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Abstract: In this paper, we prove that if X is a real Hilbert space and if J : X→R

is a C1 functional whose derivative is Lipschitzian, with Lipschitz constant L, then,

for every x0 ∈ X, with J ′(x0) 6= 0, the following alternative holds: either the functional

x → 1

2
‖x − x0‖2 − 1

L
J(x) has a global minimum in X, or, for every r > J(x0), there

exists a unique yr ∈ J−1(r) such that ‖x0 − yr‖ = dist(x0, J
−1(r)) and, for every r > 0,

the restriction of the functional J to the sphere {x ∈ X : ‖x − x0‖ = r} has a unique

global maximum.

1 – Introduction

Let X be a real Hilbert space and J a C1 functional on X. For x0 ∈ X, r > 0,

set S(x0, r) = {x ∈ X : ‖x − x0‖ = r}.
Also on the basis of the beautiful theory developed and applied by Schechter

and Tintarev in [2], [3], [4] and [5], it is of particular interest to know when the

restriction of J to S(0, r) has a unique maximum.

The aim of the present paper is to offer a contribution along this direction.

We show that such a uniqueness property holds (for suitable r) provided that

J ′ is Lipschitzian and J ′(0) 6=0. At the same time, we also show that (for suitable s)

the set J−1(s) has a unique element of minimal norm.

After proving the general result (Theorem 1), we present an application to

a semilinear Dirichlet problem involving a Lipschitzian nonlinearity (Theorem 2).
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2 – The main result

With the usual convention inf ∅ = +∞, our main result reads as follows:

Theorem 1. Let X be a real Hilbert space and let J : X→R be a C1 func-

tional, with Lipschitzian derivative. Let L be the Lipschitz constant of J ′.

Then, for each x0 ∈ X with J ′(x0) 6= 0, if we set

α0 = inf
x∈M 1

L

J(x)

and

β0 = dist(x0, M 1

L
) ,

where M 1

L
is the set of all global minima of the functional x → 1

2‖x−x0‖2− 1
L
J(x),

we have α0 >J(x0), β0 >0, and the following properties hold:

(i) for every r ∈ ]J(x0), α0[ there exists a unique yr ∈ J−1(r) such that

‖x0 − yr‖ = dist
(

x0, J
−1(r)

)

;

(ii) for every r ∈ ]0, β0[ the restriction of the functional J to the set S(x0, r)

has a unique global maximum.

The main tool used to get Theorem 1 is the following particular case of

Theorem 3 of [1].

Theorem A. Let X be a reflexive real Banach space, I ⊆ R an interval

and Ψ: X×I → R a function such that Ψ(x, ·) is concave and continuous for all

x ∈ X, while Ψ(·, λ) is sequentially weakly lower semicontinuous and coercive,

with a unique local minimum for all λ ∈ int(I).

Then, one has

sup
λ∈I

inf
x∈X

Ψ(x, λ) = inf
x∈X

sup
λ∈I

Ψ(x, λ) .

We will also use the two propositions below.

Proposition 1. Let Y be a nonempty set, f, g : Y → R two functions, and

a, b two real numbers, with a < b. Let ya be a global minimum of the function

f− a g and yb a global minimum of the function f− b g.

Then, one has g(ya) ≤ g(yb). If either ya or yb is strict and ya 6= yb, then

g(ya) < g(yb).
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Proof: We have

f(ya) − a g(ya) ≤ f(yb) − a g(yb)

as well as

f(yb) − b g(yb) ≤ f(ya) − b g(ya) .

Summing, we get

−a g(ya) − b g(yb) ≤ −a g(yb) − b g(ya)

and so

(b−a) g(ya) ≤ (b−a) g(yb)

from which the first conclusion follows. If either ya or yb is strict and ya 6= yb,

then one of the first two inequalities is strict and hence so is the third one.

Proposition 2. Let Y be a real Hilbert space and let ϕ : Y → R be a

C1 functional whose derivative is a contraction.

Then, for every y0 ∈ Y , the functional y → 1
2‖y − y0‖2 − ϕ(y) is coercive

and strictly convex, and so has a unique local minimum.

Proof: Let ν be the Lipschitz constant of ϕ′. So, ν < 1, by assumption.

For each y ∈ Y , we have

ϕ(y) = ϕ(0) +

∫ 1

0
〈ϕ′(ty), y〉 dt

and so

|ϕ(y)| ≤ |ϕ(0)| +

∫ 1

0
|〈ϕ′(ty), y〉| dt

≤ |ϕ(0)| + ‖y‖
∫ 1

0
‖ϕ′(ty)‖ dt

≤ |ϕ(0)| + ‖y‖
(

∫ 1

0
‖ϕ′(ty) − ϕ′(0)‖ dt + ‖ϕ′(0)‖

)

≤ |ϕ(0)| +
ν

2
‖y‖2 + ‖ϕ′(0)‖ ‖y‖ .

From this, we then get

1

2
‖y − y0‖2 − ϕ(y) ≥ 1−ν

2
‖y‖2 −

(

‖ϕ′(0)‖ + ‖y0‖
)

‖y‖ +
1

2
‖y0‖2 − |ϕ(0)|
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and hence

lim
‖y‖→+∞

1

2
‖y − y0‖2 − ϕ(y) = +∞ ,

which yields the coercivity of the functional y → 1
2‖y − y0‖2 − ϕ(y). To show

that it is also strictly convex, we note that its derivative is strictly monotone.

In fact, for each x, y ∈ X, we have

〈

x − ϕ′(x) − y + ϕ′(y), x − y
〉

= ‖x − y‖2 −
〈

ϕ′(x) − ϕ′(y), x − y
〉

≥ ‖x − y‖2 − ‖ϕ′(x) − ϕ′(y)‖ ‖x − y‖
≥ (1 − ν) ‖x − y‖2 .

Proof of Theorem 1: First, note that, for each γ > L, the operator 1
γ

J ′

is a contraction, and so, by Proposition 2, the functional x → 1
2‖x−x0‖2− 1

γ
J(x)

has a unique global minimum, say x 1

γ
. Fix γ > L. By Proposition 1, we have

J(x0) ≤ J(x 1

γ
). We claim that J(x0) < J(x 1

γ
). Arguing by contradiction, assume

that J(x0) = J(x 1

γ
). Then, by Proposition 1 again, we would have x 1

γ
= x0.

Consequently, the derivative of the functional x → 1
2‖x − x0‖2 − 1

γ
J(x) would

vanish at x0, that is − 1
γ

J ′(x0) = 0, against one of the hypotheses. Then, we

have

J(x0) < J(x 1

γ
) ≤ J(x)

for all x ∈ M 1

L
, and so J(x0) < α0. Clearly, x 1

γ
is the global minimum of the

functional x → γ
2‖x − x0‖2 − J(x), while any z ∈ M 1

L
is a global minimum of

the functional x → L
2 ‖x − x0‖2 − J(x). Consequently, if we apply Proposition 1

again (with f(x)=−J(x), g(x)=−‖x−x0‖2, a = L
2 , b = γ

2 ), for any z ∈ M 1

L
,

we get

−‖z − x0‖2 ≤ −‖x 1

γ
− x0‖2 ,

and so

β0 ≥ ‖x 1

γ
− x0‖ > 0 .

Now, to prove (i), fix r ∈ ]J(x0), α0[ and consider the function Ψ: X× [0, 1
L
] → R

defined by

Ψ(x, λ) =
1

2
‖x−x0‖2 + λ

(

r−J(x)
)

for all (x, λ) ∈ X×[0, 1
L
]. Taken Proposition 2 into account, it is clear that the

function Ψ satisfies all the assumptions of Theorem A. Consequently, we have

sup
λ∈[0, 1

L
]

inf
x∈X

Ψ(x, λ) = inf
x∈X

sup
λ∈[0, 1

L
]

Ψ(x, λ) .
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The functional supλ∈[0, 1

L
] Ψ(·, λ) is weakly lower semicontinuous and coercive,

and so there exists x∗ ∈ X such that

sup
λ∈[0, 1

L
]

Ψ(x∗, λ) = inf
x∈X

sup
λ∈[0, 1

L
]

Ψ(x, λ) .

Also, the function infx∈X Ψ(x, ·) is upper semicontinuous, and so there exists

λ∗ ∈ [0, 1
L
] such that

inf
x∈X

Ψ(x, λ∗) = sup
λ∈[0, 1

L
]

inf
x∈X

Ψ(x, λ) .

Hence, from this it follows that

1

2
‖x∗− x0‖2 + λ∗

(

r−J(x∗)
)

= inf
x∈X

1

2
‖x − x0‖2 + λ∗

(

r − J(x)
)

= sup
λ∈[0, 1

L
]

1

2
‖x∗− x0‖2 + λ

(

r − J(x∗)
)

.

We claim that J(x∗) = r. Indeed, if it were J(x∗) < r, then we would have

λ∗ = 1
L
, and so x∗ ∈ M 1

L
, against the fact that r < α0. If it were J(x∗) > r,

then we would have λ∗= 0, and so x∗= x0, against the fact that J(x0) < r.

We then have

1

2
‖x∗− x0‖2 = inf

x∈X

1

2
‖x − x0‖2 + λ∗

(

r−J(x)
)

.

This implies, on one hand, that λ∗ < 1
L

(since r < α0) and, on the other

hand, that each global minimum (and x∗ is so) of the restriction to J−1(r)

of the functional x → 1
2‖x − x0‖2 is a global minimum in X of the functional

x → 1
2‖x − x0‖2 − λ∗J(x). But this functional (just because λ∗< 1

L
) has a

unique global minimum, and so (i) follows. Let us now prove (ii). To this end,

fix r ∈ ]0, β0[ and consider the function Φ: X× [L,+∞[ → R defined by

Φ(x, λ) =
λ

2

(

‖x−x0‖2 − r2
)

− J(x)

for all (x, λ) ∈ X× [L,+∞[. Applying Theorem A, we get

sup
λ∈[L,+∞[

inf
x∈X

Φ(x, λ) = inf
x∈X

sup
λ∈[L,+∞[

Φ(x, λ) .

Arguing as before (note, in particular, that lim
λ→+∞

inf
x∈X

Φ(x, λ) = −∞), we get

x̂ ∈ X and λ̂ ∈ [L,+∞[ such that

sup
λ∈[L,+∞[

Φ(x̂, λ) = inf
x∈X

sup
λ∈[L,+∞[

Φ(x, λ)
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and

inf
x∈X

Φ(x, λ̂) = sup
λ∈[L,+∞[

inf
x∈X

Φ(x, λ) .

So that

λ̂

2

(

‖x̂ − x0‖2 − r2
)

− J(x̂) = inf
x∈X

λ̂

2

(

‖x − x0‖2 − r2
)

− J(x)

= sup
λ∈[L,+∞[

λ

2

(

‖x̂ − x0‖2 − r2
)

− J(x̂) .

From this it follows at once that ‖x̂ − x0‖2 ≤ r2. But, if it were ‖x̂ − x0‖2 < r2

we would have λ̂ = L. This, in turn, would imply that x̂ ∈ M 1

L
, against the fact

that r < β0. Hence, we have ‖x̂ − x0‖2 = r2. Consequently

− 1

λ̂
J(x̂) = inf

x∈X

1

2

(

‖x − x0‖2 − r2
)

− 1

λ̂
J(x) .

This implies, on one hand, that λ̂ > L (since r < β0) and, on the other hand, that

each global maximum (and x̂ is so) of the restriction of the functional J to the

set S(x0, r) is a global minimum in X of the functional x → 1
2‖x−x0‖2 − 1

λ̂
J(x).

Since λ̂ > L, this functional has a unique global minimum, and so (ii) follows.

Remark 1. It is clear from the proof that the assumption J ′(x0) 6= 0 has

been used to prove α0 > J(x0) and β0 > 0, while it has no role in showing (i)

and (ii). However, when J ′(x0) = 0, it can happen that α0 = J(x0), β0 = 0,

with (i) (resp. (ii)) holding for no r > α0 (resp. for no r > 0). To see this, take,

for instance, X = R, J(x) = 1
2 x2, x0 = 0.

3 – An application

From now on, Ω is an open, bounded and connected subset of R
n with suf-

ficiently smooth boundary, and X denotes the space W
1,2
0 (Ω), with the usual

norm

‖u‖ =

(
∫

Ω
|∇u(x)|2 dx

)
1

2

.

Moreover, f : R → R is a Lipschitzian function, with Lipschitz constant µ.

Let λ ∈ R. As usual, a classical solution of the problem

(Pλ)







−∆u = λf(u) in Ω

u|∂Ω = 0
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is any u∈C2(Ω)∩C0(Ω), zero on ∂Ω, which satisfies the equation pointwise in Ω.

For each u ∈ X, put

J(u) =

∫

Ω

(
∫ u(x)

0
f(ξ) dξ

)

dx .

By a classical result, the functional J is continuously Gâteaux differentiable

and one has

J ′(u)(v) =

∫

Ω
f(u(x)) v(x) dx

for all u, v ∈ X. Moreover, by a standard regularity result, the critical points

in X of the functional u → 1
2‖u‖2 − λ J(u) are exactly the classical solutions of

problem (Pλ).

Denote by λ1 the first eigenvalue of the problem







−∆u = λu in Ω

u|∂Ω = 0 .

Recall that ‖u‖L2(Ω) ≤ λ
− 1

2

1 ‖u‖ for all u ∈ X.

We are now in a position to state the following

Theorem 2. Assume that f(0) 6= 0. For each r > 0, put

γ(r) = sup
‖u‖2=r

J(u) .

Further, put

δ0 = inf
u∈M

‖u‖2

where M is the set of all global minima in X of the functional u→ 1
2‖u‖2− λ1

µ
J(u).

Then, δ0 > 0, the function γ is C1 and γ′ is positive in ]0, δ0[ and there exists

a continuous function ϕ : ]0, δ0[→X such that, for each r ∈ ]0, δ0[, ϕ(r) is a

classical solution of the problem











−∆u =
1

2 γ′(r)
f(u) in Ω

u|∂Ω = 0

satisfying ‖ϕ(r)‖2 = r and J(ϕ(r)) = γ(r).



400 BIAGIO RICCERI

Proof: Fix u, v, w ∈ X, with ‖w‖ = 1. We have

∣

∣J ′(u)(w) − J ′(v)(w)
∣

∣ ≤
∫

Ω

∣

∣f(u(x)) − f(v(x))
∣

∣ |w(x)| dx

≤ µ ‖u − v‖L2(Ω) ‖w‖L2(Ω)

≤ µ

λ1
‖u − v‖ ,

and hence
∥

∥J ′(u) − J ′(v)
∥

∥ ≤ µ

λ1
‖u − v‖ .

That is, J ′ is Lipschitzian in X, with Lipschitz constant µ
λ1

. Moreover, since

f(0) 6= 0, we have J ′(u) 6= 0 for all u ∈ X. Then, thanks to Theorem 1, for

each r ∈ ]0, δ0[, the restriction of the functional J to the sphere S(0,
√

r) has a

unique maximum. At this point, taken into account that γ(r) > 0 for all r > 0,

the conclusion follows directly from Lemma 2.1 and Corollary 2.13 of [2].
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