UNIQUENESS PROPERTIES OF FUNCTIONALS WITH LIPSCHITZIAN DERIVATIVE

Biagio Ricceri

Abstract

In this paper, we prove that if X is a real Hilbert space and if $J: X \rightarrow \mathbb{R}$ is a C^{1} functional whose derivative is Lipschitzian, with Lipschitz constant L, then, for every $x_{0} \in X$, with $J^{\prime}\left(x_{0}\right) \neq 0$, the following alternative holds: either the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}-\frac{1}{L} J(x)$ has a global minimum in X, or, for every $r>J\left(x_{0}\right)$, there exists a unique $y_{r} \in J^{-1}(r)$ such that $\left\|x_{0}-y_{r}\right\|=\operatorname{dist}\left(x_{0}, J^{-1}(r)\right)$ and, for every $r>0$, the restriction of the functional J to the sphere $\left\{x \in X:\left\|x-x_{0}\right\|=r\right\}$ has a unique global maximum.

1 - Introduction

Let X be a real Hilbert space and J a C^{1} functional on X. For $x_{0} \in X, r>0$, set $S\left(x_{0}, r\right)=\left\{x \in X:\left\|x-x_{0}\right\|=r\right\}$.

Also on the basis of the beautiful theory developed and applied by Schechter and Tintarev in [2], [3], [4] and [5], it is of particular interest to know when the restriction of J to $S(0, r)$ has a unique maximum.

The aim of the present paper is to offer a contribution along this direction.
We show that such a uniqueness property holds (for suitable r) provided that J^{\prime} is Lipschitzian and $J^{\prime}(0) \neq 0$. At the same time, we also show that (for suitable s) the set $J^{-1}(s)$ has a unique element of minimal norm.

After proving the general result (Theorem 1), we present an application to a semilinear Dirichlet problem involving a Lipschitzian nonlinearity (Theorem 2).

2 - The main result

With the usual convention $\inf \emptyset=+\infty$, our main result reads as follows:

Theorem 1. Let X be a real Hilbert space and let $J: X \rightarrow \mathbb{R}$ be a C^{1} functional, with Lipschitzian derivative. Let L be the Lipschitz constant of J^{\prime}.

Then, for each $x_{0} \in X$ with $J^{\prime}\left(x_{0}\right) \neq 0$, if we set
and

$$
\alpha_{0}=\inf _{x \in M_{\frac{1}{L}}} J(x)
$$

$$
\beta_{0}=\operatorname{dist}\left(x_{0}, M_{\frac{1}{L}}\right),
$$

where $M_{\frac{1}{L}}$ is the set of all global minima of the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}-\frac{1}{L} J(x)$, we have $\alpha_{0}>J\left(x_{0}\right), \beta_{0}>0$, and the following properties hold:
(i) for every $r \in] J\left(x_{0}\right), \alpha_{0}$ [there exists a unique $y_{r} \in J^{-1}(r)$ such that

$$
\left\|x_{0}-y_{r}\right\|=\operatorname{dist}\left(x_{0}, J^{-1}(r)\right)
$$

(ii) for every $r \in] 0, \beta_{0}\left[\right.$ the restriction of the functional J to the set $S\left(x_{0}, r\right)$ has a unique global maximum.

The main tool used to get Theorem 1 is the following particular case of Theorem 3 of [1].

Theorem A. Let X be a reflexive real Banach space, $I \subseteq \mathbb{R}$ an interval and $\Psi: X \times I \rightarrow \mathbb{R}$ a function such that $\Psi(x, \cdot)$ is concave and continuous for all $x \in X$, while $\Psi(\cdot, \lambda)$ is sequentially weakly lower semicontinuous and coercive, with a unique local minimum for all $\lambda \in \operatorname{int}(I)$.

Then, one has

$$
\sup _{\lambda \in I} \inf _{x \in X} \Psi(x, \lambda)=\inf _{x \in X} \sup _{\lambda \in I} \Psi(x, \lambda)
$$

We will also use the two propositions below.

Proposition 1. Let Y be a nonempty set, $f, g: Y \rightarrow \mathbb{R}$ two functions, and a, b two real numbers, with $a<b$. Let y_{a} be a global minimum of the function $f-a g$ and y_{b} a global minimum of the function $f-b g$.

Then, one has $g\left(y_{a}\right) \leq g\left(y_{b}\right)$. If either y_{a} or y_{b} is strict and $y_{a} \neq y_{b}$, then $g\left(y_{a}\right)<g\left(y_{b}\right)$.

Proof: We have

$$
f\left(y_{a}\right)-a g\left(y_{a}\right) \leq f\left(y_{b}\right)-a g\left(y_{b}\right)
$$

as well as

$$
f\left(y_{b}\right)-b g\left(y_{b}\right) \leq f\left(y_{a}\right)-b g\left(y_{a}\right) .
$$

Summing, we get

$$
-a g\left(y_{a}\right)-b g\left(y_{b}\right) \leq-a g\left(y_{b}\right)-b g\left(y_{a}\right)
$$

and so

$$
(b-a) g\left(y_{a}\right) \leq(b-a) g\left(y_{b}\right)
$$

from which the first conclusion follows. If either y_{a} or y_{b} is strict and $y_{a} \neq y_{b}$, then one of the first two inequalities is strict and hence so is the third one.

Proposition 2. Let Y be a real Hilbert space and let $\varphi: Y \rightarrow \mathbb{R}$ be a C^{1} functional whose derivative is a contraction.

Then, for every $y_{0} \in Y$, the functional $y \rightarrow \frac{1}{2}\left\|y-y_{0}\right\|^{2}-\varphi(y)$ is coercive and strictly convex, and so has a unique local minimum.

Proof: Let ν be the Lipschitz constant of φ^{\prime}. So, $\nu<1$, by assumption. For each $y \in Y$, we have

$$
\varphi(y)=\varphi(0)+\int_{0}^{1}\left\langle\varphi^{\prime}(t y), y\right\rangle d t
$$

and so

$$
\begin{aligned}
|\varphi(y)| & \leq|\varphi(0)|+\int_{0}^{1}\left|\left\langle\varphi^{\prime}(t y), y\right\rangle\right| d t \\
& \leq|\varphi(0)|+\|y\| \int_{0}^{1}\left\|\varphi^{\prime}(t y)\right\| d t \\
& \leq|\varphi(0)|+\|y\|\left(\int_{0}^{1}\left\|\varphi^{\prime}(t y)-\varphi^{\prime}(0)\right\| d t+\left\|\varphi^{\prime}(0)\right\|\right) \\
& \leq|\varphi(0)|+\frac{\nu}{2}\|y\|^{2}+\left\|\varphi^{\prime}(0)\right\|\|y\|
\end{aligned}
$$

From this, we then get

$$
\frac{1}{2}\left\|y-y_{0}\right\|^{2}-\varphi(y) \geq \frac{1-\nu}{2}\|y\|^{2}-\left(\left\|\varphi^{\prime}(0)\right\|+\left\|y_{0}\right\|\right)\|y\|+\frac{1}{2}\left\|y_{0}\right\|^{2}-|\varphi(0)|
$$

and hence

$$
\lim _{\|y\| \rightarrow+\infty} \frac{1}{2}\left\|y-y_{0}\right\|^{2}-\varphi(y)=+\infty
$$

which yields the coercivity of the functional $y \rightarrow \frac{1}{2}\left\|y-y_{0}\right\|^{2}-\varphi(y)$. To show that it is also strictly convex, we note that its derivative is strictly monotone. In fact, for each $x, y \in X$, we have

$$
\begin{aligned}
\left\langle x-\varphi^{\prime}(x)-y+\varphi^{\prime}(y), x-y\right\rangle & =\|x-y\|^{2}-\left\langle\varphi^{\prime}(x)-\varphi^{\prime}(y), x-y\right\rangle \\
& \geq\|x-y\|^{2}-\left\|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right\|\|x-y\| \\
& \geq(1-\nu)\|x-y\|^{2} .
\end{aligned}
$$

Proof of Theorem 1: First, note that, for each $\gamma>L$, the operator $\frac{1}{\gamma} J^{\prime}$ is a contraction, and so, by Proposition 2, the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}-\frac{1}{\gamma} J(x)$ has a unique global minimum, say $x_{\frac{1}{\gamma}}$. Fix $\gamma>L$. By Proposition 1, we have $J\left(x_{0}\right) \leq J\left(x_{\frac{1}{\gamma}}\right)$. We claim that $J\left(x_{0}\right)<J\left(x_{\frac{1}{\gamma}}\right)$. Arguing by contradiction, assume that $J\left(x_{0}\right)=J\left(x_{\frac{1}{\gamma}}\right)$. Then, by Proposition 1 again, we would have $x_{\frac{1}{\gamma}}=x_{0}$. Consequently, the derivative of the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}-\frac{1}{\gamma} J(x)$ would vanish at x_{0}, that is $-\frac{1}{\gamma} J^{\prime}\left(x_{0}\right)=0$, against one of the hypotheses. Then, we have

$$
J\left(x_{0}\right)<J\left(x_{\frac{1}{\gamma}}\right) \leq J(x)
$$

for all $x \in M_{\frac{1}{L}}$, and so $J\left(x_{0}\right)<\alpha_{0}$. Clearly, $x_{\frac{1}{\gamma}}$ is the global minimum of the functional $x \rightarrow \frac{\gamma}{2}\left\|x-x_{0}\right\|^{2}-J(x)$, while any $z \in M_{\frac{1}{L}}$ is a global minimum of the functional $x \rightarrow \frac{L}{2}\left\|x-x_{0}\right\|^{2}-J(x)$. Consequently, if we apply Proposition 1 again (with $f(x)=-J(x), g(x)=-\left\|x-x_{0}\right\|^{2}, a=\frac{L}{2}, b=\frac{\gamma}{2}$), for any $z \in M_{\frac{1}{L}}$, we get

$$
-\left\|z-x_{0}\right\|^{2} \leq-\left\|x_{\frac{1}{\gamma}}-x_{0}\right\|^{2}
$$

and so

$$
\beta_{0} \geq\left\|x_{\frac{1}{\gamma}}-x_{0}\right\|>0
$$

Now, to prove (i), fix $r \in] J\left(x_{0}\right), \alpha_{0}\left[\right.$ and consider the function $\Psi: X \times\left[0, \frac{1}{L}\right] \rightarrow \mathbb{R}$ defined by

$$
\Psi(x, \lambda)=\frac{1}{2}\left\|x-x_{0}\right\|^{2}+\lambda(r-J(x))
$$

for all $(x, \lambda) \in X \times\left[0, \frac{1}{L}\right]$. Taken Proposition 2 into account, it is clear that the function Ψ satisfies all the assumptions of Theorem A. Consequently, we have

$$
\sup _{\lambda \in\left[0, \frac{1}{L}\right]} \inf _{x \in X} \Psi(x, \lambda)=\inf _{x \in X} \sup _{\lambda \in\left[0, \frac{1}{L}\right]} \Psi(x, \lambda)
$$

The functional $\sup _{\lambda \in\left[0, \frac{1}{L}\right]} \Psi(\cdot, \lambda)$ is weakly lower semicontinuous and coercive, and so there exists $x^{*} \in X$ such that

$$
\sup _{\lambda \in\left[0, \frac{1}{L}\right]} \Psi\left(x^{*}, \lambda\right)=\inf _{x \in X} \sup _{\lambda \in\left[0, \frac{1}{L}\right]} \Psi(x, \lambda)
$$

Also, the function $\inf _{x \in X} \Psi(x, \cdot)$ is upper semicontinuous, and so there exists $\lambda^{*} \in\left[0, \frac{1}{L}\right]$ such that

$$
\inf _{x \in X} \Psi\left(x, \lambda^{*}\right)=\sup _{\lambda \in\left[0, \frac{1}{L}\right]} \inf _{x \in X} \Psi(x, \lambda)
$$

Hence, from this it follows that

$$
\begin{aligned}
\frac{1}{2}\left\|x^{*}-x_{0}\right\|^{2}+\lambda^{*}\left(r-J\left(x^{*}\right)\right) & =\inf _{x \in X} \frac{1}{2}\left\|x-x_{0}\right\|^{2}+\lambda^{*}(r-J(x)) \\
& =\sup _{\lambda \in\left[0, \frac{1}{L}\right]} \frac{1}{2}\left\|x^{*}-x_{0}\right\|^{2}+\lambda\left(r-J\left(x^{*}\right)\right)
\end{aligned}
$$

We claim that $J\left(x^{*}\right)=r$. Indeed, if it were $J\left(x^{*}\right)<r$, then we would have $\lambda^{*}=\frac{1}{L}$, and so $x^{*} \in M_{\frac{1}{L}}$, against the fact that $r<\alpha_{0}$. If it were $J\left(x^{*}\right)>r$, then we would have $\lambda^{*}=0$, and so $x^{*}=x_{0}$, against the fact that $J\left(x_{0}\right)<r$. We then have

$$
\frac{1}{2}\left\|x^{*}-x_{0}\right\|^{2}=\inf _{x \in X} \frac{1}{2}\left\|x-x_{0}\right\|^{2}+\lambda^{*}(r-J(x))
$$

This implies, on one hand, that $\lambda^{*}<\frac{1}{L}$ (since $r<\alpha_{0}$) and, on the other hand, that each global minimum (and x^{*} is so) of the restriction to $J^{-1}(r)$ of the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}$ is a global minimum in X of the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}-\lambda^{*} J(x)$. But this functional (just because $\lambda^{*}<\frac{1}{L}$) has a unique global minimum, and so (i) follows. Let us now prove (ii). To this end, fix $r \in] 0, \beta_{0}[$ and consider the function $\Phi: X \times[L,+\infty[\rightarrow \mathbb{R}$ defined by

$$
\Phi(x, \lambda)=\frac{\lambda}{2}\left(\left\|x-x_{0}\right\|^{2}-r^{2}\right)-J(x)
$$

for all $(x, \lambda) \in X \times[L,+\infty[$. Applying Theorem A, we get

$$
\sup _{\lambda \in[L,+\infty[} \inf _{x \in X} \Phi(x, \lambda)=\inf _{x \in X} \sup _{\lambda \in[L,+\infty[} \Phi(x, \lambda)
$$

Arguing as before (note, in particular, that $\lim _{\lambda \rightarrow+\infty} \inf _{x \in X} \Phi(x, \lambda)=-\infty$), we get $\hat{x} \in X$ and $\hat{\lambda} \in[L,+\infty[$ such that

$$
\sup _{\lambda \in[L,+\infty[} \Phi(\hat{x}, \lambda)=\inf _{x \in X} \sup _{\lambda \in[L,+\infty[} \Phi(x, \lambda)
$$

and

$$
\inf _{x \in X} \Phi(x, \hat{\lambda})=\sup _{\lambda \in[L,+\infty[} \inf _{x \in X} \Phi(x, \lambda)
$$

So that

$$
\begin{aligned}
\frac{\hat{\lambda}}{2}\left(\left\|\hat{x}-x_{0}\right\|^{2}-r^{2}\right)-J(\hat{x}) & =\inf _{x \in X} \frac{\hat{\lambda}}{2}\left(\left\|x-x_{0}\right\|^{2}-r^{2}\right)-J(x) \\
& =\sup _{\lambda \in[L,+\infty[} \frac{\lambda}{2}\left(\left\|\hat{x}-x_{0}\right\|^{2}-r^{2}\right)-J(\hat{x}) .
\end{aligned}
$$

From this it follows at once that $\left\|\hat{x}-x_{0}\right\|^{2} \leq r^{2}$. But, if it were $\left\|\hat{x}-x_{0}\right\|^{2}<r^{2}$ we would have $\hat{\lambda}=L$. This, in turn, would imply that $\hat{x} \in M_{\frac{1}{L}}$, against the fact that $r<\beta_{0}$. Hence, we have $\left\|\hat{x}-x_{0}\right\|^{2}=r^{2}$. Consequently

$$
-\frac{1}{\hat{\lambda}} J(\hat{x})=\inf _{x \in X} \frac{1}{2}\left(\left\|x-x_{0}\right\|^{2}-r^{2}\right)-\frac{1}{\hat{\lambda}} J(x)
$$

This implies, on one hand, that $\hat{\lambda}>L$ (since $r<\beta_{0}$) and, on the other hand, that each global maximum (and \hat{x} is so) of the restriction of the functional J to the set $S\left(x_{0}, r\right)$ is a global minimum in X of the functional $x \rightarrow \frac{1}{2}\left\|x-x_{0}\right\|^{2}-\frac{1}{\hat{\lambda}} J(x)$. Since $\hat{\lambda}>L$, this functional has a unique global minimum, and so (ii) follows.

Remark 1. It is clear from the proof that the assumption $J^{\prime}\left(x_{0}\right) \neq 0$ has been used to prove $\alpha_{0}>J\left(x_{0}\right)$ and $\beta_{0}>0$, while it has no role in showing (i) and (ii). However, when $J^{\prime}\left(x_{0}\right)=0$, it can happen that $\alpha_{0}=J\left(x_{0}\right), \beta_{0}=0$, with (i) (resp. (ii)) holding for no $r>\alpha_{0}$ (resp. for no $r>0$). To see this, take, for instance, $X=\mathbb{R}, J(x)=\frac{1}{2} x^{2}, x_{0}=0$.

3 - An application

From now on, Ω is an open, bounded and connected subset of \mathbb{R}^{n} with sufficiently smooth boundary, and X denotes the space $W_{0}^{1,2}(\Omega)$, with the usual norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

Moreover, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitzian function, with Lipschitz constant μ.
Let $\lambda \in \mathbb{R}$. As usual, a classical solution of the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda f(u) \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

is any $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$, zero on $\partial \Omega$, which satisfies the equation pointwise in Ω.
For each $u \in X$, put

$$
J(u)=\int_{\Omega}\left(\int_{0}^{u(x)} f(\xi) d \xi\right) d x
$$

By a classical result, the functional J is continuously Gâteaux differentiable and one has

$$
J^{\prime}(u)(v)=\int_{\Omega} f(u(x)) v(x) d x
$$

for all $u, v \in X$. Moreover, by a standard regularity result, the critical points in X of the functional $u \rightarrow \frac{1}{2}\|u\|^{2}-\lambda J(u)$ are exactly the classical solutions of problem $\left(P_{\lambda}\right)$.

Denote by λ_{1} the first eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0 .
\end{array}\right.
$$

Recall that $\|u\|_{L^{2}(\Omega)} \leq \lambda_{1}^{-\frac{1}{2}}\|u\|$ for all $u \in X$.
We are now in a position to state the following
Theorem 2. Assume that $f(0) \neq 0$. For each $r>0$, put

$$
\gamma(r)=\sup _{\|u\|^{2}=r} J(u) .
$$

Further, put

$$
\delta_{0}=\inf _{u \in M}\|u\|^{2}
$$

where M is the set of all global minima in X of the functional $u \rightarrow \frac{1}{2}\|u\|^{2}-\frac{\lambda_{1}}{\mu} J(u)$.
Then, $\delta_{0}>0$, the function γ is C^{1} and γ^{\prime} is positive in $] 0, \delta_{0}[$ and there exists a continuous function $\varphi:] 0, \delta_{0}[\rightarrow X$ such that, for each $r \in] 0, \delta_{0}[, \varphi(r)$ is a classical solution of the problem

$$
\left\{\begin{array}{l}
-\Delta u=\frac{1}{2 \gamma^{\prime}(r)} f(u) \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

satisfying $\|\varphi(r)\|^{2}=r$ and $J(\varphi(r))=\gamma(r)$.

Proof: Fix $u, v, w \in X$, with $\|w\|=1$. We have

$$
\begin{aligned}
\left|J^{\prime}(u)(w)-J^{\prime}(v)(w)\right| & \leq \int_{\Omega}|f(u(x))-f(v(x))||w(x)| d x \\
& \leq \mu\|u-v\|_{L^{2}(\Omega)}\|w\|_{L^{2}(\Omega)} \\
& \leq \frac{\mu}{\lambda_{1}}\|u-v\|
\end{aligned}
$$

and hence

$$
\left\|J^{\prime}(u)-J^{\prime}(v)\right\| \leq \frac{\mu}{\lambda_{1}}\|u-v\| .
$$

That is, J^{\prime} is Lipschitzian in X, with Lipschitz constant $\frac{\mu}{\lambda_{1}}$. Moreover, since $f(0) \neq 0$, we have $J^{\prime}(u) \neq 0$ for all $u \in X$. Then, thanks to Theorem 1, for each $r \in] 0, \delta_{0}[$, the restriction of the functional J to the sphere $S(0, \sqrt{r})$ has a unique maximum. At this point, taken into account that $\gamma(r)>0$ for all $r>0$, the conclusion follows directly from Lemma 2.1 and Corollary 2.13 of [2].

REFERENCES

[1] Ricceri, B. - Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set, Topology Appl., 153 (2006), 3308-3312.
[2] Schechter, M. and Tintarev, K. - Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential Integral Equations, 3 (1990), 889-899.
[3] Schechter, M. and Tintarev, K. - Points of spherical maxima and solvability of semilinear elliptic equations, Canad. J. Math., 43 (1991), 825-831.
[4] Schechter, M. and Tintarev, K. - Eigenvalues for semilinear boundary value problems, Arch. Rational Mech. Anal., 113 (1991), 197-208.
[5] Schechter, M. and Tintarev, K. - Families of 'first eigenfunctions' for semilinear elliptic eigenvalue problems, Duke Math. J., 62 (1991), 453-465.

