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UNIQUENESS THEOREMS IN AN ANGULAR DOMAIN

WEICHUAN LIN, SEIKI MORI AND KAZUYA TOHGE

(Received March 22, 2005, revised May 24, 2006)

Abstract. There are many papers on the uniqueness theory of meromorphic functions
in the whole planeC. However, the uniqueness theory concerned with shared sets in an an-
gular domain does not yet seem widely investigated. In this paper, we deal with the problem
of uniqueness for meromorphic functions inC under some conditions in an angular domain
instead of the whole plane. Moreover, examples show that those conditions are necessary.

1. Introduction and main results. In this paper, unless otherwise stated, by a mero-
morphic function we mean that the function is defined and meromorphic in the whole planeC.
We also assume that the reader is familiar with the basic results and notation of Nevanlinna’s
value distribution theory of meromorphic functions (see [11] or [12]), such asT (r, f ), N(r, f )

andm(r, f ). Meanwhile, the lower orderµ and the orderλ of a meromorphic functionf are
defined as follows:

µ := µ(f ) = lim inf
r→∞

logT (r, f )

logr

and

λ := λ(f ) = lim sup
r→∞

logT (r, f )

logr
.

Let S be a subset of distinct elements inĈ andX ⊆ C. Define

EX(S, f ) =
⋃
a∈S

{z ∈ X | fa(z) = 0, counting multiplicities} ,

ĒX(S, f ) =
⋃
a∈S

{z ∈ X | fa(z) = 0, ignoring multiplicities} ,

wherefa(z) = f (z) − a if a ∈ C andf∞(z) = 1/f (z).
Let f andg be two non-constant meromorphic functions inC. If EX(S, f ) = EX(S, g),

we sayf andg share the setS CM (counting multiplicities) inX. If ĒX(S, f ) = ĒX(S, g),
we sayf andg share the setS IM (ignoring multiplicities) inX. In particular, whenS = {a},
wherea ∈ Ĉ, we sayf andg share the valuea CM in X if EX(S, f ) = EX(S, g), and we
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sayf andg share the valuea IM in X if ĒX(S, f ) = ĒX(S, g). WhenX = C, we give the
simple notation as before,E(S, f ), Ē(S, f ) and so on (see [28]).

In [10], Gross proved that there exist three finite setsSj (j = 1, 2, 3) such that any two
non-constant entire functionsf andg satisfyingE(Sj , f ) = E(Sj , g) for j = 1, 2, 3 must
be identical, and asked the following question (see [10, Question 6]).

QUESTION A. Can one find two finite setsSj (j = 1, 2) such that any two entire
functionsf andg satisfyingE(Sj , f ) = E(Sj , g) (j = 1, 2) must be identical?

Yi seems to have been the first to give the affirmative answer to the above Question A
completely (see [23]). Since then, many results have been obtained concerning this question
and related topics (see [5–7, 13–15, 19, 21, 22] and [24–27]).

In [10], Gross noted that ‘if the answer to Question A is affirmative, it would be inter-
esting to know how large both sets would have to be’, namely he also asked the following
question.

QUESTION B. What are the smallest cardinalities ofS1 andS2, whereS1 andS2 are
two finite sets such that any two entire functionsf andg satisfyingE(Sj , f ) = E(Sj , g) for
j = 1, 2 must be identical?

In 1998, Yi actually proved the following theorems as the answers to these two questions,
respectively.

THEOREM A ([27, Theorem 4]). Let S1 = {0} and S2 = {w | wn(w + a) − b = 0},
where n (≥ 2) is an integer, and a and b are two non-zero constants such that the algebraic
equation wn(w + a) − b = 0 has no multiple roots. If f and g are two entire functions
satisfying E(Sj , f ) = E(Sj , g) for j = 1, 2, then f ≡ g .

THEOREM B ([27, Theorem 2]). If S1 and S2 are two finite sets such that any two
entire functions f and g satisfying E(Sj , f ) = E(Sj , g) for j = 1, 2 must be identical, then
max{#(S1), #(S2)} ≥ 3, where #(S) denotes the cardinality of the set S.

Zheng [31] and [32] considered the uniqueness of meromorphic functions with shared
values in angular domains. Following him, we ask the following question.

QUESTION 1. Does there exist an angular domainX = X(α, β) := {z | α < argz <

β} (0 ≤ α < β ≤ 2π) such thatf ≡ g is always the case whenf andg are two entire
functions satisfyingEX({Sj }, f ) = EX({Sj }, g) for j = 1, 2 in Theorem A?

Note that Yi and one of the authors of this paper extended Theorem A to the following
results on some class of meromorphic functions.

THEOREM C ([29, Theorem 1]). Let S1 = {0}, S2 = {∞} and S3 = {w | wn(w +
a)−b = 0}, where n (≥ 3) is an integer, and a and b are two non-zero constants such that the
algebraic equation wn(w+a)−b = 0 has no multiple roots. If f and g are two meromorphic
functions satisfying E(Sj , f ) = E(Sj , g) for j = 1, 2, 3 and Θ(∞, f ) > 0, then f ≡ g .
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In [29, Theorem 2], it is also shown that the same conclusion still holds when the two
assumptions ‘n ≥ 3’ and ‘Θ(∞, f ) > 0’ are replaced by ‘n ≥ 2’ and ‘Θ(∞, f ) > 1/2’,
respectively.

Therefore, we may also ask Question 1 for Theorem C, that is, meromorphic functions
and three setsSj (j = 1, 2, 3) given there.

In this paper, we prove the following theorems from this point of view in Question 1.

THEOREM 1. Let S1 = {0}, S2 = {∞} and S3 = {w | wn(w + a) − b = 0}, where
n (≥3) is an integer, and a and b are two non-zero constants such that the algebraic equation
wn(w + a) − b = 0 has no multiple roots. Assume that f is a meromorphic function of lower
order µ(f ) ∈ (1/2,∞) in C and δ := δ(ι, f ) > 0 for some ι ∈ Ĉ \ {0,−a}. Then for each
σ < ∞ with µ(f ) ≤ σ ≤ λ(f ) there exists an angular domain X = X(α, β) with 0 ≤ α < β

and

β − α > max

{
π

σ
, 2π − 4

σ
arcsin

√
δ

2

}
,(1)

such that if the conditions E(S1, f ) = E(S1, g) and EX(Sj , f ) = EX(Sj , g) (j = 2, 3) hold
for a meromorphic function g in C of finite order or more generally with the growth satisfying
either logT (r, g) = O(logT (r, f )) or

(∗) lim
r→∞
r /∈E1

log logT (r, g)

min{logr, logT (r, f )} = 0 ,

where E1 is a set of finite linear measure, then f ≡ g .

REMARK 1. The following example shows that the inequality (1) cannot be replaced
by ‘=’, so the condition (1) is best possible.

EXAMPLE 1. Let f (z) = e−iz andg(z) = e−2iz. Thenλ(f ) = λ(g) = µ(f ) =
µ(g) = 1. The algebraic equationw4 − (1/2)w3 + 1/1000 = 0 has four distinct roots
whose absolute values are strictly less than 1. Hence,f 4 − (1/2)f 3 + 1/1000 	= 0 and
g4 − (1/2)g3 + 1/1000 	= 0 on {z | 
z > 0}. Obviously,δ := δ(∞, f ) = 1, σ = 1 and
E(S1, f ) = E(S1, g) = E(S2, f ) = E(S2, g) = ∅. Hence,

max

{
π

σ
, 2π −

(
4

σ

)
arcsin

√
δ

2

}
= π.

If we takeX = X (0, π) or even ifX = {z | 0 ≤ argz ≤ π, or z = 0}, thenEX(S3, f ) =
EX(S3, g) = ∅, butf 	≡ g.

On the other hand, for anyε > 0, one can find two different pointsz1 andz2 in X (0, π +
ε) such thatf (z1)

4 − (1/2)f (z1)
3 + 1/1000= g(z2)

4 − (1/2)g(z2)
3 + 1/1000= 0, because

f andg have a Julia direction on the real axis, respectively.

We note that the condition (1) no longer has any meaning whenσ ≤ 1/2, since 2π ≥
β−α > π/σ . In this case, however, by takingX = C regarded as the closure ofX(0, 2π) and
ι = ∞, our consideration is reduced to the result of Theorem C, sinceΘ(∞, f ) ≥ δ(∞, f ).
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REMARK 2. The following example (see [29]) shows that the condition of deficiencies
in Theorem 1 is necessary.

EXAMPLE 2. Let

f (z) = −aez(enz − 1)

e(n+1)z − 1
= ezg(z) , g(z) = − a(enz − 1)

e(n+1)z − 1
.

It is easy to see thatf 	≡ g and they satisfyE(Sj , f ) = E(Sj , g) for j = 1, 2, 3. For any
ι 	= 0,−a, we see thatδ := δ(ι, f ) = 0, so that(1) becomesβ−α > 2π , which is impossible.
This shows that the assumption ‘δ := δ(ι, f ) > 0 for someι 	= 0,−a’ in Theorem 1 cannot
be simply deleted.

In fact, the pair of functionsf andg in Example 2 is essentially a unique exception in
Theorem 1. Concretely, the above deficiencycondition can be replaced by the condition that
f andg are not of the form

f = −aeγ (enγ − 1)

e(n+1)γ − 1
= eγ g , g = − a(enγ − 1)

e(n+1)γ − 1
,

whereγ is an entire function. See the proof of Lemma 6 below.
If we exclude the case wheref andg are given by

f = −ah(hn − 1)

hn+1 − 1
= hg , g = −a(hn − 1)

hn+1 − 1
,

whereh is a meromorphic function inC which is analytic and zero-free inX, the conclusion
of Theorem 1 is also true under the conditions:

(i) EX(Sj , f ) = EX(Sj , g) (j = 1, 2, 3); and
(ii) f attains one of the values 0,∞ and−a at least once inX;

instead of the conditions:
(i′) E(S1, f ) = E(S1, g) andEX(Sj , f ) = EX(Sj , g) (j = 2, 3); and
(ii ′) δ := δ(ι, f ) > 0 for someι 	= 0,−a.

REMARK 3. It is clear that the constanta as well asb should never be zero. In fact,
for any meromorphic functionf in C and a primitive(n + 1)th root of unityε, two functions
f andg := εf satisfyE(Sj , f ) = E(Sj , g) for j = 1, 2, 3 with a = 0.

THEOREM 2. Let S1 = {0} and S2 = {w | wn(w + a) − b = 0}, where n (≥ 2)

is an integer, and a and b are two non-zero constants such that the algebraic equation
wn(w + a) − b = 0 has no multiple roots. Assume that f is an entire function of lower
order µ(f ) ∈ (1/2,∞). Then, for each σ < ∞ with µ(f ) ≤ σ ≤ λ(f ), there exists an an-
gular domain X = X(α, β) whose opening β −α is larger than π/σ if σ ≤ 1, and 2π −π/σ

if σ > 1 with the following property: If the conditions E(S1, f ) = E(S1, g) and EX(S2, f ) =
EX(S2, g) hold for an entire function g satisfying either logT (r, g) = O(logT (r, f )) or (∗)

in Theorem 1 holds as r → ∞ possibly outside a set E1 of finite linear measure, then f ≡ g .
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REMARK 4. The conditionn ≥ 2 in Theorem 2 is sharp, since two entire functions
f (z) = ez − 1 andg(z) = e−z − 1 satisfyE(S1, f ) = E(S1, g) andEX(S2, f ) = EX(S2, g)

for anyα andβ with β − α > π when our algebraic equation is given byw(w + 3) + 2 = 0.
In the meantime, it seems open whether the assumptionn ≥ 3 is sharp or not in Theo-

rem 1.

Under the condition thatλ(f ) = ∞, we obtain the following theorems.

THEOREM 3. Let S1, S2 and S3 be defined as in Theorem 1. Assume that f is a mero-
morphic function of infinite order, but that it grows not so rapidly that

lim sup
r→∞

log logT (r, f )

logr
< ∞ ,

and assume further that δ(ι, f ) > 0 for some ι ∈ Ĉ \ {0,−a}. Then there exists a direction
argz = α (0 ≤ α < 2π) such that for any ε (0 < ε < π/2), if a meromorphic function g
satisfies the growth condition

(∗∗) logT (r, g) = O(rτ logrT (r, f )) , r 	∈ E

for a constant τ > 0 and a set E of finite linear measure, and E(S1, f ) = E(S1, g) and
EX(Sj , f ) = EX(Sj , g) for j = 2, 3 in the angular domain X = X(α − ε, α + ε), then
f ≡ g .

THEOREM 4. Let S1 and S2 be defined as in Theorem 2. Assume that f is an entire
function of infinite order but that it satisfies

lim sup
r→∞

log logT (r, f )

logr
< ∞ .

Then there exists a direction argz = α (0 ≤ α < 2π) such that for any ε (0 < ε < π/2),
if an entire function g with the growth (∗∗) in Theorem 3 satisfies the conditions E(S1, f ) =
E(S1, g) and EX(S2, f ) = EX(S2, g) in the angular domain X = X(α − ε, α + ε), then
f ≡ g .

2. Some lemmas. We shall prove the theorems by using the Nevanlinna theory of
meromorphic functions defined in an angular domain (see [16]). First of all, we recall some
notation and definitions. Letf (z) be a meromorphic function on the closed angular domain
X̄ := X̄(α, β) = {z | α ≤ argz ≤ β} ∪ {0}, where 0< β − α ≤ 2π . Nevanlinna defined the
following notation (also see [9]):

Aα,β(r, f ) := ω

π

∫ r

1

(
1

tω
− tω

r2ω

)
{log+ |f (teiα)| + log+ |f (teiβ )|}dt

t
,

Bα,β(r, f ) := 2ω

πrω

∫ β

α

log+ |f (reiθ )| sinω(θ − α) dθ ,

Cα,β(r, f ) := 2
∑

1<|bm|<r

(
1

|bm|ω − |bm|ω
r2ω

)
sinω(θm − α) ,
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whereω = π/(β − α), 1 ≤ r < ∞ andbm = |bm|eiθm are the poles off (z) on X̄ appearing
often according to their multiplicities.Cα,β(r, f ) is called the angular counting function of
the poles off on X̄ and the Nevanlinna angular characteristic function is defined as follows:

Sα,β(r, f ) := Aα,β(r, f ) + Bα,β(r, f ) + Cα,β(r, f ) .

Similarly, for a 	= ∞, we can defineAα,β(r, fa), Bα,β(r, fa), Cα,β(r, fa) andSα,β(r, fa)

with fa = 1/(f − a) and so on. For the sake of simplicity, we omit the subscript of all
the notation and use the notationA(r, a), B(r, a), C(r, a) andS(r, a) instead ofAα,β(r, fa),
Bα,β(r, fa), Cα,β(r, fa) andSα,β(r, fa) if a 	= ∞. We shall give some properties ofS(r, f )

as follows.

LEMMA 1 ([9]). Let f (z) be a meromorphic function on X̄(α, β). Then, for an arbi-
trary finite complex number a, we have

S(r, a) = S(r, f ) + ε(r, a) ,

where ε(r, a) = O(1) as r → ∞.

LEMMA 2 ([9]). Let P(z) be a polynomial of degree d ≥ 1, and f (z) be a meromor-
phic function on X̄(α, β). Then

S(r, P (f )) = dS(r, f ) + O(1) .

For a meromorphic functionf defined inC, we denote byQ(r, f ) a quantity satisfying:
(i) Q(r, f ) = O(1) asr → ∞ if λ(f ) < ∞;
(ii) Q(r, f ) = O(logrT (r, f )) asr → ∞ andr /∈ E if λ(f ) = ∞, whereE is a set

of finite linear measure.

LEMMA 3 ([9]). Let f (z) be a meromorphic function in C, and 0 ≤ α < β ≤ 2π .
Then

A

(
r,

f ′

f

)
+ B

(
r,

f ′

f

)
= Q(r, f ) .

Lemma 3 was first demonstrated by Nevanlinna [16] in the case where the function f (z) is a
meromorphic function of finite order in the whole plane, and then it was generalized into the
present form by Dufresnoy [2] and Ostrovskii [17] (see also [9, Chapter III] ). It was an open
question whether for any meromorphic function f (z) defined only on X̄(α, β),

A

(
r,

f ′

f

)
+ B

(
r,

f ′

f

)
= o(S(r, f )) ,(2)

holds as r → ∞ possibly outside a set of finite linear measure. In 1975, Gol’dberg [8]
constructed an unexpected counterexample. He showed that, for any function φ(r) → ∞,
r → ∞, there is an entire function f (z) such that S(r, f ) ≡ 0 but A(r, f ′/f )/φ(r) → ∞ as
r → ∞. Thus, (2) is not valid in general (see [4]).

LEMMA 4. Let f (z) be a meromorphic function in C, and 0 ≤ α < β ≤ 2π . Then

S(r, f ) ≤ C̄(r, f ) + C̄

(
r,

1

f

)
+ C̄

(
r,

1

f − c

)
− C0

(
r,

1

f ′

)
+ Q(r, f ) ,
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where, as we noted above, Q(r, f ) = O(logrT (r, f )), r 	∈ E, E is a set of finite linear
measure and c 	= 0. Moreover, C̄(r, f ) is the reduced counting function of poles of f ,
each distinct pole of f (z) in X(α, β) ∩ {z | |z| < r} being counted only once; C0(r, 1/f ′)
is the counting function of the zeros of f ′ but not the zeros of f and f − c in X(α, β) ∩
{z | |z| < r}.

Lemma 4 can be proved by the same argument as in the proof of Nevanlinna’s second
fundamental theorem (see [11, Theorem 2.1]).

Next, we introduce some notation for the following main lemma.
Let f be a meromorphic function on a closed angular domainX̄(α, β). We denote by

C2(r, f ) the counting function of the poles off in {z ∈ X(α, β) | |z| < r}, where a simple
pole is counted once and a multiple pole is counted twice. In the same way, we can define
C2(r, 1/f ).

LEMMA 5. Let F and G be two non-constant meromorphic functions in C such that F

and G share 1,∞ CM in X(α, β). Then one of the following three cases holds:
(i) S(r) ≤ C2(r, 1/F ) + C2(r, 1/G) + 2C̄(r, F ) + Q(r, F ) + Q(r,G);
(ii) F ≡ G;
(iii) FG ≡ 1,

where S(r) = max{S(r, F ), S(r,G)}, Q(r, F ) and Q(r,G) are as defined above immediately
before Lemma 3 was stated.

PROOF. Set

Φ := F ′′

F ′ − 2
F ′

F − 1
− G′′

G′ + 2
G′

G − 1
.(3)

Suppose thatΦ 	≡ 0. Using Lemma 4, we can deduce thatQ(r, F ′) = Q(r, F ) and
Q(r,G′) = Q(r,G). Therefore, we have

A(r,Φ) + B(r,Φ) = Q(r, F ) + Q(r,G) .(4)

SinceF andG share 1,∞ CM in X(α, β), we have

C(r,Φ) ≤ C̄(2

(
r,

1

F

)
+ C̄(2

(
r,

1

G

)
+ C0

(
r,

1

F ′

)

+ C0

(
r,

1

G′

)
+ Q(r, F ) + Q(r,G) ,

(5)

whereC0(r, 1/F ′) is the same as in Lemma 4, andC̄(2(r, 1/F ) denotes the counting function
of zeros ofF with multiplicity at least 2 in{z ∈ X(α, β)||z| < r} counting twice.

Combining (4) and (5), we have

S(r,Φ) ≤ C̄(2

(
r,

1

F

)
+ C̄(2

(
r,

1

G

)
+ C0

(
r,

1

F ′

)

+ C0

(
r,

1

G′

)
+ Q(r, F ) + Q(r,G) .

(6)
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Suppose thatz0 is a simple zero ofF −1. Then, by an elementary calculation, we obtain
thatz0 is also one of the zeros ofΦ. Thus, we obtain from (6) that

C1)

(
r,

1

F − 1

)
= C1)

(
r,

1

G − 1

)
≤ C

(
r,

1

Φ

)
≤ S(r,Φ) + O(1)

≤ C̄(2

(
r,

1

F

)
+ C̄(2

(
r,

1

G

)

+ C0

(
r,

1

F ′

)
+ C0

(
r,

1

G′

)
+ Q(r, F ) + Q(r,G) ,

whereC1)(r, 1/F ) denotes the counting function of zeros ofF with multiplicity one in {z ∈
X(α, β) | |z| < r}.

It follows that

C̄

(
r,

1

F − 1

)
+ C̄

(
r,

1

G − 1

)
= 2C̄

(
r,

1

F − 1

)
≤ C̄1)

(
r,

1

F − 1

)
+ C

(
r,

1

F − 1

)

≤ C

(
r,

1

F − 1

)
+ C̄(2

(
r,

1

F

)
+ C̄(2

(
r,

1

G

)

+ C0

(
r,

1

F ′

)
+ C0

(
r,

1

G′

)
+ Q(r, F ) + Q(r,G) .

Applying again Lemma 4 toF andG, we deduce that

S(r, F ) + S(r,G) ≤ C

(
r,

1

F − 1

)
+ C2

(
r,

1

F

)
+ C2

(
r,

1

G

)

+ 2C̄(r, F ) + Q(r, F ) + Q(r,G) .

Therefore, (i) holds.
Suppose thatΦ ≡ 0. By integration, we have from (3) that

1

G − 1
= A

F − 1
+ B ,

whereA ( 	= 0) andB are constants. It follows that

G = (B + 1)F + (A − B − 1)

BF + (A − B)
.(7)

We distinguish the following three cases.
Case 1. Suppose thatB 	= 0,−1. If A − B − 1 	= 0, then from (7) we obtain

C̄

(
r,

1

G

)
= C̄

(
r,

1

F + (A − B − 1)/(B + 1)

)
.

By Lemma 4, we have

S(r, F ) ≤ C̄

(
r,

1

F

)
+ C̄(r, F ) + C̄

(
r,

1

F + (A − B − 1)/(B + 1)

)
+ Q(r, F )

= C̄

(
r,

1

F

)
+ C̄(r, F ) + C̄

(
r,

1

G

)
+ Q(r, F ) .
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Thus, (i) holds. IfA − B − 1 = 0, we rewrite (7) as

G = (B + 1)F

BF + 1
.

Then

C̄

(
r,

1

G

)
= C̄

(
r,

1

F + 1/B

)
.

Using Lemma 4, we have

S(r, F ) ≤ C̄

(
r,

1

F

)
+ C̄(r, F ) + C̄

(
r,

1

F + 1/B

)
+ Q(r, F )

= C̄

(
r,

1

F

)
+ C̄(r, F ) + C̄(r, 1/G) + Q(r, F ) .

Thus, (i) also holds.
Case 2. Suppose thatB = 0. We rewrite (7) as

G = F + (A − 1)

A
.

If A 	= 1, thenC̄(r, 1/G) = C̄(r, 1/(F + A − 1)). By a similar method to Case 1, we also
obtain (i). If A = 1, it follows thatF ≡ G. Thus, (ii) holds.

Case 3. Suppose thatB = −1. We rewrite (7) as

G = A

−F + (A + 1)
.

If A + 1 	= 0, thenC̄(r,G) = C̄(r, 1/(F − (A + 1))), and similarly we also obtain (i). If
A + 1 = 0, we deduce that (iii) holds. This completes the proof of Lemma 5.

Let f andg be two non-constant meromorphic functions inC, andS3 = {w | wn(w +
a) − b = 0}, wheren (≥ 2) is an integer, anda andb are two non-zero constants such that
the algebraic equationwn(w + a) − b = 0 has no multiple roots. We denote

F = f n(f + a)

b
, G = gn(g + a)

b
.(8)

Obviously, ifEX(S3, f ) = EX(S3, g) thenF andG share 1 CM inX. In the following, we
shall give some lemmas relating toF andG.

LEMMA 6. Suppose that Ē({0}, f ) = Ē({0}, g) and δ(ι, f ) > 0 for ι ∈ Ĉ \ {0,−a}.
If F ≡ G, where F and G are defined as (8), then f ≡ g .

In particular, we assume thatf is an entire function andn ≥ 3. ThenF ≡ G implies
f ≡ g even if the two conditions̄E({0}, f ) = Ē({0}, g) andδ(ι, f ) > 0 for ι ∈ Ĉ \ {0,−a}
are replaced by the single condition̄EX({0}, f ) = ĒX({0}, g) for some domainX ⊂ C.
Whenn = 2, we have an exception:

f = −a

3
e−H(eH − c)(eH − c2) = −a

3
(2 coshH + 1) and

g = − a

3c
e−H(eH − 1)(eH − c2) = −a

3
(2 cosh(H − 2πi/3) + 1) ,
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whereH is an entire function andc = exp(2πi/3).
In general, ifĒX({0}, f ) = ĒX({0}, g) holds for a domainX in C, F ≡ G does imply

f ≡ g, unless

f = −ah(hn − 1)

hn+1 − 1
= hg , g = −a(hn − 1)

hn+1 − 1
,

for some meromorphic functionh defined inC which is analytic and zero-free inX.

PROOF. Suppose thatf 	≡ g. SinceF ≡ G, we have

f n(f + a) = gn(g + a) ,(9)

and hence from the assumptionĒ({0}, f ) = Ē({0}, g) we see thatf andg share 0,∞ CM.
Thus, we may assume that

f

g
= eγ ,(10)

whereγ is an entire function. Byf 	≡ g, we obtain thateγ 	≡ 1. From (9) and (10) we deduce
that

f = −aeγ (enγ − 1)

e(n+1)γ − 1
and g = − a(enγ − 1)

e(n+1)γ − 1
.(11)

If eγ is a constant, then it follows from (11) thatf is also a constant. This is a contradiction.
If eγ is non-constant, then we have from (11) that

T (r, f ) = nT (r, eγ ) + S(r, f ), N̄

(
r,

1

f − ι

)
= nT (r, eγ ) + S(r, f ) , ι 	= 0,−a .

It follows thatδ(ι, f ) = 0. This contradictsδ(ι, f ) > 0.
Now we assume that̄EX({0}, f ) = ĒX({0}, g) holds for a domainX in C. Similarly to

the above discussion, we see thatf andg share 0 and∞ CM in the domainX, and therefore
f ≡ g unless there is a non-constant meromorphic functionh in C which is analytic and
zero-free inX such thatf andg are given by

f = −ah(hn − 1)

hn+1 − 1
= hg and g = −a(hn − 1)

hn+1 − 1
.

Further iff is an entire function, its denominatorhn + hn−1 + · · · + h + 1 should also be
zero-free inC, which is however impossible forn ≥ 3. Whenn = 2, h does not attain two
primitive cubic roots of unity,c, c2, and therefore there is a non-constant entire functionH

such thath = c(eH − c)/(eH − 1). Then we obtain the desired expressions by substituting
this into the above expressions forf andg, respectively.

This completes the proof of Lemma 6.

Note that by using the above process of the proof, we can also obtain the result of
Lemma 6 in the case whereδ(0, f ) > 1/n.

LEMMA 7. Let Sj (j = 1, 2, 3) be defined as in Theorem 1, and let F and G be
defined as (8). Assume that ĒX(S1, f ) = ĒX(S1, g) and EX(Sj , f ) = EX(Sj , g) (j = 2, 3)
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for X = X(α, β) with 0 ≤ α < β ≤ 2π . If F 	≡ G, then

C̄

(
r,

1

f

)
= C̄

(
r,

1

g

)
= Q(r, f ) + Q(r, g) .(12)

PROOF. Set

H1 := F ′

F − 1
− G′

G − 1
.(13)

SinceEX(Sj , f ) = EX(Sj , g) for j = 2, 3, we see thatF andG share 1,∞ CM in X.
Hence, (13) implies thatC(r,H1) ≡ 0, so that by Lemma 3 we have

S(r,H1) = Q(r, f ) + Q(r, g) .(14)

We discuss the following two cases.
Case 1. Suppose thatH1 ≡ 0. By integration, we have from (13)

F − 1 = A(G − 1) ,(15)

whereA is a non-zero constant. SinceF 	≡ G, we haveA 	= 1. This together with the
assumption gives̄EX(S1, f ) = ĒX(S1, g) = φ. Thus, (12) holds.

Case 2. Suppose thatH1 	≡ 0. Assume thatz0 is a zero off andg of multiplicities
p andq, respectively. Thenz0 is a multiple zero ofF andG of multiplicities np andnq,
respectively, so that we haveH1(z0) = 0. By the assumption̄EX(S1, f ) = ĒX(S1, g) and
(14), we have

C̄

(
r,

1

f

)
= C̄

(
r,

1

g

)
≤ C

(
r,

1

H1

)
= Q(r, f ) + Q(r, g) ,

which proves Lemma 7. �

LEMMA 8. Under the conditions of Lemma 7, we have

C(r, f ) = C(r, g) ≤ 1

n
{S(r, f ) + S(r, g)} + Q(r, f ) + Q(r, g) .(16)

PROOF. Set

H2 :=
(

F ′

F − 1
− G′

G − 1

)
−

(
F ′

F
− G′

G

)
.(17)

Then

H2 = F ′

F(F − 1)
− G′

G(G − 1)
.

It follows that

C(r,H2) ≤ C̄

(
r,

1

f

)
+ C̄

(
r,

1

f + a

)
+ C̄

(
r,

1

g + a

)
.(18)

Therefore, by a lemma on the logarithmic derivative, (12) and (18), we obtain that

S(r,H2) ≤ S(r, f ) + S(r, g) + Q(r, f ) + Q(r, g) .(19)

We discuss the following two cases.



520 W. LIN, S. MORI AND K. TOHGE

Case 1. Suppose thatH2 ≡ 0. By integration, we have from (17)

F − 1

F
= B

G − 1

G
,(20)

whereB is a non-zero constant. SinceF 	≡ G, we haveB 	= 1. Again by (20), we deduce
thatEX(S2, f ) = EX(S2, g) = φ. Therefore, (16) holds.

Case 2. Suppose thatH2 	≡ 0. Assume thatz1 is a pole off with multiplicity p; then
an elementary calculation gives thatz1 is a zero ofH2 with multiplicity at least(n+1)p−1 ≥
np. From this and (19), we obtain

nC(r, f ) ≤ C

(
r,

1

H2

)
≤ S(r, f ) + S(r, g) + Q(r, f ) + Q(r, g) .(21)

We obtain from (21) that (16) holds. This completes the proof of Lemma 8.

Moreover, we need the following important lemmas concerning Pólya peaks (see [3,
20]).

LEMMA 9. Let f (z) be a transcendental meromorphic function of finite lower order
µ and order λ (0 < λ ≤ ∞) in C. Then for an arbitrary positive number σ satisfying
µ ≤ σ ≤ λ, there exist a set E of finite linear measure and a sequence of positive numbers
{rn} such that:

(i) rn 	∈ E, limn→∞(rn/n) = ∞;
(ii) lim inf n→∞(logT (rn, f ))/ logrn ≥ σ ;
(iii) T (t, f ) < (1 + o(1))(t/rn)

σ T (rn, f ), t ∈ [rn/n, nrn].
A sequence{rn} in Lemma 9 is called a sequence of Pólya peaks of orderσ outsideE,

which was proved in [20].
Given a positive functionΛ = Λ(r) on (0, ∞) with Λ → 0 asr → ∞, we define for

r > 0 anda ∈ C

DΛ(r, a) :=
{
θ ∈ [−π, π)

∣∣∣∣ log+ 1

|f (reiθ ) − a| > Λ(r)T (r, f )

}

and

DΛ(r,∞) := {θ ∈ [−π, π) | log+ |f (reiθ )| > Λ(r)T (r, f )} .

The following lemma was proved by Baernstein [1].

LEMMA 10. Let f (z) be a transcendental meromorphic function of finite lower order
µ and order λ (0 < λ ≤ ∞) in C. Suppose that δ := δ(a, f ) > 0 for some a ∈ Ĉ; then
for arbitrary Pólya peaks {rn} of positive and finite order σ (µ ≤ σ ≤ λ) and an arbitrary
positive function Λ = Λ(r) with Λ → 0 as r → ∞, we have

lim inf
n→∞ measDΛ(rn, a) ≥ min

{
2π,

4

σ
arcsin

√
δ

2

}
.

Further, we need one more important lemma given in [18, Theorem VII.3]. We first
introduce some notation.
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Letf (z) be a meromorphic function in a domain containing an angular domain∆ := {z |
|argz| < α} and its closure with respect toC. Let ∆(r) be the part of∆ which is contained in
|z| ≤ r. We put

S∗
f (r,∆) = 1

π

∫∫
∆(r)

( |f ′(z)|
1 + |f (z)|2

)2

tdtdθ , z = teiθ ,

T ∗
f (r,∆) =

∫ r

0

S∗
f (t,∆)

t
dt,

which are called the Ahlfors-Shimizu characteristic functions off on ∆. We denote just
simply byS∗(r, f ), T ∗(r, f ) the above characteristic functions off (z) in the whole plane,
S∗

f (r, C), T ∗
f (r, C).

Let n̄f (r,∆, a) = n̄(r,∆, f = a) (a ∈ Ĉ) be the number of distinct zeros offa(z)

contained in∆(r). We put

N̄f (r,∆, a) := N̄(r,∆, f = a) =
∫ r

1

n̄f (t,∆, a)

t
dt .

Then we shall give the following analogue of the second fundamental theorem.

LEMMA 11. Let f (z) be a meromorphic function in the plane. Then, for any three
distinct points a1, a2, a3 in Ĉ, we have

S∗
f (r,∆) ≤ 3

3∑
i=1

n̄f (2r,∆, ai) + O(logr)

and

T ∗
f (r,∆) ≤ 3

3∑
i=1

N̄f (2r,∆, ai) + O((logr)2) .

Finally, from [11, Theorem 1.4], we have the following lemmas.

LEMMA 12. Let f (z) be a meromorphic function in the plane. Then

|T (r, f ) − T ∗(r, f )| ≤ log+ |f (0)| + (1/2) log 2.

LEMMA 13 ([12, Lemma 1.1.1]). Let g : (0,+∞) → R, h : (0,+∞) → R be
monotone increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of finite
linear measure. Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all
r > r0.

3. Proof of theorems. We shall prove Theorem 1 by the method whose idea comes
from Zheng [30].

3.1. Proof of Theorem 1. First, we defineF andG as in (8); thenF andG share 1
and∞ CM in X.

Suppose thatF 	≡ G. Lemma 7 implies that

C̄(r, 1/f ) = C̄(r, 1/g) = Q(r, f ) + Q(r, g) .(22)
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Therefore, by the definition ofF andG and (22), we have

C2

(
r,

1

F

)
+ C2

(
r,

1

G

)
+ 2C̄(r, F )

≤ C

(
r,

1

f + a

)
+ C

(
r,

1

g + a

)
+ 2C̄(r, f ) + Q(r, f ) + Q(r, g) .

(23)

SetS1(r) := max{S(r, f ), S(r, g)}. Then we have from (8)

S(r) = (n + 1)S1(r) + O(1) ,(24)

whereS(r) = max{S(r, F ), S(r,G)}. By the estimation (16) obtained in Lemma 8 and (23),
we deduce that

C2

(
r,

1

F

)
+ C2

(
r,

1

G

)
+ 2C̄(r, F ) ≤

(
2 + 4

n

)
S1(r) + Q(r, f ) + Q(r, g) .(25)

Suppose also thatFG 	≡ 1. By Lemma 5 and noting thatn ≥ 3, we have from (24) and (25)
that,S1(r) ≤ Q(r, f ) + Q(r, g). Therefore, from (22), we have

S(r, f ) = O(log(rT (r, f )T (r, g))) , r 	∈ E2 ,(26)

for some setE2 ⊂ [0,∞) of finite linear measure.
By (1), we choose a real numberε ∈ (0, (β − α)/4) such that

2π + α − β + 4ε <
4

σ
arcsin

√
δ

2
.(27)

Recalling thatµ(f ) < ∞, λ(f ) > 0 andµ(f ) ≤ σ ≤ λ(f ), we can apply Lemma 9
to f (z) in order to confirm the existence of the Pólya peaks{rn} of orderσ of f outside
the setE := E1 ∪ E2, whereE1 andE2 are sets of finite linear measure appearing in the
assumption(∗) and (26), respectively. Furthermore, applying Lemma 10 to the Pólya peaks
{rn}, we have either

measDΛ(rn, ι) >
4

σ
arcsin

√
δ

2
− ε(28)

or

measDΛ(rn, ι) > 2π − ε ,(29)

for each sufficiently largen, sayn ≥ n0. Thus, it follows from (28) that

meas{DΛ(rn, ι) ∩ (α + ε, β − ε)}
≥ measDΛ(rn, ι) − meas{[−π, π] \ (α + ε, β − ε)}
= measDΛ(rn, ι) − meas{[−π, α + ε] ∪ [β − ε, π]}
= measDΛ(rn, ι) − (2π + α − β + 2ε) > ε > 0 .

It also follows from (29) that

meas{DΛ(rn, ι) ∩ (α + ε, β − ε)} > ε > 0 .
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Therefore, by the definition ofDΛ(rn, ι) and settingΛ(r) = 1/ logr, we have
∫ β−ε

α+ε

log+
∣∣∣∣ 1

f (rneiθ ) − ι

∣∣∣∣ dθ ≥
∫

DΛ(rn,ι)∩(α+ε,β−ε)

log+
∣∣∣∣ 1

f (rneiθ ) − ι

∣∣∣∣ dθ

≥ ε
T (rn, f )

logrn
, n ≥ n0 .

(30)

Furthermore, we have by the definition ofBα,β(rn, 1/(f − ι)) and (26) that
∫ β−ε

α+ε

log+
∣∣∣∣ 1

f (rneiθ ) − ι

∣∣∣∣ dθ ≤ πrω
n

2ω sin(εω)
Bα,β

(
rn,

1

f − ι

)

= πrω
n

2ω sin(εω)
O(logrnT (rn, f )T (rn, g)), n ≥ n0 .

(31)

From (30) and (31), we obtain

T (rn, f ) ≤ πrn
ω logrn

2ωε sin(εω)
O(logrnT (rn, f )T (rn, g)) .(32)

Hence, from the assumptions (1) and(∗), (32) implies that

σ ≤ lim inf
n→∞

logT (rn, f )

logrn
≤ ω < σ ,

which is impossible.
Therefore, we haveFG ≡ 1. From (8) we obtain

f n(f + a)gn(g + a) ≡ b2 ,

which implies thatf does not take 0,−a and∞ in X. By using Lemma 4, we obtain

S(r, f ) = O(logrT (r, f )) , r /∈ E ,

for some setE ⊂ [0,∞) of finite linear measure.
By a similar argument as above that (26) results in a contradiction, we can also de-

duce a contradiction. We remark here thatFG ≡ 1 does not hold, even whenEX(Sj , f ) =
EX(Sj , g) (j = 1, 2, 3) andf attains one of the three values 0,∞ and−a at least once inX.
Hence, we obtainF ≡ G. By Lemma 6, we havef ≡ g.

This completes the proof of Theorem 1.
3.2. Proof of Theorem 2. Proceeding as in the proof of Theorem 1 withι = ∞, we

have (23) and (24), and hence

C2

(
r,

1

F

)
+ C2

(
r,

1

G

)
+ 2C̄(r, F ) ≤ 2S1(r) + Q(r, f ) + Q(r, g) .

By Lemma 5 and noting thatn ≥ 2, we deduce that

S1(r) ≤ Q(r, f ) + Q(r, g) .

Therefore, we also obtain the conclusion of Theorem 2. �
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3.3. Proofs of Theorem 3 and Theorem 4. Suppose that Theorem 3 does not hold.
Then, for anyα ∈ [0, 2π), we have a constantεα ∈ (0, π/2) and a meromorphic func-
tion g := g [α] in C such thatE(S1, f ) = E(S1, g [α]) andEX(α)(Sj , f ) = EX(α)(Sj , g [α]) for
j = 2, 3, butf 	≡ g [α], whereX(α) := {z | |argz − α| < εα}.

We defineF andG as in (8); thenF andG share 1 CM inX(α). By Lemma 6, we
deduce thatF 	≡ G. Proceeding as in the proof of Theorem 1, we have (26) orFG ≡ 1.
Suppose thatFG ≡ 1. Then we can deduce a contradiction as proved there. Therefore, by
Lemma 1 and (26), for any valuea ∈ Ĉ, we have

CX(α)(r, a) := Cα−εα,α+εα (r, a) = O(logrT (r, f )T (r, g [α])) , r 	∈ Eα ,(33)

whereEα is a set ofr of finite linear measure depending onα and possibly onf andg.
On the other hand, we defineX1(α) = {z | |argz − α| < εα/2}. Note that if ana-point

bm = |bm|eiθm of f in X(α) is in X1(α),

sinω(θm − (α − εα)) ≥ sin

(
ωεα

2

)
= 1√

2
sinceω = ωα := π/(2εα)(> 1). Then we have

CX(α)(2r, a) = 2
∑

1<|bm|<2r
|θm−α|<εα

{
1

|bm|ω − |bm|ω
(2r)2ω

}
sinω(θm − (α − εα))

≥ √
2

∑
1<|bm|<2r

|θm−α|<εα/2

{
1

|bm|ω − |bm|ω
(2r)2ω

}

= √
2

{
nf (2r,X1(α), a)

(2r)ω
+ ω

∫ 2r

1

nf (t,X1(α), a)

tω+1 dt

− 1

(2r)ω
nf (2r,X1(α), a) + ω

(2r)2ω

∫ 2r

1
nf (t,X1(α), a)tω−1 dt

}
+ O(1)

≥ √
2

{
nf (r,X1(α), a)

(2r)ω+1 (2r − r) + nf (r,X1(α), a)rω−1(2r − r)

}
+ O(1)

≥ √
3 nf (r,X1(α), a)

{
1

2ω+1
r−ω + 2ω − 1

22ω
r−ω

}
+ O(1) .

It follows from (33) that

nf (r,X1(α), a) = O(rω logrT (2r, f )T (2r, g [α])) , r 	∈ Eα .(34)

If we identify the interval[0, 2π) with the unit circle and(α − εα/4, α + εα/4) with the
corresponding open arc on the unit circle then, since the unit circle is compact and

[0, 2π) ⊆
⋃

α∈[0,2π)

(
α − εα

4
, α + εα

4

)
,

we can choose finitely many coverings(α1−εα1/4, α1+εα1/4), (α2−εα2/4, α2+εα2/4), . . . ,

(αk − εαk/4, αk + εαk/4) of the interval[0, 2π). Therefore, using Lemma 11 and (34), for



UNIQUENESS THEOREMS IN AN ANGULAR DOMAIN 525

any three distinct complex numbersaj , j = 1, 2, 3, and recalling the assumption(∗∗), we
have

S∗(r, f ) ≤
k∑

i=1

S∗
f (r,∆i)

≤
k∑

i=1

{
3

3∑
j=1

n̄f (2r,∆i, aj )

}
+ O(logr)(35)

= O(rΩ logrT (4r, f )) , r 	∈ E0 ,

where∆i = ∆(αi−εαi
/4,αi+εαi

/4) (i = 1, . . . , k), Ω := max{ω(α1), . . . , ω(αk), τ } andE0 :=
E1 ∪ · · · ∪ Ek ∪ E. Thus,

T ∗(r, f ) = O(rΩ+1 logrT (4r, f )) , r 	∈ E0 .(36)

By Lemma 12, it follows from (36) that

T (r, f ) = O(rΩ+1 logrT (4r, f )) , r 	∈ E0 .

Here we use Lemma 13 in order to remove the exceptional setE0.
Now we have by Lemma 13 thatT (r, f ) ≤ M(rΩ+1 logrT (κr, f )) without any ex-

ceptional set ofr, for someM > 0 andκ > 4. Therefore, by the assumption, we have
lim supr→∞ logT (r, f )/ logr < ∞. Sinceλ(f ) = ∞, this is a contradiction. Therefore, we
have Theorem 3. The proof of Theorem 4 is similar to that of Theorem 3, so we omit it.�

4. Concluding remarks. In fact, we can obtain the following result from Section 3.

REMARK 5. The assumption ‘E(S1, f ) = E(S1, g)’ in Theorem 1 can be replaced by
‘ Ē(S1, f ) = Ē(S1, g)’. Similarly, in Theorem 2, Theorem 3 and Theorem 4, the
assumption ‘E(S1, f ) = E(S1, g)’ can be replaced by ‘̄E(S1, f ) = Ē(S1, g)’.

The above theorems in Section 1 indeed show the existence of an angular domainX

such that ifE(S1, f ) = E(S1, g) and EX(Sj , f ) = EX(Sj , g) for j = 2, 3 for certain
meromorphic or entire functionsf andg, thenf ≡ g.

Finally, we make one remark concerning the conditions(∗) and(∗∗), which look really
redundant. However, it does not seem straightforward to remove them in our discussion given
above.

In fact, Lemmas 11 and 12, and the assumptionsĒX(Sj , f ) = ĒX(Sj , g) (j = 1, 2, 3)

imply that

T ∗
f (r,X) ≤ 1

n + 1
T ∗

F (r,X) + O(1)

≤ 3

n + 1
{N̄(r,X,G = 0) + N̄(r,X,G = ∞) + N̄(r,X,G = 1)} + O((logr)2)

≤ O(T ∗
G(r,X)) + O((logr)2) ≤ O(T ∗

g (r,X)) + O((logr)2) .
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If we hope to remove the condition(∗) in Theorems 1 and 2 by using this estimate, we
need however to have takenX = C, which is inconsistent with our viewpoint mentioned in
Section 1. Regarding the condition(∗∗) in Theorems 3 and 4, theg [αi ] in the proof of those
theorems must have been all independent of the angleαi (1 ≤ i ≤ k). However, we now
should be careful enough to doubt the truth of this matter in general.

Under the conditionQ(r, f ) = O(logrSα,β(r, f )), Zheng in [31] obtained uniqueness
of the meromorphic functions which have five shared values in a precise subset ofC and
in [32] considered the case of dealing with four shared values. Following his proof, the con-
dition (∗) would imply the same conclusion as his result for meromorphic functions inC.
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