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UNIQUENESS OF TRAVELLING WAVES
FOR NONLOCAL MONOSTABLE EQUATIONS

JACK CARR AND ADAM CHMAJ

(Communicated by Mark J. Ablowitz)

Abstract. We consider a nonlocal analogue of the Fisher-KPP equation

ut = J ∗ u− u+ f(u), x ∈ R, f(0) = f(1) = 0, f > 0 on (0, 1),

and its discrete counterpart u̇n = (J ∗ u)n − un + f(un), n ∈ Z, and show
that travelling wave solutions of these equations that are bounded between 0
and 1 are unique up to translation. Our proof requires finding exact a priori
asymptotics of a travelling wave. This we accomplish with the help of Ikehara’s
Theorem (which is a Tauberian theorem for Laplace transforms).

1. Introduction

In this paper we study uniqueness of travelling waves of two nonlocal models.
One is the integrodifferential equation

(1.1) ut = J ∗ u− u+ f(u),

where J ∗u(z) =
∫
R
J(z− y)u(y)dy. About f we assume that it is monostable, i.e.,

f(0) = f(1) = 0 and f > 0 on (0, 1), e.g., f(u) = u−u2, and also that f ′(r) ≤ f ′(0)
for r ∈ (0, 1). We assume that J ≥ 0 is even, compactly supported and

∫
R
J = 1.

The second model is a discrete version of (1.1), namely, an infinite ODE system

(1.2) u̇n = (J ∗ u)n − un + f(un), n ∈ Z,
where (J ∗ u)n =

∑
|i|≥1 J(n− i)ui and J and f are as before. These equations are

two versions of the well-studied Fisher-KPP equation ([9], [10])

(1.3) ut = uxx + f(u);

see, e.g., [3] and the references therein. All the above equations model, e.g., pop-
ulation dynamics (see [8] for a derivation of (1.1)). In [8], (1.3) is actually de-
rived from (1.1): one can formally expand J ∗ u − u into power series, namely∫
R J(y)(u(z + y) − u(z))dy = c1u

′′(z) + c2u
′′′′(z) + . . ., where c1 = 1

2

∫
R y

2J(y)dy,
c2 = 1

24

∫
R y

4J(y)dy, etc., and consider just the first term in the expansion.
We consider solutions which are travelling waves of the form u(z− ct), z ∈ R for

(1.1) and u(n− ct), n ∈ Z for (1.2), and which connect the steady states 0 and 1.
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Let x = z − ct for (1.1) and x = n− ct for (1.2). Then u(x) satisfies

(1.4) −cu′ = J ∗ u− u+ f(u), u(−∞) = 1, u(+∞) = 0,

where for (1.2) J ∗ u(x) can be formally interpreted as∫
R

∑
|i|≥1

J(i)δ(x− y + i)u(y)dy.

The existence of solutions of (1.4) has been addressed in some previous papers.

Proposition 1.1. Assume that J has compact support and f ′(r) ≤ f ′(0) for
r ∈ (0, 1). In addition, for (1.2) we assume that supp J contains either 1 or two
relatively prime integers. Then a solution u of (1.4) such that u′ < 0 exists for
every c ≥ c0, where

c0 ≡ min{λ > 0 :
1
λ

[
∫
R

J(y)eλydy + f ′(0)− 1]}.

Proof. In [11], this is proved for (1.1) and c > c0 using the monotone iteration
method. One can then obtain the existence of a solution for c = c0 using a limiting
argument, as is done in, e.g., [4]. In [15], the authors construct travelling wave
solutions for (1.2) with suppJ = {−1, 1} and c ≥ c0 using a degree argument.
For (1.2) with J such that suppJ contains 1 or two relatively prime integers, one
can first use either of the above techniques to first obtain a solution such that
u′ ≤ 0, and then add a comparison argument as in [2], p. 290, to show that actually
u′ < 0. �

Similar methods were used to establish existence of travelling waves of some
other nonlocal models with monostable dynamics; see, e.g., [1], [4], [6], [13], [11],
[14], [5].

In this paper we focus only on (1.1), which is probably the most direct extension
of the Fisher-KPP equation. We feel that stating our results for a more general
class of monostable nonlocal equations, as in, e.g., [11], would only make the paper
unnecessarily harder to read. Therefore, the adaptation of these results to other
nonlocal models of monostable type is left to the reader.

The first uniqueness result, for a particular monostable nonlocal model, appeared
in the work of Diekmann and Kaper [6]. The authors proved that travelling waves
with noncritical speeds (i.e., c > c0) are unique in the class of monotone solutions.
Recently, Xinfu Chen and J.-S. Guo [5] obtained a complete uniqueness result for
travelling waves for a generalized discrete version of the nonlocal monostable equa-
tion. To be more precise, they show that all such solutions, including nonmonotone
waves and the one with the critical speed c0, that are bounded between 0 and 1 are
unique up to translation.

In this work we extend the method of Diekmann and Kaper to obtain a similar,
complete result such as the one in [5]. Let us discuss the differences between the
two approaches. The “strategy” of the two methods is similar: first one establishes
an a priori asymptotic behaviour of a solution at 0, then two possible solutions are
appropriately compared and shown to be the same. In [5], the authors first show
that a solution u satisfies u′ < 0 and limx→∞

u′(x)
u(x) = −α(c) (see below for the

definition of α(c)). Then, assuming u1 and u2 are two solutions, they study u1(x)
u2(x)

using a moving plane argument to conclude that u1 ≡ u2.
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In our work, we first obtain the exact asymptotic behaviour of a solution. We
show that the convergence to 0 of any travelling wave is O(e−α(c)x) for c > c0 and
O(xe−α(c0)x) for the critical speed, as x → ∞. Note that this is stronger than
limx→∞

u′(x)
u(x) = −α(c). With this information at hand, assuming u1 and u2 are

two solutions of (1.4), it then suffices to show that the quotient of u1− u2 over the
asymptotic rate of convergence to 0 of u1 and u2 cannot have a maximal point at
which it is positive; therefore u1 ≡ u2. Both parts of our method are shorter than
the corresponding ones in [5]. The main and crucial difference is that to obtain the
exact asymptotics we construct a Laplace transform representation of a solution
and then use the powerful Tauberian Ikehara’s Theorem.

2. Uniqueness

Theorem 2.1. Assume that J and f are as in Proposition 1.1. Then a solution u
of (1.4) such that 0 ≤ u ≤ 1 exists only for c ≥ c0 and is unique up to translation.

Proof. First, by a standard comparison argument, one can show that any solution
u such that 0 ≤ u ≤ 1 actually satisfies 0 < u < 1.

Note that the function g(λ) ≡ 1
λ [
∫
R J(y)eλydy + f ′(0) − 1] is positive for all

λ > 0. Also, if g′(λ0) = 0 for some λ0, then

g′′(λ0) =
1
λ0

∫
R

y2J(y)eλ0ydy > 0.

Thus for every c > c0, cλ +
∫
R
J(y)eλydy + f ′(0) − 1 has two negative roots:

−β(c) < −α(c) < 0, and a double root α(c0) for c = c0. We first show that any
solution of (1.4) such that 0 ≤ u(x) ≤ 1 satisfies, after translation,

(2.1) lim
x→∞

u(x)
xe−α(c0)x

= 1 and lim
x→∞

u(x)
e−α(c)x

= 1 for c > c0.

We begin with the following lemma.

Lemma 2.2. Any solution u of (1.4) with 0 ≤ u(x) ≤ 1 is such that u(x) =
O(e−γx) as x→∞, for some γ > 0.

Proof. The idea of the proof is to first show that v(x) ≡
∫∞
x u(s)ds is such that

v(x) = O(e−γx) as x → ∞, for some γ > 0, and then that this also implies that
u(x) = O(e−γx) as x→∞.

We first show that u is integrable on (x,∞). By integrating (1.4) from x to y
we get

c(u(x)− u(y)) ≥
∫ y

x

[J ∗ u(s)− u(s)]ds+ a

∫ y

x

u(s)ds

for some a > 0 depending on x (since f(u) ≥ au). Note that∫ y

x

∫
R

J(z)(u(z + s)− u(s))dzds =
∫ y

x

∫
R

J(z)
∫ 1

0

zu′(s+ tz)dtdzds

=
∫
R

zJ(z)
∫ 1

0

[u(y + tz)− u(x+ tz)]dtdz → −
∫
R

zJ(z)
∫ 1

0

u(x+ tz)dtdz

as y →∞ by Fubini’s Theorem and Lebesgue’s Dominated Convergence Theorem.
Thus u is integrable on (x,∞) and

a

∫ ∞
x

u(s)ds ≤ cu(x) +
∫
R

zJ(z)
∫ 1

0

u(x+ tz)dtdz.
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It is easily seen that J ∗u is also integrable on (x,∞). Thus (1.4) can be written as

(2.2) cu(x) =
∫ ∞
x

J ∗ u(s)ds−
∫ ∞
x

(u(s)− f(u(s)))ds.

To show that v is integrable we argue in a similar way as before. By integrating
(2.2) from x to y we get

c

∫ y

x

u(s)ds ≥
∫ y

x

[J ∗ v(s) − v(s)]ds+ a

∫ y

x

v(s)ds.

Since J has compact support, we can again use Fubini’s Theorem and Lebesgue’s
Theorem to obtain∫ y

x

∫
R

J(z)(v(z + s)− v(s))dzds→ −
∫
R

zJ(z)
∫ 1

0

v(x + tz)dtdz

as y →∞. Thus v is integrable and

a

∫ ∞
x

v(s)ds ≤ cv(x) +
∫
R

zJ(z)
∫ 1

0

v(x+ tz)dtdz.

Let Q(x) =
∫ x
−∞ J(s)ds. Note that∫ ∞

x

J ∗ u =
∫
R

u(t)
∫ ∞
x

J(s− t)dsdt =
∫
R

u(t)Q(t− x)dt =
∫
R

u(s+ x)Q(s)ds.

For small δ > 0 and large x for which u(x) < δ we have

−
∫ ∞
x

(u(s)− f(u(s)))ds ≥ −(1− f ′(0) +O(δ))
∫ ∞
x

u(s)ds.

By integrating (2.2), we get

(2.3) cv(x) ≥
∫
R

v(s+ x)Q(s)ds − (1− f ′(0) +O(δ))
∫ ∞
x

v(s)ds.

Since v is decreasing, we have the estimate∫ 0

−∞
v(s+ x)Q(s)ds ≥

∫ 0

−∞
v(x − s)Q(s)ds =

∫ ∞
0

v(s+ x)Q(−s)ds

=
∫ ∞

0

v(s+ x)[1 −Q(s)]ds.

Thus
∫
R
v(s+ x)Q(s)ds ≥

∫∞
0
v(s+ x)ds and we get from (2.3),

c

f ′(0)−O(δ)
v(x) ≥

∫ ∞
x

v(s)ds ≥
∫ x+r

x

v(s)ds ≥ rv(x + r).

Thus for all large r there is some k < 1 such that v(x + r) ≤ kv(x). Let h(x) ≡
v(x)eγx, where γ = 1

r ln 1
k . Then h(x+ r) = v(x+ r)eγxeγr ≤ v(x)eγx = h(x), and

thus h is bounded. This implies that v(x) = O(e−γx) as x→∞.
Recall that

∫∞
x
J ∗ u(s)ds =

∫
R
J(s)v(x + s)ds. Since J has compact support

and v(x) = O(e−γx) as x → ∞, also
∫∞
x
J ∗ u(s)ds = O(e−γx) as x → ∞. Thus

from (2.2) we conclude that u(x) = O(e−γx) as x→∞. �

Using Lemma 2.2, for λ’s such that −γ < Reλ < 0 we can now define the
two-sided Laplace transform of u:

U(λ) ≡
∫
R

e−λxu(x)dx.
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Note that∫
R

e−λxJ ∗ u(x)dx =
∫
R

J(y)eλy
∫
R

u(x+ y)e−λ(x+y)dxdy = U(λ)
∫
R

J(y)eλydy.

Since (1.4) can be written as cu′ + J ∗ u+ (f ′(0)− 1)u = f ′(0)u− f(u), we get

(2.4) (cλ+m(λ))U(λ) =
∫
R

e−λx[f ′(0)u(x)− f(u(x))]dx,

where m(λ) ≡
∫
R
eλyJ(y)dy+f ′(0)−1. Since u(∞) = 0, f ′(0)u−f(u) = O(u2) for

large x. Hence in (2.4) the right side is defined for λ’s such that −2γ < Reλ < 0.
We now use a property of Laplace transforms (p. 58, [13]). Since u > 0, there exists
a real B such that U(λ) is analytic for B < Reλ < 0 and U(λ) has a singularity at
λ = B. Hence for c ≥ c0, U(λ) is defined for Reλ > −α(c).

Using (2.4), we first conclude that for 0 < c < c0 there are no solutions of (1.4)
bounded between 0 and 1. We argue by contradiction. Since cλ+m(λ) has no real
zeroes, U(λ) is defined for all λ such that Re λ < 0. Also, (2.4) can be written as∫

R

e−λx[(cλ+m(λ))u + f(u)− f ′(0)u]dx = 0.

Since cλ + m(λ) → ∞ as λ → −∞, we reach a contradiction. From now on we
study the case c ≥ c0.

We recall a version of Ikehara’s Theorem.

Proposition 2.3. Let F (λ) =
∫∞

0 u(x)e−λxdx, with u being a positive decreasing
function. Assume that F has the representation

F (λ) =
H(λ)

(λ + α)k+1
,

where k > −1 and H is analytic in the strip −α ≤ Reλ < 0. Then

lim
x→∞

u(x)
xke−αx

=
H(−α)

Γ(α+ 1)
.

Proof. This version can be obtained by a modification of the proof of Theorem 2.12
in [7] (also, see pp. 54–65 for other related results). The case k = 0 is also discussed
in [13], p. 233 and [6]. �

We can rewrite (2.4) as∫ ∞
0

u(x)e−λxdx =

∫
R
e−λx[f ′(0)u− f(u)]dx

cλ+m(λ)
−
∫ 0

−∞
u(x)e−λxdx.

Note that
∫ 0

−∞ u(x)e−λxdx is analytic for Re λ < 0. Also, the equation cλ+m(λ) =
0 does not have any zeroes with Reλ = −α other than λ = −α. Indeed, let
λ = −α+ iβ. Then cλ+m(λ) = 0 can be written as∫

R

eαyJ(y) sin2 βy

2
dy = 0 = cβ +

∫
R

eαyJ(y) sinβydy,

a system which has a solution only for β = 0.
First, let us assume that u is monotone for large x. For f ′(0) − 1 > 0, this

is easily seen from (1.4). We can choose a translate of u that is monotone for
x > 0. Proposition 2.3 then implies (2.1) for a suitable translate of u. If we do
not know a priori that u is monotone for large x, then from (1.4) we see that
cu′ − u ≤ −J ∗ u; thus (u(x)e−x/c)′ ≤ 0 and u(x)e−x/c is monotone. Let p = c−1,
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ū(x) ≡ e−pxu(x) and Ū(λ) =
∫
R
e−λxū(x)dx. Note that Ū(λ) = U(p+ λ). We can

then apply Proposition 2.3 to ū to get the existence of limx→∞
ū(x)

e−(p+α)x for c > c0

and limx→∞
ū(x)

xe−(p+α)x for c = c0.
Let u1 and u2 denote two solutions of (1.4) bounded between 0 and 1. Using the

results in (2.1) we now construct an appropriate contraction. For ε > 0 define

(2.5) wε(x) ≡ u1(x)− u2(x)
(ε|x|+ 1)e−α(c0)x

and w(x) ≡ u1(x)− u2(x)
e−α(c)x

for c > c0.

Note that from (2.1), wε(±∞) = 0 and w(±∞) = 0. From now on we focus on the
critical case c = c0. The argument for c > c0 follows the same lines. If wε(x) 6≡ 0,
then, without loss of generality, we can assume there exists some finite xεM such
that wε(xεM ) = maxx∈Rwε(x) > 0.

Let us first assume that xεM →∞ as ε→ 0. Choose ε > 0 small enough such that
xεM > sup{x : x ∈ suppJ}. For convenience, we simplify the notation to x0 ≡ xεM
and α ≡ α(c0). Note that

u′1(x0)− u′2(x0)
= w′ε(x0)(εx0 + 1)e−αx0 + wε(x0)εe−αx0 − wε(x0)(εx0 + 1)αe−αx0 .

Thus, using (1.4), w′ε(x0) = 0 and |f(u1)− f(u2)| ≤ f ′(0)|u1 − u2| we get

−c0wε(x0)εe−αx0 + c0wε(x0)(εx0 + 1)αe−αx0

≤
∫
R

J(y)wε(x0 + y)(ε|x0 + y|+ 1)e−αx0e−αydy − (u1 − u2) + f ′(0)|u1 − u2|.

Recall that c0α =
∫
R
J(y)eαydy+f ′(0)−1 and c0 =

∫
R
yJ(y)eαydy. Since u1(x0)−

u2(x0) > 0, after dividing by e−αx0 we get∫
R

J(y)eαy[wε(x0)(εx0 − y)− wε(x0 − y)ε|x0 − y|]dy

+
∫
R

J(y)eαy[wε(x0)− wε(x0 − y)]dy ≤ 0,

or, recalling that x0 > sup{x : x ∈ suppJ},∫
R

J(y)eαy[ε(x0 − y) + 1][wε(x0)− wε(x0 − y)]dy ≤ 0.

Let [k1, k2] ⊂ supp J , with k2 > 0. Then wε(x0) = wε(x0 − y) for y ∈ [k1, k2].
Thus, we can keep redefining x0 until x0 ∈ supp J , a contradiction.

If we assume that xεM → −∞ as ε → 0, then wε(xεM ) → 0 as ε → 0. Let w be
as in (2.5), but with c = c0. Since wε(x)→ w(x) as ε→ 0, w(x) ≤ 0 for all x ∈ R,
which gives a contradiction, since wε(x) ≤ w(x).

If we assume {xεM} is bounded, then we can take a subsequence xεM → x1 as
ε → 0, for some finite x1. Again let w be as in (2.5), but with c = c0. From
uniform convergence of wε to w on compact sets, wε(xεM )→ w(x1) as ε→ 0. Thus
w(x) ≤ w(x1) for all x ∈ R, and we can repeat the above argument for w(x) to get∫

R

J(y)eαy[w(x1)− w(x1 − y)]dy ≤ 0.

Again by bootstrapping, w(x1) ≡ w(x1 − y) for all y ∈ R, and since w(−∞) = 0
we get u1 ≡ u2. �
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