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Abstract

We derive a simple criterion that ensures uniqueness, Lipschitz stability and global

convergence of Newton’s method for the finite dimensional zero-finding problem of a

continuously differentiable, pointwise convex and monotonic function. Our criterion

merely requires to evaluate the directional derivative of the forward function at finitely

many evaluation points and for finitely many directions. We then demonstrate that this

result can be used to prove uniqueness, stability and global convergence for an inverse

coefficient problem with finitely many measurements. We consider the problem of

determining an unknown inverse Robin transmission coefficient in an elliptic PDE.

Using a relation to monotonicity and localized potentials techniques, we show that

a piecewise-constant coefficient on an a-priori known partition with a-priori known

bounds is uniquely determined by finitely many boundary measurements and that it

can be uniquely and stably reconstructed by a globally convergent Newton iteration.

We derive a constructive method to identify these boundary measurements, calculate

the stability constant and give a numerical example.

Mathematics Subject Classification 35R30 · 65M32 · 58C15

1 Introduction

New technologies for medical imaging, non-destructive testing, or geophysical explo-

ration are often based on mathematical inverse coefficient problems, where the

coefficient of a partial differential equation is to be reconstructed from (partial) knowl-

edge of its solutions. A prominent example is the emerging technique of electrical

impedance tomography (EIT), cf. [1,12,14,23,24,31,62,63,83,86,88,90,95,101,103],

and the references therein for a broad overview. Inverse coefficient problems are usu-

ally highly non-linear and ill-posed, and uniqueness and stability questions, as well
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30 B. Harrach

as the design and the theoretical study of reconstruction algorithms are extremely

challenging topics in theoretical and applied research.

In practical applications, only finitely many measurements can be made, the

unknown coefficient has to be parametrized with finitely many variables (e.g., by

assuming piecewise-constantness on a given partition), and physical considerations

typically limit the unknown coefficient to fall between certain a-priori known bounds.

Thus, after shifting and rescaling, a practical inverse coefficient problem can be put

in the form of finding the zero x ∈ [0, 1]n of a non-linear function F : R
n → R

m ,

F(x) = 0.

It is of utmost importance to determine what measurements make this finite-dimen-

sional inverse (or zero-finding) problem uniquely solvable, to evaluate the stability of

the solution with respect to model and measurement errors, and to design convergent

numerical reconstruction algorithms.

In this paper, we will study this problem under the assumption that F is a pointwise

monotonic and convex function, which often arises in elliptic inverse coefficient prob-

lems (cf. our remarks on the end of this introduction). We will derive a simple criterion

that implies the existence of a zero, and the injectivity of F in a certain neighborhood

of [0, 1]n . It also allows us to quantify the Lipschitz stability constant of the left inverse

F−1 and, for n = m, ensures global convergence of Newton’s method. The criterion

is easy-to-check as it merely requires to evaluate the directional derivative F ′(z)d for

a finite number of evaluation points z and finitely many directions d.

We then show how our result can be applied to the inverse problem of determining

a Robin transmission coefficient in an elliptic PDE from the associated Neumann-to-

Dirichlet operator that is motivated by EIT-based corrosion detection [53]. We assume

that the Robin coefficient is piecewise-constant on a-priori known partition of the

interface into n parts, and that we a-priori know upper and lower bounds for the Robin

coefficient’s values. We then show how to construct n boundary measurements that

uniquely determine the n unknown Robin values, and for which a standard Newton

method globally converges. We also quantify the stability of the solution with respect

to errors, and numerically demonstrate our result on a simple setting.

Let us give some references to put our result in the context of existing literature.

The arguably most famous elliptic inverse coefficient problem is the Calderón problem

[27,28], that arises in EIT, cf. [10,30,34,44,72,79–81,89,98] for an incomplete list of

seminal breakthroughs for the uniqueness question in an infinite-dimensional setting.

Several recent works have addressed uniqueness and Lipschitz stability questions

for the problem of determining finitely many parameters (e.g., by assuming piecewise-

constantness) from finitely or infinitively many measurements in inverse coefficient

problems, cf., [2–7,11,15,18–22,32,48,51,53,68,69,71,76,77,87,93,96,104,105]. To

the knowledge of the author, the results presented herein, is the first on explicitly

calculating those measurements that uniquely determine the unknown parameters,

and, together with [53], it is the first result to explicitly calculate the Lipschitz con-

stant for a given setting. Moreover, we obtain the unique existence of a solution also

for noisy measurements, so that Lipschitz stability also yields an error estimate in the

case of noise.

123



Uniqueness, stability and global convergence... 31

Reconstruction algorithms for inverse coefficient problems typically rely on

Newton-type approaches or on globally minimizing a non-convex regularized data-

fitting functional. Both approaches require an initial guess close to the unknown

solution, so that most algorithms are only known to converge locally. For the sake

of rigor, it should be noted at this point, that the difficulty in this context is not to

construct globally convergent methods but computationally feasible globally conver-

gent methods. To elaborate on this point, let us consider a minimization problem with

a continuous functional f : I → R over a finite-dimensional interval I ⊆ R
n . A

trivial optimization algorithm is to choose a countable dense subset (qm)m∈N ⊂ I ,

and setting x0 := q0,

xm :=

{

qm if f (qm) < f (xm−1)

xm−1 else.

Then, obviously, any accumulation point of (xm)m∈N is a global minimizer of f . But

this type of approach requires a completely unfeasible amount of function evaluations

and is thus usually disregarded in practice. Note, however, that together with estimates

on the convergence range of an iterative algorithm as in the recent preprint of Alberti

and Santacesaria [3], and the progress of parallel computing power, these type of

approaches may become feasible at least for lower dimension numbers.

To obtain (computationally feasible) globally convergent algorithms, quasi-

reversibility and convexification ideas have been developed in the the seminal work of

Klibanov et al., cf., e.g. [16,17,74,75]. Alternatively, one can use very specific prop-

erties of the considered problem, cf., e.g., the global convergence result of Knudsen,

Lassas, Mueller and Siltanen [78] for the d-bar method for EIT, or resort to only

reconstructing the shape of an anomaly, cf. [54,55,58,59,64,66,67] for some glob-

ally convergent approaches. The theory developed in this work shows that, somewhat

surprisingly, global convergence holds for the standard zero-finding Newton method,

when the right measurements are being used, and this also implies fast quadratic

convergence. On the other hand, so far, our theory does not allow to utilize more

measurements than unknowns or to explicitly add regularization, which would be

advantageous in practical applications. Moreover, the calculated measurements tend

to become more or more oscillatory for higher dimensional problems. Hence, so far,

we can only expect our approach to be practically feasible for relatively few unknowns

where discretization sufficiently regularizes the ill-posed problem.

On the methodological side, this work builds upon [48,53] and stems from the the-

ory of combining monotonicity estimates with localized potentials, cf. [9,13,25,35,

43,45,46,50–52,56–59,61,94] for related works, and [29,37–40,49,54,55,60,85,97,99,

100,102,106] for practical monotonicity-based reconstruction methods. In this work,

the monotonicity and convexity of the forward function is based on the so-called

monotonicity relation which goes back to Ikehata, Kang, Seo, and Sheen [65,70]. The

existence of measurements that fulfill the extra criterion on the directional deriva-

tive evaluations follows from localized potentials arguments [41]. Hence, it might

be possible to extend the theory developed herein to other elliptic inverse coefficient

problems where monotonicity and localized potentials results are also available. Note

however, that this extension is not obvious since the localized potentials results for

123



32 B. Harrach

the herein considered Robin transmission problem are stronger than those known for

other coefficient problems such as EIT.

Finally, it should be noted, that the monotonicity and localized potentials techniques

evolved from the factorization method [26,42,47,73,82], and that global convergence

for Newton’s method for finite-dimensional zero-finding problems is a classical result

for pointwise convex functions that are inverse monotonic (also called Collatz mono-

tone [33]), cf., e.g., the book of Ortega and Rheinboldt [91, Thm. 13.3.2]. Such

problems arise, e.g., in solving non-linear elliptic PDEs. Roughly speaking, one might

be tempted to say, that elliptic forward coefficient problems lead to inverse monotonic

convex function, and inverse elliptic coefficient problems lead to forward monotonic

convex functions. Our extra criterion on the directional derivative evaluations allows

us to write our forward monotonic function as an affine transformation of an inverse

monotonic function in a certain region and (together with some technical arguments

to ensure the iterates staying in this region), this is the major key in proving our global

convergence result.

The paper is organized as follows. In Sect. 2, we prove uniqueness, stability and

global convergence of the Newton method for continuously differentiable, pointwise

convex and monotonic functions under a simple extra condition on the directional

derivatives. In Sect. 3, we apply this result to an inverse Robin coefficient problem,

and show how to determine those measurements that uniquely and stably determine

the unknown coefficient with a desired resolution via a globally convergent Newton

iteration. We also give a numerical example in Sect. 3. Throughout this paper, we take

the somewhat lengthy, but hopefully reader-friendly approach of first presenting less

technical intermediate results to motivate our approach.

2 Uniqueness, stability and global Newton convergence

We consider a continuously differentiable, pointwise convex and monotonic function

F : U ⊆ R
n → R

m

where n, m ∈ N, m ≥ n ≥ 2, and U is a convex open set. In this section, we will

derive a simple criterion that implies injectivity of F on a multidimensional interval.

The criterion also allows us to estimate the Lipschitz stability constant of the left

inverse F−1 and, for n = m, ensures global convergence of Newton’s method.

Remark 1 Throughout this work, ”≤” is always understood pointwise for finite-

dimensional vectors and matrices, and x � y denotes the converse, i.e., that x − y has

at least one positive entry.

Monotonicity and convexity are understood with respect to this pointwise partial

order, i.e., F : U ⊆ R
n → R

m is monotonic if

x ≤ y implies F(x) ≤ F(y) for all x, y ∈ U ,
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Uniqueness, stability and global convergence... 33

and F is convex if

F((1 − t)x + t y) ≤ (1 − t)F(x) + t F(y) for all x, y ∈ U , t ∈ [0, 1].

We also say that a function F is anti-monotone if −F is monotonic.

For continuously differentiable functions, it is easily shown that monotonicity is

equivalent to

F ′(x)y ≥ 0 for all x ∈ U , 0 ≤ y ∈ R
n, (1)

and thus equivalent to F ′(x) ≥ 0. Convexity is known to be equivalent to

F(y) − F(x) ≥ F ′(x)(y − x) for all x, y ∈ U , (2)

cf., e.g., [91, Thm. 13.3.2]. All the proofs in this section use the monotonicity and

convexity assumption in the form (1) and (2).

Throughout this work, we denote by e j ∈ R
n the j th unit vector in R

n , 1 :=

(1, 1, . . . , 1)T ∈ R
n , and e′

j := 1 − e j . In ∈ R
n×n denotes the n-dimensional

identity matrix, and 11
T ∈ R

n×n is the matrix containing 1 in all of its entries.

2.1 A simple criterion for uniqueness and Lipschitz stability

Before we state our result in its final form in Sect. 2.3, we derive two weaker (and less

technical) results that motivate our arguments and may be of independent interest. We

first show a simple criterion that yields injectivity of F and allows us to estimate the

Lipschitz stability constant of its left inverse F−1.

Theorem 1 Let F : U ⊆ R
n → R

m , m ≥ n ≥ 2, be a continuously differentiable,

pointwise convex and monotonic function on a convex open set U containing [−1, 3]n .

If, additionally,

F ′(−e j + 3e′
j )

(

e j − 3e′
j

)

� 0 for all j ∈ {1, . . . , n}, (3)

then the following holds:

(a) F is injective on [0, 1]n .

(b) F ′(x) ∈ R
m×n is injective for all x ∈ [0, 1]n .

(c) With

L := 2

(

min
j=1,...,n

max
k=1,...,m

eT
k F ′(−e j + 3e′

j )
(

e j − 3e′
j

)

)−1

> 0, (4)

we have that for all x, y ∈ [0, 1]

‖x − y‖∞ ≤ L ‖F(x) − F(y)‖∞, and ‖F ′(x)−1‖∞ ≤ L,
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34 B. Harrach

where F ′(x)−1 ∈ R
n×m denotes the left inverse of F ′(x) ∈ R

m×n .

To prove Theorem 1, we will first formulate an auxiliary lemma, which will also be

used in our more technical results. Note that assumption (5) in the following lemma

simply means that a row permutation of the non-negative matrix F ′(x) ∈ R
m×n is

strictly diagonally dominant in its first n rows.

Lemma 1 Let F : U ⊆ R
n → R

m , m ≥ n ≥ 2, be continuously differentiable,

pointwise convex and monotonic on a convex open set U, and let L > 0.

(a) If x ∈ U fulfills

max
k=1,...,m

eT
k F ′(x)

(

e j − e′
j

)

≥ L−1 for all j ∈ {1, . . . , n}, (5)

then F ′(x) ∈ R
m×n is injective, and its left inverse fulfills ‖F ′(x)‖−1

∞ ≤ L.

(b) If, additionally, y ∈ U also fulfills (5), then

‖x − y‖∞ ≤ L ‖F(x) − F(y)‖∞.

Proof (a) For all 0 �= d ∈ R
n , at least one of the entries of d

‖d‖∞
must be either 1 or

−1, so that there exists j ∈ {1, . . . , n} with either

d

‖d‖∞
≥ e j − e′

j , or
d

‖d‖∞
≤ −e j + e′

j .

We thus obtain from the monotonicity assumption (1) that either

F ′(x)
d

‖d‖∞
≥ F ′(x)(e j − e′

j ), or F ′(x)
−d

‖d‖∞
≥ F ′(x)(e j − e′

j ).

In both cases, it follows from (5) that

‖F ′(x)d‖∞

‖d‖∞
≥ max

k=1,...,m
eT

k F ′(x)
(

e j − e′
j

)

≥ L−1.

This proves injectivity of F ′(x) and the bound on its left inverse.

(b) Likewise, for x �= y, either

x − y

‖y − x‖∞
≥ e j − e′

j , or
y − x

‖x − y‖∞
≥ e j − e′

j ,

so that by monotonicity (1) and assumption (5), either

max
k=1,...,m

eT
k F ′(x)

y − x

‖x − y‖∞
≥ L−1, or max

k=1,...,m
eT

k F ′(y)
x − y

‖x − y‖∞
≥ L−1.
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Uniqueness, stability and global convergence... 35

By convexity (2), it then follows that

‖F(y) − F(x)‖∞ = max
k=1,...,m

|eT
k (F(y) − F(x))|

= max
k=1,...,m

max{eT
k (F(y) − F(x)), eT

k (F(x) − F(y))}

≥ max
k=1,...,m

max{eT
k F ′(x)(y − x), eT

k F ′(y)(x − y)}

≥ ‖y − x‖∞L−1.

⊓⊔

We can now prove Theorem 1 with Lemma 1.

Proof of Theorem 1 Let j ∈ {1, . . . , n}. Writing

z( j) := −e j + 3e′
j ∈ [−1, 3]n ⊂ U ,

we have that

e j − 3e′
j ≤ x − z( j) ≤ 2e j − 2e′

j for all x ∈ [0, 1]n .

Thus we deduce from (1) and (2) that for all x ∈ [0, 1]n

F ′(x)
(

e j − e′
j

)

≥
1

2
F ′(x)

(

x − z( j)
)

≥
1

2

(

F(x) − F(z( j))
)

≥
1

2
F ′(z( j))

(

x − z( j)
)

≥
1

2
F ′(z( j))

(

e j − 3e′
j

)

.

With the definition of L in (4), this shows that

max
k=1,...,m

eT
k F ′(x)

(

e j − e′
j

)

≥ L−1 for all x ∈ [0, 1]n, j ∈ {1, . . . , n}, (6)

so that (a), (b) and (c) follow from Lemma 1. ⊓⊔

2.2 A simple criterion for global convergence of the Newton iteration

We will now show how to ensure that a convex monotonic function F has a unique

zero, and that the Newton method globally converges against this zero.

Theorem 2 Let F : U ⊆ R
n → R

n , n ≥ 2, be continuously differentiable, pointwise

convex and monotonic on a convex open set U. If [−2, n(n + 3)]n ⊂ U, and

F ′(z( j))d( j) � 0 for all j ∈ {1, . . . , n}, (7)

with

z( j) := −2e j + n(n + 3)e′
j , and d( j) := e j − (n2 + 3n + 1)e′

j ,
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36 B. Harrach

then the following holds:

(a) F is injective on [−1, n]n , F ′(x) is invertible for all x ∈ [−1, n]n , and for all

x, y ∈ [−1, n]n

‖x − y‖∞ ≤ L ‖F(x) − F(y)‖∞, and ‖F ′(x)−1‖∞ ≤ L, (8)

where

L := (n + 2)

(

min
j=1,...,n

max
k=1,...,n

eT
k F ′(z( j))d( j)

)−1

> 0. (9)

(b) If, additionally, F(0) ≤ 0 ≤ F(1), then there exists a unique

x̂ ∈
(

− 1
n−1

, 1 + 1
n−1

)n

with F(x̂) = 0,

and this is the only zero of F in [−1, n]n . The Newton iteration sequence

x (k+1) := x (k) − F ′(x (k))−1 F(x (k)) with initial value x (0) := 1 (10)

is well defined (i.e., F ′(x (k)) is invertible in each step) and converges against x̂ .

Furthermore, for all k ∈ N, x (k) ∈ (−1, n)n , and

0 ≤ Mx̂ ≤ Mx (k+1) ≤ Mx (k) ≤ Mx (0) = (n + 1)1,

where M := 11
T + In ∈ R

n×n . The rate of convergence of xk → x̂ is superlinear.

If F ′ is locally Lipschitz, then the rate of convergence is quadratic.

To prove Theorem 2 we will first show the following lemma.

Lemma 2 Under the assumptions and with the notations of Theorem 2, the following

holds:

(a) For all x ∈ [−1, n]n ,

max
k=1,...,n

eT
k F ′(x)(e j − ne′

j ) ≥ L−1.

(b) F is injective on [−1, n]n , F ′(x) ∈ R
n×n is invertible for all x ∈ [−1, n]n , and,

for all x, y ∈ [−1, n]n ,

‖x − y‖∞ ≤ L ‖F(x) − F(y)‖∞, and ‖F ′(x)−1‖∞ ≤ L.

(c) For all x ∈ [−1, n]n , and all 0 �= y ∈ R
n

F ′(x)y ≥ 0 implies max
j=1,...,n

y j = ‖y‖∞ and min
j=1,...,n

y j > −
1

n
‖y‖∞.

123



Uniqueness, stability and global convergence... 37

(d) M is invertible, M−1 = In − 1
n+1

11
T . For all x ∈ [−1, n]n , and y ∈ R

n

F ′(x)y ≥ 0 implies My ≥ 0,

and thus M F ′(x)−1 ≥ 0.

Proof (a) Let j ∈ {1, . . . , n}. Using z( j) = −2e j + n(n + 3)e′
j , we have that for all

x ∈ [−1, n]n

d( j) = e j − (n2 + 3n + 1)e′
j ≤ x − z( j) ≤ (n + 2)e j − n(n + 2)e′

j

and thus it follows from monotonicity (1) and convexity (2) that

F ′(x)
(

e j − ne′
j

)

=
1

n + 2
F ′(x)

(

(n + 2)e j − n(n + 2)e′
j

)

≥
1

n + 2
F ′(x)

(

x − z( j)
)

≥
1

n + 2

(

F(x) − F(z( j))
)

≥
1

n + 2
F ′(z( j))

(

x − z( j)
)

≥
1

n + 2
F ′(z( j))d( j),

which proves (a) using the definition of L in (9).

(b) Since (a) implies a fortiori that for all x ∈ [−1, n]n

max
k=1,...,n

eT
k F ′(x)(e j − e′

j ) ≥ L−1,

the assertion (b) follows from Lemma 1.

(c) Let x ∈ [−1, n]n , and 0 �= y ∈ R
n . If there exists an index j ∈ {1, . . . , n} with

y j ≤ − 1
n
‖y‖∞, then y ≤ − 1

n
‖y‖∞e j + ‖y‖∞e′

j , so that

−
n

‖y‖∞
y ≥ e j − ne′

j , and thus, by (a), −
n

‖y‖∞
F ′(x)y � 0.

By contraposition, this shows that

F ′(x)y ≥ 0 implies min
j=1,...,n

y j > −
1

n
‖y‖∞,

which also shows that ‖y‖∞ = max j=1,...,n y j .

(d) It is easily checked that

(

In −
1

n + 1
11

T

)

(

11
T + In

)

= In,
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which shows that M is invertible and M−1 = In − 1
n+1

11
T

Moreover, using (c) it follows that F ′(x)y ≥ 0 implies that for all k ∈ N,

n
∑

j=1

y j + yk ≥ max
j=1,...,n

y j + n min
j=1,...,n

y j ≥ 0.

so that F ′(x)y ≥ 0 implies My = (11T + In)y ≥ 0. This also shows that

F ′(x)F ′(x)−1 y = y ≥ 0 implies M F ′(x)−1 y ≥ 0,

and thus M F ′(x)−1 ≥ 0.

⊓⊔

Note that by Lemma 2(d), F̃(x) := F(M−1x) is a convex function with Col-

latz monotone derivative [33], i.e. F̃ ′(x)−1 = M F ′(M−1x)−1 ≥ 0. If the Newton

iterates do not leave the region where convexity and Collatz monotony holds, then

classical results on monotone Newton methods (cf., e.g., Ortega and Rheinboldt [91,

Thm. 13.3.4]) yield global Newton convergence for F̃ , and thus for F since the Newton

method is invariant under linear transformation. The following lemma utilizes some

arguments from the classical result [91, Thm. 13.3.4] for our situation.

Lemma 3 Let F : U ⊆ R
n → R

n be continuously differentiable and pointwise

convex on a convex open set U containing zero, and let M ∈ R
n×n . We assume that

for some point x ∈ U, F ′(x) ∈ R
n×n is invertible,

M F ′(x)−1 ≥ 0, F(x) ≥ 0 ≥ F(0), and Mx ≥ 0. (11)

Then for all t ∈ [0, 1]

x (t) := x − t F ′(x)−1 F(x)

fulfills 0 ≤ Mx (t) ≤ Mx. Moreover, if x (t) ∈ U then F(x (t)) ≥ 0.

Proof The assumptions (11) and the convexity (2) yield that for all t ∈ [0, 1]

0 ≤ −t M F ′(x)−1 F(0)

= Mx (t) −
(

Mx − t M F ′(x)−1 F(x)
)

− t M F ′(x)−1 F(0)

= Mx (t) − Mx + t M F ′(x)−1 (F(x) − F(0))

≤ Mx (t) − Mx + t M F ′(x)−1 F ′(x)(x − 0) = Mx (t) − (1 − t)Mx .

Moreover,

Mx − Mx (t) = t M F ′(x)−1 F(x) ≥ 0,

so that Mx ≥ Mx (t) ≥ (1 − t)Mx ≥ 0 is proven.
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Uniqueness, stability and global convergence... 39

If x (t) ∈ U , then we also obtain from the convexity assumption (2) that

F(x (t)) − F(x) ≥ F ′(x)(x (t) − x) = −t F(x),

which shows that F(x (t)) ≥ (1 − t)F(x) ≥ 0. ⊓⊔

Proof of Theorem 2 Theorem 2(a) has been proven in Lemma 2(b).

To prove (b), let x (k) ∈ (−1, n)n with F(x (k)) ≥ 0 and 0 ≤ Mx (k) ≤ M1. Then,

by (a), F ′(x (k)) ∈ R
n×n is invertible, so that

x (k+t) := x (k) − t F ′(x (k))−1 F(x (k)) ∈ R
n, t ∈ [0, 1],

is well defined.

We will prove that x (k+1) ∈ (−1, n)n . We argue by contradiction, and assume

that this is not the case. Then, by continuity, there exists t ∈ (0, 1] with x (k+t) ∈

[−1, n]n\(−1, n)n and, by lemma 3,

F(x (k+t)) ≥ 0 and 0 ≤ Mx (k+t) ≤ Mx (k) ≤ M1. (12)

Convexity (2) then yields that

F ′(x (k+t))(x (k+t) − 0) ≥ F(x (k+t)) − F(0) ≥ 0,

and using Lemma 2(c) this would imply that

min
j=1,...,n

x
(k+t)
j > −

1

n
max

j=1,...,n
x

(k+t)
j ≥ −1. (13)

For all l ∈ {1, . . . , n}, we obtain from (12) and (13)

n + 1 = eT
l M1 ≥ eT

l Mx (k+t) = x
(k+t)
l +

n
∑

j=1

x
(k+t)
j > 2x

(k+t)
l − (n − 1).

Hence, max j=1,...,n x
(k+t)
j < n, so that x (k+t) ∈ (−1, n)n . Since this contradicts

x (k+t) ∈ [−1, n]n\(−1, n)n , we have proven that x (k+1) ∈ (−1, n)n .

Using Lemma 3 again, this shows that for all

x (k) ∈ (−1, n)n with F(x (k)) ≥ 0, and 0 ≤ Mx (k) ≤ M1,

the next Newton iterate x (k+1) is well-defined and also fulfills

x (k+1) ∈ (−1, n)n with F(x (k+1)) ≥ 0, and 0 ≤ Mx (k+1) ≤ Mx (k) ≤ M1.

Hence, for x (0) := 1, the Newton algorithm produces a well-defined sequence

x (k) ∈ (−1, n)n for which Mx (k) is monotonically non-increasing and bounded.
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Hence, (Mx (k))k∈N and thus also (x (k))k∈N converge. We define

x̂ := lim
k→∞

x (k) ∈ [−1, n]n .

Since F is continuously differentiable and F ′(x̂) is invertible, it follows from the

Newton iteration formula (10) that F(x̂) = 0. Also, the monotone convergence of

(Mx (k))k∈N shows that

0 ≤ Mx̂ ≤ Mx (k) ≤ M1 for all k ∈ N.

Moreover, since this is the standard Newton iteration, the convergence speed is super-

linear and the speed is quadratic if F ′ is Lipschitz continuous in a neighbourhood of

x̂ .

It only remains to show that x̂ ∈ (− 1
n−1

, n
n−1

)n ⊂ (−1, 2)n . For this, we use the

convexity to obtain

F ′(x̂)(x̂ − 0) ≥ F(x̂) − F(0) ≥ 0,

F ′(1)(1 − x̂) ≥ F(1) − F(x̂) ≥ 0,

which then implies by Lemma 2(c) that

min
j=1,...,n

x̂ j > −
1

n
max

j=1,...,n
x̂ j ,

min
j=1,...,n

(1 − x̂ j ) > −
1

n
max

j=1,...,n
(1 − x̂ j ).

From this we obtain that

min
j=1,...,n

x̂ j > −
1

n
max

j=1,...,n
x̂ j =

1

n
min

j=1,...,n
(1 − x̂ j ) −

1

n

> −
1

n2
max

j=1,...,n
(1 − x̂ j ) −

1

n
=

1

n2
min

j=1,...,n
x̂ j −

1

n2
−

1

n
, (14)

which yields min j=1,...,n x̂ j > − 1
n−1

. Using (14) again, we then obtain

−
1

n
max

j=1,...,n
x̂ j >

1

n2
min

j=1,...,n
x̂ j −

1

n2
−

1

n
> −

1

n − 1
,

which shows max j=1,...,n x̂ j < n
n−1

. ⊓⊔

2.3 A result with tighter domain assumptions

Our results in Sects. 2.1 and 2.2 require the considered function F to be defined (and

convex and monotonic) on a much larger set than [0, 1]n . For some applications (such
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as the inverse coefficient problem in Sect. 3), the following more technical variant of

Theorem 2 is useful, as it allows us treat the case where the domain of definition is an

arbitrarily small neighbourhood of [0, 1]n .

Theorem 3 Let ǫ > 0 and c ≥ 2 + 2
ǫ
. Let F : U ⊆ R

n → R
n , n ≥ 2, be

continuously differentiable, pointwise convex and monotonic on a convex open set U.

If [− 1+ǫ
cn

− ǫ
2cn

, 1 + 2ǫ]n ⊂ U, and

F ′(z( j,k))d( j) � 0 for all j ∈ {1, . . . , n}, k = {1, . . . , K }, (15)

where K := ceil( 2cn
ǫ

(

1 + ǫ + 1+ǫ
cn

)

) ∈ N,

z( j,k) :=

(

−
1 + ǫ

cn
+ (k − 2)

ǫ

2cn

)

e j + (1 + 2ǫ) e′
j , (16)

d( j) :=
1

2
e j −

1 + ǫ + cn + 2ǫcn

ǫ
e′

j . (17)

then the following holds on O := (− 1+ǫ
cn

, 1 + ǫ)n ⊃ [0, 1]n .

(a) F is injective on O. For all x, y ∈ O, F ′(x) is invertible and

‖x − y‖∞ ≤ L ‖F(x) − F(y)‖∞, and ‖F ′(x)−1‖∞ ≤ L,

where

L :=

⎛

⎝ min
j=1,...,n,
k=1,...,K

max
l=1,...,n

eT
l F ′(z( j,k))d( j)

⎞

⎠

−1

> 0. (18)

(b) If, additionally, F(0) ≤ 0 ≤ F(1), then there exists a unique

x̂ ∈ O with F(x̂) = 0.

The Newton iteration sequence

x (i+1) := x (i) − F ′(x (i))−1 F(x (i)) with initial value x (0) := 1 (19)

is well defined (i.e., F ′(x (i)) is invertible in each step) and converges against x̂ .

For all i ∈ N

x (i) ∈ O, and 0 ≤ Mx̂ ≤ Mx (i+1) ≤ Mx (i) ≤ Mx (0) = (1 + cn)1,

where M := 11
T + (1+ (c −1)n)In ∈ R

n×n . The rate of convergence of xi → x̂

is superlinear. If F ′ is locally Lipschitz then the rate of convergence is quadratic.

To prove Theorem 3 we first prove a variant of Lemma 2 with tighter domain

assumptions.
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Lemma 4 Under the assumptions and with the notations of Theorem 3, the following

holds:

(a) For all x ∈ O, and j ∈ {1, . . . , n},

max
l=1,...,n

eT
l F ′(x)(e j − cne′

j ) ≥ L−1.

(b) F is injective on O. For all x, y ∈ O, F ′(x) is invertible,

‖x − y‖∞ ≤ L ‖F(x) − F(y)‖∞, and ‖F ′(x)−1‖∞ ≤ L.

(c) For all x ∈ O, and 0 �= y ∈ R
n

F ′(x)y ≥ 0 implies max
j=1,...,n

y j = ‖y‖∞ and min
j=1,...,n

y j > −
1

cn
‖y‖∞.

(d) M is invertible, M−1 = 1
1+(c−1)n

(

In − 1
1+cn

11
T
)

. For all x ∈ O, and y ∈ R
n

F ′(x)y ≥ 0 implies My ≥ 0,

and thus M F ′(x)−1 ≥ 0.

Proof We use the same arguments as in Lemma 2. To prove (a) let j ∈ {1, . . . , n} and

x ∈ O = [− 1+ǫ
cn

, 1 + ǫ]n . Then, by the definition of K , there exists k ∈ {1, . . . , K },

so that

−
1 + ǫ

cn
+ (k − 1)

ǫ

2cn
≤ x j ≤ −

1 + ǫ

cn
+ k

ǫ

2cn
.

It follows from the definition of z( j,k) and d( j) in (16) and (17) that

x − z( j,k) ≥
ǫ

2cn
e j −

(

1 + ǫ

cn
+ 1 + 2ǫ

)

e′
j =

ǫ

cn
d( j),

x − z( j,k) ≤
ǫ

cn
e j − ǫe′

j .

We thus obtain

F ′(x)
(

e j − cne′
j

)

=
cn

ǫ
F ′(x)

( ǫ

cn
e j − ǫe′

j

)

≥
cn

ǫ
F ′(x)

(

x − z( j,k)
)

≥
cn

ǫ

(

F(x) − F(z( j,k))
)

≥
cn

ǫ
F ′(z( j,k))

(

x − z( j,k)
)

≥ F ′(z( j,k))d( j),

which proves (a). Since this also implies a fortiori that

max
l=1,...,n

eT
l F ′(x)(e j − e′

j ) ≥ L−1 for all x ∈ O,
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(b) follows from Lemma 1.

To show (c) by contraposition, let x ∈ O , 0 �= y ∈ R
n , and assume that for some

index j ∈ {1, . . . , n}, we have that y j ≤ − 1
cn

‖y‖∞. Then y ≤ − 1
cn

‖y‖∞e j +

‖y‖∞e′
j , so that

−
cn

‖y‖∞
y ≥ e j − cne′

j , and thus, by (a), −
cn

‖y‖∞
F ′(x)y � 0.

By contraposition, this shows that

F ′(x)y ≥ 0 implies min
j=1,...,n

y j > −
1

cn
‖y‖∞,

and the latter also implies that ‖y‖∞ = max j=1,...,n y j .

For the proof of (d), it is easily checked that

1

1 + (c − 1)n

(

In −
1

1 + cn
11

T

)

(

11
T + (1 + (c − 1)n)In

)

= In,

which shows the invertibility of M and the asserted formula for M−1. Moreover, for

all y ∈ R
n , and l ∈ {1, . . . , n},

eT
l My =

n
∑

j=1

y j + (1 + (c − 1)n)yl

≥ max
j=1,...,n

y j + (n − 1) min
j=1,...,n

y j + (1 + (c − 1)n)yl

= max
j=1,...,n

y j + cn min
j=1,...,n

y j .

Hence, using (c), for all x ∈ O , F ′(x)y ≥ 0 implies My ≥ 0. As this also shows that

F ′(x)F ′(x)−1 y = y ≥ 0 implies M F ′(x)−1 y ≥ 0,

we have M F ′(x)−1 ≥ 0. ⊓⊔

Proof of Theorem 3 We proceed as in the proof of Theorem 2. Assertion (a) has already

been proven in Lemma 4(b).

To prove (b), let x (i) ∈ O with F(x (i)) ≥ 0 and 0 ≤ Mx (i) ≤ M1. Then, by (a),

F ′(x (i)) ∈ R
n×n is invertible, so that

x (i+t) := x (i) − t F ′(x (i))−1 F(x (i)) ∈ R
n, t ∈ [0, 1]

is well defined.

We will prove that x (i+1) ∈ O = (− 1+ǫ
cn

, 1 + ǫ)n . We argue by contradiction,

and assume that this is not the case. Then, by continuity, there exists t ∈ (0, 1] with
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x (i+t) ∈ O\O , so that, by Lemma 3,

F(x (i+t)) ≥ 0 and 0 ≤ Mx (i+t) ≤ Mx (i) ≤ M1. (20)

Convexity (2) then yields that

F ′(x (i+t))(x (i+t) − 0) ≥ F(x (i+t)) − F(0) ≥ 0,

and using Lemma 4(c) this would imply

min
j=1,...,n

x
(i+t)
j > −

1

cn
max

j=1,...,n
x

(i+t)
j ≥ −

1 + ǫ

cn
. (21)

For all l ∈ {1, . . . , n}, we obtain from (20) and (21)

1 + cn = eT
l M1 ≥ eT

l Mx (i+t) = (1 + (c − 1)n)x
(i+t)
l +

n
∑

j=1

x
(i+t)
j

≥ (2 + (c − 1)n)x
(i+t)
l − (n − 1)

1 + ǫ

cn
,

and thus

x
(i+t)
l ≤

1 + cn + (n − 1) 1+ǫ
cn

2 + (c − 1)n
= 1 +

(n − 1)(1 + ǫ + cn)

(2 + (c − 1)n)cn
.

An elementary computation shows that

1 + ǫ + cn

(2 + (c − 1)n)cn
<

(1 + ǫ)cn + cn

(2 + (c − 1)n)cn
=

2 + ǫ

2 + (c − 1)n
<

2 + ǫ

(c − 1)n
≤

ǫ

n
,

where we used cn > 1 for the first inequality, and we used the assumption c ≥ 2+ 2
ǫ

=
2+ǫ
ǫ

+ 1 for the last inequality. Hence, for all l ∈ {1, . . . , n},

x
(i+t)
l < 1 + ǫ

n − 1

n
< 1 + ǫ, so that x (i+t) ∈ O.

This contradicts x (i+t) ∈ O\O , and thus shows that x (i+1) ∈ O .

Using Lemma 3 again, this shows that for all

x (i) ∈ O with F(x (i)) ≥ 0, and 0 ≤ Mx (i) ≤ M1,

the next Newton iterate x (i+1) is well-defined and also fulfills

x (i+1) ∈ O with F(x (i+1)) ≥ 0, and 0 ≤ Mx (i+1) ≤ Mx (i) ≤ M1.
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Hence, for x (0) := 1, the Newton algorithm produces a well-defined sequence x (i) ∈

O for which Mx (i) is monotonically non-increasing and bounded. Hence, (Mx (i))i∈N

and thus also (x (i))k∈N converge. We define

x̂ := lim
i→∞

x (i) ∈ O.

Since F is continuously differentiable and F ′(x̂) is invertible, it follows from the New-

ton iteration formula that F(x̂) = 0. Also, the monotone convergence of (Mx (i))i∈N

shows that

0 ≤ Mx̂ ≤ Mx (i) ≤ M1 for all i ∈ N.

Moreover, since this is the standard Newton iteration, the convergence speed is super-

linear and the speed is quadratic if F ′ is Lipschitz continuous in a neighbourhood of

x̂ . ⊓⊔

3 Application to an inverse Robin transmission problem

We will now show how to use our result to obtain uniqueness, stability and global

convergence results for an inverse coefficient problem with finitely many measure-

ments. More precisely, we show how to choose finitely many measurements so that

they uniquely determine the unknown coefficient function with a given resolution,

Lipschitz stability holds, and Newton’s method globally converges.

3.1 The setting

We consider the inverse Robin transmission problem for the Laplace equation from

[53], that is motivated by corrosion detection. Note that similar problems have also been

studied for the Helmholtz equation under the name conductive boundary condition or

transition boundary condition [8,84]. We first introduce the idealized infinite-dimen-

sional forward and inverse problem following [53] and then study the case of finitely

many measurements.

3.1.1 The infinite-dimensional forward and inverse problem

Let Ω ⊂ R
d (d ≥ 2), be a bounded domain with Lipschitz boundary ∂Ω and let D

be an open subset of Ω , with D ⊂ Ω , Lipschitz boundary Γ := ∂ D and connected

complement Ω\D, cf. Fig. 1 in the numerical section for a sketch of the setting.

We assume that Ω describes an electrically conductive imaging domain, with a-

priori known conductivity that we set to 1 for the ease of presentation. (Note that all

of the following results remain valid if the conductivity in D and in Ω\D are a-priori

known spatially dependent functions as long as they are sufficiently regular to allow

unique continuation arguments). We assume that corrosion effects on the interface Γ
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Fig. 1 Setting considered for the

numerical results

can be modelled with an unknown Robin transmission parameter γ ∈ L∞
+ (Γ ), where

L∞
+ denotes the subset of L∞-functions with positive essential infima.

Applying an electrical current flux g ∈ L2(∂Ω) on the boundary ∂Ω then yields

an electric potential u ∈ H1(Ω) solving the following Robin transmission problem

with Neumann boundary values

Δu = 0 in Ω\Γ , (22)

∂νu|∂Ω = g on ∂Ω, (23)

�u�Γ = 0 on Γ , (24)

�∂νu�Γ = γ u on Γ , (25)

where ν is the unit normal vector to the interface Γ or ∂Ω pointing outward of D,

resp., Ω , and

�u� := u+|Γ − u−|Γ , and �∂νu� := ∂νu+|Γ − ∂νu−|Γ ,

denote the jump of the Dirichlet, resp., Neumann trace values on Γ , with the superscript

”+” denoting that the trace is taken from Ω\D and ”−” denoting the trace taken from

D. In the following, we often denote the solution of (22)–(25) by u
(g)
γ to point out its

dependence on the Robin transmission coefficient γ and the Neumann boundary data

g.

It is easily seen that this problem is equivalent to the variational formulation of

finding u
(g)
γ ∈ H1(Ω) such that

∫

Ω

∇u(g)
γ · ∇w dx +

∫

Γ

γ u(g)
γ w ds =

∫

∂Ω

gw ds for all w ∈ H1(Ω), (26)

and that (26) is uniquely solvable by the Lax–Milgram-Theorem. Hence, we can define

the Neumann-to-Dirichlet map

Λ(γ ) : L2(∂Ω) → L2(∂Ω), g �→ u(g)
γ |∂Ω , where u(g)

γ ∈ H1(Ω) solves (26).
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It is easy to show that Λ(γ ) is a compact self-adjoint linear operator.

One may regard Λ(γ ) as an idealized model (the so-called continuum model) of

all electric current/voltage measurements that can be carried out on the outer bound-

ary ∂Ω . Hence the infinite-dimensional inverse coefficient problem of determining a

Robin transmission coefficient from boundary measurements can be formulated as the

problem to

reconstruct γ ∈ L∞
+ (Γ ) from Λ(γ ) ∈ L(L2(∂Ω)).

We summarize some more properties of the infinite-dimensional forward mapping

Λ in the following lemma.

Lemma 5 (a) The non-linear mapping

Λ : L∞
+ (Γ ) → L(L2(∂Ω)), γ �→ Λ(γ )

is Fréchet differentiable. Its derivative

Λ′ : L∞
+ (Γ ) → L(L∞(Γ ),L(L2(∂Ω)))

is given by the bilinear form

∫

∂Ω

g
(

Λ′(γ )δ
)

h ds = −

∫

Γ

δu(g)
γ u(h)

γ ds, (27)

for all γ ∈ L∞
+ (Γ ), δ ∈ L∞(Γ ), and g, h ∈ L2(∂Ω), where u

(g)
γ ∈ H1(Ω) solves

(26). Λ′ is locally Lipschitz continuous and Λ′(γ )δ ∈ L(L2(∂Ω)) is compact and

self-adjoint.

(b) For all g ∈ L2(∂Ω) and all γ1, γ2 ∈ L∞
+ (Ω),

∫

∂Ω

g (Λ(γ2) − Λ(γ1)) g ds ≥

∫

∂Ω

g
(

Λ′(γ1)(γ2 − γ1)
)

g ds.

(c) For all γ ∈ L∞
+ (Ω), δ ∈ L∞(Ω), and g ∈ L2(∂Ω),

δ(x) ≥ 0 for x ∈ Ω a.e. implies

∫

∂Ω

g
(

Λ′(γ )δ
)

g ds ≤ 0.

Proof Obviously, for all γ ∈ L∞
+ (Γ ) and δ ∈ L∞(Γ ), (27) defines a compact

self-adjoint linear operator Λ′(γ )δ ∈ L(L2(∂Ω)). Moreover, it follows from the

monotonicity estimate in [53, Lemma 4.1] that for all δ ∈ L∞(Γ ) (that are suffi-

ciently small so that γ + δ ∈ L∞
+ (Γ ))

∫

Γ

δ|u(g)
γ |2 ds ≥

∫

∂Ω

g (Λ(γ ) − Λ(γ + δ)) ds ≥

∫

Γ

(

γ −
γ 2

γ + δ

)

|u(g)
γ |2 ds
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and thus

‖Λ(γ + δ) − Λ(γ ) − Λ′(γ )δ‖L(L2(∂Ω))

= sup
g∈L2(∂Ω)

∣

∣

∣

∣

∫

∂Ω

g
(

Λ(γ + δ) − Λ(γ ) − Λ′(γ )δ
)

ds

∣

∣

∣

∣

≤

∫

Γ

(

δ2

γ + δ

)

|u(g)
γ |2 ds

= O(‖δ‖2).

This shows that Λ is Fréchet differentiable for all γ ∈ L∞
+ (Γ ), and that Λ′(γ ) is

its derivative. Since it is easily shown that u
(g)
γ ∈ H1(Ω) depends locally Lipschitz

continuously on γ ∈ L∞
+ (Γ ), it also follows that Λ′ is locally Lipschitz continuous.

This proves (a).

(b) is shown in [53, Lemma 4.1], and (c) follows from (27). ⊓⊔

Note that Lemma 5 shows that Λ is a convex, anti-monotone function with respect

to the pointwise partial order on L∞
+ (Ω), and the Loewner partial order in the space of

compact self-adjoint operators on L2(∂Ω). These properties are the key to formulate

the finite-dimensional inverse problem as a zero finding problem for a pointwise convex

and monotonic forward function.

3.1.2 The inverse problemwith finitely manymeasurements

In practical applications, it is natural to assume that the unknown Robin transmission

coefficient is a piecewise constant function, i.e., γ (x) =
∑n

j=1 γ jχ j (x) where γ j > 0

and χ j := χΓ j
are the characteristic functions on pairwise disjoint subsets Γ j ⊆ Γ of

a given partition Γ =
⋃n

j=1 Γ j . For the ease of notation, here and in the following,

we identify a piecewise constant function γ (x) =
∑n

j=1 γ jχ j (x) ∈ L∞(Γ ) with

the vector γ = (γ1, . . . , γn) ∈ R
n . We also simply write a for the constant function

γ (x) = a, and for the vector (a, . . . , a) ∈ R
n (and use b analogously). Throughout

this work we always assume that n ≥ 2.

It is also natural to assume that one knows bounds a, b ∈ R on the unknown Robin

transmission coefficient, so that 0 < a ≤ γ j ≤ b for all j = 1, . . . , n. For the semi-

discretized inverse problem of reconstructing the finite-dimensional coefficient vector

γ ∈ [a, b]n ⊂ R
n from the (infinite-dimensional) measurements Λ(γ ), the results in

[53, Thm. 2.1 and 2.2] show uniquely solvability and Lipschitz stability. Moroever,

[53, Thm. 5.2] shows how to explicitly calculate the Lipschitz constant for a given

setting using arguments similar to (and inspiring) Sect. 2 in this work.

We now go one step further and assume that we can only measure finitely many

components of Λ(γ ), i.e., that we can measure

F(γ ) =

(∫

∂Ω

g jΛ(γ )h j ds

)m

j=1

∈ R
m (28)

for a finite number of Neumann boundary data g j , h j ∈ L2(∂Ω). Hence, the fully

discretized inverse Robin transmission problem leads to the finite dimensional non-
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linear inverse problem to

determine γ ∈ [a, b]n ⊂ R
n from F(γ ) ∈ R

m .

The following practically important questions are then to be answered: Given

bounds [a, b] and a partition of Γ (i.e., a desired resolution), how many and which

Neumann boundary functions g j , h j should be used, so that F(γ ) uniquely deter-

mines γ ? How good is the stability of the resulting inverse problem with regard to

noisy measurements? How can one construct a globally convergent numerical algo-

rithm to practically determine γ from F(γ )? And how good will the solution be in

the case that the true Robin transmission function γ is not piecewise constant?

The following subsections show how these questions can be answered using the

theory developed in Sect. 2. For this, let us first observe, that the symmetric choice

g j = h j leads to an inverse problem with a pointwise convex and monotonic forward

function.

Lemma 6 Let b > a > 0, g1, . . . , gn ∈ L2(∂Ω), and

F : (0,∞)n → R
n, γ �→ F(γ ) :=

(∫

∂Ω

g jΛ(γ )g j ds

)n

j=1

.

F is a pointwise convex and anti-monotone, continuously differentiable function with

locally Lipschitz continuous derivative F ′(γ ) ∈ R
n×n , where

eT
j F ′(γ )el =

∂ F j (γ )

∂ξl

= −

∫

Γl

|u
g j
γ |2 ds for all γ ∈ (0,∞)n, j, l ∈ {1, . . . , n}.

Given a vector y = (y j )
n
j=1 ∈ R

n with F(b) ≤ y ≤ F(a), we define the rescaled

function

Φ : U := (−∞, b
b−a

)n ⊆ R
n → R

n, Φ(ξ) :=
1

b − a
(F(r(ξ)) − y) .

with r(ξ) := b1 − (b − a)ξ . Then Φ is a pointwise convex and monotonic, con-

tinuously differentiable function with locally Lipschitz continuous derivative, and

Φ ′(ξ) = −F ′(r(ξ)) for all ξ ∈ U. Also, Φ(0) ≤ 0 ≤ Φ(1).

Proof This follows immediately from Lemma 5. ⊓⊔

3.2 Uniqueness, stability and global Newton convergence

We summarize the assumptions on the setting: Let Ω ⊂ R
d (d ≥ 2), be a bounded

domain with Lipschitz boundary ∂Ω and let D be an open subset of Ω , with D ⊂ Ω ,

Lipschitz boundary Γ := ∂ D and connected complement Ω\D. We assume that the

true unknown Robin transmission coefficient γ̂ ∈ L∞
+ (Γ ) is bounded by b ≥ γ̂ (x) ≥

a for x ∈ Γ a.e., with a-priori known bounds b > a > 0, and that γ̂ =
∑n

j=1 γ̂ jχ j ,
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χ j := χΓ j
, is piecewise constant on an a-priori known partition Γ =

⋃n
j=1 Γ j into

n ∈ N, n ≥ 2, pairwise disjoint measurable subsets Γ j ⊂ Γ with positive measure.

We will show how to construct n Neumann boundary functions g j ∈ L2(∂Ω), so

that γ ∈ [a, b]n is uniquely determined by the n measurements

F(γ ) =

(∫

∂Ω

g jΛ(γ )g j ds

)n

j=1

∈ R
n .

We also quantify the Lipschitz stability constant of this inverse problem, and show

that the inverse problem can be numerically solved with a globally convergent Newton

method. Our main tool is to reformulate the finite-dimensional inverse problem as a

zero finding problem for the pointwise monotonic and convex function Φ introduced

in Lemma 6. Then we use a relation to the concept of localized potentials [41] to prove

that we can choose the measurements g j in such a way that Φ also fulfills the additional

assumptions on the directional derivative of the forward function as required by our

Newton convergence theory in Sect. 2.

At this point, let us stress that our theory in Sect. 2 allows us to find m = n measure-

ments that uniquely recover the n unknown components of the Robin coefficient, but it

also requires to use exactly those m = n measurements to ensure global convergence

of Newton’s method. In practice, it would be highly desirable to utilize additional

measurements for the sake of redundancy and error reduction. But our convergence

theory in Sect. 2 does not cover the case m > n yet, and an extension to, e.g., Gauss–

Newton or Levenberg–Marquardt methods seems far from trivial. Moreover, for some

applications, it would be desirable to also treat the interior boundary Γ as unknown.

But it is not clear whether the interplay of parametrization, differentiability and local-

ized potentials results that is required to fulfill the assumptions of Sect. 2 can also be

extended to this case. Hence, in all of the following we will only consider the case

where the interior boundary is known and utilize exactly m = n measurements.

3.2.1 Choosing the measurements (for specific bounds)

To demonstrate the key idea, we will first consider the specific (and rather restrictive)

case where the bounds a, b fufill

n(n + 3) <
b

b − a
,

since this case can be treated by simply combining Theorem 2 with a known localized

potentials result from [53]. The case of general bounds b > a > 0 is more technical

and requires an extended result on simultaneously localized potentials. It will be treated

in Sect. 3.2.2.

Theorem 4 Given bounds b > a > 0 that fulfill n(n + 3) < b
b−a

, we define the

piecewise constant functions κ( j) ∈ L∞
+ (Γ ), j = 1, . . . , n, by setting

κ( j) :=

{

3b − 2a on Γ j ,

b − n(n + 3)(b − a) on Γ \Γ j .
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(a) If, for all j = 1, . . . , n, g j ∈ L2(∂Ω) fulfills

λ( j) :=

∫

Γ j

|u
g j

κ( j) |
2 ds − (n2 + 3n + 1)

∫

Γ \Γ j

|u
g j

κ( j) |
2 ds > 0, (29)

then the finite-dimensional non-linear inverse problem of determining

γ =
(

γ j

)n

j=1
∈ [a, b]n from F(γ ) :=

(∫

∂Ω

g jΛ(γ )g j ds

)n

j=1

∈ R
n

has a unique solution in [a, b]n , and γ depends Lipschitz continuously on F(γ ).

Moreover, the iterates of Newton’s method applied to the problem of determining

γ from F(γ ), with initial value γ (0) = a ∈ R
n , quadratically converge to the

unique solution γ (see Lemma 7 for more details on the properties of F).

(b) In any large enough finite-dimensional subspace of L2(∂Ω), one can find

g1, . . . , gn fulfilling (29) by the following construction:

Let ( fm)m∈N ⊆ L2(∂Ω) be a sequence of vectors with dense linear span in

L2(∂Ω). Let j ∈ {1, . . . , n}, m ∈ N, and let M
( j)
m ∈ R

m×m be the symmetric

matrix with entries (l, k = 1, . . . , m)

eT
l M

( j)
m ek :=

∫

Γ j

u
fl

κ( j)u
fk

κ( j) ds − (n2 + 3n + 1)

∫

Γ \Γ j

u
fl

κ( j)u
fk

κ( j) ds.

Then, for sufficiently large dimension m ∈ N, the matrix M
( j)
m ∈ R

m×m has

a positive eigenvalue λ( j) > 0. For a corresponding normalized eigenvector

v( j) = (v
( j)
1 , . . . , v

( j)
m ) ∈ R

m , (29) is fulfilled by

g j :=

m
∑

k=1

v
( j)
k fk ∈ L2(∂Ω).

To prove Theorem 4, we formulate the consequences of our Newton convergence

theory in Sect. 2 in the following lemma.

Lemma 7 If n(n + 3) < b
b−a

then

[a, b]n ⊂ I ⊂ I ′ ⊂ (0,∞)n .

where I := (a − b−a
n−1

, b + b−a
n−1

)n , and I ′ := [b − n(b − a), 2b − a]n . If, for all

j = 1, . . . , n, g j ∈ L2(∂Ω) fulfills (29), then the function

F : (0,∞)n → R
n, F(γ ) :=

(∫

∂Ω

g jΛ(γ )g j ds

)n

j=1

∈ R
n

has the following properties
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(a) F is pointwise convex, anti-monotone, and continuously differentiable.

(b) F is injective on I ′, and its Jacobian F ′(γ ) is invertible for all γ ∈ I ′.

(c) With L := (n + 2)
(

min j=1,...,n λ( j)
)−1

, we have that for all γ, γ ′ ∈ I ′

‖γ − γ ′‖∞ ≤ L ‖F(γ ) − F(γ ′)‖∞ and ‖F ′(γ )−1‖∞ ≤ L.

(d) For all γ ∈ [a, b]n , F(b) ≤ F(γ ) ≤ F(a). Moreover, for all y ∈ R
n with

F(b) ≤ y ≤ F(a) there exists a unique γ ∈ I with F(γ ) = y. The Newton

iteration

γ (i+1) := γ (i) − F ′(γ (i))−1
(

F(γ (i)) − y
)

, started with γ (0) := a ∈ R
n,

produces a sequence (γ (i))i∈N ⊂ I ′ that converges quadratically to γ .

Proof We define r and Φ as in Lemma 6. Then,

r([0, 1]n) = [a, b]n, r((− 1
n−1

, 1 + 1
n−1

)n) = I , r([−1, n]n) = I ′,

so that the interval inclusions follow from the anti-monotonicity of r .

Lemma 6 yields assertion (a) and that Φ : U ⊆ R
n → R

n is a continuously

differentiable pointwise convex and monotonic function on U = (−∞, b
b−a

)n . The

assumption n(n + 3) < b
b−a

guarantees that U contains [−2, n(n + 3)]n . Moreover,

using that

κ( j) = r(−2e j + n(n + 3)e′
j ) ∈ (0,∞)n,

it follows from Lemma 6 and (29) that

eT
j Φ ′(−2e j + n(n + 3)e′

j )
(

e j − (n2 + 3n + 1)e′
j

)

=

∫

Γ j

|u
g j

κ( j) |
2 ds − (n2 + 3n + 1)

∫

Γ \Γ j

|u
g j

κ( j) |
2 ds = λ( j) > 0,

so that Φ fulfills the assumptions of Theorem 2.

It follows that Φ is injective on [−1, n]n , and that for all ξ, ξ ′ ∈ [−1, n]n , Φ ′(ξ) is

invertible,

‖ξ − ξ ′‖∞ ≤ L ‖Φ(ξ) − Φ(ξ ′)‖∞, and ‖Φ ′(ξ)−1‖∞ ≤ L.

This proves that F fulfills (b) and (c) on r([−1, n]n) = I ′.

The first assertion in (d) follows from the anti-monotonicity of F . For the remaining

assertions in (d) note that, by Lemma 6, Φ ′ is also locally Lipschitz continuous, and

Φ(0) ≤ 0 ≤ Φ(1). Hence, Theorem 2(b) yields that there exists a unique ξ ∈

(− 1
n−1

, 1 + 1
n−1

)n with Φ(ξ) = 0, and thus a unique γ ∈ I that solves F(γ ) = y.

Moreover, Theorem 2(b) yields that the Newton iteration applied to Φ with initial

value ξ (0) = 1 does not leave the interval (−1, n)n and quadratically converges
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against the unique solution ξ of Φ(ξ) = 0. Since, the Newton iteration is invariant

under invertible linear transformations, this yields that the Newton iteration applied

to F with γ (0) := a ∈ R
n does not leave I ′ and converges quadratically against the

unique solution γ of F(γ ) = y. ⊓⊔

Proof of Theorem 4 (a) follows from Lemma 7.

(b) Let j ∈ {1, . . . , n}. From the localized potentials result in [53, Lemma 4.3], it

follows that there exists g ∈ L2(∂Ω) with

∫

Γ j

|u
g

κ( j) |
2 ds − (n2 + 3n + 1)

∫

Γ \Γ j

|u
g

κ( j) |
2 ds > 1.

By density and continuity, for sufficiently large m ∈ N, there exists a function

f ∈ span{ f1, . . . , fm} with

∫

Γ j

|u
f

κ( j) |
2 ds − (n2 + 3n + 1)

∫

Γ \Γ j

|u
f

κ( j) |
2 ds >

1

2
.

Writing f =
∑m

l=1 vl fl with vl ∈ R, and v := (vl)
m
l=1 ∈ R

m , we thus have

vT M
( j)
m v =

∫

Γ j

|u
f

κ( j) |
2 ds − (n2 + 3n + 1)

∫

Γ \Γ j

|u
f

κ( j) |
2 ds >

1

2
.

This shows that the symmetric matrix M
( j)
m ∈ R

m×m must have a positive eigen-

value when its dimension m ∈ N is sufficiently large. On the other hand, every

normalized eigenvector v( j) = (v
( j)
1 , . . . , v

( j)
m ) ∈ R

m corresponding to a positive

eigenvector λ( j) > 0 fulfills

0 < λ( j) = (v( j))T M
( j)
m v( j)

=

∫

Γ j

|u
g j

κ( j) |
2 ds − (n2 + 3n + 1)

∫

Γ \Γ j

|u
g j

κ( j) |
2 ds,

with g j :=
∑m

k=1 v
( j)
k fk ∈ L2(∂Ω), so that (b) is proven.

⊓⊔

3.2.2 Choosing the measurements (for general bounds)

We now show how to treat the case of general bounds b > a > 0.

Theorem 5 Given b > a > 0, choose 0 < ǫ < a
2(b−a)

, and set c := 2 + 2
ǫ
, K :=

ceil
(

2cn
ǫ

(

1 + ǫ + 1+ǫ
cn

))

, and β := 1+ǫ+cn+2ǫcn
ǫ

. Let κ( j,k) ∈ L∞
+ (Γ ) denote the

piecewise constant function

κ( j,k) :=

{

b − (b − a)
(

− 1+ǫ
cn

+ (k − 2) ǫ
2cn

)

on Γ j ,

a − 2ǫ(b − a) on Γ \Γ j .
(30)
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(a) If g j ∈ L2(∂Ω), j = 1, . . . , n, fulfills

λ j,k :=
1

2

∫

Γ j

|u
g j

κ( j,k) |
2 ds − β

∫

Γ \Γ j

|u
g j

κ( j,k) |
2 ds > 0, (31)

for all k = 1, . . . , K , then the finite-dimensional non-linear inverse problem of

determining

γ =
(

γ j

)n

j=1
∈ [a, b]n from F(γ ) :=

(∫

∂Ω

g jΛ(γ )g j ds

)n

j=1

∈ R
n

has a unique solution in [a, b]n , and γ depends Lipschitz continuously Λ(γ ).

Moreover, the iterates of Newton’s method applied to the problem of determining

γ from F(γ ), with initial value γ (0) = a ∈ R
n , quadratically converge to the

unique solution γ (see Lemma 8 for more details on the properties of F).

(b) In any large enough finite dimensional subspace of L2(∂Ω), one can find

g1, . . . , gn fulfilling (31) by the following construction:

Let ( fm)m∈N ⊆ L2(∂Ω) be a sequence of vectors with dense linear span in

L2(∂Ω). Let j ∈ {1, . . . , n}, m ∈ N, and v( j) = (v
( j)
1 , . . . , v

( j)
m ) ∈ R

m be a

normalized eigenvector corresponding to a largest eigenvalue of the symmetric

matrix

M
( j)
m :=

α

2
S( j) − β

K
∑

k=1

R( j,k) ∈ R
m×m,

where α := (1 + b−a
b

(1 + ǫ + 1+ǫ
cn

))−1, and for i, l = 1, . . . , m,

eT
i S( j)el :=

∫

Γ

u
fi

κ( j,1)u
fl
κ( j,1) ds, and eT

i R( j,k)el :=

∫

Γ \Γ j

u
fi

κ( j,k)u
fl
κ( j,k) ds,

Then, for sufficiently large dimension m ∈ N, (31) is fulfilled by

g j :=

m
∑

l=1

v
( j)

l fl ∈ span{ f1, . . . , fm} ⊂ L2(∂Ω).

As in Sect. 3.2.1, we prove Theorem 5(a) by applying our Newton convergence

theory from Sect. 2 in the following lemma.

Lemma 8 We have that

[a, b]n ⊆ I :=
[

a − (b − a)ǫ, b + (b − a) 1+ǫ
cn

]n
⊆ (0,∞)n .
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If, for all j = 1, . . . , n, g j ∈ L2(∂Ω) fulfills (31) for all k = 1, . . . , K , then the

function

F : (0,∞)n → R
n, F(γ ) :=

(∫

∂Ω

g jΛ(γ )g j ds

)n

j=1

∈ R
n

has the following properties:

(a) F is pointwise convex, anti-monotone, and continuously differentiable.

(b) F is injective on I , and its Jacobian F ′(γ ) is invertible for all γ ∈ I .

(c) For all γ, γ ′ ∈ I ,

‖γ − γ ′‖∞ ≤ L ‖F(γ ) − F(γ ′)‖∞ and ‖F ′(γ )−1‖∞ ≤ L,

where L :=
(

min j=1,...,n, k=1,...,K λ j,k

)−1
.

(d) For all γ ∈ [a, b]n , F(b) ≤ F(γ ) ≤ F(a). Moreover, for all y ∈ R
n with

F(b) ≤ y ≤ F(a) there exists a unique γ ∈ I with F(γ ) = y. The Newton

iteration

γ (i+1) := γ (i) − F ′(γ (i))−1
(

F(γ (i)) − y
)

, started with γ (0) := a ∈ R
n,

produces a sequence (γ (i))i∈N ⊂ I that converges quadratically to γ .

Proof We define r and Φ as in Lemma 6. Then r([0, 1]n) = [a, b]n and

r([− 1+ǫ
cn

, 1 + ǫ]n) = [a − (b − a)ǫ, b + (b − a) 1+ǫ
cn

]n .

Lemma 6 yields assertion (a) and that Φ : U ⊆ R
n → R

n is a continuously

differentiable pointwise convex and monotonic function on U = (−∞, b
b−a

)n , with

locally Lipschitz continuous Φ ′, and Φ(0) ≤ 0 ≤ Φ(1). Also, U contains [− 1+ǫ
cn

−
ǫ

2cn
, 1 + 2ǫ]n since ǫ < a

2(b−a)
.

Moreover, with z( j,k), d( j) ∈ R
n defined by (16) and (17), we have that

κ( j,k) = r(z( j,k)) and d( j) =
1

2
e j − βe′

j .

It thus follows from Lemma 6 and (31) that

eT
j Φ ′(z( j,k))d( j) =

1

2

∫

Γ j

|u
g j

κ( j,k) |
2 ds − β

∫

Γ \Γ j

|u
g j

κ( j,k) |
2 ds = λ j,k > 0,

so that Φ fulfills the assumptions of Theorem 3 which then yields the assertions (b)–(d).

⊓⊔

To prove Theorem 5(b), we need to ensure that there exist Neumann data g j ∈

L2(∂Ω) so that the corresponding solutions u
g j

κ( j,k) are much larger on Γ j than on
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Γ \Γ j , and this property has to hold for several Robin transmission coefficients κ( j,k),

k = 1, . . . , K , simultaneously.

Note that for fixed j ∈ {1, . . . , n} the Robin transmission coefficients κ( j,k) only

differ on Γ j . Hence, the following lemma will allow us to estimate u
g j

κ( j,k) on Γ j by

u
g j

κ( j,1) .

Lemma 9 Let γ (1), γ (2) ∈ L∞
+ (Γ ) with γ (1) = γ (2) on Γ \Γ0, where Γ0 is a measur-

able subset of Γ with positive measure. Then, for all g ∈ L2(∂Ω), the corresponding

solutions u1, u2 ∈ H1(Ω) of (22)–(25) with γ = γ (1), and γ = γ (2), respectively,

fulfill

‖u2‖ L2(Γ0)
≤

(

1 +
‖γ (1) − γ (2)‖ L∞(Γ0)

inf(γ (2)|Γ0)

)

‖u1‖ L2(Γ0).

Proof We proceed analogously to [50, Lemma 3.6]. It follows from the variational

formulation (26) that

inf(γ (2)|Γ0)‖u2 − u1‖
2
L2(Γ0)

≤

∫

Ω

σ |∇(u2 − u1)|
2 dx +

∫

Γ

γ (2)|u2 − u1|
2 ds

=

∫

∂Ω

g(u2 − u1) ds −

∫

Ω

σ∇u1 · ∇(u2 − u1) dx −

∫

Γ

γ (2)u1(u2 − u1) ds

=

∫

Γ

(γ (1) − γ (2))u1(u2 − u1) ds =

∫

Γ0

(γ (1) − γ (2))u1(u2 − u1) ds

≤ ‖γ (1) − γ (2)‖ L∞(Γ0)‖u1‖ L2(Γ0)
‖u2 − u1‖ L2(Γ0).

Hence, we obtain

‖u2‖ L2(Γ0)
− ‖u1‖ L2(Γ0)

≤ ‖u2 − u1‖ L2(Γ0)

≤
‖γ (1) − γ (2)‖ L∞(Γ0)

inf(γ (2)|Γ0)
‖u1‖ L2(Γ0)

,

and the assertion follows. ⊓⊔

The next lemma will allow us to construct u
g j

κ( j,k) for which u
g j

κ( j,1) is large on Γ j

(and thus by Lemma 10 all u
g j

κ( j,k) are large on Γ j ), and at the same time all u
g j

κ( j,k) are

small on Γ \Γ j .

Lemma 10 Let Γ0 be a measurable subset of Γ with positive measure, K ∈ N, and

γ (1), γ (2), . . . , γ (K ) ∈ L∞
+ (Γ ).

Then, for all C > 0, there exists g ∈ L2(∂Ω), so that the corresponding solutions

u1, u2, . . . , uK ∈ H1(Ω) of (22)–(25) fulfill

∫

Γ0

|u1|
2 ds ≥ C and

K
∑

k=1

∫

Γ \Γ0

|uk |
2 ds ≤

1

C
.
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Proof The existence of simultaneously localized potentials for the fractional Schrö-

dinger equation has recently been shown in [51, Theorem 3.11], and we proceed

similarly in this proof. Following the original localized potentials approach in [41], we

start by reformulating the assertion as operator range (non-)inclusions, by introducing

the operators

A0 : L2(Γ0) → L2(∂Ω), f �→ A f := v0|∂Ω ,

Ak : L2(Γ \Γ0) → L2(∂Ω), f �→ A f := vk |∂Ω ,

where k ∈ {1, . . . , K }, v0 ∈ H1(Ω) solves

∫

Ω

σ∇v0 · ∇w dx +

∫

Γ

γ (1)v0w ds =

∫

Γ0

f w ds for all w ∈ H1(Ω), (32)

and vk ∈ H1(Ω) solves

∫

Ω

σ∇vk · ∇w dx +

∫

Γ

γ (k)vkw ds =

∫

Γ \Γ0

f w ds for all w ∈ H1(Ω). (33)

It is easily shown (see, e.g., the proof of [53, Theorem 3.1]) that the adjoints of these

operators are given by

A∗
0 : L2(∂Ω) → L2(Γ0), g �→ u1|Γ0 ,

A∗
k : L2(∂Ω) → L2(Γ \Γ0), g �→ uk |Γ \Γ0 ,

where u1, . . . , uK ∈ H1(Ω) solve (22)–(25) with Neumann boundary data g and

Robin transmission coefficients γ (1), . . . , γ (K ), respectively.

By a simple normalization argument, the assertion is now equivalent to showing

that

∄C > 0 : ‖A∗
0g‖2 ≤ C

K
∑

k=1

‖A∗
k g‖2 = C

∥

∥

∥

∥

∥

∥

∥

⎛

⎜

⎝

A∗
1
...

A∗
K

⎞

⎟

⎠
g

∥

∥

∥

∥

∥

∥

∥

2

∀g ∈ L2(∂Ω). (34)

Using a functional analytic relation between operator ranges and the norms or their

adjoints (cf., [41, Lemma 2.5], [36, Cor. 3.5]), the property (34) (and thus the assertion)

is proven if we can show that

R(A0) � R
(

A1 · · · AK

)

= R(A1) + · · · + R(AK ). (35)

We prove (35) by contradiction, and assume that

R(A0) ⊆ R(A1) + · · · + R(AK ).
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Then, for every f0 ∈ L2(Γ0), there exist f1, . . . , fK ∈ L2(Γ \Γ0), so that

A0 f0 = A1 f1 + · · · + AK fK .

Let v0, . . . , vK ∈ H1(Ω) be the associated solutions from the definition of

A0, . . . , AK (with f = fk), and set v := v1 + · · · + vK − v0. Then v|∂Ω = 0,

and ∂νv|∂Ω = 0, so that by unique continuation v = 0 in Ω\D. But this also yields

that v|Γ = 0, and from this we obtain that v = 0 in D, so that v = 0 in all of Ω .

Hence, using (32) and (33), we obtain for all w ∈ H1(Ω),

0 =

∫

Ω

σ∇v · ∇w dx +

∫

Γ

γ (1)vw ds

=

K
∑

k=1

(∫

Ω

σ∇vk · ∇w dx +

∫

Γ

γ (k)vkw ds +

∫

Γ

(γ (1) − γ (k))vkw ds

)

−

∫

Ω

σ∇v0 · ∇w dx −

∫

Γ

γ (1)v0w ds

=

K
∑

k=1

(∫

Γ \Γ0

fkw ds +

∫

Γ

(γ (1) − γ (k))vkw ds

)

−

∫

Γ0

f0w ds,

and this shows that

f0 =

K
∑

k=2

(γ (1) − γ (k))vk |Γ0 .

However, since this holds for all f0 ∈ L2(Γ0), this would imply that

L2(Γ0) = R(M2trΓ0) + · · · + R(MK trΓ0) = R
((

M2trΓ0 . . . MK trΓ0

))

where

trΓ0 : H1(Ω) → L2(Γ0), and Mk : L2(Γ0) → L2(Γ0)

are the compact trace operator and the continuous multiplication operator by γ (1) −

γ (k). Hence, the closed infinite-dimensional space L2(Γ0) would be the range of a

compact operator, which is not possible cf., e.g., [92, Thm. 4.18]. This contradiction

shows that (35) must hold, and thus the assertion is proven. ⊓⊔

Proof of Theorem 5 1. follows from Lemma 8.

2. Let j ∈ {1, . . . , n}. As in the proof of Theorem 4(b), it follows from the

simultaneously localized potentials result in Lemma 10, and a density argu-

ment, that M
( j)
m ∈ R

m×m will have a positive eigenvalue if the dimension

m ∈ N is sufficiently large. Hence, for sufficiently large m, an eigenvector
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v( j) ∈ R
m corresponding to a largest eigenvalue of M

( j)
m will fulfill (with

g j :=
∑m

l=1 v
( j)

l fl ∈ L2(∂Ω))

0 ≤ (v( j))T M
( j)
m v( j) =

α

2

∫

Γ j

|u
g j

κ( j,1) |
2 ds − β

K
∑

k=1

∫

Γ \Γ j

|u
g j

κ( j,k) |
2 ds.

Using that for all k ∈ {1, . . . , K }

inf(κ( j,1)|Γ j
) = b + (b − a)

(

2 + 3ǫ

2cn

)

≥ b,

‖κ( j,k) − κ( j,1)‖ L∞(Γ j ), ≤ (b − a)(K − 1)
ǫ

2cn
≤ (b − a)

(

1 + ǫ +
1 + ǫ

cn

)

,

we have that

1 +
‖κ( j,k) − κ( j,1)‖ L∞(Γ j )

inf(κ( j,1)|Γ j
)

≤ 1 +
b − a

b

(

1 + ǫ +
1 + ǫ

cn

)

=
1

α
,

and thus it follows from Lemma 9

1

2

∫

Γ j

|u
g j

κ( j,k) |
2 ds − β

∫

Γ \Γ j

|u
g j

κ( j,k) |
2 ds

≥
α

2

∫

Γ j

|u
g j

κ( j,1) |
2 ds − β

K
∑

k′=1

∫

Γ \Γ j

|u
g j

κ( j,k′)
|2 ds ≥ 0.

Hence, (31) is fulfilled.

⊓⊔

Remark 2 Regarding the formulation of Theorem 5(b), note that we actually prove

that the matrix M
( j)
m ∈ R

m×m has a positive eigenvalue if the dimension m is suffi-

ciently large, and that an eigenvector corresponding to a positive eigenvalue leads to a

boundary current g j that fulfills (31). But the estimates that we use in the proof of 5(b)

are far from being sharp, so that it seems worth checking (31) already for eigenvectors

to a largest eigenvalue that is not yet positive.

3.3 Numerical results

We test our results on the simple example setting shown in Fig. 1. Ω ⊂ R
2 is the two-

dimensional unit circle, and D is a square with corner coordinates (0,−0.1), (0, 0.3),

(−0.4, 0.3) and (−0.4,−0.1). The boundary Γ = ∂ D is decomposed into n = 4

parts Γ1, . . . , Γ4 denoting (in this order) the right, top, left, and bottom side of the

square. We assume that the unknown true Robin transmission coefficient γ̂ : Γ → R
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is a-priori known to be bounded by a := 1 and b := 2 and that it is known to be

piecewise-constant with respect to the partition of Γ , i.e.,

γ̂ (x) = γ̂1χΓ1 + γ̂2χΓ2 + γ̂3χΓ3 + γ̂4χΓ4 with γ̂1, . . . , γ̂4 ∈ [a, b] = [1, 2].

Recall that, for the ease of notation, we identify a piecewise-constant function γ ∈

L2(Γ ) with the vector (γ1, . . . , γ4) ∈ R
4, and simply write a for the constant function

γ (x) = a, and for the vector (a, a, a, a) ∈ R
4 (and use b analogously).

3.3.1 Choosing the measurements

We first apply Theorem 5 to construct n = 4 Neumann boundary functions

g1, . . . , g4 ∈ L2(∂Ω) so that the four measurements

F(γ ) :=

(∫

∂Ω

g jΛ(γ )g j ds

)4

j=1

∈ R
4 uniquely determine γ ∈ [a, b]4 ⊂ R

4,

and the Newton method applied to F globally converges.

To implement Theorem 5, we choose ǫ := 0.9 a
2(b−a)

, which yields K = 173, and

( fm)m∈N ⊂ L2(∂Ω) as the standard trigonometric polynomial basis functions

(1, cos(ϕ), sin(ϕ), cos(2ϕ), sin(2ϕ), . . .) ⊆ L2(∂Ω)

with ϕ denoting the angle of a point on the unit circle ∂Ω . For each j ∈ {1, . . . , n}, we

then calculate the matrix M
( j)
m ∈ R

m×m starting with m = 1, and increase the dimen-

sion m ∈ N, until an eigenvector v( j) ∈ R
m corresponding to a largest eigenvalue of

this matrix has the property that

g j :=

m
∑

l=1

v
( j)
l fl = v

( j)
1 + v

( j)
2 cos(ϕ) + v

( j)
3 sin(ϕ) + v

( j)
4 cos(2ϕ) + . . . ∈ L2(∂Ω)

fulfills (31) for all k = 1, . . . , K . To calculate the entries of M
( j)
m , and for checking

(31), the required solutions u
fi

κ( j,k) of the Robin transmission problem (22)–(25) with

Neumann boundary functions fi , i = 1, . . . , m and Robin transmission coefficients

κ( j,k), as defined in (30), were obtained using the commercial finite element software

Comsol.

For our setting we had to increase the dimension up to at most m = 15, so that all g j

are trigonometric polynomials of order less or equal 7. Figure 2 shows the boundary

functions g j plotted with respect to the boundary angle on the unit circle ∂Ω .

From checking (31), we also obtain the Lipschitz stability constant for F(γ ) :=
(∫

∂Ω
g jΛ(γ )g j ds

)4

j=1
as described in lemma 8(c). For our setting we obtain the

stability estimate

‖γ − γ ′‖∞ ≤ 7.5
‖F(γ ) − F(γ ′)‖∞

‖F(2) − F(1)‖∞
for all γ, γ ′ ∈ I ⊇ [1, 2]4, (36)
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Fig. 2 Four boundary currents g1, . . . , g4 ∈ L2(∂Ω) for which the measurements F(γ ) :=
(∫

∂Ω g j Λ(γ )g j ds
)4

j=1
uniquely determine γ ∈ [a, b]4 ⊂ R

4 by a globally convergent Newton method

Fig. 3 Plot of log |u
g j
κ |2 generated by the four boundary currents g j in Fig. 2 for j = 1, . . . , 4 (first to

fourth column) and κ = κ( j ,k) for k = 1 (first line) and k = K (last line) showing the localization on

boundary part Γ j

where I is the slightly enlarged interval from Lemma 8.

Note that here and in the following we consider the measurement error relative to

‖F(2) − F(1)‖∞ as this is the width of the measuring range F(1) ≥ F(γ ) ≥ F(2).

The property (31) can be interpreted in the sense that the boundary current g j

generates an electric potential for which the corresponding solution |u
g j
κ |2 is much

larger on Γ j than on the remaining boundary Γ \Γ j , and that this simultaneously

holds for several (but finitely many) Robin transmission coefficients κ = κ( j,k). To

illustrate this localization property, Fig. 3 shows |u
g j
κ |2 (in logarithmic scale) for k = 1

and k = K .

Let us make a comment on improving the computation time. Note that the prop-

erties of F only depend on whether the used Neumann functions g j have the desired

property (31), and that our rigorous approach of constructing g j is computationally

more expensive than checking whether some given g j fulfills (31). In fact, for fixed

j ∈ {1, . . . , n}, the construction of the matrix M
( j)
m requires solving the PDE (22)–(25)

for all combinations of K different Robin transmission coefficients and m different

Neumann boundary values. On the other hand, checking whether a given Neumann

boundary function g j has the desired property (31) only requires solving the PDE
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(22)–(25) for K different Robin transmission coefficients and the single Neumann

boundary function g j . Moreover, as long as g j does not fulfill (31), the checking

might require very few PDE solutions if (31) already fails to hold for a small k.

Hence, one might try computationally cheaper heuristic approaches to construct g j

that satisfy (31). In our experiments, we successfully used the ad-hoc approximation

M
( j)
m ≈

α

2
S( j) − β

K

2
(R( j,1) + R( j,K )) ∈ R

m×m,

(which only requires 2m PDE solutions), and always found that increasing the

dimension m ∈ N lead to Neumann boundary function g j fulfilling (31) for all

k ∈ {1, . . . , K }. Moreover, in our experiments, we found the functions g j constructed

with this faster heuristic approach virtually identical to those constructed with the

exact matrix M
( j)
m from Theorem 5.

3.3.2 Global convergence of Newton’s method

We numerically study the theoretically predicted global convergence of the standard

Newton method when applied to the measurements g1, . . . , g4 constructed in the last

subsection. We slightly change the definition of F and define the measurements relative

to the known lower bound γ = a

F(γ ) :=

(∫

∂Ω

g j (Λ(γ ) − Λ(a)) g j ds

)4

j=1

,

and numerically evaluate F using that, for all g ∈ L2(∂Ω), and γ ∈ L∞
+ (Γ ),

∫

∂Ω

g (Λ(γ ) − Λ(a)) g ds =

∫

Γ

(a − γ )u
(g)
a u(g)

γ ds,

which immediately follows from the variational formulation of the Robin transmission

problem (26). Note that this approach is numerically more stable than calculating Λ(γ )

and Λ(a) separately as it avoids loss of significance effects.

We choose the true coefficient value as γ̂ := (1.3, 1.8, 1.5, 1.9), and first test the

reconstruction for noiseless data yδ := ŷ := F(γ̂ ). Starting with the lower bound

γ (0) := (1, 1, 1, 1), we implement the standard Newton method

γ (i+1) := γ (i) − F ′(γ (i))−1
(

F(γ (i)) − yδ
)

,

where the ( j, l)th entry of the Jacobian matrix F ′(γ ) ∈ R
4×4 is given by

∫

Γl
|u

(g j )
γ |2 ds, cf. Lemma 6.

We repeat this for noisy data with relative noise level δ > 0, that we obtain by

adding a vector with random entries to ŷ, so that ‖yδ − ŷ‖∞ = δ‖F(b)‖∞. Note that

F(a) = 0, so that this chooses the norm level relative to the measurement range. For

the noiseless case δ = 0 we committed the so-called inverse crime of using the same
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Fig. 4 Global convergence of

Newton method when applied to

the right measurements

forward solver (i.e., the same finite element mesh) for simulating the data ŷ = F(γ̂ )

and for evaluating F and F ′ in the Newton iteration. For the noisy cases δ > 0, we

used a different mesh for the forward and inverse solvers.

Figure 4 shows the error of the first Newton iterations for the case δ = 0, δ = 10−5,

δ = 10−3, and δ = 10−1, and demonstrates the theoretically predicted quadratic

convergence properties. At this point, let us stress that also for noisy data yδ , Lemma 8

yields that there exists a unique solution yδ ∈ I ⊇ [a, b]n of

F(γ δ) = yδ,

and that the standard Newton method converges to this solution γ δ , as long as yδ

lies within the bounds F(a) ≥ yδ ≥ F(b) (which is easily guaranteed by capping

or flooring the values in yδ). Moreover, the obtained solution will satisfy the error

estimate

‖γ δ − γ̂ ‖∞ ≤ 7.34 δ

due to the stability estimate (36) obtained in the last subsection.

We finish this subsection with an example where the true Robin transmission coef-

ficient γ̂ ∈ L∞
+ (Γ ) is not piecewise constant but within the a-priori known bounds

a ≤ γ̂ (x) ≤ b for x ∈ Γ (a.e.)

Then ŷ =
(∫

∂Ω
g j (Λ(γ ) − Λ(a)) g j ds

)4

j=1
∈ R

4 will still satisfy F(a) ≥ ŷ ≥

F(b), so that there exists a unique solution γ ∈ I ⊇ [a, b]n of F(γ ) = ŷ, i.e.,

there exists a unique piecewise constant Robin transmission coefficient that leads to

the same measured data as the true non-piecewise-constant coefficient function. The

Newton iteration applied to ŷ (or a noisy version yδ) will globally converge to this

piecewise constant solution γ (or an approximation γ δ), see Fig. 5 for a numerical

example.
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Fig. 5 Reconstructions for non-piecewise-constant Robin transmission coefficients

Table 1 Effect of interval width

on trigonometric degree and

Lipschitz constant

Interval Dimension m Lipschitz constant

[1, 2] 15 7.34

[1, 3] 21 21.0

[1, 4] 21 35.8

[1, 5] 71 458,000

3.3.3 Effect of interval width and number or unknowns

Our result in Theorem 5 holds for any a-priori known bounds b > a > 0 and any num-

ber of unknowns n ∈ N. Thus, in theory, we can treat arbitrary large intervals [a, b]

and arbitrary fine resolutions of Γ . However, numerically, the constructed trigonomet-

ric polynomials g j will quickly become more and more oscillatory, and the calculated

Lipschitz constants will quickly increase.

To demonstrate the effect of the interval width, we proceed as in Sect. 3.3.1 to calcu-

late four boundary currents g1, . . . , g4 ∈ L2(∂Ω) that uniquely determine γ ∈ [a, b]4

and yield global Newton convergence for a = 1, and b ∈ {2, 3, 4, 5}. Table 1 shows

the dimension of the trigonometric polynomial subspace of L2(∂Ω) that contains

g1, . . . , g4 and the obtained Lipschitz constant for the inverse problem of determining

γ from the corresponding measurements.

To demonstrate the effect of the number of unknowns, we then replace the square

D by regular polygons with n = 3, n = 4, n = 5, and n = 6 sides keeping the

polygon center and circumradius the same as in the square (n = 4) case. We assume

that γ is piecewise constant with respect to the polygon sides. As in Sect. 3.3.1 we

then calculate n boundary currents g1, . . . , gn ∈ L2(∂Ω) that uniquely determine

γ ∈ [1, 2]n and yield global Newton convergence. The required dimension of the
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Table 2 Effect of number of

unknowns n on trigonometric

degree and Lipschitz constant

Interval Dimension m Lipschitz constant

n = 3 11 6.37

n = 4 15 7.34

n = 5 23 54.2

n = 6 55 507

trigonometric polynomial subspace of L2(∂Ω) and the obtained Lipschitz constant

are shown in Table 2.

In both situations, the boundary currents quickly become highly oscillatory, and the

calculated stability constant worsens. Hence, at the current state, our approach will

only be feasible for moderate contrasts and relatively few unknowns as stated in the

introduction. It should be noted, however, that our criterion (31) in Theorem 5 is suffi-

cient but possibly not necessary for uniqueness, Lipschitz stability and global Newton

convergence. The constructed boundary currents and the calculated Lipschitz con-

stants may be far from optimal. Since our result is (to the knowledge of the author) the

very first on uniqueness, global convergence and explicit Lipschitz stability constants

for a discretized inverse coefficient problem, there may well be room for improvement

and significantly sharper estimates that could practically yield in less oscillations and

better stability constants.

4 Conclusions

We have derived a method to determine which (finitely many) measurements uniquely

determine the unknown coefficient in an inverse coefficient problem with a given

resolution, and proved global convergence of Newton’s method for the resulting dis-

cretized non-linear inverse problem. Our method also allows to explicitly calculate the

Lipschitz stability constant, and yields an error estimate for noisy data. To the knowl-

edge of the author, these are the first such results for discretized inverse coefficient

problems.

Our method stems on an extension of classical global Newton convergence theory

from convex inverse-monotonic to convex (forward-)monotonic functions that arise

in elliptic inverse coefficient problems. The extension required an extra assumption

on the directional derivatives of the considered function that we were able to fulfill by

choosing the right measurements.

Our proofs mainly utilized monotonicity ideas and localized potential techniques

that are also known for several other elliptic inverse coefficient problems. So the

ideas in this work might be applicable to other applications as well. A particularly

interesting extension would be the case of EIT where it has recently been shown

[48] that an unknown conductivity distribution with a given resolution is uniquely

determined by voltage-current-measurements on sufficiently many electrodes, but the

number of required electrodes is not known. The main difficulty of such an extension

is that localized potentials in EIT cannot concentrate on each domain part separately as
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in the simpler Robin transmission problem considered in this work. Roughly speaking,

a localized potential in EIT with high energy in some region D will also have a high

energy on its way from the boundary electrodes to D. This behavior will make the

application of our herein presented ideas more challenging.
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