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Abstract. We are concerned with the uniqueness result of positive solutions for
a class of quasilinear elliptic equation arising from plasma physics. We convert a
quasilinear elliptic equation into a semilinear one and show the unique existence
of positive radial solution for original equation under the suitable conditions on
the power of nonlinearity and quasilinearity. We also investigate non-degeneracy
of positive radial solution for converted semilinear elliptic equation.
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1. Introduction

In this paper, we consider the following quasilinear Schrödinger equation:

i
∂z

∂t
= −Δz − |z|p−1z − κΔ(|z|α)|z|α−2z, (t, x) ∈ (0,∞)× R

N , (1.1)

where κ > 0, α > 1, N ≥ 1 and p > 1. Equation (1.1) with α = 2 derives from a superfluid
film equation in plasma physics, which was introduced in [5, 13]. We are interested in the
standing wave solution of the form: z(t, x) = u(x)e−iλt, λ > 0. Then we obtain the
following quasilinear elliptic problem:

−Δu + λu − κΔ(|u|α)|u|α−2u = |u|p−1u in R
N . (1.2)
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Equation (1.2) has a variational structure, that is, one can obtain solutions of (1.2)
as critical points of the associated functional J defined by

J(u) =
1
2

∫
R

N

|∇u|2 + λu2 dx +
κ

2α

∫
R

N

|∇|u|α|2 dx − 1
p + 1

∫
R

N

|u|p+1 dx

=
1
2

∫
R

N

|∇u|2 + λu2 dx +
ακ

2

∫
R

N

|∇u|2|u|2α−2 dx − 1
p + 1

∫
R

N

|u|p+1 dx. (1.3)

We remark that nonlinear functional
∫

R
N

|∇u|2|u|2α−2 dx is not defined on all H1(RN )

except for N = 1. Thus the natural function space for N ≥ 2 is given by

X := {u ∈ H1(RN );
∫

R
N

|∇u|2|u|2α−2 dx < ∞}. (1.4)

Existence of a positive solution of (1.2) has been studied in [1, 7, 14, 15, 18]. The purpose
of this paper is to study the uniqueness of the ground state solution of (1.2).

To state the existence of a ground state solution, we use the following notation. We
define the ground state energy level and the set of ground states by

m := inf{J(u); J ′(u) = 0, u ∈ X \ {0}},
G := {w ∈ X \ {0}; J(w) = m, J ′(w) = 0}.

In [1] and [16], they showed the set G has at least one element which is positive, radially
symmetric, decreasing with respect to r = |x| and has the exponential decay. To prove the
uniqueness of ground states, we need more precise properties on ground states. Actually
we have the following result which was obtained by [8] for the case α = 2.

Theorem 1.1. Let λ > 0, κ > 0, α > 1 and 1 < p <
(2α − 1)N + 2

N − 2
for N ≥ 3,

1 < p < ∞ for N = 1, 2. Then G �= ∅ and any w ∈ G satisfies the following properties:

(i) w ∈ C2(RN , R).
(ii) w(x) > 0 for all x ∈ R

N .

(iii) w is radially symmetric: w(x) = w(|x|) and decreases with respect to r = |x|.
(iv) There exist c, c′ > 0 such that

lim
|x|→∞

e
√

λ|x|(|x| + 1)
N−1

2 w(x) = c, lim
r→∞ e

√
λr(r + 1)

N−1
2

∂w

∂r
= −c′.

When N = 1, the uniqueness of ground states was already studied in [8]. The main
purpose of this paper is to give the uniqueness result for N ≥ 2. Now Theorem 1.1 implies
that

G ⊂ {u ∈ X ∩ C2; u is a positive radial solution of (1.2)}.
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We show that the set of positive radial solutions consists of just one element if we assume
additional conditions on κ, λ, α and p. Our main result is the following

Theorem 1.2. Assume N ≥ 3, α > 1, α − 1 ≤ p < 3α − 3 and

max
{

α − p

α(p − 1)
,

p

α(3α − p − 3)

}
≤ κλ

2α−2
p−1 .

Then (1.2) has at most one positive radial solution. Hence the ground state solution of

(1.2) is unique.

As we will see later, we need a stronger assumption when N = 2. For detailed
conditions on κ, λ, α and p, see Lemma 4.3 below. We obtain the following sufficient
conditions for the uniqueness of positive radial solutions in the case N = 2.

Theorem 1.3. Suppose N = 2, α > 2 and 2α − 1 ≤ p < 3α − 3. Then

(i) For every fixed κ > 0, there exists λ0 > 0 such that if λ ≥ λ0, then (1.2) has at most

one positive radial solution.

(ii) For every fixed λ > 0, there exists κ0 > 0 such that if κ ≥ κ0, then (1.2) has at most

one positive radial solution.

To prove Theorem 1.1-1.3, we adapt dual approach as in [1, 7]. More precisely, we
convert our quasilinear equation into a semilinear equation by using a suitable translation
f . We will see that the set of ground states G has one-to-one correspondence to that of
the semilinear problem. This enables us to apply the uniqueness result [9, 12, 17, 19] for
semilinear elliptic equations.

This paper is organized as follows. In Section 2, we introduce the dual approach and
prove Theorem 1.1. In Sections 3 and 4, we study the uniqueness for N ≥ 3 and N = 2
respectively. Finally in Section 5, we study the non-degeneracy of the ground state solution
of the semilinear problem.

2. Dual approach and Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Firstly we show the following Pohozaev-type
identity.

Lemma 2.1. Let u ∈ X be a solution of (1.2). Then u satisfies the following identity:

P (u) :=
N − 2
2N

∫
R

N

|∇u|2 + κα|∇u|2|u|2α−2 dx +
λ

2

∫
R

N

u2 dx − 1
p + 1

∫
R

N

|u|p+1 dx

= 0. (2.1)
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Proof. For t > 0, we put ut(x) = u
(x

t

)
. Then we have∫

R
N

|∇ut|2 dx = tN−2

∫
R

N

|∇u|2 dx,

∫
R

N

u2
t dx = tN

∫
R

N

u2 dx,∫
R

N

|∇ut|2|ut|2α−2 dx = tN−2

∫
R

N

|∇u|2|u|2α−2 dx,

∫
R

N

|ut|p+1 dx = tN
∫

R
N

|u|p+1 dx.

If u is a solution of (1.2), then
d

dt
J(ut)

∣∣∣
t=1

= 0. From this equality, we obtain (2.1).

Next we convert (1.2) into a semilinear problem as in [1, 7]. Let f̃ be a function
defined by

f̃(s) :=
∫ s

0

√
1 + καt2α−2 dt.

Then f̃ is positive, monotone, convex and C∞ on (0,∞). For s < 0, we put f̃(s) = −f̃(−s).
Since f̃ is monotone, we can define the inverse function f . Then f satisfies the following
ODE:

f ′(s) =
1√

1 + ακf(s)2α−2
on s ∈ [0,∞), f(0) = 0. (2.2)

From (2.2), we can observe that

f ′′(s) = −κα(α − 1)f2α−3(f ′)4 = (α − 1)
(f ′)4

f
− (α − 1)

(f ′)2

f
, (2.3)

f ′′′(s) =
1
f2

{4(α − 1)2(f ′)7 − (6α − 5)(α − 1)(f ′)5 + (α − 1)(2α − 1)(f ′)3}. (2.4)

The next two lemmas play important roles in Sections 3–5.

Lemma 2.2. f(s) satisfies the following properties:

(i) f(s) ≤ s, f ′(s) ∈ (0, 1], f ′′(s) ≤ 0 for all s ≥ 0.

(ii)
1
α

f(s) ≤ sf ′(s) ≤ f(s) for all s ≥ 0.

(iii)
(

f(s)
sf ′(s)

)′
> 0 for all s > 0.

Lemma 2.3. It follows

(i) lim
s→∞

f(s)
s

1
α

=
(α

κ

) 1
2α

, lim
s→0

f(s)
s

= 1.

(ii) lim
s→∞

f ′(s)

s
1−α

α

=
1
α

(α

κ

) 1
2α

.

(iii) lim
s→∞

f(s)
sf ′(s)

= α.

For the proof of (i) and (ii) of Lemma 2.2 and Lemma 2.3, we refer to [1]. Here we
give the proof of (iii) of Lemma 2.2.
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Proof. By (2.3) and (ii) of Lemma 2.2, we have(
f

sf ′

)′
=

1
(sf ′)2

(s(f ′)2 − ff ′ − sff ′′)

≥ 1
(sf ′)2

(s(f ′)2 − s(f ′)2 − sff ′′)

=
−ff ′′

s(f ′)2
= (α − 1)

1 − (f ′)2

s
.

Since 0 < f ′ < 1 for all s > 0, we obtain the desired inequality.

Using the function f , we consider the following semilinear problem:

−Δv + λf(v)f ′(v) = |f(v)|p−1f(v)f ′(v) in R
N . (2.5)

The functional associated to (2.5) is defined by

I(v) =
1
2

∫
R

N

|∇v|2 + λf(v)2 dx − 1
p + 1

∫
R

N

|f(v)|p+1 dx.

From Lemma 2.3, we can see that I is well-defined on H1(RN ) (see [1, 7] for the proof).
Moreover we have the following relation between (1.2) and (2.5), which was already shown
in [1, 7]. For the sake of completeness, we give the proof.

Lemma 2.4. Suppose v is a nontrivial critical point of I and v > 0. Then u = f(v) is a

positive solution of (1.2).

Proof. We can easily see that if v ∈ H1(RN ) is a nontrivial critical point of I(v), then
v is a solution of (2.5). By standard elliptic regularity theory, we see that v ∈ C2(RN ).
Moreover v > 0 implies u > 0. Since f ∈ C∞(0,∞), we also have u ∈ C2(RN ).

For v = f̃(u), we have

∇v = f̃ ′(u)∇u, Δv = f̃ ′′(u)|∇u|2 + f̃ ′(u)Δu.

From (2.2), it follows

f̃ ′(s) =
1

f ′(f̃(s))
=
√

1 + κα|f(f̃(s))|2α−2 =
√

1 + κα|s|2α−2,

f̃ ′′(s) =
κα(α − 1)|s|2α−4s√

1 + κα|s|2α−2
.

Thus we have

Δv =
κα(α − 1)|u|2α−4u√

1 + κα|u|2α−2
|∇u|2 +

√
1 + κα|u|2α−2Δu.
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From (2.5), we can observe that u satisfies

−Δu − κα|u|2α−2Δu − κα(α − 1)|u|2α−4u|∇u|2 + λu = |u|p−1u. (2.6)

Now u > 0 implies |u|α ∈ C2. Then it follows from

Δ(|u|α) = div (α|u|α−2u∇u)

= α|u|α−2uΔu + ∇u · ∇(α|u|α−2u)

= α|u|α−2uΔu + α(α − 1)|u|α−2|∇u|2

that

Δ(|u|α)|u|α−2u = α|u|2α−2Δu + α(α − 1)|u|2α−4u|∇u|2. (2.7)

Thus from (2.6) and (2.7), we see that if v is a nontrivial critical point of I and v > 0,
then u = f(v) is a positive solution of (1.2).

Remark 2.5. If α ≥ 2, then f ∈ C2[0,∞) and |f(v)|α ∈ C2 for any nontrivial criti-

cal point v of I. Thus Lemma 2.4 holds for any nontrivial critical point (possibly sign-

changing) of I if α ≥ 2.

Lemma 2.4 tells us that we have only to show the existence of a positive solution
of (2.5) in order to find a positive solution of (1.2). However to show the existence of a
ground state solution, we need more informations on the relation between (1.2) and (2.5).
Actually we have the following relations.

Lemma 2.6.

(i) It follows X = f(H1(RN )), that is, X = {f(v); v ∈ H1(RN )} =: Y .

(ii) For any v ∈ H1(RN ), we put u = f(v). Then it follows J(u) = I(v).

Proof. (i) First we show Y ⊂ X . For v ∈ H1(RN ), we put u = f(v). Then we have

|∇f(v)|2 = |f ′(v)|2|∇v|2 =
1

1 + κα|f(v)|2α−2
|∇v|2.

By (i) of Lemma 2.2 and (2.2), we obtain

∫
R

N

|∇u|2 + u2 dx + κα

∫
R

N

|∇u|2|u|2α−2 dx =
∫

R
N

|∇v|2 + f(v)2 dx ≤ C‖v‖2
H1 < ∞.

Thus it follows Y ⊂ X .
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To show X ⊂ Y , it suffices to show f̃(u) ∈ H1(RN ) for all u ∈ X . For u ∈ X , we put
v = f̃(u). Then it follows

∫
R

N

|∇v|2 dx =
∫

R
N

|(f̃)′(u)|2|∇u|2 dx =
∫

R
N

(1 + κα|u|2α−2)|∇u|2 dx < ∞.

Next by (i) of Lemma 2.3, it follows

lim
s→0

f̃(s)
s

= 1, lim
s→∞

f̃(s)
sα

= c

for some c > 0. Thus there exist constants C1, C2 > 0 such that

|f̃(s)| ≤ C1χ|s|≤1|s| + C2χ|s|≥1|s|α for all s ∈ R .

Then we have

|v|2 ≤ C1χ|u|≤1|u|2 + C2χ|u|≥1|u|2α ≤ C1|u|2 + C2|u| 2Nα
N−2 .

By Sobolev’s inequality, we obtain∫
R

N

|v|2 dx ≤ C1

∫
R

N

|u|2 dx + C2

∫
R

N

|u| 2Nα
N−2 dx

≤ C1

∫
R

N

|u|2 dx + C′
2

(∫
R

N

α2|∇u|2|u|2α−2 dx

) N
N−2

< ∞.

Thus it follows X ⊂ Y and hence X = Y .
(ii) We substitute u = f(v) into J(u). Then from (2.2), it follows

J(u) =
1
2

∫
R

N

|∇f(v)|2 + λf(v)2 dx +
κα

2

∫
R

N

|∇f(v)|2|f(v)|2α−2 dx

− 1
p + 1

∫
RN

|f(v)|p+1 dx

=
1
2

∫
R

N

|∇v|2(1 + κα|f(v)|2α−2)|f ′(v)|2 + λf(v)2 dx − 1
p + 1

∫
R

N

|f(v)|p+1 dx

=
1
2

∫
R

N

|∇v|2 + λf(v)2 dx − 1
p + 1

∫
R

N

|f(v)|p+1 dx

= I(v).

and we obtain (ii).

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. We argue as in [8]. By the results due to [3, 4, 11], there exists
w̃ ∈ H1(RN ) such that w̃ > 0, radial and

I(w̃) = inf{I(v) ; I ′(v) = 0, v ∈ H1(RN ) \{0}}.

By Lemma 2.4, w = f(w̃) satisfies J ′(w) = 0. We claim that w ∈ G.
Indeed we define

P̃ (v) :=
N − 2
2N

∫
R

N

|∇v|2 dx +
λ

2

∫
R

N

f(v)2 dx − 1
p + 1

∫
R

N

|f(v)|p+1 dx, v ∈ H1(RN ) .

Then it follows P (u) = P̃ (v) for u = f(v) where P (u) was defined in (2.1). Moreover w̃

can be characterized by

w̃ ∈ A := {v ∈ H1(RN ) ; P̃ (v) = 0}, I(w̃) = inf
v∈A

I(v).

Now let u ∈ X be a nontrivial critical point of J . Then from (2.1), we have

J(u) =
1
N

∫
R

N

|∇u|2 + ακ|∇u|2|u|2α−2 dx

=
1
N

∫
R

N

|∇u|2 dx +
κ

αN

∫
R

N

|∇|u|α|2 dx.

By the pointwise inequality |∇|u(x)|| ≤ |∇u(x)| a.e. x ∈ R
N , it follows

J(u) ≥ J(|u|) = I(f̃(|u|)).

If N = 2, then (2.1) implies P (|u|) = 0 and hence P̃ (f̃(|u|)) = 0. Then we obtain

J(u) ≥ I(f̃(|u|)) ≥ I(w̃) = J(w).

If N ≥ 3, we distinguish cases P (|u|) = 0 and P (|u|) < 0. If P (|u|) = 0, then we have
J(u) ≥ J(w) as in the case N = 2. Suppose P (|u|) = P̃ (f̃(|u|)) < 0. We put ṽ = f̃(|u|)
and define ṽθ(x) = ṽ

(x

θ

)
for θ ∈ (0, 1). We can see that there exists θ0 ∈ (0, 1) such that

P̃ (ṽθ0) = 0, that is, ṽθ0 ∈ A. Then we have

I(ṽθ0) =
θN−2
0

N

∫
R

N

|∇ṽ|2 dx

=
θN−2
0

N

∫
R

N

|∇|u||2 +
κ

α
|∇|u|α|2 dx

≤ θN−2
0

N

∫
R

N

|∇u|2 +
κ

α
|∇|u|α|2 dx

= θN−2
0 J(u) < J(u).
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Since ṽθ0 ∈ A, we obtain
J(u) > I(ṽθ0) ≥ I(w̃) = J(w).

This implies w ∈ G.
Next we show that if w ∈ G, then |w| ∈ G. If P (|w|) < 0, then we get

J(w) > I(ṽθ0) = J(w).

This is a contradiction. Thus it follows P (|w|) = 0. Arguing as above, we obtain J(w) =
J(|w|). This implies |w| ∈ G.

Next we show properties (i)-(iv).
(i) We can see if w ∈ G, then w ∈ L∞

loc(R
N ). By the elliptic regularity theory, it

follows w ∈ C2(RN ).
(ii) Since |w| ∈ G for any w ∈ G, it follows w ≥ 0. We put w̃ = f̃(w). By the maximum

principle, we have w̃ > 0. This implies w > 0.
(iii) We observe that if w ∈ G, then w̃ = f̃(w) is a ground state solution of (2.5). In

fact for any nontrivial critical point u of J , v = f̃(u) is a nontrivial critical point of I.
Then by Lemma 2.6, we have

I(v) = J(u) ≥ m = J(w) = I(w̃).

This implies w̃ is a ground state solution of (2.5).
By the result of [6], any ground state solution of (2.5) is radially symmetric and

decreasing with respect to r = |x|. We can easily see that w(x) = w(|x|) if and only if
w̃(x) = f̃(w(x)) satisfies w̃(x) = w̃(|x|). Thus claim (iii) holds.

(iv) Let w ∈ G and w̃ = f̃(w). From (ii), w̃ is a positive radial solution of (2.5). Then
by the standard comparison principle, it follows

|Dkw̃(x)| ≤ ce−δ|x| for all δ ∈ (0,
√

λ), x ∈ R
N , |k| ≤ 2 and some c > 0.

By Lemma 2.2, we can see that

|Dkw(x)| ≤ ce−δ|x| for all δ ∈ (0,
√

λ), x ∈ R
N , |k| ≤ 2 and some c > 0.

Thus for |x| 
 1, we have

−Δw + λw ≤ ce−pδ|x| + ce−(2α−1)δ|x|.

Since 2α − 1 > 1 and we can take δ arbitrarily close to
√

λ, it follows

−Δw + λw = o(G(x)) as |x| → ∞,

where G is the fundamental solution of −Δ+λI. Then by Gidas-Ni-Nirenberg’s asymptotic
result [10], we obtain (iv).

Next we give a relation on the sets of positive radial solutions of (1.2) and (2.5).
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Lemma 2.7. It follows

{u ∈ X ∩ C2(RN ) ; J ′(u) = 0, u > 0, u(x) = u(|x|)}
= f({v ∈ H1 ∩ C2(RN ) ; I ′(v) = 0, v > 0, v(x) = v(|x|)}).

Proof. By Lemma 2.4, we know that

{u ∈ X ∩ C2(RN ) ; J ′(u) = 0, u > 0} ⊇ {f(v) ; I ′(v) = 0, v > 0, v ∈ H1 ∩ C2(RN )}.

Suppose the equality does not hold. Then there exists u0 ∈ X such that u0 is a positive
solution of (1.2) but u0 �= f(v) for any positive solution v ∈ H1(RN ) of (2.5).

On the other hand by (i) of Lemma 2.6, we know if u0 ∈ X , then there exists v0 such
that u0 = f(v0). Since u0 is a positive solution of (1.2), we can see that v0 is a positive
solution of (2.5). This is a contradiction. Thus we have

{u ∈ X ∩ C2(RN ) ; J ′(u) = 0, u > 0} = {f(v) ; I ′(v) = 0, v > 0, v ∈ H1 ∩ C2(RN )}.

Finally we can easily see that u(x) = u(|x|) if and only if v(x) = f̃(u(x)) satisfies v(x) =
v(|x|).

Lemma 2.7 tells us that if (2.5) has at most one positive radial solution v, then (1.2)
also has at most one positive radial solution u = f(v). Thus we have only to study the
uniqueness of the positive solution of semilinear problem (2.5).

Finally in this section, we give the non-existence result for p ≥ (2α − 1)N + 2
N − 2

, which
is an easy consequence of the Pohozaev identity.

Theorem 2.8. Suppose p ≥ (2α − 1)N + 2
N − 2

. Then (1.2) has no nontrivial solution u ∈ X .

Proof. Suppose u ∈ X is a nontrivial solution of (1.2) and p ≥ (2α − 1)N + 2
N − 2

. From

J ′(u)u = 0, we have∫
R

N

|∇u|2 + λu2 + κα2|∇u|2|u|2α−2 dx −
∫

R
N

|u|p+1 dx = 0.

On the other hand, u satisfies (2.1). Then we obtain

(α − 1)(N − 2)
2α

∫
R

N

|∇u|2 dx +
(α − 1)N + 2

2α

∫
R

N

λu2 dx

=
(

N

p + 1
− N − 2

2α

)∫
R

N

|u|p+1 dx.
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Since the left hand side is positive, it follows

N

p + 1
− N − 2

2α
> 0, that is, p <

(2α − 1)N + 2
N − 2

.

This is a contradiction.

3. Uniqueness of positive radial solutions for N ≥ 3

In this section, we study the uniqueness of the positive radial solution of (2.5). We put

g(s) = f(s)pf ′(s) − λf(s)f ′(s) for s ≥ 0 and Kg(s) :=
sg′(s)
g(s)

. (3.1)

We apply the following uniqueness result due to Serrin and Tang [19].

Proposition 3.1 [19]. Suppose that there exists b > 0 such that

(i) g is continuous on (0,∞), g(s) ≤ 0 on (0, b] and g(s) > 0 for s > b.

(ii) g ∈ C1(b,∞) and K ′
g(s) ≤ 0 on (b,∞).

Then the semilinear problem:

−Δu = g(u) in R
N , u > 0, u → 0 as |x| → ∞, u(0) = maxu(x)

has at most one positive radial solution.

Now we can see that g defined in (3.1) is of the class C1[0,∞) and

g(s) = 0 ⇐⇒ fp−1(s) = λ ⇐⇒ s = f−1(λ
1

p−1 ).

We put b := f−1(λ
1

p−1 ). Since (s − b)g(s) = (s − b)ff ′(fp−1 − λ), we can see (i) of
Proposition 3.1 holds.

Lemma 3.2. Assume α − 1 ≤ p < 3α − 3 and

max
{

α − p

α(p − 1)
,

p

α(3α − p − 3)

}
≤ κλ

2α−2
p−1 . (3.2)

Then g satisfies (ii) of Proposition 3.1.

Proof. We observe that

K ′
g(s) =

1
g(s)2

(g′′(s)g(s)s + g′(s)g(s) − (g′(s))2s).

11



Thus we have only to show that sg′′g + g′g − s(g′)2 < 0 for s > b.
Firstly we compute g′ and g′′. It follows

g(s) = fpf ′ − λff ′ = ff ′(fp−1 − λ),

g′(s) = (p − 1)fp−1(f ′)2 + (f ′)2(fp−1 − λ) + ff ′′(fp−1 − λ),

g′′(s) = (p − 1)2fp−2(f ′)3 + 2(p − 1)fp−1f ′f ′′ + 2f ′f ′′(fp−1 − λ) + (p − 1)fp−2(f ′)3

+ f ′f ′′(fp−1 − λ) + ff ′′′(fp−1 − λ) + (p − 1)fp−1f ′f ′′

= p(p − 1)fp−2(f ′)3 + 3(p − 1)fp−1f ′f ′′ + 3f ′f ′′(fp−1 − λ) + ff ′′′(fp−1 − λ).

Then we have

sg′′g + g′g − s(g′)2

= (fp−1 − λ)2
(
sf2f ′f ′′′ + sf(f ′)2f ′′ − s(f ′)4 − sf2(f ′′)2 + f(f ′)3 + f2f ′f ′′)

+ (fp−1 − λ)(p − 1)fp−1(f ′)2
(
(p − 2)s(f ′)2 + sff ′′ + ff ′)

− (p − 1)2sf2p−2(f ′)4.

Next we express sg′′g + g′g − s(g′)2 in terms of f and f ′ and regard as a polynomial
of fp−1 − λ. From (2.3) and (2.4), we have

sg′′g + g′g − s(g′)2

= (fp−1 − λ)2
(
(α − 1)ff ′5 − 4(α − 1)2sf ′6 + 3(α − 1)2sf ′8 + (α − 2)f ′3(αsf ′ − f)

)
+ (p − 1)fp−1(fp−1 − λ)

(
(p − α − 1)sf ′4 + (α − 1)sf ′6 + ff ′3)

− (p − 1)2sf2p−2f ′4.

Now we use

(fp−1 − λ)fp−1 = (fp−1 − λ)2 + λfp−1 − λ2 = (fp−1 − λ)2 + λ(fp−1 − λ),

f2p−2 = (fp−1 − λ)2 + 2λfp−1 − λ2 = (fp−1 − λ)2 + 2λ(fp−1 − λ) + λ2.

Thus we obtain

sg′′g + g′g − s(g′)2

= (fp−1 − λ)2
(
(α − 1)ff ′5 − 4(α − 1)2sf ′6 + 3(α − 1)2sf ′8 + (α − 2)f ′3(αsf ′ − f)

)
+ (p − 1)

(
(fp−1 − λ)2 + λ(fp−1 − λ)

) (
(p − α − 1)sf ′4 + (α − 1)sf ′6 + ff ′3)

− (p − 1)2
(
(fp−1 − λ)2 + 2λ(fp−1 − λ) + λ2

)
sf ′4

= (fp−1 − λ)2
(
(α − 1)ff ′5 − 4(α − 1)2sf ′6 + 3(α − 1)sf ′8 + (α − 2)f ′3(αsf ′ − f)

+(p − 1)(p − α − 1)sf ′4 + (p − 1)(α − 1)sf ′6 + (p − 1)ff ′3 − (p − 1)2sf ′4)
12



+ λ(p − 1)(fp−1 − λ)
(
(p − α − 1)sf ′4 + (α − 1)sf ′6 + ff ′3 − 2(p − 1)sf ′4)

− λ2(p − 1)2sf ′4

= (fp−1 − λ)2
(
(α − 1)f ′5 (f − (4α − p − 3)sf ′ + 3(α − 1)sf ′3)− (p − α + 1)f ′3(αsf ′ − f)

)
+ λ(p − 1)(fp−1 − λ)

(−(α + p − 1)sf ′4 + ff ′3 + (α − 1)sf ′6)
− λ2(p − 1)2sf ′4

=: (fp−1 − λ)2H1(s) + λ(p − 1)(fp−1 − λ)H2(s) − λ2(p − 1)2sf ′4. (3.3)

First we study the sign of H2(s). It follows

H2(s) = f ′2{−f ′(αsf ′ − f) − ((p − 1) − (α − 1)f ′2) sf ′2}.

From Lemma 2.2, we know that αsf ′ − f ≥ 0 for all s ≥ 0. Moreover from the fact that
f ′ is decreasing, we have

(p − 1) − (α − 1)f ′2 ≥ p − 1 − (α − 1)f ′(b)2 =
p − α + κα(p − 1)λ

2α−2
p−1

1 + ακλ
2α−2
p−1

.

From (3.2), it follows H2(s) ≤ 0 for s > b.
Next we investigate the sign of H1(s). We have

H1(s) = (α − 1)f ′5 (f − (4α − p − 3)sf ′ + 3(α − 1)sf ′3)− (p − α + 1)f ′3(αsf ′ − f)

=: (α − 1)f ′5H3(s) − (p − α + 1)f ′3(αsf ′ − f).

Since p − α + 1 ≥ 0, it suffices to show that H3(s) ≤ 0 in order to prove H1(s) ≤ 0.
Now we observe that

H3(s) = −(αsf ′ − f) − sf ′ ((3α − p − 3) − 3(α − 1)f ′2) .

From p < 3α − 3 and the fact that f ′ is decreasing, we have

(3α − p − 3) − 3(α − 1)f ′(s)2 ≥ (3α − p − 3) − 3(α − 1)f ′(b)2

= (3α − p − 3) − 3(α − 1)
1 + αλf(b)2α−2

=
−p + α(3α − p − 3)κλ

2α−2
p−1

1 + ακλ
2α−2
p−1

.

We see that

−p + α(3α − p − 3)κλ
2α−2
p−1 ≥ 0 ⇐⇒ p

α(3α − p − 3)
≤ κλ

2α−2
p−1 .

13



Thus we have H3(s) ≤ 0 and hence H1(s) ≤ 0. From (3.3), we obtain K ′
g(s) < 0 for

s > b.

By Lemma 3.2, we can apply Proposition 3.1. Hence we obtain the uniqueness of
positive radial solutions of (1.2) when N ≥ 3 and the proof of Theorem 1.2 is complete.

4. Uniqueness of positive radial solutions for N = 2

In this section, we study the uniqueness of positive radial solutions of (2.5) for N = 2.
Under same notation as in Section 3, we apply the following uniqueness result due to
Mcleod and Serrin [17].

Proposition 4.1 [17]. Suppose that there exist b > 0 and τ ≥ 1 such that

(i) g ∈ C1[0,∞), g(0)=0, g′(0) < 0.

(ii) g(s) < 0 for s ∈ (0, b), g(s) > 0 for s ∈ (b,∞).

(iii) g′(b) > 0.

(iv)
(

g(s)
sτ

)′
> 0 for s > 0, s �= b.

(v)

(
s

(
g(s)
sτ

)′)′
< 0 for s > b.

Then the semilinear problem:

−Δu = g(u) in R
2, u > 0, u → 0 as |x| → ∞, u(0) = maxu(x)

has at most one positive radial solution.

As mentioned in [12], (iv) and (v) of Proposition 4.1 imply (ii) of Proposition 3.1.
This means that we need a stronger condition on the nonlinearity to show the uniqueness
for N = 2. Thus we have to restrict λ, κ, α and p more strongly to show (iv) and (v).

Now we can see g defined in (3.1) satisfies (i)-(iii) of Proposition 4.1.

Lemma 4.2. Assume 2α−1 ≤ p < ∞. Then g defined in (3.1) satisfies (iv) of Proposition

4.1 with τ =
p + 1 − α

α
.

Proof. A direct calculation yields that

sg′(s) − τg(s) = (p + 1 − α)sfp−1(f ′)2 + (α − 1)sfp−1(f ′)4

+ (α − 2)λs(f ′)2 − (α − 1)λs(f ′)4 − τfpf ′ + τλff ′

≥ (p + 1 − α − ατ )sfp−1(f ′)2 + (τ − 1)λs(f ′)2 + (α − 1)sfp−1(f ′)4.

Here we used 0 < f ′ ≤ 1 and Lemma 2.2. Choosing τ =
p + 1 − α

α
, we obtain τ ≥ 1 and

sg′ − τg > 0 for s > 0, s �= b.
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Lemma 4.3. Suppose α > 2, 2α−1 ≤ p < 3α−3 and let τ =
p + 1 − α

α
. Assume further

(f ′(b))2 ≤ (2τ + 2α − 3)(α − 2) + τ2

(α − 1)(2p + 3α − 6)
, (4.1)

f(b)
bf ′(b)

≥ (p − 2α + 1)α
p + 1 − α

, (4.2)

3p − 6α + 5 + 4(α − 1)(f ′(b))2 − (2τ − 1)
f(b)

bf ′(b)
≤ 0, (4.3)

where b = f−1(λ
1

p−1 ). Then g satisfies (v) of Proposition 4.1.

Proof. By a direct computation, it follows(
s
( g

sτ

)′)′
=

1
sτ+1

(
s2g′′ + (1 − 2τ )sg′ + τ2g

)
.

We claim that s2g′′ + (1 − 2τ )sg′ + τ2g < 0 for s > b. Indeed from (3.1), we have

s2g′′ + (1 − 2τ )sg′ + τ2g

= fp−2
(
s2f2f ′′′ + 3ps2ff ′f ′′ + (1 − 2τ )sf2f ′′

+p(1 − 2τ )sf (f ′)2 + τ2f2f ′ + p(p − 1)s2(f ′)3
)

− λ
(
s2ff ′′′ + 3s2f ′f ′′ + (1 − 2τ )sff ′′ + (1 − 2τ )s(f ′)2 + τ2ff ′)

=: fp−2K1(s) − λK2(s). (4.4)

We prove K1(s) < 0 and K2(s) > 0 for s > b.
Firstly we estimate fK2(s). From (2.3) and (2.4), we have

fK2(s) = s2f2f ′′′ + 3s2ff ′f ′′ + (1 − 2τ )sf2f ′′ + (1 − 2τ )sf (f ′)2 + τ2f2f ′

= 4(α − 1)2s2(f ′)7 − 2(3α − 4)(α − 1)s2(f ′)5 − (2τ − 1)(α − 1)sf (f ′)4

+ 2(α − 1)(α − 2)s2(f ′)3 + (2τ − 1)(α − 2)sf (f ′)2 + τ2f2f ′. (4.5)

By (ii) of Lemma 2.2 and α > 2, it follows

2(α − 1)(α − 2)s2(f ′)3 + (2τ − 1)(α − 2)sf (f ′)2 + τ2f2f ′

≥ 2(α − 1)(α − 2)s2(f ′)3 + (2τ − 1)(α − 2)s2(f ′)3 + τ2s2(f ′)3

= ((2τ + 2α − 3)(α − 2) + τ2)s2(f ′)3. (4.6)

By (ii) of Lemma 2.2, we also have

−2(3α− 4)(α− 1)s2(f ′)5 − (2τ − 1)(α− 1)sf (f ′)4 ≥ −(α− 1)(2p + 3α− 6)s2(f ′)5. (4.7)
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From (4.5)-(4.7), we obtain

fK2(s) ≥ 4(α−1)2s2(f ′)7−(α−1)(2p+3α−6)s2(f ′)5 +((2τ +2α−3)(α−2)+τ2)s2(f ′)3.

From (4.1) and the fact that ((f ′)2)′ = 2f ′f ′′ < 0, it follows

((2τ + 2α − 3)(α − 2) + τ2) − (α − 1)(2p + 3α − 6)(f ′(s))2 ≥ 0 for s > b.

This implies fK2(s) > 0. Since f(s) > 0 for s > 0, we obtain K2(s) > 0 for s > b.
Next we estimate K1(s). From (2.3) and (2.4), we have

K1(s) = s2f2f ′′′ + 3ps2ff ′f ′′ + (1 − 2τ )sf2f ′′ + p(1 − 2τ )sf (f ′)2

+ τ2f2f ′ + p(p − 1)s2(f ′)3

= 4(α − 1)2s2(f ′)7 + (α − 1)(3p − 6α + 5)s2(f ′)5

− (2τ − 1)(α − 1)sf (f ′)4 + (p + 1 − α)(p + 1 − 2α)s2(f ′)3

− (2τ − 1)(p + 1 − α)sf (f ′)2 + τ2f2f ′. (4.8)

We claim that

(p + 1 − α)(p + 1 − 2α)s2(f ′)3 − (2τ − 1)(p + 1 − α)sf (f ′)2 + τ2f2f ′

= s2(f ′)3
(

(p + 1 − α)(p + 1 − 2α) − (2τ − 1)(p + 1 − α)
f

sf ′ + τ2

(
f

sf ′

)2
)

≤ 0 for s > b. (4.9)

Indeed we put φ(s) =
f(s)

sf ′(s)
. Then by (ii) and (iii) of Lemma 2.2, φ(s) is increasing and

1 ≤ φ(s) ≤ α for all s > 0. We also put p1 := p + 1 − α. Then τ =
p1

α
and

(p + 1 − α)(p + 1 − 2α) − (2τ − 1)(p + 1 − α)
f

sf ′ + τ2

(
f

sf ′

)2

= p1(p1 − α) −
(

2p1

α
− 1
)

p1φ +
p2
1

α2
φ2.

Finally we define for 1 ≤ t ≤ α

K3(t) := p1t
2 − (2p1 − α)αt + α2(p1 − α)

= (t − α)(p1t − α(p1 − α)).

Then it follows
K3(t) ≤ 0 for t ∈ [

α(p1 − α)
p1

, α].
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Now (4.2) implies
f(b)

bf ′(b)
≥ (p − 2α + 1)α

p + 1 − α
=

α(p1 − α)
p1

.

Thus from (4.2), we have K3(t) ≤ 0 for t ∈ [
f(b)

bf ′(b)
, α]. Since φ(s) is increasing, we obtain

p1(p1 − α) −
(

2p1

α
− 1
)

p1φ(s) +
p2
1

α2
φ2(s) ≤ 0 for s > b

and hence (4.9) holds.
Next we observe that

4(α − 1)2s2(f ′)7 + (α − 1)(3p − 6α + 5)s2(f ′)5 − (2τ − 1)(α − 1)sf (f ′)4

= (α − 1)s2(f ′)5
(

3p − 6α + 5 − (2τ − 1)
(

f

sf ′

)
+ 4(α − 1)(f ′)2

)
=: (α − 1)s2(f ′)5K4(s). (4.10)

We can easily see that K ′
4(s) = −(2τ − 1)

(
f

sf ′

)′
+ 8(α − 1)f ′f ′′ < 0, that is, K4(s) is

decreasing. Moreover from (4.3), we have

K4(b) = 3p − 6α + 5 − (2τ − 1)
(

f(b)
bf ′(b)

)
+ 4(α − 1)(f ′(b))2 ≤ 0.

Thus we obtain K4(s) ≤ 0 for s > b. From (4.8)-(4.10), it follows K1(s) ≤ 0 for s > b.

Thus from (4.4), we obtain
(

s
( g

sτ

)′)′
< 0 for s > b.

Lemma 4.4. Suppose α > 2, 2α − 1 ≤ p < 3α − 3 and let τ =
p + 1 − α

α
. Then

(i) For every fixed κ > 0, there exists λ0 > 0 such that if λ ≥ λ0, (4.1)-(4.3) in Lemma

4.3 are fulfilled.

(ii) For every fixed λ > 0, there exists κ0 > 0 such that if κ ≥ κ0, (4.1)-(4.3) in Lemma

4.3 are fulfilled.

Proof. From (2.2) and b = f−1(λ
1

p−1 ), it follows

(f ′(b))2 =
1

1 + ακλ
2α−2
p−1

.

Since
(2τ + 2α − 3)(α − 2) + τ2

(α − 1)(2p + 3α − 6)
> 0, (4.1) is satisfied if either λ or κ is sufficiently large.
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Next we observe that

b = f−1(λ
1

p−1 ) =
∫ λ

1
p−1

0

√
1 + ακt2α−2 dt.

This implies b → ∞ if either λ or κ tends to infinity. By (iii) of Lemma 2.3 and the fact

(p − 2α + 1)α
(p + 1 − α)

< α,

(4.2) holds if either λ or κ is sufficiently large.
Finally we notice that if p < 3α − 3, then

3p − 6α + 5
2τ − 1

< α.

Since
f(b)

bf ′(b)
↗ α and f ′(b) → 0 as b → ∞, (4.3) holds if b is sufficiently large. Since

b → ∞ as either λ or κ goes to infinity, (4.3) is fulfilled if either λ or κ is sufficiently
large.

By Lemmas 4.2-4.4, we can apply Proposition 4.1. Hence we obtain the uniqueness
of positive radial solutions of (1.2) for N = 2 and the proof of Theorem 1.3 is complete.

5. Non-degeneracy of the ground state solution

As we have shown in Sections 3 and 4, problem (1.2) and (2.5) has at most one positive
radial solution. In this section, we study spectral properties of the linearized operator. We
will show that the unique positive radial solution of (2.5) is non-degenerate in H1

rad(R
N )

if we add some conditions. To this aim, we apply the result due to Bates and Shi [2]. We
consider the following semilinear problem:

−Δu = g(u) in R
N , u > 0, u(x) = u(|x|), u → 0 as |x| → ∞, u(0) = maxu(x). (5.1)

Proposition 5.1 [2]. Suppose g ∈ C1([0,∞)) satisfies the following properties.

(g1) There exists b > 0 such that g(0) = g(b) = 0, g(s) < 0 for s ∈ (0, b), g′(0) < 0 and

g′(b) > 0.

(g2) There exists θ > b such that

∫ θ

0

g(s) ds = 0.

(g3) g(s) > 0 for all s > b.

(g4) Kg(s) (defined in (3.1)) is non-increasing in [θ,∞) and Kg(s) → K∞ ∈
[
1,

N + 2
N − 2

)
as s → ∞.
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(g5) Kg(s) ≥ Kg(θ) for s ∈ (b, θ] and Kg(s) ≤ K∞ for s ∈ (0, b).

Under assumptions (g1)-(g5), let u be the unique positive radial solution of (5.1) and

L0 := −Δ − g′(0). Then

(1) σ(L0) = σp(L0) ∪ σe(L0).

(2) σe(L0) = [−g′(0),∞), σp(L0) ⊂ (−∞,−g′(0)).

(3) If μ ∈ σp(L0), then the corresponding eigenfunction φ(x) satisfies

|φ(x)| ≤ Cεe
−
√

−g′(0)−μ+ε
2 |x| for x ∈ R

N

for any small ε > 0 and some Cε > 0.

(4) If μ ∈ σp(L0) ∩ (−∞, 0), then the corresponding eigenfunction is radially symmetric.

(5) The principal eigenvalue μ1(L0) < 0 is simple and the corresponding eigenfunction φ1

can be chosen to be positive.

(6) μ2(L0) = 0 and the eigenspace corresponding to the eigenvalue μ = 0 is spanned by

{
∂u

∂xi
; i = 1, · · · , N

}
.

We show that (g1)-(g5) hold for g(s) defined in (3.1). We can easily see that (g1)

and (g3) hold. Next we put θ = f̃

((
p + 1

2
λ

) 1
p−1
)

. Then we have
∫ θ

0

g(s) ds = 0, which

implies (g2). Next we show that if we suppose additional conditions on α and p, then (g4)
and (g5) hold.

Lemma 5.2. Assume 2α − 1 ≤ p <
(2α − 1)N + 2

N − 2
. Then g(s) defined in (3.1) satisfies

lim
s→∞Kg(s) =

p + 1 − α

α
=: K∞ ∈

[
1,

N + 2
N − 2

)
.

Proof. By direct computation, we have

Kg(s) =
g′(s)s
g(s)

=
(p − 1)fp−1(f ′)2s + (2 − α)(f ′)2s(fp−1 − λ) + (α − 1)(f ′)4s(fp−1 − λ)

ff ′(fp−1 − λ)

=
sf ′

f

(
(p − 1)fp−1

fp−1 − λ
+ (2 − α) + (α − 1)(f ′)3

)
.
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Since lim
s→∞

sf ′

f
=

1
α

and lim
s→∞ f ′ = 0, we obtain

lim
s→∞Kg(s) =

p − 1
α

+
2 − α

α
=

p + 1 − α

α
.

From 2α− 1 ≤ p <
(2α − 1)N + 2

N − 2
, it follows

p + 1 − α

α
∈
[
1,

N + 2
N − 2

)
. Thus we show the

claim of Lemma 5.2.

Lemma 5.3. Assume α > 2, 2α − 1 ≤ p < 3α − 3 and
p

α(3α − p − 3)
≤ κλ

2α−2
p−1 .

Then g(s) defined in (3.1) satisfies (g4) and (g5) in Proposition 5.1.

Proof. Firstly we observe that if α > 2 and 2α − 1 ≤ p < 3α − 3, then
α − p

α(p − 1)
<

p

α(3α − p − 3)
. (5.2)

In fact, we have

(α − p)(3α − p − 3) − p(p − 1) = (3α − 4p)(α − 1).

Since α > 2 and p ≥ 2α − 1, it follows

3α − 4p ≤ −5α + 4 < −6 < 0.

This implies (3α − 4p)(α − 1) < 0 and hence (5.2) holds.
By Lemmas 3.2 and 5.2, we can see (g4) and the first inequality in (g5) hold. Next

we show that Kg(s) ≤ 1 for s ∈ (0, b). In fact, we have

sg′(s) − g(s) = (p − 1)fp−1(f ′)2s + (2 − α)(f ′)2s(fp−1 − λ)

+ (α − 1)(f ′)4s(fp−1 − λ) − ff ′(fp−1 − λ)

= (p − 1)fp−1(f ′)2s + (fp−1 − λ)
(
(2 − α)(f ′)2s + (α − 1)(f ′)4s − ff ′) .

For s ∈ (0, b), it follows fp−1 − λ < 0. On the other hand by Lemma 2.2, we have
(f ′)2s ≤ ff ′. Using f ′ ≤ 1, we obtain

(2 − α)(f ′)2s + (α − 1)(f ′)4s − ff ′ ≤ (2 − α)(f ′)2s + (α − 1)(f ′)4s − (f ′)2s

= (α − 1)(f ′)2s
(
(f ′)2 − 1

) ≤ 0.

Thus we have sg′(s) − g(s) ≥ (p − 1)fp−1(f ′)2s > 0 for all s ∈ (0, b). Since g(s) < 0 for
s ∈ (0, b), it follows Kg(s) ≤ 1 for s ∈ (0, b).

Finally by Lemma 5.2, we have

Kg(s) ≤ 1 ≤ K∞ =
p + 1 − α

α
.

Thus the second inequality in (g5) holds.

By Lemmas 5.2 and 5.3, we obtain the following
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Theorem 5.4. Assume N ≥ 3, α > 2, 2α − 1 ≤ p < 3α − 3 and

p

α(3α − p − 3)
≤ κλ

2α−2
p−1 .

Let v be the unique positive solution of (2.5) and L := −Δ − g′(v); H2(RN ) → L2(RN ).
Then

(1) σ(L) = σp(L) ∪ σe(L).

(2) σe(L) = [λ,∞), σp(L) ⊂ (−∞, λ).

(3) If μ ∈ σp(L), then the corresponding eigenfunction φ(x) satisfies

|φ(x)| ≤ Cεe
−
√

λ−μ+ε
2 |x| for x ∈ R

N

for any small ε > 0 and some Cε > 0.

(4) If μ ∈ σp(L) ∩ (−∞, 0), then the corresponding eigenfunction is radially symmetric.

(5) The principal eigenvalue μ1(L) < 0 is simple and the corresponding eigenfunction φ1

can be chosen to be positive.

(6) μ2(L) = 0 and the eigenspace corresponding to the eigenvalue μ = 0 is spanned by{
∂v

∂xi
; i = 1, · · · , N

}
.

From (6) of Theorem 5.4, we obtain the non-degeneracy of the ground state solution
of (2.5) in H1

rad(R
N ).

Corollary 5.5. Let v be the unique positive solution of (2.5). Then v is non-degenerate

in H1
rad(R

N ), that is, if

−Δφ − g′(v)φ = 0 in R
N and φ ∈ H1

rad(R
N ),

then φ ≡ 0.

Remark 5.6. We have shown the non-degeneracy of the ground state solution of semilin-

ear problem (2.5). However we don’t know this implies the non-degeneracy for the ground

state solution of quasilinear problem (1.2).
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