PORTUGALIAE MATHEMATICA Vol. 63 Fasc. 4 – 2006 Nova Série

UNIQUENESS PROPERTIES OF FUNCTIONALS WITH LIPSCHITZIAN DERIVATIVE

BIAGIO RICCERI

Abstract: In this paper, we prove that if X is a real Hilbert space and if $J: X \to \mathbb{R}$ is a C^1 functional whose derivative is Lipschitzian, with Lipschitz constant L, then, for every $x_0 \in X$, with $J'(x_0) \neq 0$, the following alternative holds: either the functional $x \to \frac{1}{2} ||x - x_0||^2 - \frac{1}{L} J(x)$ has a global minimum in X, or, for every $r > J(x_0)$, there exists a unique $y_r \in J^{-1}(r)$ such that $||x_0 - y_r|| = \text{dist}(x_0, J^{-1}(r))$ and, for every r > 0, the restriction of the functional J to the sphere $\{x \in X : ||x - x_0|| = r\}$ has a unique global maximum.

1 – Introduction

Let X be a real Hilbert space and J a C^1 functional on X. For $x_0 \in X$, r > 0, set $S(x_0, r) = \{x \in X : ||x - x_0|| = r\}.$

Also on the basis of the beautiful theory developed and applied by Schechter and Tintarev in [2], [3], [4] and [5], it is of particular interest to know when the restriction of J to S(0, r) has a unique maximum.

The aim of the present paper is to offer a contribution along this direction.

We show that such a uniqueness property holds (for suitable r) provided that J' is Lipschitzian and $J'(0) \neq 0$. At the same time, we also show that (for suitable s) the set $J^{-1}(s)$ has a unique element of minimal norm.

After proving the general result (Theorem 1), we present an application to a semilinear Dirichlet problem involving a Lipschitzian nonlinearity (Theorem 2).

Received: August 12, 2005.

$\mathbf{2}$ – The main result

With the usual convention $\inf \emptyset = +\infty$, our main result reads as follows:

Theorem 1. Let X be a real Hilbert space and let $J: X \to \mathbb{R}$ be a C^1 functional, with Lipschitzian derivative. Let L be the Lipschitz constant of J'.

Then, for each $x_0 \in X$ with $J'(x_0) \neq 0$, if we set

$$\alpha_0 = \inf_{x \in M_{\frac{1}{L}}} J(x)$$

and

$$\beta_0 = \operatorname{dist}(x_0, M_{\frac{1}{\tau}})$$

where $M_{\frac{1}{L}}$ is the set of all global minima of the functional $x \to \frac{1}{2} ||x-x_0||^2 - \frac{1}{L}J(x)$, we have $\alpha_0 > J(x_0)$, $\beta_0 > 0$, and the following properties hold:

(i) for every $r \in [J(x_0), \alpha_0[$ there exists a unique $y_r \in J^{-1}(r)$ such that

$$||x_0 - y_r|| = \operatorname{dist}(x_0, J^{-1}(r))$$

(ii) for every $r \in [0, \beta_0[$ the restriction of the functional J to the set $S(x_0, r)$ has a unique global maximum.

The main tool used to get Theorem 1 is the following particular case of Theorem 3 of [1].

Theorem A. Let X be a reflexive real Banach space, $I \subseteq \mathbb{R}$ an interval and $\Psi: X \times I \to \mathbb{R}$ a function such that $\Psi(x, \cdot)$ is concave and continuous for all $x \in X$, while $\Psi(\cdot, \lambda)$ is sequentially weakly lower semicontinuous and coercive, with a unique local minimum for all $\lambda \in int(I)$.

Then, one has

$$\sup_{\lambda \in I} \inf_{x \in X} \Psi(x, \lambda) = \inf_{x \in X} \sup_{\lambda \in I} \Psi(x, \lambda) . \bullet$$

We will also use the two propositions below.

Proposition 1. Let Y be a nonempty set, $f, g: Y \to \mathbb{R}$ two functions, and a, b two real numbers, with a < b. Let y_a be a global minimum of the function f - ag and y_b a global minimum of the function f - bg.

Then, one has $g(y_a) \leq g(y_b)$. If either y_a or y_b is strict and $y_a \neq y_b$, then $g(y_a) < g(y_b)$.

Proof: We have

$$f(y_a) - a g(y_a) \leq f(y_b) - a g(y_b)$$

as well as

$$f(y_b) - b g(y_b) \le f(y_a) - b g(y_a)$$
.

Summing, we get

$$-a g(y_a) - b g(y_b) \leq -a g(y_b) - b g(y_a)$$

and so

$$(b-a) g(y_a) \le (b-a) g(y_b)$$

from which the first conclusion follows. If either y_a or y_b is strict and $y_a \neq y_b$, then one of the first two inequalities is strict and hence so is the third one.

Proposition 2. Let Y be a real Hilbert space and let $\varphi: Y \to \mathbb{R}$ be a C^1 functional whose derivative is a contraction.

Then, for every $y_0 \in Y$, the functional $y \to \frac{1}{2} ||y - y_0||^2 - \varphi(y)$ is coercive and strictly convex, and so has a unique local minimum.

Proof: Let ν be the Lipschitz constant of φ' . So, $\nu < 1$, by assumption. For each $y \in Y$, we have

$$\varphi(y) = \varphi(0) + \int_0^1 \langle \varphi'(ty), y \rangle \ dt$$

and so

$$\begin{aligned} |\varphi(y)| &\leq |\varphi(0)| + \int_0^1 |\langle \varphi'(ty), y\rangle| \ dt \\ &\leq |\varphi(0)| + \|y\| \int_0^1 \|\varphi'(ty)\| \ dt \\ &\leq |\varphi(0)| + \|y\| \left(\int_0^1 \|\varphi'(ty) - \varphi'(0)\| \ dt + \|\varphi'(0)\|\right) \\ &\leq |\varphi(0)| + \frac{\nu}{2} \|y\|^2 + \|\varphi'(0)\| \|y\| \ . \end{aligned}$$

From this, we then get

$$\frac{1}{2} \|y - y_0\|^2 - \varphi(y) \ge \frac{1 - \nu}{2} \|y\|^2 - \left(\|\varphi'(0)\| + \|y_0\|\right) \|y\| + \frac{1}{2} \|y_0\|^2 - |\varphi(0)|$$

and hence

$$\lim_{\|y\|\to+\infty} \frac{1}{2} \|y-y_0\|^2 - \varphi(y) = +\infty ,$$

which yields the coercivity of the functional $y \to \frac{1}{2} ||y - y_0||^2 - \varphi(y)$. To show that it is also strictly convex, we note that its derivative is strictly monotone. In fact, for each $x, y \in X$, we have

$$\langle x - \varphi'(x) - y + \varphi'(y), x - y \rangle = \|x - y\|^2 - \langle \varphi'(x) - \varphi'(y), x - y \rangle$$

$$\geq \|x - y\|^2 - \|\varphi'(x) - \varphi'(y)\| \|x - y\|$$

$$\geq (1 - \nu) \|x - y\|^2 . \blacksquare$$

Proof of Theorem 1: First, note that, for each $\gamma > L$, the operator $\frac{1}{\gamma}J'$ is a contraction, and so, by Proposition 2, the functional $x \to \frac{1}{2}||x-x_0||^2 - \frac{1}{\gamma}J(x)$ has a unique global minimum, say $x_{\frac{1}{\gamma}}$. Fix $\gamma > L$. By Proposition 1, we have $J(x_0) \leq J(x_{\frac{1}{\gamma}})$. We claim that $J(x_0) < J(x_{\frac{1}{\gamma}})$. Arguing by contradiction, assume that $J(x_0) = J(x_{\frac{1}{\gamma}})$. Then, by Proposition 1 again, we would have $x_{\frac{1}{\gamma}} = x_0$. Consequently, the derivative of the functional $x \to \frac{1}{2}||x-x_0||^2 - \frac{1}{\gamma}J(x)$ would vanish at x_0 , that is $-\frac{1}{\gamma}J'(x_0) = 0$, against one of the hypotheses. Then, we have

$$J(x_0) < J(x_{\underline{1}}) \le J(x)$$

for all $x \in M_{\frac{1}{L}}$, and so $J(x_0) < \alpha_0$. Clearly, $x_{\frac{1}{\gamma}}$ is the global minimum of the functional $x \to \frac{\gamma}{2} ||x - x_0||^2 - J(x)$, while any $z \in M_{\frac{1}{L}}$ is a global minimum of the functional $x \to \frac{L}{2} ||x - x_0||^2 - J(x)$. Consequently, if we apply Proposition 1 again (with f(x) = -J(x), $g(x) = -||x - x_0||^2$, $a = \frac{L}{2}$, $b = \frac{\gamma}{2}$), for any $z \in M_{\frac{1}{L}}$, we get

$$-\|z-x_0\|^2 \leq -\|x_{\frac{1}{2}}-x_0\|^2$$

and so

$$\beta_0 \geq ||x_{\frac{1}{2}} - x_0|| > 0$$
.

Now, to prove (i), fix $r \in [J(x_0), \alpha_0[$ and consider the function $\Psi \colon X \times [0, \frac{1}{L}] \to \mathbb{R}$ defined by

$$\Psi(x,\lambda) = \frac{1}{2} \|x - x_0\|^2 + \lambda \big(r - J(x)\big)$$

for all $(x, \lambda) \in X \times [0, \frac{1}{L}]$. Taken Proposition 2 into account, it is clear that the function Ψ satisfies all the assumptions of Theorem A. Consequently, we have

$$\sup_{\lambda \in [0,\frac{1}{L}]} \inf_{x \in X} \Psi(x,\lambda) = \inf_{x \in X} \sup_{\lambda \in [0,\frac{1}{L}]} \Psi(x,\lambda) .$$

The functional $\sup_{\lambda \in [0, \frac{1}{L}]} \Psi(\cdot, \lambda)$ is weakly lower semicontinuous and coercive, and so there exists $x^* \in X$ such that

$$\sup_{\lambda \in [0,\frac{1}{L}]} \Psi(x^*, \lambda) = \inf_{x \in X} \sup_{\lambda \in [0,\frac{1}{L}]} \Psi(x, \lambda) .$$

Also, the function $\inf_{x \in X} \Psi(x, \cdot)$ is upper semicontinuous, and so there exists $\lambda^* \in [0, \frac{1}{L}]$ such that

$$\inf_{x \in X} \Psi(x, \lambda^*) = \sup_{\lambda \in [0, \frac{1}{L}]} \inf_{x \in X} \Psi(x, \lambda) .$$

Hence, from this it follows that

$$\frac{1}{2} \|x^* - x_0\|^2 + \lambda^* (r - J(x^*)) = \inf_{x \in X} \frac{1}{2} \|x - x_0\|^2 + \lambda^* (r - J(x))$$
$$= \sup_{\lambda \in [0, \frac{1}{L}]} \frac{1}{2} \|x^* - x_0\|^2 + \lambda (r - J(x^*)).$$

We claim that $J(x^*) = r$. Indeed, if it were $J(x^*) < r$, then we would have $\lambda^* = \frac{1}{L}$, and so $x^* \in M_{\frac{1}{L}}$, against the fact that $r < \alpha_0$. If it were $J(x^*) > r$, then we would have $\lambda^* = 0$, and so $x^* = x_0$, against the fact that $J(x_0) < r$. We then have

$$\frac{1}{2} \|x^* - x_0\|^2 = \inf_{x \in X} \frac{1}{2} \|x - x_0\|^2 + \lambda^* (r - J(x)) .$$

This implies, on one hand, that $\lambda^* < \frac{1}{L}$ (since $r < \alpha_0$) and, on the other hand, that each global minimum (and x^* is so) of the restriction to $J^{-1}(r)$ of the functional $x \to \frac{1}{2} ||x - x_0||^2$ is a global minimum in X of the functional $x \to \frac{1}{2} ||x - x_0||^2 - \lambda^* J(x)$. But this functional (just because $\lambda^* < \frac{1}{L}$) has a unique global minimum, and so (i) follows. Let us now prove (ii). To this end, fix $r \in [0, \beta_0[$ and consider the function $\Phi: X \times [L, +\infty[\to \mathbb{R}]$ defined by

$$\Phi(x,\lambda) = \frac{\lambda}{2} \left(\|x - x_0\|^2 - r^2 \right) - J(x)$$

for all $(x, \lambda) \in X \times [L, +\infty[$. Applying Theorem A, we get

$$\sup_{\lambda \in [L, +\infty[} \inf_{x \in X} \Phi(x, \lambda) = \inf_{x \in X} \sup_{\lambda \in [L, +\infty[} \Phi(x, \lambda) .$$

Arguing as before (note, in particular, that $\lim_{\lambda \to +\infty} \inf_{x \in X} \Phi(x, \lambda) = -\infty$), we get $\hat{x} \in X$ and $\hat{\lambda} \in [L, +\infty[$ such that

$$\sup_{\lambda \in [L, +\infty[} \Phi(\hat{x}, \lambda) = \inf_{x \in X} \sup_{\lambda \in [L, +\infty[} \Phi(x, \lambda))$$

and

$$\inf_{x \in X} \Phi(x, \hat{\lambda}) = \sup_{\lambda \in [L, +\infty[} \inf_{x \in X} \Phi(x, \lambda) .$$

So that

$$\begin{aligned} \hat{\lambda}_{2} \left(\|\hat{x} - x_{0}\|^{2} - r^{2} \right) - J(\hat{x}) &= \inf_{x \in X} \frac{\hat{\lambda}}{2} \left(\|x - x_{0}\|^{2} - r^{2} \right) - J(x) \\ &= \sup_{\lambda \in [L, +\infty[} \frac{\lambda}{2} \left(\|\hat{x} - x_{0}\|^{2} - r^{2} \right) - J(\hat{x}) \;. \end{aligned}$$

From this it follows at once that $\|\hat{x} - x_0\|^2 \leq r^2$. But, if it were $\|\hat{x} - x_0\|^2 < r^2$ we would have $\hat{\lambda} = L$. This, in turn, would imply that $\hat{x} \in M_{\frac{1}{L}}$, against the fact that $r < \beta_0$. Hence, we have $\|\hat{x} - x_0\|^2 = r^2$. Consequently

$$-\frac{1}{\hat{\lambda}}J(\hat{x}) = \inf_{x \in X} \frac{1}{2} (\|x - x_0\|^2 - r^2) - \frac{1}{\hat{\lambda}}J(x) .$$

This implies, on one hand, that $\hat{\lambda} > L$ (since $r < \beta_0$) and, on the other hand, that each global maximum (and \hat{x} is so) of the restriction of the functional J to the set $S(x_0, r)$ is a global minimum in X of the functional $x \to \frac{1}{2} ||x - x_0||^2 - \frac{1}{\hat{\lambda}} J(x)$. Since $\hat{\lambda} > L$, this functional has a unique global minimum, and so (ii) follows.

Remark 1. It is clear from the proof that the assumption $J'(x_0) \neq 0$ has been used to prove $\alpha_0 > J(x_0)$ and $\beta_0 > 0$, while it has no role in showing (i) and (ii). However, when $J'(x_0) = 0$, it can happen that $\alpha_0 = J(x_0)$, $\beta_0 = 0$, with (i) (resp. (ii)) holding for no $r > \alpha_0$ (resp. for no r > 0). To see this, take, for instance, $X = \mathbb{R}$, $J(x) = \frac{1}{2}x^2$, $x_0 = 0$. \Box

3 – An application

From now on, Ω is an open, bounded and connected subset of \mathbb{R}^n with sufficiently smooth boundary, and X denotes the space $W_0^{1,2}(\Omega)$, with the usual norm

$$||u|| = \left(\int_{\Omega} |\nabla u(x)|^2 \, dx\right)^{\frac{1}{2}}$$

Moreover, $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitzian function, with Lipschitz constant μ .

Let $\lambda \in \mathbb{R}$. As usual, a classical solution of the problem

$$(P_{\lambda}) \qquad \begin{cases} -\Delta u = \lambda f(u) & \text{in } \Omega \\ \\ u_{|\partial\Omega} = 0 \end{cases}$$

is any $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, zero on $\partial\Omega$, which satisfies the equation pointwise in Ω .

For each $u \in X$, put

$$J(u) = \int_{\Omega} \left(\int_0^{u(x)} f(\xi) \, d\xi \right) dx \; .$$

By a classical result, the functional J is continuously Gâteaux differentiable and one has

$$J'(u)(v) = \int_{\Omega} f(u(x)) v(x) \, dx$$

for all $u, v \in X$. Moreover, by a standard regularity result, the critical points in X of the functional $u \to \frac{1}{2} \|u\|^2 - \lambda J(u)$ are exactly the classical solutions of problem (P_{λ}) .

Denote by λ_1 the first eigenvalue of the problem

$$\begin{cases} -\Delta u = \lambda u & \text{ in } \Omega \\ \\ u_{|\partial\Omega} = 0 \ . \end{cases}$$

Recall that $||u||_{L^2(\Omega)} \leq \lambda_1^{-\frac{1}{2}} ||u||$ for all $u \in X$.

We are now in a position to state the following

Theorem 2. Assume that $f(0) \neq 0$. For each r > 0, put

$$\gamma(r) = \sup_{\|u\|^2 = r} J(u)$$

Further, put

$$\delta_0 = \inf_{u \in M} \|u\|^2$$

where M is the set of all global minima in X of the functional $u \to \frac{1}{2} ||u||^2 - \frac{\lambda_1}{\mu} J(u)$. Then, $\delta_0 > 0$, the function γ is C^1 and γ' is positive in $]0, \delta_0[$ and there exists a continuous function $\varphi: [0, \delta_0] \to X$ such that, for each $r \in [0, \delta_0], \varphi(r)$ is a classical solution of the problem

$$\begin{cases} -\Delta u = \frac{1}{2\,\gamma'(r)}\,f(u) & \text{ in } \ \Omega \\ \\ u_{\mid \partial\Omega} = 0 \end{cases}$$

satisfying $\|\varphi(r)\|^2 = r$ and $J(\varphi(r)) = \gamma(r)$.

Proof: Fix $u, v, w \in X$, with ||w|| = 1. We have

$$\begin{aligned} \left| J'(u)(w) - J'(v)(w) \right| &\leq \int_{\Omega} \left| f(u(x)) - f(v(x)) \right| |w(x)| \, dx \\ &\leq \mu \| u - v \|_{L^{2}(\Omega)} \| w \|_{L^{2}(\Omega)} \\ &\leq \frac{\mu}{\lambda_{1}} \| u - v \| \; , \end{aligned}$$

and hence

$$||J'(u) - J'(v)|| \le \frac{\mu}{\lambda_1} ||u - v||.$$

That is, J' is Lipschitzian in X, with Lipschitz constant $\frac{\mu}{\lambda_1}$. Moreover, since $f(0) \neq 0$, we have $J'(u) \neq 0$ for all $u \in X$. Then, thanks to Theorem 1, for each $r \in [0, \delta_0[$, the restriction of the functional J to the sphere $S(0, \sqrt{r})$ has a unique maximum. At this point, taken into account that $\gamma(r) > 0$ for all r > 0, the conclusion follows directly from Lemma 2.1 and Corollary 2.13 of [2].

REFERENCES

- [1] RICCERI, B. Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set, *Topology Appl.*, 153 (2006), 3308–3312.
- [2] SCHECHTER, M. and TINTAREV, K. Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, *Differential Integral Equations*, 3 (1990), 889–899.
- [3] SCHECHTER, M. and TINTAREV, K. Points of spherical maxima and solvability of semilinear elliptic equations, *Canad. J. Math.*, 43 (1991), 825–831.
- [4] SCHECHTER, M. and TINTAREV, K. Eigenvalues for semilinear boundary value problems, Arch. Rational Mech. Anal., 113 (1991), 197–208.
- [5] SCHECHTER, M. and TINTAREV, K. Families of 'first eigenfunctions' for semilinear elliptic eigenvalue problems, *Duke Math. J.*, 62 (1991), 453–465.

Biagio Ricceri, Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania — ITALY E-mail: ricceri@dmi.unict.it