theorem that not both u}(a)
and ub(a) can be negative.

We claim that wq(z) and ug(2) cannot intersect other than at the end-
points. Suppose they do at some p € (a,b). By applying the first conclusion
to the subinterval (p,b), we see that the slopes u)(p) and u4(p) cannot both
be negative. By applying the first conclusion now to the problem on (a,p)
(after doing a reflection), we see that the two slopes at p cannot be both
positive either. Suppose uj(p) < 0 < uh(p). Using the first conclusion on
the subinterval (p, b), we see that we must have |u{(p)| < |u)(p)|. Consider-
ing the other subinterval gives exactly the opposite inequality, and thus we
have a contradiction.

Now suppose there is a third solution us(r). By what we proved in the
last paragraph, none of the three solutions can intersect in the open interval
(a,b). Without loss of generality we may assume that uy(r) < ug(r) <
us(r), for all r € (a,b). A standard Sturm comparison argument using the
superlinearity of the equation show that us(r)— uz(r) must oscillate strictly
faster than uy(r) — uq(r), contradicting the fact that both functions have
the same zeros in [a,b]. 1

This theorem has an obvious application in determining the structure of
the solutions shot out from a fixed initial height at a fixed point a. We do
not pursue the straighforward details. Instead we use Theorem 12 to study
(3.8) with a symmetric and M-shaped ¢(r).
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Example 1. Consider (3.8) on a symmetric interval (—b,b), with a sym-
metric ¢(r):

q(r) = q(—=r), and ¢(r) is A-shaped in (0,0). (7.5)

In particular, if ¢(7) is nondecreasing in (0,b), then ¢(r) has the V-property
in (—=b,b). We show that the Dirichlet problem of (3.8) on (—b,b) has a
unique solution which therefore must be symmetric with respect to the ori-
gin. Of course we still have, by Theorem 1, uniqueness and symmetry of
the solution if ¢(r) is assumed to be nonincreasing in (0,b6); the symmetry
conclusion agrees with a result of Gidas, Ni, and Nirenberg in [10]

Suppose there is a nonsymmetric solution u(z). By reflection, uq(2) =
u(—2) is a distinct solution that intersects u(z) at z = 0. Also /(0) =
—u5(0). Applying the last conclusion of Theorem 12 to (0,b) gives a con-
tradiction. Existence of a solution is well-known.

Example 2. Take (a,b) = (0,4). Choose ¢(r) to be any function such that

q(0) = 1, ¢(1), ¢(4) > &, r’q(r) is nondecreasing in (0,1) and

q(r) has the A-property in (1,3).

As an example we can choose ¢(r) to be (3 —2z)/3 in (0,1) and any non-
decreasing function in (1,3); then ¢(r) has the V-property. We can still
establish uniqueness.

We first claim that the maximum of a solution u(z) must occur in [1,4).
Suppose the contrary and u(z) attains its maximum at p < 1. By scaling
(compressing horizontally) the part of u(x)in (p,4), and reflecting, we obtain
a function that fits into (0, p) and satisfies a differential equation similar to
(3.8) but with a larger factor in the reaction term. We can now compare this
function with the original u(z)in (0, p). The scaling factor is so large that we
can easily conclude that the scaled function must oscillate faster than u(z),
but this contradicts the fact that both functions require the same distance
p from their respective maximum to vanish.

Next we make use of the Kolodner-Coffman method. According to the
method, we will have uniqueness if we can show that corresponding to any
solution u(x) of the Dirichlet problem, a solution w(r) of the first variational
equation

w’(r) + [pup_l(r) + q(r)] w(r)=20 (7.6)
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cannot change sign more than once in (a,b). By the Sturm separation the-
orem, we need only look at the particular solution w(r) such that w(p) = 0.
The required property of w(r) can be proved by examining the oscillatory
behavior of w(r) in each of the subintervals (0,p) and (p,b). By Theo-
rem 1 of [14], the monotonicity of r2¢(r) in (0, p) implies that w(r) cannot
change sign in (0,p). On the other hand, Theorem 12 implies that w(r)
cannot change sign in (p,b). Hence the only change of sign occurs at p, and
uniqueness of the Dirichlet problem is established.

Example 3. The equation
u(z) + 2t (v’ +u) =0 (7.7)

has been shown in [14] to have the uniqueness property for Dirichlet prob-
lems. The change of variables

t
u(z) = %, t=a?, (7.8)
transforms the equation into
" 5 3 t

The coefficient of v(?) satisfies the V-property but is positive for all s. Con-
trast this with the counterexample in Section 3 for which the coefficient
changes sign.
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