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Abstract. Consider the Navier-Stokes equation with the initial data a ∈ L2σ(Rd). Let u

and v be two weak solutions with the same initial value a. If u satisfies the usual energy
inequality and if ∇v ∈ L2((0, T ); Ẋ1(Rd)d) where Ẋ1(Rd) is the multiplier space, then we
have u = v.
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1. Introduction

Consider the Navier-Stokes equation in (0, T ) × R
d with 0 < T < ∞ and d > 3:

∂tu + (u · ∇)u − ∆u + ∇p = 0, (x, t) ∈ R
d × (0,∞),(1.1)

∇ · u = 0, (x, t) ∈ R
d × (0,∞),

u(x, 0) = a(x), x ∈ R
d,

where u = u(x, t) is the velocity field, p = p(x, t) is the scalar pressure and a(x) with

div a = 0 in the sense of distributions is the initial velocity field. For simplicity, we

assume that the external force has a scalar potential and is included in the pressure

gradient.

In their famous paper, Leray [11] and Hopf [5] constructed a weak solution u

of (1.1) for arbitrary a ∈ L2
σ. The solution is called the Leray-Hopf weak solution.

In the general case the problem of uniqueness of Leray-Hopf’s weak solutions is

still an open question. Masuda [13] extended Serrin’s class for uniqueness of weak
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solutions and made it clear that the class L∞((0, T ); Ld(Rd)) plays an important role

for the uniqueness of weak solutions. Kozono-Sohr [7] showed that uniqueness holds

in L∞((0, T ); Ld).

Foias [3] and Serrin [14] introduced the class Lα((0,∞); Lq) and showed that under

the additional assumption

u ∈ Lα((0,∞); Lq) for
2

α
+

d

q
= 1 with q > d,

u is the only weak solution.

The purpose of this paper is to improve the criterion on uniqueness of weak so-

lutions to the class L2((0, T ); Ẋ1(R
d)d) (Definition 2). We know that for every

a ∈ L2
σ(Rd) there is at least one weak solution u of (1.1) satisfying the energy inequal-

ity. Here we mean by the weak solution a function u ∈ L∞((0, T ); L2
σ)∩L2((0, T ); Ḣ1

σ)

satisfying (1.1) in the sense of distributions (Definition 4). For more facts concerning

uniqueness of weak solutions we refer to the celebrated paper of Kozono and Sohr [7].

1.1. BMO and Hardy space H1(Rd)

We recall that a locally summable function g on Rd is said to have bounded mean

oscillation if

‖g‖BMO = sup
x,R

1

|B(x, R)|

∫

B(x,R)

|g(y) − gB(x,R)| dy < ∞,

where

gB(x,R) =
1

|B(x, R)|

∫

B(x,R)

g(y) dy.

The class of functions of bounded mean oscillation is denoted by BMO and often is

referred to as the John-Nirenberg space.

Note that

‖g‖BMO = 0 if and only if g = const.

It is thus natural to consider the quotient space BMO/R with the norm induced

by ‖ · ‖BMO. Then BMO/R is a Banach space, which will also be denoted BMO

for simplicity. We easily see that L∞ ⊂ BMO with continuous injection. For

f(x) = log |x| we have f ∈ BMO but f /∈ L∞, so BMO is strictly larger than L∞.

Next, we recall the definition and some of the main properties of Hardy spaces

Hp(Rd) introduced by E. Stein and G. Weiss [16] (for more facts on these spaces see

C. Fefferman and E. Stein [4]).
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Definition 1 ([4]). Let 0 < p < ∞ and let ϕ ∈ S(Rd) satisfy
∫
Rn ϕdx = 1. A

tempered distribution f belongs to the Hardy space Hp(Rd) if

(1.2) f∗(x) = sup
t>0

|(ϕt ∗ f)(x)| ∈ Lp(Rd),

where ϕt(x) = t−dϕ(t−1x).

It is known that if f ∈ Hp(Rd), then (1.2) holds for all ϕ ∈ S(Rd) satisfying∫
Rd ϕdx = 1. The (quasi)-norm of Hp(Rd) is defined, up to equivalence, by

‖f‖Hp(Rd) = ‖f∗(x)‖Lp(Rd) =

(∫

Rd

|f∗(x)|p dx

)1/p

.

We know by [4], [15] that if 1 6 p < ∞, then Hp is a Banach space:

Hp(Rd) = Lp(Rd) for 1 < p < ∞,

H1(Rd) ⊂ L1(Rd) with continuous injection,

and that Hp(Rd), 0 < p < 1, are quasi-Banach spaces in the quasi-norm ‖ · ‖Hp(Rd).

The crucial fact for our purpose is the boundedness of the Riesz transforms Rj on

all of the spaces Hp. Furthermore, an L1-function f on Rd belongs to H1(Rd) if and

only if its Riesz transforms Rjf all belong to L1(Rd) and

‖f‖H1(Rd)
∼= ‖f‖L1(Rd) +

d∑

j=1

‖Rjf‖L1(Rd) (equivalent norms).

Notice that all functions f ∈ H1(Rd) satisfy

(1.3)

∫

Rd

f(x) dx = 0.

Indeed, the assumption f ∈ H1(Rd) implies that the Fourier transforms

f̂(ξ) =

∫
f(x)e−ixξ dx and R̂jf(ξ) =

iξj

|ξ|
f̂(ξ) (j = 1, . . . , d),

are all continuous on R
d, so f̂(0) = 0 and (1.3) is proved.

A fundamental theorem in the theory of Hardy spacesH1(Rd) developed by C. Fef-

ferman and E. Stein [4] asserts:
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Theorem 1 (Fefferman). The dual space of H1(Rd) is BMO. More precisely,

L is a continuous linear functional on H1(Rd) if and only if it can be represented as

L(f) =

∫

Rd

fg

for some function g in BMO. Moreover, for any g ∈ BMO and any f ∈ H1(Rd) we

have

(1.4)

∣∣∣∣
∫

Rd

fg dx

∣∣∣∣ 6 c(d)‖f‖H1‖g‖BMO.

Let γ > 1. We define the maximal function of f depending on γ,

Mγf(x) = sup
t>0

(
1

|Bt(x)|

∫

Bt(x)

|f(y)|γ dy

)1/γ

.

We begin by establishing the following result which is a variant of the Hardy-

Littlewood maximal theorem. We need

Lemma 1. If γ < p 6 ∞, then

Mγ : Lp(Rd) → Lp(Rd) is bounded.

P r o o f. See [15]. �

In [1], Coifman, Lions, Meyer and Semmes showed that the Hardy spaces can be

used to analyze the regularity of various nonlinear quantities by the compensated

compactness theory due to L. Murat [12] and F. Tartar [17]. Since then, these spaces

play an important role in studying the regularity of solutions to partial differential

equations. In particular, it was shown that for exponents p, q with 1 < p < ∞,

1/p + 1/q = 1, and vector fields u ∈ Lp(Rd)d, v ∈ Lq(Rd)d with div u = 0, curl v = 0

in the sense of distributions, the scalar product u · v belongs to the Hardy space

H1(Rd). Moreover, there exists a positive constant C such that

‖u · v‖H1(Rd) 6 C‖u‖Lp‖v‖Lq .

The main purpose of this subsection is to prove two facts about the div-curl

lemma without imposing any a priori assumptions on exact cancellation, namely,

the divergence and curl need not be zero. Our results will lead to div(uv) being in

the Hardy space H1(Rd).
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The proof will be divided into two parts. In part 1, we consider the case u and

v being supported on the ball |x| 6 R0, where R0 > 1 is a positive constant to be

determined later, while in Part 2, the general case follows by partition of unity. In

order to simplify the presentation, we take p = q = 2.

The Sobolev space H1
p (Rd), 1 6 p < ∞, consists of functions f ∈ Lp(Rd) such

that |∇f | ∈ Lp(Rd). It is a Banach space with respect to the norm

‖f‖H1
p

= ‖f‖Lp + ‖∇f‖Lp.

Specifically, we will prove

Theorem 2. Let u ∈ H1
p (Rd)d and v ∈ H1

q (Rd), p > 1, 1/p + 1/q = 1. Then

there exists a positive constant C(d) such that

(1.5) ‖div(uv)‖H1(Rd) 6 C(‖u‖Lp‖∇v‖Lq + ‖div u‖Lp‖v‖Lq).

R em a r k 1. Such inequalities and their generalizations are useful in hydrody-

namics. The reader is referred, in particular, to [1], [2].

Theorem 2 is a generalized version of the “div-curl” lemma ([1], Theorem II.1).

Observe that when div u = 0, Theorem 2 reduces to the classical div-curl lemma [1].

The following result due to [1] shows the importance of the Hardy space theory in

estimating the non-linear term u · ∇v attached to the Navier-Stokes equations. This

produces a useful tool for PDE.

Lemma 2. Let 1 < p < ∞, 1 < q < d and 1/r = 1/p + 1/q < 1/d + 1. If

u ∈ Lp(Rd)d with ∇ · u = 0 and ∇v ∈ Lq(Rd), then

u · ∇v ∈ Hr(Rd)

and

‖u · ∇v‖Hr(Rd) 6 C‖u‖Lp‖∇v‖Lq .

P r o o f. The result is due to [1]; but we give here a detailed proof for the reader’s

convenience. Observe that

f = u · ∇v = ∇ · (u ⊗ (v − c))

for an arbitrary constant vector c. So we get

(ϕt ∗ f)(x) = t−d−1

∫

Bt(x)

(∇ϕ)(t−1(x − y))u(y)(v(y) − mB(v)) dy,
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where

mB(v) =
1

|Bt(x)|

∫

Bt(x)

v(y) dy.

Taking

1 < γ < ∞, 1 < β < d with
1

γ
+

1

β
= 1 +

1

d

and writing
1

β∗
=

1

β
−

1

d
,

we see by the Poincaré-Sobolev inequality that

|(ϕt ∗ f)(x)| 6
C

td+1

(∫

Bt(x)

|u(y)|γ dy

)1/γ(∫

Bt(x)

|v(y) − mB(v)|β
∗

dy

)1/β∗

6
C

td+1

(∫

Bt(x)

|u(y)|γ dy

)1/γ(∫

Bt(x)

|∇v(y)|β dy

)1/β

= C

(
1

|Bt(x)|

∫

Bt(x)

|u(y)|γ dy

)1/γ(
1

|Bt(x)|

∫

Bt(x)

|∇v(y)|β dy

)1/β

6 C(Mγu)(x) · (Mβ(∇v))(x).

We thus obtain

sup
t>0

|(ϕt ∗ f)(x)| 6 C(Mγu)(x) · (Mβ(∇v))(x).

Since we can take γ and β such that

1 < γ < p, 1 < β < q < d,

it follows from Lemma 1 that

‖Mγu‖Lp 6 C‖u‖Lp, ‖Mβ(∇v)‖Lq 6 C‖∇v‖Lq .

Lemma 2 now follows from Hölder’s inequality

‖f · g‖Lr 6 ‖f‖Lp‖g‖Lq

(
0 < p < ∞, 0 < q < ∞,

1

r
=

1

p
+

1

q

)
.

This completes the proof of the lemma. �
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We are now in position to prove Theorem 2.

P r o o f of Theorem 2. We distinguish three cases.

Case A. Let us assume first that

∇ · u = 0.

In this case we get

div(vu) = (∇v) · u + v div u = u · ∇v.

Then we have u ∈ Lp(Rd)d, ∇v ∈ Lq(Rd) with div u = 0, curl(∇v) = 0 in the sense

of distributions. It follows from Lemma 2 that

u · ∇v ∈ H1(Rd)

and there exists an absolute constant C such that

‖div(vu)‖H1(Rd) 6 C‖u‖Lp‖∇v‖Lq .

Case B. We may of course introduce an additional assumption that u and v are

supported on the ball |x| 6 R0. In order to simplify the presentation, we take

p = q = 2. We shall write Ω for the ball in R
d of radius R0 centered at the origin.

By H1
0 (Ω) we denote the closed subspace of H1(Ω) which is the closure of C∞

0 (Ω) in

the H1 norm. Let

g = div u ∈ L2(Rd).

By the classical result (see e.g. [18]) we know that

g = ∂1g1 + . . . + ∂dgd,

where g1, . . . , gd belong to H1
0 (Ω). Set

G = (g1, . . . , gd) and r = u − G.

Then it follows that

div r = 0 and r ∈ L2(Ω).

Using Lemma 2 we infer

div(rv) ∈ H1(Rd).

Further we set

f = div(Gv).

Using Lemma 3 below, we conclude that f ∈ H1(Rd).
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Case C. The general case. We call ϕ a smooth bump function with compact

support provided

1 =
∑

k∈Zd

ϕ2(x − k).

If f and g are two functions, we thus have

f(x)g(x) =
∑

k∈Zd

f(x)ϕ2(x − k)g(x) =
∑

k∈Zd

fk(x)gk(x),

where

fk(x) = ϕ(x − k)f(x) and gk(x) = ϕ(x − k)g(x).

Now set

uk(x) = ϕ(x − k)u(x) and vk(x) = ϕ(x − k)v(x)

for k ∈ Z
d. We then have

div(uv) =
∑

k∈Zd

(ukvk) =
∑

k∈Zd

wk, wk = div(ukvk).

We are going to check that

∑

k∈Zd

‖wk‖H1(Rd) < ∞.

To do this, we apply the local version (Case A). It follows that

‖wk‖H1(Rn) 6 C(‖uk‖L2 + ‖div uk‖L2)(‖vk‖L2 + ‖div vk‖L2)

= εk ∈ l1(Zd),

where

εk = C(‖uk‖L2 + ‖div uk‖L2)(‖vk‖L2 + ‖div vk‖L2).

Up to now we have proved

(1.6) ‖div(uv)‖H1(Rd) 6 C(‖u‖L2 + ‖div u‖L2)(‖v‖L2 + ‖div v‖L2).

This automatically yields the estimate

(1.7) ‖div(uv)‖H1(Rd) 6 C(‖u‖L2‖∇v‖L2 + ‖v‖L2‖div u‖L2).

To see this, we may replace u in the above inequality by

u = δ1/2−d/2u
(x

δ

)
whenever 0 < δ < ∞,
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and similarly v by

vδ = δ1/2−d/2v
(x

δ

)
whenever 0 < δ < ∞.

Thus the left-hand side of (1.6) fortunately does not change, while on the right-hand

side we get rid of the undesirable terms by letting δ to be equal either to 0 or to +∞.

This completes the proof. �

Now we turn to the proof of Lemma 3. One can show that every function f ∈

Lp(Rd), p ∈ (1, +∞], with compact support and
∫

f dx = 0 belongs to H1(Rd). In

particular, we have

Lemma 3. If d∗ = d/(d − 1), f ∈ Ld∗

, supp f ⊂ Ω and

∫
f dx = 0,

then f ∈ H1(Rd).

P r o o f. We have

f = div(G)v + G · ∇v

and we have to prove that both the terms belong to Ld∗

. We consider the first term

on the right-hand side. Since ∇v ∈ L2, we have

div(G) ∈ L2 and v ∈ Lq where
1

2
−

1

q
=

1

d
.

Thus,

v div(G) ∈ Ld∗

.

A similar argument works on the second term and this completes the proof of the

lemma. �

1.2. Multipliers and Morrey-Campanato spaces

In this section we give a description of the multiplier space Ẋr introduced recently

by P.G. Lemarié-Rieusset in his work [9] (see also [10]). The space Ẋr of pointwise

multipliers which map L2 into Ḣ−r is defined in the following way.

Definition 2. For 0 6 r < d/2 we define the homogeneous space Ẋr by

Ẋr = {f ∈ L2
loc : ∀ g ∈ Ḣr fg ∈ L2},

where we denote by Ḣr(Rd) the completion of the space D(Rd) with respect to the

norm ‖u‖Ḣr = ‖(−∆)r/2u‖L2 .
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The norm of Ẋr is given by the operator norm of pointwise multiplication

‖f‖Ẋr
= sup

‖g‖Ḣr 61

‖fg‖L2.

Similarly, we define the nonhomogeneous space Xr for 0 6 r < d/2 equipped with

the norm

‖f‖Xr = sup
‖g‖Hr 61

‖fg‖L2.

We have the homogeneity properties : ∀x0 ∈ R
d

‖f(x + x0)‖Xr = ‖f‖Xr ,

‖f(x + x0)‖Ẋr
= ‖f‖Ẋr

,

‖f(λx)‖Xr 6
1

λr
‖f‖Xr , 0 < λ 6 1,

‖f(λx)‖Ẋr
6

1

λr
‖f‖Ẋr

, λ > 0.

The imbeddings

Ld/t ⊂ Xr, 0 6 r <
d

2
, 0 6 t 6 r,

Ld/r ⊂ Ẋr, 0 6 r <
d

2

hold.

E x am p l e 1. If u(x) ∈ D(Rd), ϕ(x) =
( d∑

k=1

|xk|
γk

)−1

, γk > 0, d > 2 and

d∑
k=1

γ−1
k = d/2, then

∫

Rd

ϕ(x)|u(x)|2 dx 6 C

∫

Rd

|∇u(x)|2 dx

and ϕ ∈ X1t(R
d).

Indeed, the inequality

∫

λ<|x|<2λ

ϕ(x)|u(x)|2 dx

6

[∫

λ<|x|<2λ

|u(x)|2d/(d−2) dx

](d−2)/2[∫

λ<|x|<2λ

ϕ(x)d/2 dx

]2/d
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and the Sobolev theorem imply that for λ > 0

∫

λ<|x|<2λ

ϕ(x)|u(x)|2 dx 6 C

[∫

λ<|x|<2λ

|∇u(x)|2 dx +

∫

λ<|x|<2λ

|u(x)|2

|x|2
dx

]

×

[∫

λ<|x|<2λ

ϕ(x)d/2 dx

]2/d

,

where C does not depend on λ. Let us estimate the integral

S(λ) =

∫

λ<|x|<2λ

ϕ(x)d/2 dx.

The domain λ < |x| < 2λ can be represented as a finite sum of domains Ωjλ such

that |xj | > 1
2λ if x ∈ Ωjλ for j = 1, . . . , d. Let for instance |x1| > 1

2λ. Then

∫

Ωjλ

ϕ(x)d/2 dx 6
3

2
λ

∫

λ<|x|<2λ

dx1 . . . dxd

((1
2λ)γ1 + |x2|γ2 + . . . + |xd|γd)d/2

.

The substitution xj = tj(
1
2λ)γ1/γj gives the relations

S(λ) 6 C

∫

Rd−1

dt1 . . . dtd
(1 + |t2|γ2 + . . . + |td|γd)d/2

6 C,

since the integral is converging. To see this, set ts = τ
1/γs
s . Then

∫

Rd−1

dt1 . . . dtd
(1 + |t2|γ2 + . . . + |td|γd)d/2

6 C

∫

Rd−1

|τ |1/γ2+...+1/γd−(d−1)

(1 + |τ |)d/2
dτ1 . . . dτd

6 C

∫ ∞

0

d|τ |

(1 + |τ |)1/γ+1
< ∞.

Therefore,

∫

λ<|x|<2λ

ϕ(x)|u(x)|2 dx 6 C5

[∫

λ<|x|<2λ

|u(x)|2 dx +

∫

λ<|x|<2λ

|u(x)|2

|x|2
dx

]
.

Setting λ = 2m, m ∈ Z and assuming these inequalities for all m, we obtain that

∫

Rd

ϕ(x)|u(x)|2 dx 6 C

(∫

Rd

|∇u(x)|2 dx +

∫

Rd

|u(x)|2

|x|2
dx

)
.
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By Hardy’s inequality in R
d, d > 3, we have

∫

Rd

|u(x)|2

|x|2
dx 6

4

(d − 2)2

∫

Rd

|∇u(x)|2 dx, u(x) ∈ D(Rd),

and hence ∫

Rd

ϕ(x)|u(x)|2 dx 6 C

∫

Rd

|∇u(x)|2 dx.

Now we recall the definition of the Morrey-Campanato spaces ([6], [19]):

Definition 3. For 1 < p 6 q 6 +∞, the Morrey-Campanato space Mp,q is

defined by

Mp,q = {f ∈ Lp
loc(R

d) :(1.8)

‖f‖Mp,q = sup
x∈Rd

sup
0<R61

Rd/q−d/p‖f(y)1B(x,R)(y)‖Lp(dy) < ∞}.

Let us define the homogeneous Morrey-Campanato spaces Ṁp,q for 1 < p 6 q 6

+∞ by

(1.9) ‖f‖Ṁp,q
= sup

x∈Rd

sup
R>0

Rd/q−d/p

(∫

B(x,R)

|f(y)|p dy

)1/p

.

It is easy to check the following properties:

‖f(λx)‖Mp,q =
1

λd/q‖f‖Mp,q

, 0 < λ 6 1,

‖f(λx)‖Ṁp,q
=

1

λd/q
‖f‖Ṁp,q

, λ > 0.

We shall use the following classical results [6].

a) For 1 6 p 6 p′, p 6 q 6 +∞ and for all functions f such that f ∈ Ṁp,q ∩ L∞

we have

‖f‖Ṁp′ ,q·(p′/p) 6 ‖f‖
1−p/p′

L∞ ‖f‖
p/p′

Ṁp,q
.

b) For p, q, p′, q′ such that 1/p + 1/p′ 6 1, 1/q + 1/q′ 6 1, f ∈ Ṁp,q, g ∈ Ṁp′,q′

we have

fg ∈ Ṁp′′,q′′ with 1/p + 1/p′ = 1/p′′, 1/q + 1/q′ = 1/q′′.

c) For 1 6 p 6 d we have

∀λ > 0, ‖λf(λx)‖Ṁp,d
= ‖f‖Ṁp,d

.
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d) If p′ < p then

Ṁp,q ⊂ Mp,q,

Ṁp,q ⊂ Mp′,q.

e) If q2 < q1 then

Mp,q1 ⊂ Mp,q2 ,

Lq = Ṁq,q ⊂ Ṁp,q, p 6 q.

We have the following comparison between multipliers and Morrey-Campanato

spaces:

Proposition 1. For 0 6 r < d/2, we have

Xr ⊆ M2,d/r,

Ẋr ⊆ Ṁ2,d/r.

P r o o f. Let f ∈ Xr, 0 < R 6 1, x0 ∈ R
d and φ ∈ D, φ ≡ 1 on B(x0/R, 1). We

have

Rr−d/2

(∫

|x−x0|6R

|f(x)|2 dx

)1/2

= Rr

(∫

|y−x0/R|61

|f(Ry)|2 dy

)1/2

6 Rr

(∫

y∈Rd

|f(Ry)φ(y)|2 dy

)1/2

6 Rr‖f(Ry)‖Xr‖φ‖Hr

6 ‖f(y)‖Xr‖φ‖Hr 6 C‖f(y)‖Xr .

We observe that the same proof is also valid for homogeneous spaces. �

Additionally, for 2 < p 6 d/r and 0 6 r < d/2 we have the following inclusion

relations:

Ld/r(Rd) ⊂ Ld/r,∞(Rd) ⊂ Ṁp,d/r(R
d) ⊂ Ẋr(R

d) ⊂ Ṁ2,d/r(R
d),

where Lp,∞ denotes the usual Lorentz (weak Lp) space. For the definition and basic

properties of Lorentz spaces Lp,q we refer to [16].
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2. Uniqueness theorem

Before turning our attention to uniqueness issues, we start with some prerequisites

for our main result. Let

C∞
0,σ(Rd) = {ϕ ∈ (C∞

0 (Rd))d : div ϕ = 0} ⊆ (C∞
0 (Rd))d.

The subspace

L2
σ(Rd) = C∞

0,σ(Rd)
‖·‖L2

= {u ∈ L2(Rd)d : div u = 0}

is obtained as the closure of C∞
0,σ with respect to the L2-norm ‖ · ‖L2. Hr

σ denotes

the closure of C∞
0,σ with respect to the norm

‖u‖Hr = ‖u‖L2 + ‖(1 − ∆)r/2u‖L2 for r > 0.

Our definition of the Leray-Hopf weak solutions (see e.g., [8], [7]) now reads:

Definition 4 (weak solutions). Let a ∈ L2
σ and T > 0. A measurable function u

is called a weak solution of (1.1) on (0, T ) if u has the following properties:

1. u ∈ L∞((0, T ); L2
σ) ∩ L2((0, T ); Ḣ1

σ) for all T > 0;

2. u(t) is continuous in time in the weak topology of L2
σ with

〈u(t), φ〉 → 〈a, φ〉 as t → 0+

for all φ ∈ L2
σ;

3. for any 0 6 s 6 t 6 T , u satisfies the identity

(2.1)

∫ t

s

{−〈u, ∂τφ〉+ 〈u · ∇u, φ〉+ 〈∇u,∇φ〉} dτ = −〈u(t), φ(t)〉+ 〈u(s), φ(s)〉

for all φ ∈ H1((s, t); H1
σ). Here 〈·, ·〉 denotes the scalar product and ‖ · ‖L2

denotes the norm in L2(Rd)d.

R em a r k 2. For u and φ as above, the integral

∫ T

0

〈u · ∇u, φ〉dτ

is well defined since by the Sobolev inequality we have

‖u‖L2d/(d−2) 6 C‖∇u‖L2
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so that

∣∣∣∣
∫ T

0

〈u · ∇u, φ〉dτ

∣∣∣∣ 6

∫ T

0

‖u‖L2d/(d−2)‖∇u‖L2‖φ‖Ld dτ

6 C sup
0<t<T

‖φ‖Ld

∫ T

0

‖∇u‖2
L2 dτ.

Existence of weak solutions has been established by Leray in [11] for the initial

velocity in L2
σ(Rd). The result is the following

Theorem 3 (Leray-Hopf). Let T > 0. Then, for any given a ∈ L2
σ(Rd), there

exits at least one weak solution u to (1.1) on (0, T ) such that

(2.2) ‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(s)‖2
L2 ds 6 ‖a‖2

L2, 0 6 t < T

and

‖u(t) − a‖L2 → 0 as t → +0.

Let us introduce the class Ls((0, T ); Lγ) with the norm ‖ · ‖Ls((0,T );Lγ) by

‖u‖Ls((0,T );Lγ) =

(∫ T

0

‖u(t)‖s
Lγ dt

)1/s

.

The classical result on uniqueness of weak solutions in the class Ls((0, T ); Lγ) was

given by Foias, Serrin and Masuda [3], [14], [13].

Theorem 4 (Foias-Serrin-Masuda). Let a ∈ L2
σ(Rd). Let u and v be two weak

solutions of (1.1) on (0, T ). Suppose that u satisfies

(2.3) u ∈ Ls((0, T ); Lγ) for
2

s
+

d

γ
= 1 with d < γ < ∞.

Assume that v fulfils the energy inequality (2.2) for 0 6 t < T . Then we have u = v

on [0, T ).

R em a r k 3. In Theorem 4, v need not belong to the class (2.3). On the other

hand, every weak solution u with (2.3) fulfils the energy identity

(2.4) ‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(s)‖2
L2 ds = ‖a‖2

L2, 0 6 t 6 T.

It seems to be an interesting question whether every weak solution satisfies the energy

inequality (2.2).
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R em a r k 4. The class (2.3) is important from the view point of scaling invariance

for the Navier-Stokes equations. It can be easily seen that if (u, p) is a pair of the

solution to (1.1) on R
d × (0, T ), then so is the family {uλ, pλ}λ>0 where

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2u(λx, λ2t).

Scaling invariance means that

‖uλ‖Ls((0,∞);Lγ) = (λ1−(2/s+d/γ)‖u‖Ls((0,∞);Lγ)) = ‖u‖Ls((0,∞);Lγ) for all λ > 0

holds if and only if
2

s
+

d

γ
= 1.

We shall next deal with the critical case with s = ∞ and γ = d in (2.3).

Theorem 5 (Masuda [13], Kozono-Sohr [7]). Let a ∈ L2
σ(Rd). Let u and v be

two weak solutions of (1.1) on (0, T ). Suppose that

(2.5) u ∈ L∞((0, T ); Ld)

and that v fulfils the energy inequality (2.2) for all 0 6 t < T . Then we have u = v

on [0, T ).

R em a r k 5. Masuda [13] proved that if u ∈ L∞((0, T ); Ld) is continuous from

the right on [0, T ) in the norm of Ld, then u = v holds on [0, T ). Later on, Kozono-

Sohr [7] showed that every weak solution in L∞((0, T ); Ld) of (1.1) on (0, T ) becomes

necessarily continuous from the right in the norm of Ld.

The same result holds when for γ = +∞ we replace the assumption

u ∈ L2((0, T ); L∞)

by the weaker assumption

u ∈ L2((0, T ); BMO(Rd)d).

The replacement of the hypothesis u ∈ L2((0, T ); L∞) by u ∈ L2((0, T ); BMO(Rd)d)

was recently discussed in a similar context by Kozono and Taniuchi [8]. Moreover,

we have
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Theorem 6 (Kozono-Taniuchi). Let a ∈ L2
σ(Rd) and let u, v be two weak

solutions of (1.1) on (0, T ). Suppose that

(2.6) u ∈ L2((0, T ); BMO(Rd)d)

and that v fulfils the energy inequality (2.2) for 0 6 t < T . Then we have u = v on

[0, T ].

R em a r k 6. By Theorem 4, every weak solution in L2((0, T ); L∞) is unique.

Our result on uniqueness of the weak solution now reads:

Theorem 7. Let a ∈ L2(Rd)d with ∇ · a = 0. Assume that there exists a

solution u for the Navier-Stokes equation on (0, T )×R
d (for some T ∈ (0, +∞]) with

the initial data a so that

u ∈ L∞((0, T ); L2
σ(Rd)d) ∩ L2((0, T ); Ḣ1

σ(Rd)d)

and

∇u ∈ L2((0, T ); Ẋ1(R
d)d).

Then u is the unique Leray-Hopf solution associated with a on [0, T ).

The same result holds when the assumption ∇u ∈ L2((0, T ); Ẋ1(R
d)d) is replaced

by u ∈ L2((0, T ); BMO(Rd)d).

The following corollary, which is an immediate consequence of Theorem 7, gives a

simpler sufficient condition in terms of the Lorentz spaces.

Corollary 1. Let a ∈ L2(Rd)d with ∇ · a = 0. Assume that there exists a

solution u for the Navier-Stokes equation on (0, T )×R
d (for some T ∈ (0, +∞]) with

initial data a so that

u ∈ L∞((0, T ); L2
σ(Rd)d) ∩ L2((0, T ); Ḣ1

σ(Rd)d)

and

∇u ∈ L2((0, T ); Ld,∞(Rd)d),

where Lp,∞ denotes the usual Lorentz (weak Lp) space. Then u is the unique Leray-

Hopf solution associated with a on [0, T ).

The same result again holds when the assumption ∇u ∈ L2((0, T ); Ld,∞(Rd)d) is

replaced by u ∈ L2((0, T ); Ld(Rd)d).

The following lemmas play a fundamental role in estimating the nonlinear term.
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Lemma 4. Let f ∈ H1(Rd), g(x) = (gi(x))d
i=1 with ∇ · g = 0 and g ∈ L2(Rd)d.

Furthermore, we assume that ∇h ∈ Ẋ1(R
d). Then there exists a constant C(d) > 0

independent of f , g and h such that

(2.7)

∣∣∣∣
∫

Rd

fg · ∇h dx

∣∣∣∣ 6 C‖∇f‖L2(Rd)‖g‖L2(Rd)d‖∇h‖Ẋ1(Rd)

and

(2.8)

∣∣∣∣
∫

Rd

∇f · gh dx

∣∣∣∣ 6 C‖∇f‖L2(Rd)‖g‖L2(Rd)d‖∇h‖Ẋ1(Rd).

P r o o f. The proof is easy, due to the definition of Ẋ1(R
d). Supposing that

∇h ∈ Ẋ1(R
d) and using the Cauchy-Schwarz inequality, we get

∣∣∣∣
∫

Rd

fg · ∇h dx

∣∣∣∣ 6

(∫

Rd

|f |2|∇h|2 dx

)1/2

‖g‖L2(Rd)d

6 C‖∇h‖Ẋ1(Rd)

(∫

Rd

|∇f |2 dx

)1/2

‖g‖L2(Rd)d ,

where the constant C is independent of f , g and h. Thus the lemma is proved in the

case of (2.7). The proof is similar in the case of (2.8). �

The same result holds when we replace the assumption ∇h ∈ Ẋ1(R
d) by the

assumption h ∈ H1(Rd) ∩ BMO(Rd). Indeed, we known that

h(x) = log |x| ∈ BMO

and

|∇h|2 6
1

|x|2
,

hence by Hardy’s inequality in R
d (d > 3) we have

∫

Rd

|f(x)|2

|x|2
dx 6 C(d)

∫

Rd

|∇f |2 dx, ∀ f ∈ H1(Rd).

This remark suggests that the lemma will also hold when we replace the Ẋ1(R
d)-

norm of ∇h by the BMO-norm of h. In fact, the following is a combination of the

compensated compactness results of Coifman, Lions, Meyer and Semmes [1] and the

duality of the space BMO.
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Lemma 5. Let f ∈ H1(Rd), g = (gi(x))d
i=1 with ∇ · g = 0 and g ∈ L2(Rd)d and

let h ∈ H1(Rd) ∩ BMO(Rd). Then there exists a constant C(d) > 0 independent

of f , g and h such that

(2.9) |〈g · ∇f, h〉| 6 C‖∇f‖L2(Rd)‖g‖L2(Rd)d‖h‖BMO(Rd).

P r o o f. It is an immediate consequence of Lemma 2 and the duality inequal-

ity (1.4):

|〈g · ∇f, h〉| 6 C‖g · ∇f‖H1(Rd)‖h‖BMO(Rd)

6 C‖∇f‖L2(Rd)‖g‖L2(Rd)d‖h‖BMO(Rd).

�

Next we recall the following well-known result:

Lemma 6 (Poincaré inequality). Suppose Q is a cube in Rd of side length ̺ and

f is C2 on Q with ∇f ∈ L2(Q). There exists c independent of f such that

(2.10)

∫

Q

|f − mQf |2 dy 6 c̺2

∫

Q

|∇f(y)|2 dy,

where mQf = 1/|Q|
∫

Q f(y) dy is the integral mean of f on Q.

Combining this result with Proposition 1 gives

Proposition 2. If f ∈ H1(Rd) and ∇f ∈ Ẋ1(R
d), then

f ∈ BMO(Rd).

P r o o f. Since Ẋ1(R
d) ⊂ Ṁ2,d(R

d), it follows that

∇f ∈ Ṁ2,d(R
d).

By the classical Poincaré inequality (2.10) we have
∫

B(x,R)

|f(y) − mB(x,R)f(y)|2 dy 6 CR2

∫

B(x,R)

|∇f(y)|2 dy

6 CRd‖∇f‖2
Ṁ2,d

for every ball B(x, R) of any radius R and

‖f‖2
BMO = sup

x∈Rd

sup
R>0

1

|B(x, R)|

∫

B(x,R)

|f(y) − mB(x,R)f(y)|2 dy

6 C‖∇f‖2
Ṁ2,d

6 C‖∇f‖2
Ẋ1(Rd)

.

�
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We are now in position to prove the main result.

P r o o f of Theorem 7. Let v be another weak solution of (1.1) associated to a on

(0, T ) (with the associated pressure p) such that

v ∈ L∞((0, T ); L2
σ(Rd)d) ∩ L2((0, T ); Ḣ1

σ(Rd)d)

and

∇v ∈ L2((0, T ); Ẋ1(R
d)d).

We consider the difference w = u − v and we obtain

∂tw − ∆w + ∇pw = −[w · ∇v + u · ∇w],(2.11)

div w = 0,

w(x, 0) = 0.

If we take the inner product 〈·, ·〉 of L2 with w, we get

1

2

d

dt
‖w‖2

L2 + ‖∇w‖2
L2 = −〈w · ∇v, w〉.

Integration by parts followed by integration over time then lead to

(2.12) ‖w(t)‖2
L2 + 2

∫ t

0

‖∇w‖2
L2 dτ = −2

∫ t

0

〈w · ∇v, w〉dτ = 2

∫ t

0

〈w · ∇w, v〉dτ

for all 0 6 t < T . Lemma 4 with

g = w, ∇f = ∇w and h = v

yields directly

|〈w.∇w, v〉| 6 C‖∇w‖L2(Rd)‖w‖L2(Rd)d‖∇v‖Ẋ1(Rd).

We thus observe that by the Young inequality (ab 6 a2/2 + b2/2, a, b > 0) it follows

that

∣∣∣∣
∫ t

0

〈w · ∇w, v〉

∣∣∣∣ dτ 6
1

2

∫ t

0

‖∇w‖2
L2(Rd) dτ +

C

2

∫ t

0

‖w‖2
L2(Rd)d‖∇v‖2

Ẋ1(Rd)
dτ.

Hence by (2.12)

‖w(t)‖2
L2 +

∫ t

0

‖∇w‖2
L2 dτ 6 C

∫ t

0

‖w‖2
L2(Rd)d‖∇v‖2

Ẋ1(Rd)
dτ
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for all t > 0. Since ∇v ∈ L2((0, T ); Ẋ1(R
d)d) and w(0) = 0, it follows from the

Gronwall inequality that

‖w(t)‖2
L2 6 ‖w(0)‖2

L2 exp

(
C

∫ t

0

‖∇v‖2
Ẋ1(Rd)

dτ

)

and thus

‖w(t)‖2
L2 = 0, 0 6 t < T,

which implies the uniqueness of weak solutions.

The proof when

u ∈ L2((0, T ); BMO(Rd)d)

is quite similar. We apply Lemma 5 with

g = w ∇f = ∇w and h = v

which yields directly

|〈w · ∇w, v〉| 6 C‖∇w‖L2(Rd)‖w‖L2(Rd)d‖v‖BMO(Rd).

Using again Young’ s inequality, we get

∣∣∣∣
∫ t

0

〈w · ∇w, v〉

∣∣∣∣ dτ 6
1

2

∫ t

0

‖∇w‖2
L2(Rd) dτ +

C

2

∫ t

0

‖w‖2
L2(Rd)d‖v‖

2
BMO(Rd) dτ.

Hence it follows from (2.12) that

‖w(t)‖2
L2 +

∫ t

0

‖∇w‖2
L2 dτ 6 C

∫ t

0

‖w‖2
L2(Rd)d‖v‖

2
BMO(Rd) dτ

for all 0 6 t < T . Since v ∈ L2((0, T ); BMO(Rd)d) and w(0) = 0, the Gronwall

inequality yields

‖w(t)‖2
L2 = 0, 0 6 t < T,

from which we get the desired uniqueness. �
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