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Abstract. We consider quantum field theorctical models in n dimensional space-time
given by interaction densities which are bounded functions of an ultraviolet cut-off boson
field. Using methods of euclidean Markov field theory and of classical statistical mechanics,
we construct the infinite volume imaginary and real time Wightman functions as limits
of the corresponding quantities for the space cut-off models. In the physical Hilbert space,
the space-time translations are represented by strongly continuous unitary groups and the
generator of time translations H is positive and has a unique, simple lowest eigenvalue
zero, with eigenvector Q, which is the unique state invariant under space-time transiations.
The imaginary time Wightman functions and the infinite volume vacuum energy density
are given as analytic functions of the coupling constant. The Wightman functions have
cluster properties also with respect to space translations.

1. Introduction

In recent years the mathematical construction of quantum field
theoretical models has made an impressive progress!. For the poly-
nomial interactions® in two-dimensional space-time all the Haag-
Kastler axioms for a quantum field theory of local observables have been
verified, as well as most of the Wightman axioms >,

In particular in these polynomial models (and also for certain
2-dimensional boson models with exponential interactions [4]) the
existence of a vacuum state has been proven®.

This was sufficient for Glimm and Jaffe to build a theory in which
the Wightman functions exist and have some of the important physical
properties embodied in Wightman’s axioms.

The question of the uniqueness of the vacuum has not been tackled
yet. The vacuum state is only obtained by a compactness argument as

See e.g. [1] and the references given therein.
See e.g. [ 1, 2] and the references given therein.
See e.g. [1-3]. Sce also footnote S below.

1
2
3
* This has been proven also for the two-dimensional Yukawa interaction [5].
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limit of a subsequence of space cut-off vacua, so that the possibility of
different subsequences giving rise to different vacua is not ruled out>.

In this paper we would like to remark that for certain non poly-
nomial interactions in n space-time dimensions with ultraviolet cut-off
but no space cut-off uniqueness of the vacuum can be proven for small
values of the coupling constant. Moreover the corresponding Wightman
functions can be constructed and studied. The formal Hamiltonian of
the boson models which we study has the form

Hy+4 | €@ dy(s)dx,

]Rnfl

where ¢, is an ultraviolet cut-off, free, time zero, field and dv(s) is a
measure with bounded support on the real line (and dv(~s)=dv(s), —
meaning complex conjugate)®.

We first prove that the space cut-off Schwinger functions (imaginary
time Wightman functions) have unique limits when the space cut-off is
removed, provided the coupling constant A is sufficiently small. These
limit Schwinger functions are given explicitely in terms of Liouville-
Neumann series with known kernel as convergent power series in A
Moreover they have cluster properties with respect to space and time
translations. For real A, with |4| sufficiently small, the Schwinger functions
are analytic in the upper half planes of suitable time differences and their
boundary values are the infinite volume Wightman functions, which are
limits in the sense of distributions of the Wightman functions for the space
cut-off interaction. The infinite volume Wightman functions, which
satisfy the positive definiteness conditions, yield then the physical
Hilbert space #, with a cyclic vector Q and a representation of the field
operators by symmetric operators on an invariant domain and a strongly
continuous unitary representation of the space-time translations.

The generator H of the time translations is non negative and, due to
cluster properties of the Wightman functions, has zero as a simple lowest
eigenvalue, with eigenvector Q. Q is the only state in # which is invariant
under space-time translations. The Wightman functions are also proved
to have the cluster property with respect to translations in space. A
connection of the vacuum state with the limit, as the space cut-off is

° After completion of this paper we learned in a private communication from Glimm
that for the polynomial interactions in two space-time dimensions without cut-offs he and
collaborators (Dimock and Spencer) have solved the problem of the uniqueness of the
vacuum for small coupling constants. As far as we know this has been done by methods
different from the one we use in the present paper.

® These models are related to the bounded interaction models studied in [6]. They
are, in a sense, an Hamiltonian version of certain “non polynomial interactions” studied
in recent years from other points of view. See e.g. [7].
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taken away, of the space cut-off vacuum state on an algebra of operators
defined in terms of the time C*-automorphism is also given.

The limit £ of the ground state energy densities of the space cut-off
Hamiltonians exists, is analytic in 4 for |4] small and concave in 2. It also
exists for arbitrary negative 4 and positive dv and £ is then negative,
decreasing for |A| increasing and concave in In(— A).

The idea of the proofs is suggested by the analogy between euclidean
field theory and classical statistical mechanics, on one hand® and, on the
other hand, by the relation between Minkowski quantum field theory
and euclidean Markov field theory as recently established by Nelson [97°.

2. The Space Cut-off Models

Let 7 be the Fock space for free, scalar, uncharged bosons of strictly
positive mass m, moving in n dimensional space-time. Thus # is the

o

direct sum # = (P F, where # 9= C = complex number and F,
r=0
forr=1,2, ..., is the r-fold symmetric tensor product F% = # ®--- ® H,
5 S

# being the Lebesgue 12-space of (equivalence classes of) functions of a
(momentum) variable p running over the euclidean n— 1 dimensional
space R" 1.

Let H, be the free Hamiltonian in #. It is a self-adjoint operator with
domain D(Hy) = Dy,

For x in R"™! the free time zero fields are given by

L ipx

p=2"0m * ] oo

[a*(—p)+a(p)ldp. (2.1

7 Note that, due to the presence of the ultraviolet cut-off, no Wick ordering of the
interaction is required. In fact our interactions

[ 52 dy(s)dx
and the correspondent Wick-ordered ones
frese® dy (s)dx

can be made to coincide by choosing dv,(s) =exp(—1 52 K) dv(s), where K is a constant
(equal to the value for x =0 of the propagator G,(x) defined below).

¥ This analogy has been exploited from a different point of view particularly in the
references {8] (and references quoted therein) and [7b, ¢].

° See also [10], where a euclidean Markov field theoretical relation is exploited to
prove the uniqueness of the vacuum energy density and the van Hove phenomenon for
two-dimensional polynomial interactions. For further results on this infinite volume
behaviour, see [11]. For references concerning work previous to Nelson’s one, see [8].



174 S. Albeverio and R. Hoegh-Krohn:

where u(p) = ]/p2 +m?%. a(p) and a*(p) are the usual formal annihilation-
creation operators for free scalar, uncharged bosons, normalized so that
[a(p). a*(p')] = a(p) a*(p’) — a*(p') a(p)=S(p— p").

Let y(x) be a positive symmetric C* function in IR"~! with support
in the unit ball such that | y(x)dx=1.Set y,=¢"""! y(¢” ' x), with >0,
and define the ultraviolet cut-off free time zero field by

@ (x)= [ o(y) zlx—y)dy. (2.2)

Then ¢,(x) are self-adjoint operators in # with definition domain
containing D, and they are essentially self-adjoint on D,. They are
bounded from F into FU V@FCTY,

Let now v(x) be a real-valued function on R, so chosen as to be the
Fourier transform of a finite measure dv of bounded support on the real
line:

(o) = | ™" dv(s) (2.3)

with | dv| < 20 and v(—s)= v(s).

The interaction density is given by Av(e,(x)), which is a well defined
bounded self-adjoint operator since wv(x) is a bounded continuous
function.

We note that

o(ep,(x) = [ 2= dy(s), 2.4

where the integral is taken in the strong sense. This is of the same form
as the bounded interaction densities studied in [6].

The space cut-off interaction corresponding to this interaction
density is given by

Vizio | ulex)dx, (2.5)

x| 21

where the integral is again to be understood as a strong one. This defines
AV, as a bounded self-adjoint operator on & for all I.

Hence H,= H, + AV, is a self-adjoint operator, bounded from below,
with the same domain D, as H,.

Moreover we have from [6c] (Theorem 3) that, for arbitrary A, the
bottom of the spectrum of H, consists of the simple eigenvalue E; with
(unique) eigenvector €, 1°.

From regular perturbation theory alone one has the additional result
(which we are going to extend, in a certain sense, also for /- oc) that for

10 F, and @, are obtained in [6c] as the unique (norm) limits of the lowest eigen-
values and respective cigenvectors of suitable approximating Hamiltonians (“piecewise
constant momentum approximation”).
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|4] sufficiently small (depending on /) E, and Q, are analytic in 4. Moreover
E, is a concave function of 2 ie. satisfies E (a4, + (1 —a)i,) = aE,/(2)
+(l—-o)Efay) forall 0o <1, 4y, A,

3. The Associated Euclidean Markov Field

For any real Hilbert space # let @,(h), he # be the Gaussian
generalized stochastic process indexed by #, with mean zero and co-
variance E(@ ,(g) @ ,(h))=(g,h),''. So that @,(h) maps he # into
a measurable function (Gaussian random variable) on a probability
space (Q,,duy). Let L,(du,) be the I*-space over Q, with respect
to the measure dy,,. L,(dp,) is isomorphic [ 13, 14] with the Fock space

@ A" over A, where #'™ is the n-fold symmetric tensorproduct of #.
n=0
Using this isomorphism we see that any strongly continuous unitary
group on J# induces, through a group of measure preserving transforma-
tions on 2, a strongly continuous unitary group on L,(d ).

Let 4 be the Laplacian as a self-adjoint operator in L,(R"). Let *
be the real Sobolev space, which is the completion of C{(IR") with
respect to the inner product in 3, given by

(/s 9= (1. (=4 +m?g), (3.9

where ( , ) is the inner product in L,(IR"), and m is chosen to be the
mass of the free field discussed in Section 2. For a < 0, ;" will be a space
of distributions.

The generalized Gaussian stochastic process @,,_:(h) is called the
free euclidean Markov field. Using ideas introduced by Nelson [9] in the
constructive study of models we associate to the free time zero field over
R, o(g)= | ¢(x) g(x)dx of Section 2, the euclidean Markov field
Dy i(h).

For any open set U with smooth boundary in R” let O(U) be the
family of random variables generated by ®(h), with he #,” ! and support
of hin U. Let E{®(h)|()(U)} be the conditional expectation of ®(h) given
O(U). Nelson proved that @(h) has the following “Markovian property”:

E{o(M]O(C U)} = E{D(h)|0(0U)} (3:2)

where C U is the complement of U and dU is the boundary. The property
(3.2) is taken as the characterizing property of a Markov field.

The Fock space of the free boson field as given in Section 2 is just
the Fock space over #,~%, moreover the free time zero field itself o(g)

1 Sec eg [12].
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is a generalized Gaussian stochastic process with mean zero and co-
variance function

E(e(N) @)= (f.9) - (3.3)

Hence the free time zero field (p(g) may be identified with the generalized
Gaussian stochastic process @ -+ (g).

We define now a mapping W,:#3—-#"' by (W, ) (%)
=0(xq—1) f(x). One verlfles easily that W, is an 1sometry of #,~% onto
the closed subspace of #,! generated by elements of #, ! w1th support
on the hyperplane x, =1.

The Fock space of the free boson field, %, is the Fock space over

_%, hence identified with L,(dpu,. : ). Since W, is an isometry, we have
that the generalized Gaussian stochastic processes @,-: (g) and
® (W, g) have the same mean and covariance functions, hence may
be identified. This then identifies L,(du, + ) with a closed subspace of
Ly (g ).

Let FeLy(dity:1,) be of the form F= f(® s (g0 s Bt (G,
where f is a bounded continuous function of k real variables. Then we
define F,e Ly(dpy. 1) by Fi=f(Py-1(W,gy) ..., Py 1(W,g,)). Using
that W, is an isometry one gets that F — F, extends to an isometry of
Ly(dpiy. s )into Ly(dp,-+). Moreover in #,” ! the translation group acts
unitarily and strongly continuously. Using the identification of L,(d . -1)
with the Fock space over #,* we get a unitary and strongly continuous
representation U(x) of the translation group in R” on L,(dpu,-.). Since
F,=U(t,0) F, U(—1,0), we see that F, depends continuously on ¢ in the
L,-norm for any F in L,(dpy.: ).

One verifies that

Z (h nys hnz) . (hn,- 1 hn,)-l

all partitions

E(@y_i(hy)... 0 p-1(h))= Y1y <ns,...,m,_;<n, (3.4)
0 for r odd,
from which it follows that the distributions of r-variables defined by
E(@,-1(hy)...D,-:(h,)) are the imaginary time free field Wightman
functions. Hence, for t, <t, ... <t,,
E(@ (W, 91) ... Py 1(W, g,)
=(Qo, plgy)e” 70 g(gy)e” BT DH L o(g,)Q)

where Q, € # is the vacuum for the free scalar boson field and H, is the
free energy. Using now the identification of # with L,(dp -1 ) and taking
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sums and limits of expressions of the form (3.5) we get the following
lemma.

Lemma 3.1. Let FV, . F® be in L (dpy-+).
Then, for t, <---<t,,

E(Ft(ll) Ff:)):(go’ FD o= z—t)Ho p(2) = (13— 12)Ho F(Y)Qo)~ 0

We will now consider self-adjoint operators of the form H=H, + V,
where H, is the free energy and V is a bounded operator on & which
commutes with all the free time zero fields ¢(g). Since the L,(dpy_: )
is a spectral representation of & with respect to the maximal abelian
algebra generated by ¢(g), we see that,in L,(du,-: ), V is a multiplication

operator by a function, which we will also denote V.
Lemma 3.2. Let V be as above, and let F and G be in L,{di,.—+ ), then

—§Vidrz

E(Foe ° Gt> =(Qq, Fe "M GQ ),
where the integral over V, is taken in the strong L,(d ) sense.

Proof. The Trotter product formula gives us

e‘l(Ho-FV) — S_“m(e—l/nHoe~l/nV)n )

B oC

Now, by Lemma 3.1,
—tn ¥ Viyn

(Q,, Fe~tinHlog—tinV e"/”HOe”/"VGQO):E<FO e = G,) . (3.6)

Since V is in L (dpy-+,) we know that V, is in L, (dti,-:) and is con-

tinuous in ¢ in the strong L,-sense. Hence t/n ) V;,, converges strongly
k=1

t
in Ly(duy-) to | V,dr for n— .
0

The strong L,-convergence allows us to conclude that any sub-
sequence has a subsequence n; such that the convergence is almost
everywhere. The almost everywhere convergence together with the
uniform boundedness gives that

Ylj A
=tiny X Vin, — [V.dt
k=1
t

E(Foe = G ——»E(Foe ° G[>.

jm o

—[V.dt
This implies that the right hand side of (3.6) converges to E (FO e ° G,) ,
which proves the lemma. []
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The interaction of Section 2,
Wi=i | wlpx)ds, (3.7)
|x] =1

is of the form considered in Lemma 3.2. Moreover the function V, in
L (dpy-1) of Lemma 3.2 may be given explicitely in this case:

V=74 | v(@u-:(f.))dx, (3.8)
lxi=l
where f, .(y)=6(t — yg) x.(x —y). This follows from the identification
of p(g) with @,-1 (g9) and the definition of the mapping F- F, from
Ly(dpy-1 ) into Ly(duy o). Since

U(ééf; ‘(ff,x)) = U(_T: _x) U(.fO,O) U(Ta x)?

we see that the integrand in (3.8) is continuous in x as well as in 1 in the
strong L,-sense. Hence in this case Lemma 3.2 takes the form

Lemma 3.3. Let v(a) be as in Section 2. Then

Q F —t(H0+)VVZ)GQ _E<F //.é)!X[f\lr(dﬁ#"x(/,,,,))dxdtG)
(2o, Fe o) = 0€ )

where F and G are in L,(duy-1 ), and f, (y) =6t — yo) z.(x —y). O

From (3.4)it follows that @ ,_.(h)for he #, ' isinall L,for1<p<co.
For Vin L, (du,-: ) we may therefore consider E ((D(hl). .. @(h,,)ev A"Vrdf)’
where we have written ®(h) for @,._.(h). Take hy, ..., h, in C3(IR") and
set gi(x) = h(t, x).

Then hy(xg, x) jé(x0~t) Y(x)dt and the integrand 6(x, — 1) gi(x)
is strongly continuous in #,~ . Therefore if the support of h; is bounded
by the hyperplanes x, =a and x, = b, then

- !}Vrdr
E <¢(h1) L Blhe © )

b

Ve (3.9)
=n! ff E (W, g) ... (W, gme © de, ... dt,,
SHS St Sh
which by formula (3.5) and Lemma 3.2 is equal to
! Q. e WmaH () o~ 2= 1)H gty
n aétl‘gmé‘l“§h( 05 € (P(gl)e (,0(92 (310)

. olgmye CTWEQ N, .. dt

H?

with H = H, + V.
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Let E be the infimum of the spectrum of H, and set H=H —E.
Since V' is bounded we have

lo(giye =T SCH + 1yF e 0] (3.11)
with C independent of ¢; and i. On the other hand for any positive self-
adjoint operator 4 we have

A+ 1 e | Ssup(x+1)Fe ™ =(21) *e 2. (3.12)
x>0

Using (3.11), (3.12) and the fact that ¢(g}) is zero for ¢ outside a bounded
interval, we get that

(Qq, e p(gi)em T p(giye T WQ)  (3.13)

is bounded in absolute value uniformly in a and b by an integrable
function over t; £ --- <t,,.

Let us assume that H has a simple eigenvalue at E and let Q be the
corresponding eigenvector. Then e "9 Q as well as e~ ¢~ ™AQ,
converge to (2, Q,)Q2 as a— — oo and b— + o0, By (3.11) gp(gi)e 1~ H
is a bounded operator for ¢, <1, <--- <t,. Hence (3.13) converges to

(2, Q)7 (2, p(gye @7 em g )  (3.14)

as a—»—oo0 and b— +o0 for ¢, <t, < <t,,.
From Lebesgue’s dominated convergence theorem we then get that

(Qo, e @70 Q™!
ﬂ ( (QOHe*(n‘a)H(p(gt]l)“'qo(g;n)e”(b“‘f")HQO)dtl dr

CStnSh

n
a<t

converges to

jj (Q’(p(gtll)e‘(lz‘ll)ﬁ e~(tn7tn/1>ﬁ(p(g;n)g) dll dt

g Sty

n

as a— — oo and b— + oo, This proves the following Lemma.

Lemma 3.4. Let hy,...,h, € CP(R", then

t
— §V.dt

lim <E [ D -E(cb(ho e j)

=nl |- [(Q plgye @ om0 H (g OVdr, L dr, . [

=

1A

tn

Remark 1. For V=1V, the interaction of Section 2, this lemma
holds since we know that H,= H, + 2V, has a simple lowest eigenvalue.

Remark 2. Lemma (3.4) shows that the limit is the time imaginary
Wightman function for the space cut-off interaction integrated with
hi(xy) ... h(x,).
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4. Connection with Some Quantities of Classical Statistical Mechanics

Let us denote the random variable @,,_.(f,, ,) by @,(xq, x)= D (x),
where f, . (y)=0(xq — yo) 1:(x — ¥), and define for any bounded measur-
able A CIR” and for any hy, ..., h, in Cy(R")

-4 f (@ (xNdx
A
b

Z,=Ele
. — A §r(Pe(x)dx
Fith,....h)=E\®h) ... ®(h)e * ,

and
Giihy, ..., h)=Z ' Fihy, ..., h).

From Lemma 3.4 we see that if we take A=A, ;= {x;|xo| £t/2, |x| £ 1},
then the G4 (h,,....h,) converge for t—oco to the imaginary time
Wightman functlons for the space cut-off interaction. In order to remove
the space cut-off we will therefore naturally be interested in taking the
limit as [ — co as well as 1 — oo in GJ, ,. We intend, by using methods from
classical statistical mechanics, to prove that the limit of G¥ exists for A
expanding to IR”. This will then give us the time imaginary Wightman
functions for the model without cut-off.

So let A be bounded. Since v(®,(x)) is a bounded random variable and
strongly L,-continuous in x, Z , and F, are entire functions of 4. Let us set

—2 ] v(Pelx)) dx

F,h=E (e"‘p"')e 4 ) and G h)y=Z7;'F,(h).
Since v(®,(x)) is a bounded random variable we see from the definition

k
of F(h) that F, ( Yot ) is k times differentiable with respect to t,, ..., t,

0 (3‘
and that Pkt FA< Yot h) = (i) FX(h,,....h) for t;=t,---=1,=0.
k i=1
Hence F (h) determines F&(h,, ..., hy).
Since v(®,(x)) is a bounded random variable, F,(h) is also an entire
function of 4. By expanding in powers of 1 we get

o(@,(x,)) . H

J

Fy(h)=E(e

Using now that v(x j s dv(s) we get
f"'fE(e"p(")U(d’g(Xl)) o(@,(x,))) H
An i=
i)+ ;j s;Ps(x;) n
=j~-jE(e( =1 )) ndv(sj)dxj

<D(h+ }: s; S,

) n dv(s)d
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where f,(y)=0(xy — yo) z.(x — y) by the definition of @ (x). On the other
hand, for any ge #,”!

E(ei<1>(g)) =e 3091
and setting
g= h + Z Sj ij

i=1
we get

n

iolht ¥ s, fx 1T ssG e T s
E(e ( o J)> — E(e®W)e e TE

where G,(x —y) = (/. f,) -y and B (x) = (h, f,)

Hence the integral over A" above is

n
5 X 55;Ge(x, —xy)

E@E@®0)[.[e i TT L™ — 1)+ 17 [] dv(s; dx

i=1 j=1

Computing now the product and using that Z 5,8;G,(x; ~ x;) 1s symmetric

under permutations of x; s, ..., X,,s,, we get this equal to

) =% Y sis; Gl —x;) L
E(e'®") Z ( ) j je " n (e 1) n d"(si) dxj.
j=1

F=0

From this it follows that

n+tr

@ (h) &, (—,1)"+" % Zﬁ 518, G (X~ X))
Fy(h) = E(e"™ )[z L3 LS ENT
r=1 n=0 n' PLESS
- ‘ fa 4.1
. H (egsj'h (x;) __ 1) H dv(sj) dxj, ( )
ji=1 j=1

where we already have used that the expansion for Z , is given by

-y =
n‘E::O

We remark that G,(x) is a bounded real positive definite function, which

3 L si5,Gulxi—x))

[Tdvs)dx,. (42
j=1

1 . . . .
tends to zero as o e ™ for |x|— co. Since G,(x) is positive definite,
X

we have that |G,(x)] £ G,(0). We notice that, for negative 1, Z , is in fact
the grand canonical partition function for a gas in n-dimensional space
with variably charged particles and activity z= — 4. The interaction
energy between a particle at x; with charge s; and a particle at x, with



182 S. Albeverio and R. Heegh-Krohn:

charge s; is s5;5,G,(x; — x;), and the self energy of a particle with charge s
is given by 3 s* G (0). So the charge s is an internal degree of freedom for
these particles, and s may be discrete or continuous, depending on dv.
We are going to exploit this connection with the grand canonical ensemble
of a gas of variably charged particles, by introducing the corresponding
correlation functions and we shall see that G,(h) can be expressed
explicitely by these correlation functions 2. The correlation functions
04(x, 81, ..., X;5,) are defined for x;eR" and s, in the support of dv by

QX1 81, s XSy

nth

. ks ‘_/)n+k Z §:8,Gelxi—x;) ntk (43)
=Z," Y j je =t 11 dv(s)dx;,
n=0 j=k+1

for all x, € A4 and zero elsewhere, for those values of 4 for which Z ; # 0.
Since ) s;5; G,(x; — x;) = 0 we see that the series converge for all complex 4.

L,
From (4.1) it follows that G ((h) is given in terms of ¢* by

G (hy=e M- (4.4)

A1+ Z jj [T (e7" = 1) @7y (xy 8y, .o x,8,) [] dv(s) dx;

r=1 Ar o j=1 j=1

As in classical statistical mechanics '* we shall now introduce the Banach
spaces B. of sequences v = {i,((xs))}iz1 = {wilx1Sts s XSz Of
bounded dx dv-measurable functions. The norm in B, is given by

Z—n

H'PHg“SUPC efs sgplu)n(xlslﬁ"'ﬂxnsnﬂa

S1..-Sn

where £ is a positive number.
In B, we define the projection operator P, of norm one given by

(P4 ) (xs), == 24 (x), 0(x5), , (4.5)

2 The correlation functions of similar “euclidean gases of charged particles” associated
with field theoretical models have been introduced. in another context, in Ref. [7b] and [ 7¢].

13 These spaces have been introduced in classical statistical mechanics by Ruelle in
order to study the infinite volume limit of the correlation functions in the grand canonical
ensemble. Here and in the rest of this section we shall follow closely the lines of classical
statistical mechanics as given in Ruelle’s book, Ref. [ 157, Chapter 4. This reference contains
also bibliographical notes on previous work on the infinite volume limit of correlation
functions.
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where y,(x), = za(x¢) ... x4(x,), with y,(x) equal to the characteristic
function for the set 4. Also in analogy with statistical mechanics we
introduce an operator K on B given by

3

- I sisnGelnoxy
(Kl])) (Xs)m =e =2 e * 5 Ge(0) 1/7n1*1(>x2‘g2~ Xmsm)
L ‘ =511, Ge{v;—~2q)
—Y j [ H [(e e - 1)] ‘meran (46)

1 ne j=1

! (x2823 CER ) Xmsrm yl tl . Vn tn) n d\’([]) dyj} .

i=1

+

[N agks

n

For m =1 the first term in the curly bracket is set equal to zero.
Let « be the sequence 2, (x, s,)=e¢ 1% and o (x,s,....,x,5,)=
1 11 121 non

for n> 1. We then verify that the sequence g, given by the Correlatlon
functions @%(x; ... x,) satisfies the equation

o= —APa— AP, Kg,. 4.7)
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Since the correlation functions o%(x,s,, ..., x,s,) are symmetric, we
find from (4.7) that ¢, will also satisfy the equation

o, = —4iP,a— AP, IIKg,, 4.8)
where I is an operator of the form
(HIP)" ('XISl?"" n* n) 1nDn( a(l) o’(l) 'axa'(n)sa(l))7 (49)
o being, for each n, a permutation of 1, ..., n which may depend measurably
on Xy, ..., x, and s, ..., s,.

We note that such a IT will have norm equal to one.
Since G,(x) is positive definite ** we have that

ZssG(x x)Z — 2G,;(O)isi2.

i*j i=1

Let B= G(0)sup {s%; se supp of dv}; then

Z $;8;G(x;—x)Z —2mB. (4.10)
i%j
It follows from (4.10) that for any x4, ..., x,, and sy, ..., s,, there exists an
index i such that
Y 5:8;G(x;—x;) = —2B. (4.11)

j=1
j¥i

¥ Using the analogy with classical statistical mechanics this can be interpreted as
the fact that the total interaction of our gas in IR” satisfies the “stability condition™ of [15].
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For any m and any x4, ..., x,,and s,, ..., s,, we now choose a permutation
g of 1,...,msuch that g(1) =1, where i is the index i of (4.11). ¢ is then a
permutation depending on the x’s and the s’s, and let IT be the corre-
sponding operator on B, defined by (4.9).
We now estimate the operator norm on B, of the operator ITK of (4.8).
From (4.6) and (4.11) we have

K p(xs),| < e

Silg)w)mfl(xlsly coos Xy 18— 1)

©
=+ Z Fcniup|wm+n—1(xlsl5-"’xm+n~19sm+n—1)|
n=1 . »°

with
C=sup{[le *%® —1]e" 10O d}y| (1) dx; s € suppdv} .

It follows from the exponential decrease of G,(x) that C is finite *°.
Using now that SUP (X1 Sy, o XSl S Eliwll e, we get

TTK ), (x3),) S e*BEm1esC.
Hence

HTKyl. =& e iy, (4.12)

so that |TTK|| < Ce*2"!, if we choose £ = C~!, which is seen to be the
best choice of £ This proves that (4.8) has a unique solution for
Al < C~ e 2871 which thenis g .. From this we also get that the correla-
tion functions @5(x;sy, ..., x,s,) are analytic in A uniformly in A for
Al<C 1e 2871 Moreover we may define o(x,s,, ..., x,5,) by

o= —Aa—AIlKg 4.13)
for jA|<C e 2871

Lemma 4.1. For |l <C te *2~1 the infinite volume correlation
unctions oF(x,s,,.... % s,) defined as the unique solution of (4.13) exist
. 159 kSk) @€ q
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and are analytic in A*°. Moreover they satisfy

|4l

|0 (x 1515 oo XSl S Cikw>

are COntinuous in X, ..., Xy and s, ... s, and translation invariant in the x’s.
The finite volume correlation functions ¢%(x,s;,...,X,s,) converge to
o (x; s, ..., x.8) as A—TR" such that d(x,CA)—co for any xeR" and

'3 This can be interpreted as the fact that the interaction of our gas in IR” satisfies the
“regularity condition” of [15].

¢ Their expansions in powers of 1 are given as Liouville-Neumann series with known
kernel: see Remark at the end of the Scction 4.
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d(x, C A} is the distance from x to the complement of A. The convergence is
such that

|Q§1(X131’ e xksk)”Qk(x1 Spseen XSS C»k’l(d) s

where 1 is a function that goes to zero at infinity and is independent of A, k
and x, ... %, S; ... 8, and d =min{d(x;, L 4)}.

Lemma 4.2. For |2} < C~ ‘e 2571 we have the cluster property for the
correlation functions:

k+l(

0 T X S, X S Vi F At Ly a )

_’Qk(xl Sty eees XiSy) Ql(yltu oVt

pointwise as a tends to infinity in R".

These two Lemmas are proved as in classical statistical mechanics [15]
by using that s;5;G.(x; — x;) corresponds to a stable and regular inter-
action in the language of classical statistical mechanics. The proofs
require only a slight modification of the proofs given in Ref [15],
Chapter 4, and will therefore not be given here.

Lemma 4.3. For |Al<C e 287! the limit
£= —lim ! InZ
§= Mmoo nZ,

exists when A—R" in the sense that d(x, C A) tends to infinity for all x e R".

Moreover &(2) is analytic*” in A for |A|<C re *#7! gnd
~ : 1 1 e Y
g = — 579 (xs:4)dAdv(s),
4]

where g'(xs, /) is the correlation function with one argument. For /. <0
and dv a positive measure we have that o' is positive which gives us that &
is negative. Moreover in this case & exists also for all A <0, decreases when
|Al increases and is also concave in In(— 1).

7 For all |4{ < C™ e 2871 (and all dv) the expansions of ¢! and (—2) in powers of 4
are the Mayer series X(nb,)(— A)" resp. Zb,(— 2)" for the “density” respectively “pressure”
of our “gas™ in R". Hence information on the expansion coefficients is readily available
(see e.g. [15], p. 84-86).

Note that the well known virial expansion (of the pressure in powers of the density)
corresponds in our case to an expansion of —# in powers of g*, expansion which can be
obtained by inverting the expansion of ¢’ in powers of 4 in a neighborhood of 1=0

1
(which is possible since lim ﬁ + ())4

A0 A
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Proof. From the expansion of Z , (4.2) and the expansion of g% (4.3)
we find that

d )
HIHZA = ;[Q}t(XS; A)ydv(s)dx .

1
From Lemma 4.1 we have that 7 0k(xs, 2) is uniformly bounded and
analytic in A for |A|<C 1'e 28714 for any &>0. Moreover

lol(x, s 4) — o' (x, s; A) < C ™ 'y(d). and hence it follows that

i

1 1 .
——Vdv(s)dx [ = oL(x,s;2)dA
A £ (s) g 3 24l )

converges uniformly for |A| < C te 2871 —§ 10

L oM Ay dvls) d2,

f

~>

O SN

. > , 1
since ¢’ (x, 5; A) is independent of x. This proves that TAT InZ , converges

as A—R" and that the limit—£ is given by the formula of the Lemma.
That ¢! is positive for dv =0 and A <0 follows from the fact that ¢} =0,
which one sees from (4.3). The existence of & for all A <0 in this case
follows from the identification, possible in this case, of Z , with a grand
canonical partition function for a system with stable and tempered
interactions (see [15], p. 157).
The decrease of & as |A] increases follows from the increase of Z,.
Remark. All the series expansions for the ¢"(x;s,,...,x,s,) and
therefore also for & in powers of 4 can be explicitely obtained from (4.13)
and are given by
0= —Al+MIK) 'a=—4 ) (—=A)"(IK)a. 4.14)

n=0

5. Removal of the Space Cut-off for the Imaginary Time
Wightman Functions and the Vacuum Energy Density

Let A,,={—1/2,1/2]x {x||x| S} CR" and set Z,,=Z, , and F,,
=F, ,and G, ;= G, . It then follows from Lemma 3.3 that

Zz,tz(QanﬂHZQo)’ (5~1)
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with H=Hy+4 | v(p,(x))dx. From (3.8) and (3.9) we have, for

[x] £

hy, ..., h, with support in 4, ;, that
E)fl(hla LR hk)

= k! jf (Qo,e'("+“"2)"l(p(x )e—(zrmul(p(xz)m(p(xk)e—(z/zAzk)H,QO)

=Sk K (52)
chi(ty, xq) i, x,) n dt;dx;,
and )
G?,l = thll Frlfl : (5.3)
By Lemma 3.4 the limit as t — + o0 of Gf, exists and is given by
Gi(hy, ..., hy)
= k! [ f (Q,o(x)e 2 omtu-ollig(xyQ) (5.4)

= Stk

k
ity x0) o b, x0T dtdx;,
j=1

where @, is the unique normalized eigenvector with eigenvalue E; and

E, is the infimum of the spectrum of H,, and H, = H, — E,. The integration

over dx;in (5.2) and (5.4) is to be understood in the sense of distributions.
k

After integrating with respect to [] dx;in (5.2) and (5.4), the result is a
i=1

function of t, ..., t, that is translation invariant, continuous in t, <--- <t

and integrable over t; = --- <t,. This follows from the proof of Lemma 3.4.

We see from (5.4) that Gf(h,, ..., h,) are the imaginary time Wightman

functions (also called Schwinger functions) for the space cut-off inter-

action.

Theorem 5.1. Let |A|<C te *2 " and hy, ..., h, be in C¥. Then the
G¥(hy, ..., hy) converge as |- oo to G¥h, ..., b)), where G*(hy, ..., h,) are
translation invariant in t and x and given by

k p Lo U4
Gy = Ghlhy, )+ (F Y S
ol e !
X 1 qzr,p20
Y Ghlhpihop) Y
aeSk I+ +lh=q *1-- .
Lzl

(5.5)
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S, is the set of permutations of 1,...,k and the G&(h,,...,h,) are the
imaginary time free Wightman functions: Gi(hy, ..., )= E(®(h,) ... ®(h)

zpp, Z (h’a(l)’ 0(2)) 1- (a(zp—naha(zm)-1 for k=2p and zero

eS8k
Jor k odd. ¢"(xsq, ..., x,s,) is the infinite volume correlation function of
Lemma 4.1, and hi(x)= | G,(x—y) h(y)dy and G,(x) is the G/(x) of
Section 4, which is given by

G.(x)=

j (p) dp.

p*+m?
with 7,(p) = | P y,(x) dx.

k
Proof. 1t follows from (4.4) and the fact that G A< Y tihi> is analytic

i=1
inty, ..., that the formula (5.5) with G%(h,, ..., h,) instead of G¥(h, ..., h,)
and with ¢ (x;s,, ..., x,s,) instead of Q’(xlsl, ..., X,s,) holds. Choosmg
now A=A, , we have by (5.4) that G} ,(hy, ..., hk) converges to the limit
Gi(h,, ..., h)ast— 0. On the other hand by Lemma 4.1 0%, (x18,...%,5,)
is uniformly bounded in x, ..., x,, £, | and tends to a limit ¢’ (x, sy, ..., X, 5,)
uniformly on compacts as ¢ and [ tend to infinity. Since hi(x) i=1,.... k
are all bounded integrable functions we get by dominated convergence
from (5.5), with Gf , = G, and %, instead of G* and ¢", that G} (h,,.... )
converges to the limit G*(h,, ..., h), given by (5.5), as t and [ tend to
infinity.
Consider now the inequality

|Gll((h1* tre hk)_ Gk(hla -hk)|

é]G’l((hlv cres hk)— Gi{,l(hla ERE hk)l + |G£(,l(hls ~~~7hk)~ Gk(h17 ceey hk)| -

Choose ¢ > 0; then there exists a N, such that for any t = N, and any
[ = N, the last term is smaller than /2. Choose an /= T,. Then for this
value of | we may choose a t = N, and large enough so that the first term
is smaller than ¢/2. Then for [ = T, we get |G¥(h4, ..., h) — G*(hy, ..., B)| Ze
This proves the theorem.

Theorem 5.2. Let |A|<C *e 2871 and let hy,...,h, ¢,,...,g, be
in CF(R").

Let g¢(x)=g,(x—a) for acR". Then we have the following cluster
properties:

Gk+l(h1’ k>gly . .ag‘ll)_)Gk(hls H'ahk) Gl(gla '-'991)

as lal— oc.
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Proof. 1t follows from (5.5) that for any he CF(R")
k
Glhy=1+ Z — G"(h, ..., h) 1is defined
k=1

and the series is absolutely convergent. Remembering that (5.5) was
obtained by means of (4.4), we get

; o 1 ! :
G(hy=e #hW-1iq 4 Z “,ij n (e s &0 1)
r=1 T j=1

(5.6)
QX 8y, X8, ] dv(s)dx;
j=1
Therefore
G(ha—{—q a)wefz(hh) L. o 58.9)- 1 o= (R
S 1 ’ —s;he(x; —~a}~—s,g9%(x; +a)
b+ 2 —f-f Il P ) (5.7)

-
It
-
.
1§
[

QX S, ey X, 8, Hdv(s ) dx;

We observe that (h%, g~ ), —0as la| — co. By writing each of the integrals
over x; as the sum of the integrals over x, - a <0 and x, - a2 0, we get that
the r’th term of the series above is equal to

o i (V) jj . J; H (e—si,ha(xb,7a)‘sjgb(x1+a)“1)

’ ].—[ (e“tjha(yj“a)‘tjg‘(yf%-u)___ })Qr(xlsl e X 57.)1t1 Te yrwstr~s) (58)

. ﬂl dv(s;) dx, - H1 dv(t)dy;.
j= J=

From the definition of h*(x jG x—y)h(y)dy we get that [h°(x)|
< Ce "M from which we obtam that

T I

W-alce 2o 2" for yoas0
and similarly

n m
el = 2]
e

-5
lg°(x+a) £Ce * 2 for x-az0.
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By the substitution x;—x;+a and y;—y; —a we get

: () |

o Z j" j j H =5 he () —5;9%(x,+ 2a) 1)

r ' s=0\S Xy az —a? )J aga? j=1

r—s )

T (e 2O 6 ) x5y s Vit ey ) (59)
j=1

Ihdv(s)dx; ITdv(t)dy;,

where gh(X, «o o, X Vis vs Voo =0 (X1t do ooy Xg+ G, Vi — @y oy Yy s — Q).
Let F,(x, s) be any measurable function uniformly bounded in «; then

[ (emshmsrr 20 ) F (x, 5)dx dv(s)

ez | 5.10
— | (e F,(x,s)dxdv(s) (10

converges to zero when |¢|— oo, because the absolute value of (5.10)
is bounded by

[ e g F (x, 5) dx dv(s)

Aaz -a?

<4 | e TR qldxdy(s)
<B | Jg(x+2a)dx=B | |g(x+a)dx
x-az —a’ x-az0
= Tal o = sl
SB-Ce fe * dx

Therefore for any ¢ > 0 there exists an R, such that, for ja| > R,, (5.9) will
differ from (5.11) by an amount smaller than ¢/2:

1 2 i
ﬁ; Z fj jj n(e*thE(xJ) 1) H —ty9%(v5) __ 1)

§s=0 x,-az —a? y;rasa’ j=1

(5.11)
'QZ(xlsla v XgSe Vi Ly, .,yr,S[r,s) H dV dX n dV dy

j=1

By dominated convergence and Lemma 4.2 we have that (5.11) con-
verges to (5.12) as |a| — «¢:

Y (;) [ H (™M) — 1) %(x, 8, ..., X, S,) H dv(s;) dx
= =1

s=0

(5.12)
jj H (e W0 — 1)@ (Vi Eys s Ve n dv(t;)dy;.
R P
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From (5.7) and the translation invariance we now get that
Gh+g)->G(h) G(g) as |a|— 0. (5.13)
Since G (Z toh+ Z s JJ) is analytic in t and s and converges to G (Z t:h, )
(Z 8;9g J) we have only to use that the convergence of analytic functions

implies the convergence of the coefficients of their powerseries to prove
that G**4(hy, ..., b, ¢4, ..., ¢%) converges to G*(h, ..., b)) G'(g,, ..., g). [

Theorem 5.3. Ser
Gk(hxa s hy) = j"‘ka(xla e X hy(xy), o e dxy, L dxy

then G*(xy, ..., x,) is locally integrable and continuous for x;% x;, for all
i3 j. The singularities at x,=x; are of the same form as the singularities
of G5(x,, ..., x;). Moreover the G*(x,, ..., x,) are translation invariant and,
Jor y.(x) rotational invariant, they are also invariant under rotations in
R* 1. The G*(x,, ..., x;) depend analytically on 1. for {A| < C™ e 287118

Proof. This follows from (5.5) and the analyticity of the
Q' (xy,8¢,...,x,5,) as proved in Lemma4.1. [J

Theorem 5.4. For all |} < C™'e™ 2871 we have that the vacuum energy
density
&= llim |B)|”

exists, where |B)| is the volume of the n — \-dimensional ball of radius I.
Moreover this limit is equal to the & of Lemma 4.3 and is therefore analytic
in A for all 1Al < C~te 2871 gnd its power series is given in terms of the
powerseries for o' by

A
B =— | %—Ql(x, s;A)dAdv(s).
4]

The power series for all ¢, hence also for &, are explicitely given by (4.14) Y

&(A) is a concave function of 4.

For dv a positive measure and all . <0 (not necessarily > — C " 1e™?871)
the limit & exists, is negative, decreasing for |A| increasing, concave in A
and In{— 4).

18 lele: coefficients in the expansion of G¥x,, ..., x,) in powers of A can be obtained
from those of the expansions of the ¢'s in powers of A, using (5.5). The latter are known and
given by (4.14) (see also footnote 17).

" The expansion for (—&(4)) is the Mayer power series expansion Xb,(— A)" for the
“pressure” of our gas as a function of (— 4). Hence the coefficient are the quantities b, of
footnote 17, which can be computed explicitely.
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Proof. By Lemma 4.3 |4,,|"' InZ, , converges to & as ¢ and [ tend
to infinity. We observe that {4, |=1¢-|B). By (5.1) Z, ,=(Q,, e” "7 Q,).

1
E, is a simple lowest eigenvalue of H, so that —ln(QO Q- —E,
as t— . Therefore

|/1z,1|ﬁ1 anr,l"’ ‘“|Bt|—1

as t—co. Since |4, ;| ! InZ, , converges to & for t and [ tending to infinity
it now follows that |B,|”' E, converges as [— oo to the & of Lemma 4.3.
That £ is concave in 4 follows from & being the limit of —{B,| ' E, and
the fact that E,, being the lowest eigenvalue of H, = H, + AV, is concave
in A. The rest of the theorem is contained in Lemma 4.3. [

6. The Vacuum, the Interacting Fields and the Wightman Functions

Let o/(A) = e "M 4 "' for any bounded operator A on %, and let o
be the corresponding one parameter group of C* automorphxsms
defined with H, instead of H,. Let <77 (Q), for any open domain Q in IR* " !,
be the W*-algebra generated by all «2(e*\)), for all te [T, T} and all
fe#,~% with compact support in Q, where o(f) = | ¢(x) f(x)dx, with
@(x) given by (2.1). Let 7, be the smallest C*-algebra containing
all 7 (Q).

Theorem 6.1. o as well as «° are one parameter groups of C*-auto-
morphisms of <f,. Moreover o converges strongly on <, to a one para—
meter cp oup of automorphisms o, of oy as |— oo We also have that o° o!
and ola®, converge strongly to o o, and o,0°,, uniformly on an open
interval containing t =0.

The proof of this theorem is entirely similar to the proof of the
corresponding theorem in Ref. [6d]. The only difference is that we do
not assume that ol is strongly continuous. As mentioned in [6d], p. 31,
this can be overcome by taking, as we have done, the local W*-closure
in forming the algebra 7.

The conclusions of Theorem 6.1 are, however, weaker than those of the
corresponding theorem in [6d], in as much as we can not say that o,
is strongly continuous?°. [

Let now Z,, F, and f, be as in Section 4, where we have also defined
D (x)=D(f,), =, . being the generalized Gaussian stochastic
process indexed by the Sobolev space #,”'. Then

i Y os;Palxy) 4 jv((bs(x)dt

(~—z>"zz‘FA(i sjfx)—(w») ZE< e )) (6.1)

9 For additional results on the of see [6b], Lemma 4.
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where E is the expectation in the probability space of the generalized
process @. If we now expand with respect to 4 we get that this is equal to

k

o0 W i Y 5;D@elx;
«wwxlzlﬁngE@H )

n=0
ktn
U@, (Xp 4 1)) -+ V(Do(Xp40) H dx;
j=k+1

O ) e (zm)) i
=Z;' Y ——n_"—ij e’ 1 dvispax,
n=0 : An j=k+1

n+k

1 0 i)n+k ~4 ¥ 55;Ge(xi—xy) ktn
=24 Z j Ie . IT dvis)dx;,
n=0 J=k+1

which by (4.3) is equal to \Q’j,(x1 Siyers XgSp)
This proves the formula:
(x50, X 8) .

( —Af L:(Qg(x))dx) —1 ( P Y 5;D@elx;) —ljv(d’h(x))dx) (62)
=(—AYE\le 4 Ele=: e 4 )
Choose now A=A, ;= {{x,, X); |xo| £ a, |x| £ 1}. Then by Lemma 3.2, for

—ast; < =t,Za, where t;=(x))o, i=1,...,k:
( —Aj’v((DL(x))dX)
Ele ~ :(Q09e_2aH1QO): (63)
and, with ¢,(x) given by (2.2),
( i ; s, P (x5) —l_fu((DAx))dx)
E A

et e

(6.4)

— (‘QOa e it aH pisipelxy) o= (2 —t)Hr eiSsz(xk}e—(a'fk)HlQo) .
Since E, is a simple isolated lowest eigenvalue, the limit as a— oo of the
expression obtained dividing (6.4) by (6.3) exists and is equal to

(Q,, oisteelx) p— 2=ty e*(zk-zk»nﬁzeisws(xk)gl)'
We have the following theorem:

Theorem 6.2. The functions Q’jla’,(xlsl, ..o, X S,) converge pointwise
as a— o Lo the finite volume correlation functions ¥(xX,Sy, ..., XgSp)
where, for t,=(x)q and t; < --- Zt,:

k
01 (X S5 +evs XicSi)
- (__;L)k(Ql, eisnpg(xl)e—(tz_tl)ﬁl e*(tk*tk—x)ﬁl eiSkwa(xk)Ql) ,

with H,= H, —
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Moreover Gi(h,,....h) is given in terms of o¥ by (5.5), where of is
substituted for o,

Proof. All but the moreover part is proven above, and the proof of
the moreover part follows from the proof of Theorem 5.1. []

From Theorem 6.2 it follows that ¢¥is analyticin &, =1, —1,, ..., &,
=t,~t,_, for Re&; >0, i=1,...,k—1, and uniformly bounded for
Reé; = 0. As in the proof of Theorem 5.1 we have that, for |1 < C™!e 287!
and real t;..... 1., ¢F(x;s,,.... x5, converges, uniformly on compacts,
as [—oo, to @4x;$y,...,xs5,). By the analyticity and uniform
boundedness, for real 7 with |4 < C 'e ?87! in the region Reé, >0,
i=1,....k— 1, this implies that g¥(x, s, ..., X, 5,) converges for Re¢, >0

pointwise to a function analytic in Reé, >0, i=1,...,k— 1, which is
the analytic continuation of ¢*(x,s,, ..., x,s,). Moreover the boundary

values, i.e. the values on the set where all t; are purely imaginary, con-
verge almost everywhere. This gives that

G (X115 s X,8,)

(6.5)

= (—id)f(Q,, 1ot g i e e e D Higiskee (e ) )

converges almost everywhere in the ’s as [ — co, for all real 2 satisfying
A< C le 2871

Consider now the imaginary time Wightman functions G*(x,, ..., x;),
given by the relation

G*(hy, b= GF(xy o x) hy(xy) oo y(x) dxy ... dx .
We then have:

Theorem 6.3. For real /. with [A|<C ‘e 2871 the imaginary time
Wightman functions G*(x,, ..., x,) are analytic functions of all the variables
Ei=ty—ty o, &y =t~ ty—y in the domain {Reé,>0,i=1,..., k- 1},
where t;=(x;) for i=1,..., k. Their boundary values on the imaginary
axis, W*(x,, ..., x,) are the Wightman functions. W*(x,, ..., x,) satisfy the
positive definiteness conditions for Wightman functions and are translation
invariant in space and time. Moreover they are rotation invariant in space
if x.(x) is chosen rotation invariant.

Proof. From what is said before the theorem, we know that
0" (x; sy, ..., x;5,) is analytic and uniformly bounded for Ref; >0,
i=1,...,k—1 It follows then from (5.5) and the fact that G.(t, x) is
analytic for Ret>0, that the G¥(x,,...,x,) are analytic for Re&,> 0.
Their boundary values W¥(x,,...,x,) for Re& =0, i=1,...,k—1
satisfy the positive definiteness conditions because they are limits in the
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sense of distributions?! of the finite volume Wightman functions, which
are themselves boundary values of the functions G¥(x |, ..., x,), analytic in
Re¢, >0, i=1,...,k—1, satisfying for t,=(x;), and 1, <. <1,

ik, v x) = (Qu gl e 2T ot i) 0) - (6.6)

and converging as !-so to G*(x;....,x,). The invariance of the
W¥*(x,,....x,) follows from the corresponding invariance of the
G*(xy. ..., x;), which was proven in Theorem 5.3. [

Since the infinite volume Wightman functions W*(x,, ..., x,) satisfy
the positive definiteness conditions, we can construct a Hilbert space .#
with a cyclic vector Q in the usual fashion??, such that ¢(f) for f
smooth ** are symmetric operators on an invariant domain of 2#. Due
to the translation invariance of the W*(x,, ..., x,) we have a strongly
continuous unitary representation of the translation group on %, with
as an invariant vector. From the analyticity properties of G*(x,, ..., x;)
it follows that the infinitesimal generator of the time translations, H,
is non negative, i.e. H > 0. This canonical construction is such that

WHx g, o x) = (R, @(x,) @7 g (xy) Ll H M (x,) Q) (6.7)
Hence we have the following theorem:

Theorem 6.4. For real . and |\ < C e 2271 there is a Hilbert space
A which carries a strongly continuous unitary representation of the
translation group in space and time, with an invariant vector Q, and such
that the polynomial algebra generated by @(f) with f smooth?® is
represented by symmetric operators on an invariant domain of #. Q is
cyclic with respect to the representation of the translation group and the
algebra spanned by @(f), and H, the infinitesimal generator of the time
translations, is non negative, H 2 0. Moreover, for t, -+ £t and (x,)y =1,
i=1,...k:

Go(xyy o X)) =(Q, plx)e @ WH ot (53 )Q) .

Proof. All but the formula follows from what is said above. The
formula follows from (6.6) and the fact that W*(x,, ..., x,) was taken to
be the boundary values of G*(x,, ..., x,). ]

Theorem 6.5, For J.real and |A| < C~1e 2871 Q is the only translation
invariant state of #, and zero is a simple eigenvalue of H with eigenvector £2.

2t E.g.in 2'(R"), 2'(IR") being the Schwartz’ space of distributions over 2(R") = CZ(R").
But the test function space can also be chosen to be more general, as can be seen from the
preceding proofs.

22 See e.g. Ref. [16], Chapter 3, 3.4.

23 E.g. in Schwartz space CF(IR) or & (IR).
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Moveover the Wightman functions W*(x,, ..., x,) have also the cluster
properties with respect to space translations, i.e. for a=(0, a),

WES N o X 0, Y, )= Wy, L x) WYL L),

in the sense of distributions®!, as |a}— co.

Proof. From the formula of Theorem 6.4 and the cluster properties
in the time directions of the G-functions as given in Theorem 5.2, we get
that Q is the only eigenvector with eigenvalue zero for H. The cluster
properties of the Wightman functions are a direct consequence of the
cluster properties of the G-functions in the space directions, since these
imply that U, converges weakly to the projection on € as |a| tends to
infinity, where U, is the unitary operator corresponding to the translation
by a=1(0, a). This proves the theorem. [

We shall now study the connection between the construction of the
infinite volume Wightman functions, as we have done above, and the
limit as [ co of the space cut-off vacuum state on elements of the algebra
generated by all finite linear combinations of operators of the form
o, (€519UV) oy (€%?YW), o, being the time automorphism given by
Theorem 6.1.

As remarked in connection with (6.5), the quantities o/ (x, S;, ..., X S¢)
converge, for real A with |A| < C~'e 287! and for almost all ¢, = (x,),,
as l—o0, to limit functions ¢*(x, 8y, ..., X,5.). Since (—iA) "6 (x 51y ... X5
satisfy the positive definiteness conditions, the limit functions
(—i4) % 6*(x, 8. ..., X, 5,) satisfy also the positive definiteness conditions
and can therefore be used in the same way as the Wightman functions
to construct a representation space for the operators ¢?=*, From the
construction it follows that ¢*?=* form a strongly continuous unitary
group with infinitesimal generator ¢,(x). Using now (6.6) we get the
identification of this representation with the one in Theorem 6.4. From
this it follows by (6.5) that we have the following formula for the limit
function *(x; sy, ..., X; S):

G (X151, .. X, S)
— (Ai/”t)" (Q) eis10e(x) pmil ) H il - ) H pisicpe () Q) (6.7
and hence correspondingly, fort; <1, < Sty
k
O (Xy Sgs +ees XicSi)
(6.8)

— (—)»)k (Q, eislwe(xl)e“(tz‘ll)H e kT 1)Heisk<0a(xk) Q) .
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We have now, choosing y,(x) positive definite:

Theorem 6.6. Let o, be the time automorphism given by Theorem 6.1.
For any real . with |2] < C~Ye *87} there exists a strongly dense linear
subspace W of A,~% such that for all f,, ..., f, in ¥ and almost all t,,
j=1,..., k:

(Ql o, (eibup(fﬂ) o, (ersw(fk))Ql)
S 0y, Nt
converges as [ oo to

(Q, atl(eisw(fx)) L,Xlk(eisw(jk)) Q) ,

where Q is the unique infinite volume vacuum given by the Theorems 6.4,6.5.
Moreover the limit is also equal, for almost all t,,i=1,...,k to

(_Q’ eist‘P(fx)ei(lz*M)H ei(ln”ln»—1)Hei5k¢(fk)Q)

N

where H is the infinitesimal generator of the time translations given by
Theorem 6.4.

Proof. By the definition of o! and the fact that Q, is the eigenvector
of H, to the eigenvalue E,;, we have

Lo is1@:(x1) L (Sisk@slxk)
('erat,(e ! 1)...0(,:,((@ * k)Ql)
— ('er eislws(xl)e*l(12*t1)ﬁr . e*f(tk*tk— v H; eisk(Pz:(xk)Ql) ,

with A, = H,— E,.
By (6.5) this is equal to

(—iA) Fof(x, 500 .00, X 50)
and converges, as [— oo, to the limit functions
(=) M (x S15 s XiSi) s

for all real A with |3 < C™'e 287! and almost all ¢,. By (6.7) these limit
functions are equal to

(Q’ eimw;(xx)e*i(tz*n)H evl(lk“lk—1)Helsk¢a(xk)Q) .
We have therefore

lim (Qh agl(etsm:(xl)) aik(elswr.(xk))gl)

(Aol

6.9)
— (.Q, gis1es(x1) o itz —t)H e e le- ) H gisics (xi0) Q) .
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Introduce now the functions f;(y) on IR"" !, defined, for each x;eR"" !
by: f(y) = y.(x;— ¥). These functions belong to #,_% and one has

¢.x)= [ oy} iy dy=0(f).
Introducing these identities in (6.9) we obtain:

lim (le afl(ei‘““’(f”) afk(ezsw(fk))gl)

Rl
(6.10)

(Q, eislw(.fl)e'i(fZ’lI)II C*l(tkAIk—1)Heisk(ﬂ(fk)Q) .

On the other hand, because of the strong convergence on .7, of o,
given by Theorem 6.1, and because of the uniform bound [Q,|| =1,
we have that

lim (Q, o (¢™19Y7) Lo (e Q)

1=

= lhj? (Qp, o, (YD) Lo, (€09 Q).

This together with (6.10) are the formulae of the theorem, which are
therefore proven for f;(y)=y.(x;,—y), i=1, ..., k. The rest follows from
the fact that the set %~ of all finite real linear combinations of these
functions f;, for all x,eR*" ', i=1,...,k and all positive integers k is
dense in #,_%, since the f; run over the set of all translates of the function
2(—y)=7.(y) for which %.(p) (u(p))"* >0 for almost every peR""*,
7.(p) being the Fouriertransform of the symmetric, positive definite
function y.(y). O

Remark. Theorem 6.6 connects the limit of the space cut-off vacuum
state on an algebra defined in terms of the time automorphism con-
structed by Streater and Wilde [6d] with the infinite volume quantities
we have constructed in Theorems 6.2 to 6.5.

Remark. Since, by Theorem 5.4, for |4 < C~te 287! one has that
the vacuum energy density |B;| ! E, converges to & as | — co and moreover
the interaction ¥} is bounded in norm by a constant limes |B,|, we obtain
the estimate

(€, Hy )| = C,|BJ]

where C, is independent of I.

This inequality and the fact that the Wightman functions tend, as
[— o, to the translation invariant Wightman functions could be used
to prove, along the lines of [17], that the representation space in the
infinite volume limit is locally Fock.
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