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I. Introduction
1.1. Spherical surface harmonics. Let 5 denote the surface of the unit

sphere, whose center is at the origin O of a system of Cartesian coordinates
x, y, z. Let P denote a point on S, and let (r, P) be the point which lies on the
vector OP, at a distance r from 0. The function Yn(P), defined on S, is said
to be a spherical surface harmonic of degree n if the function

(1.1.1) Hn(x, y, z) = Hn(r, P) = r"Yn(P)

is a homogeneous harmonic polynomial in x, y, z. The orientation of the axes
is immaterial, since the harmonic property and the degree of Hn are preserved
under a rotation of the coordinate system.

Spherical surface harmonics of different degree are orthogonal to each
other, that is [l; 144],

(1.1.2) ff Yn(P)Ym(P)dP = 0 (m 9* n).

1.2. Laplace series. Suppose fEL on S. With/(P) there is associated a
sequence of spherical surface harmonics

(1.2.1) Yn(P) = ^~— f C f(Q)Pn(cos PQ)dQ      (n = 0, 1, 2, • • • ),
47T       J  J S

where PQ denotes the shorter great circle arc on 5 between P and Q, and Pn(x)
is the Legendre polynomial defined [l; 15] by the generating function

00

(1.2.2) (1 - 2rx + r2)~1'2 = Y, Pn(x)r».
n-0

The series ^„°,0 Yn(P) defined by (1.2.1) is the Laplace series off(P). We
write

(1-2.3) f(P)~îlYn(P).
n—0
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The problem we shall consider (the so-called "uniqueness problem") is
to determine conditions under which a given series of spherical surface har-
monics is a Laplace series.

Uniqueness properties have been studied for a number of orthogonal sys-
tems in one variable, with finite ranges of orthogonality, in particular for
trigonometric series (starting with Riemann), Legendre series [3], and
Bessel series ( [9 ] contains numerous references). The present paper seems to
be the first in which the uniqueness problem is considered for a system which
is orthogonal over a two-dimensional set(2). Our main results (Theorems 2.6
and 2.7) are of a nature similar to theorems of Zygmund [8; 284] and
Verblunsky [7; 462] on the uniqueness of Fourier series.

Theorem 3.9 is an analogue of Theorem I of [6]. From Theorem 3.9 we
derive Theorem 4.2, which is fundamental for our proof of the uniqueness
theorems.

II. Statement of main results
2.1. Notation. For P on S, and 0</î<7t, we let C(P, h) denote the circle

of intersection of 5 and the sphere of radius 2 sin 2~% about P as center.
By the interior I(P, h) of C(P, h) we mean the domain on S which contains
P and is bounded by C(P, h). If FEL on C(P, h), we put

(2.1.1) AnF(P) = .        f        F(Q)dsQ - F(P).
2ir sin hJ c(P,h->

If there exists ô>0 such that FÇE.L on C(P, h) for 0<h<8, we define the
generalized Laplacian of F(P) by

(2.1.2) x/,F(P) = lim A,F(P)/sin2 2~lA,

provided the limit exists. The upper and lower generalized Laplacians \b*F(P)
and \p*F(P) are defined likewise, with lim sup and lim inf in place of lim.

The operator \[/ is an analogue of the generalized second differential oper-
ator 2?2[l0; 270], and of the operator A[6]. The special significance of \p for
our purpose is shown by (5.1.1).

2.2. Definition. We say that the series ^2ñ,0Yn(P) of spherical surface
harmonics is of class K if the series — Z"=iFi(P)/«(«+l) is the Laplace
series of a function continuous on S.

2.3. Definition. Suppose the series Z"-oF„(P) is of class K. Let F(P)
be the continuous function whose Laplace series is — Z«=i F„(P)/w(« + l)

(2) After publication of an abstract of the present paper, the author received from Professor
Plancherel a reprint of a paper (Bull. Sei. Math. (2) vol. 43 (1919)) in which he proved the fol-
lowing theorem. If (1) Y_! Yn(P) converges to f(P) on S—E, where £ is a reducible set, (2)
/£2-2 on 5, (3) f{P) is bounded on S, except possibly in neighborhoods of points of E, (4)
— X! Yn{P)/n{n-\-\) converges uniformly on S, then/(P)~ £ Y„{P). This result is a corollary
of Theorem 2.7.
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(since two functions having the same Laplace series are equal p. p. on S, F
is uniquely determined). We say that the functions Yo+ip*F(P) and Fo
+\p*F(P) are the upper and lower Riemann sums, respectively, of the series
z;=oFn(P);

If \pF exists finitely at a point M on S, we say that the series is Riemann
summable at the point M to the value Y0+\pF(M).

An analogous definition for trigonometric series may be found in [10;
270].

2.4. Definition. Given the series   ^2û=oYn(P)- The functions

OO 00

f*(P) - lim sup X Yn(P)r",       /*(P) = lim inf   £ Yn(P)r»
r-*l n=0 r-fl n=0

are called the upper and lower Poisson sums, respectively, of the given series.
If f*(M) =f*(M), and the common value is finite, the given series is said to be
Poisson summable at the point M to this common value.

2.5. Definition. A closed set Z on 5 is said to be of capacity zero on S
if Z is a proper subset of 5 and if the stereographic image of Z in a tangent
plane, with center of projection in S — Z, is a plane set of capacity zero.

This definition will be justified in 3.4.
We now state our main results.

2.6. Theorem. Given a series ^2ñ=oYn(P) of spherical surface harmonics.
Let Z be a closed set of capacity zero on S. Suppose

(i)  the given series is of class K;
(ii) \¡/*F(P) > — oo ; \{/*F(P) <+ oo on S — Z, where F(P) is the continuous

function whose Laplace series is — y,r=i  F„(P)/ra(w+l);
(iii) there exists a function y(P), defined on S, y EL on S, such that y(P)

^\p*F(P) for P on S.
Then the given series is Riemann summable almost everywhere on S and is the

Laplace series of its Riemann sum.

2.7. Theorem. Given a series 23«=o Yn(P) of spherical surface harmonics,
having f*(P) andf*(P) as upper and lower Poisson sums, respectively. Let Z be a
closed set of capacity zero on S. Suppose

(i) the given series is of class K;
(ii) f*(P) and f*(P) are finite on S — Z;
(iii) there exists a function y(P), defined on S, y EL on S, such that y(P)

úf*(P) for P on S.
Then the given series is Poisson summable almost everywhere on S and is the

Laplace series of its Poisson sum.

2.8. In the following two corollaries the word "summable" stands for
"Poisson summable" or "Riemann summable" or "Cesàro summable" or
"convergent."
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Corollary I. If the series Z F„(P) is of class K and is summable to
zero on S, except possibly on a closed set of capacity zero, then the series vanishes
identically.

This is an immediate consequence of 2.6 and 2.7.

Corollary II. 2/ the two series Z Fn(P) a«a* Z Y~ú (P) are of class K and
if they are summable to the same function f(P) (where it is not necessary that
f(E.L on S) except possibly on a closed set of capacity zero, then the two series are
identical.

Proof. We apply Corollary I to the series J^(Yn(P) - Y¿ (P.)).

III. Harmonic and subharmonic functions on 5
Harmonic and subharmonic functions play the same role in our investiga-

tion as do linear and convex functions in the corresponding treatment for
trigonometric series. To define harmonic functions on 5 we use the analogue
of the Gaussian mean value property.

3.1. Definition. A function F(P) is said to be harmonic in a domain D
on 5 if F(P) is continuous in D and if AAF(P) =0 for every circle C(P, h)
such that C(P, h)+I(P, A) CD.

3.2. Lemma. Let C=C(M, h) be a circle on S. If F(P) and G(P) are har-
monic in I = I(M, h) and continuous on C+I, and if G(P) =F(P) on C, then
G(P) = F(P) in I.

Proof. Assume that F>G at some point of 2. Then the function H(P)
= F(P)—G(P), which is harmonic in 2, and which vanishes on C, has a posi-
tive maximum in 2. Let E be the closed subset of 2 on which H attains its
maximum. Let Q be a boundary point of E, and choose k>0 such that
C(Q, k)CZI- Then AkH(Q) <0, which is a contradiction. The assumption that
F<G at some point of 2 leads to a contradiction in the same manner.

3.3. Theorem. Let F(P) be defined in a domain D on S. Let libe a tangent
plane of S. Map S stereo graphically onto II, taking P into P', D into a finite
domain D'. Put F'(P') =F(P). Then F(P) is harmonic in D if and only if
F'(P') is harmonic in D'.

Proof. Let II be tangent to S at the point A. Suppose first that F'(P') is
harmonic in D'. We pick arbitrarily a circle C=C(M, h) on S, such that
C(M, h)+I(M, h)(ZD. Let C map into the circle C of radius r and center
N'. Let Q on C map into Q'. By Poisson's formula,

(3.3.1) F'(M') = -Î- f T\~* F'(Q')dsQ,2-wrJ c' f  — 2rt cos y + tl

where t = N'M', y=$LAN'Q'. We have to show that
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(3.3.2) F(M) = •      .        f F(Q)dsQ.
2ir sin h J c

Noting that <¿sq=cos2 2-iAQdsQ>, and expressing r, ¿, and ^4Ç in terms of
h, AM, and y, we verify that the right members of (3.3.1) and (3.3.2) are
equal, which proves (3.3.2).

Suppose next that F(P) is harmonic in D. Let 7' be the interior of a circle
C such that C' + I'ED'. Since F'(P') is continuous in D', there exists a
function G'(P'), harmonic in I', continuous on C'+I', and such that

G'(P') = F'(P') (P' on C).

Applying the first part of the theorem, we see that G'(P') maps into a func-
tion G(P) which is harmonic in the interior 7 of a circle C on S, continuous
on I+C, and such that

G(P) = F(P) (P on C).

By Lemma 3.2 we therefore have

G(P) = F(P) (P in I).

Hence
G'(P') = F'(P') (P' in T'),

which proves that F'(P') is harmonic in D'.
3.4. The only functions which are involved in the definition of plane sets

of capacity zero [6; Definition 2.3] are harmonic. Hence Theorem 3.3 shows
that Definition 2.5 is independent of the tangent plane chosen, as long as the
center of projection is in S — Z (otherwise the image set is unbounded).

3.5. Definition. Let P denote a domain on 5 whose closure R is a
proper subset of 5. Choose a point in S — R as center of a stereographic pro-
jection, mapping P into a bounded plane domain P', whose Green's function
is g'(P', Q'). (For our purpose it is sufficient to restrict ourselves to domains
P which map into Dirichlet domains P'.) Put g(P, Q)=g'(P', <?')■ We call
g(P, Q) the Green's function of P.

Let A denote a point in S — R. Considering g(P, Q) as a function of Q, with
P a fixed point in P, we have

sin 2~1AP sin 2~*AQ
(3.5.1) g(P,e) = log-. -^+h(P,Q),

sin 2_1P<2

where h(P, Q) is harmonic in P. The first function on the right of (3.5.1)
has a logarithmic singularity at Q = P, and is harmonic in R — P (this may be
verified by applying 4.4).

Let PN be a diameter of 5. If NES-R, we can take N for A in (3.5.1),
and obtain
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(3.5.2) g(P, Q) = log cot l-iPQ + h(P, Q).

Whether ACS —P or not, g(P, Q) is of the form (3.5.2) in a neighborhood of
P, since

sin 2-^P sin 2~lAQ sin 2~lAP sin 2~XAQ
(3-5-3)1°S-—^=ITF>-=logcot2-'Pe+log-

sin 2 'PC cos 2 rPQ

and the second function on the right is harmonic in a neighborhood of P.
3.6. Definition. A function u(P) is said to be subharmonic in a domain

D on 5 if
(a) u(P) is upper semi-continuous in D,
(b) m(P)<+°o in D,
(c) u(P) is finite on a dense set in D,
(à) for every domain G with boundary T, such that G+TCA the in-

equality u(P) ^H(P) on T implies u(P) ^H(P) in G for every function 22(F)
which is harmonic in G and continuous on G+T.

This definition is the precise analogue of Riesz's definition [5; 333] of a
subharmonic function in the plane.

3.7. From Definition 3.6 and Theorem 3.3 we infer that u(P) is sub-
harmonic in a domain D on .S if and only if u(P) maps stereographically into
a function u'(P'), subharmonic in the plane domain D'.

3.8. Since the definitions of harmonic and subharmonic functions in
domains on 5 are entirely analogous to the definitions of harmonic and sub-
harmonic functions in the plane, it is clear that we can parallel every step of
[6] almost word for word. For g(P, Q) we use the local representation (3.5.2).
In this way we obtain the following analogue of Theorem I of [ó]:

3.9. Theorem. Let F(P) be continuous in the domain D on S. Suppose
(i) y}/*F(P) > - oo, faF(P) < + oo for Pin D-DZ where Z is a closed set

of capacity zero on S;
(ii) there exists a function y(P), defined in D, such that y EL on every closed

subset of D, and such that y(P) ^\¡/*F(P) in D.
Then

(a) \pF(P) exists at almost all points P of D;
(b) \[/FÇzL on every closed subset of D;
(c) at all points P of D for which

(3.9.1) ff | tF(Q) log cot 2-*PQ | dQ < + oo
J  J HP.h)

for some h>0, we have

(3.9.2) F(P) . -—ff mQ)g(P, Q)dQ + H(P),
¿IT J   J R

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1950] UNIQUENESS THEORY FOR LAPLACE SERIES 293

where R is any domain whose closure is a proper subset of D, and which contains P ;
g(P, Q) is Green's function for R, and H is harmonic in R and assumes the
boundary values of F. Moreover, the condition (3.9.1) is satisfied at almost all
points P of D.

If we take the circular domain 7(P, h) for P, (3.9.2) becomes, by (3.5.2)
and Definition 3.1,

(3.9.3)

F(P) =-f f ypF(Q) log (cot 2~lPQ tan 2~1h)dQ
2ir J Ji(p,h)

+ —— f        F(Q)dsQ.
¿ir sin nJ c(.p,ht

Hence, under the hypotheses of Theorem 3.9, we have for almost all P in
D

(3.9.4)       AhF(P) = — f f y¡/F(Q) log (cot 2~*PQ tan 2-1h)dQ,
2ir J J np,h)

where C(P, h)+I(P, h)ED.

IV. The operator ß
4.1. Definition. Put

(4.1.1) G(P, Q) =- log sin 2-iPQ.
27T

Let fEL on S. Put/+ = max (/, 0),/-= -min (f, 0). We define

(4.1.2) üf(P) = ff f(Q)G(P, Q)dQ
at all points P on S at which at least one of the integrals

ff f+(Q)G(P, Q)dQ, ff f~(Q)G(P, Q)dQ
is finite.

Roughly speaking, the operator ß is the inverse of fa The relation be-
tween the two operators is stated more precisely in (4.2.1) and (4.7.2). The
special significance of ß for our purpose will become evident in Theorem 5.2.
It is the purpose of this section to prove the following theorem.

4.2. Theorem. Ze¿ Z be a closed set of capacity zero on S. Suppose
(i)  F(P) is continuous on S;
(ii) ^*F(P) >- °o, t*F(P)<+ oo onS-Z;
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(iii) there exists a function y(P), defined on S, y EL on S, such that y(P)
<,t*F(P) on S.

Then \pFEL on S, and we have, at almost all points P of S,

(4.2.1) F(P) = WF(P) + F0,

where Fo is the average value of F on S.

(More precisely, (4.2.1) holds at all points P at which Qnf/F(P) is finitely
defined. We do not require this additional result, however.)

In this section it will be convenient to use the notation /0 for the average
value of the function/ on 5:

'• ' ¿ /J>w
4.3. Lemma. Let fEL on S. Then SlfEL on S (hence ß/(P) is finitely de-

fined almost everywhere on S), and

(4.3.1) -ffûf(P)dP=-fo.
Proof. We apply Fubini's theorem on the change of order of integration.

Observing that

G(P, Q) á 0,        ff G(P, Q)dP
we have

ff f(Q)dQ = - ff f(Q)dQff G(P, Q)dP

= - ff dpff f(Q)G(P, Q)dQ

= - ff ty(P)dP.
The lemma follows.

4.4. Lemma. Let G be defined as in (4.1.1). For P on S,

Í 1

2ir sin
— f       G(M; Q)dsM =
;in hJciP.h)

log (sin 2~lPQ cos 2~lh) (PQ > h),
2ir

1
— log (cos 2~lPQ sin 2~lh) (PQ ^ h).
2x
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Proof. We choose a coordinate system (0, cf>) on S, with pole at P. Put
PQ = a; let M be a point on C(P, h). Then

-;- f        G(M, Q)dsM =- f    — log sin 2~1MQd<t>
2ir sin h J c(P,h) 2t J o    2tc

1    r2*
(4.4.1) =- I      log (1 — cos h cos a

8ir  J 0

log 2
— sin h sin a cos cb)dc¡>-•

4x

Applying the formula [2; 348]

r2' a+(a2-b2y<2 .    .
I      log (a + b cos x)dx — 2-k log-     (a > \b\)

Jo 2

to (4.4.1), the lemma follows.

4.5. Lemma. Let f EL on S. Let C — C(P, h) be a circle on S. Then ß/ET,
on C; further, if ß/(P) exists, then

AhSlf(P) = — ff        I(Q) log (cot 2-iPÖ tan 2'
2x J J i(p,h)

+ 2/0 log cos 2~lh.

Proof. Since the functions log (cos 2~XPQ sin 2~lh) and log (sin 2~lPQ
cos 2~%) are bounded for Q in 7=7(P, h) and in 5 —7 respectively, we have,
by 4.4 and Fubini's theorem,

, f(Q) log (cos 2-iPQ sin 2^h)dQ
27T«2irJJi

+ — f f    f(Q) log (sin 2~lPQ cos 2-1A)¿Q
2irJJ s-i

(4.5.2) = —-^— f f f(Q)dQ f G(M, Q)dsM2ir sin h J J s Je

= T-r~ f dsM ff f(Q)G(M, Q)dQ2x sin h J c       J J s

= ^—r f ty(M)dsM.
2% sin h J c

Hence SlfEL on C. Next, assuming that ß/(P) exists, we subtract (4.1.2)
from (4.5.2), which gives (4.5.1).
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4.6. Definition. Let fEL on 5. By L*(f) we mean the set of points P on
•S at which

(4.6.1) ff \f(Q)-f(P)\dQ=o(h2) (*->0).

The set L*(f) is known to include almost all points of 5. Evidently, if PEL*(f),
then f(P) is finite, and

(4.6.2) ff \f(Q)\dQ = 0(h2) (*->0)¡
J   J I(P,h)

(4.6.3) f f        f(Q)dQ = 4x/(P) sin2 2~lh + o(h2) (h -* 0).
J  J HP,h)

4.7. Lemma. Let fEL on S. Let PEL*(f). Then ß/(P) exists as a finite
number. Furthermore,

X   r ''    dd    er
(4.7.1) AhUf(P) = — —- /(ö)dö + 2/o log cos 2-^;

2t J o     sin 0J J i(p,ey

(4.7.2) *fl/(P) = /(P) - /„.

Proof. Integrating by parts, we have, using (4.6.2),

27T f f | /(Q)G(P, Q)\dQ = lim   f  log csc 7rVd9 f        \f(Q) \ dsQ
J   J S e—0    J t J C(P,9)

= lim «flog sin 2rh f f        | f(Q) \ dQ

+ — f cot 2-me f f      | /(Q) | açl

= — f   cot 2rl6dB f f        \ f(Q) \ dQ.
2   J o J   J I(.P,8)

Hence fi/(P) is finite. Using (4.5.1) and proceeding as in (4.7.3), we obtain
(4.7.1). Substitution of (4.6.3) into (4.7.1) yields (4.7.2).

4.8. Proof of Theorem 4.2. Let C be a circle on 5 which bounds two
domains, 2?i and D2. By Theorem 3.9, \¡/F exists p. p. on S, and EL on Di
and on D2. Hence \f/FEL on 5. Put

(4.8.1) f(P)=*F(P)
at all points P at which ipF(P) exists. We have to show that

(4.8.2) F(P) = Qf(P) + F0 (p. p. on S).
Let Ei be the set on which  (3.9.4)  holds; put E = Ei-L*(f).  Comparing
(3.9.4) and (4.5.1), we see that

(4.7.3)
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(4.8.3) AhF(P) = Ahaf(P) - 2/o log cos 2~lh

for P on E. Hence, by (4.7.1),
1    rh     dd    CC

(4.8.4) A,7(P) = - —- f(Q)dQ (0 < h < x).
It J o     sm OJ Jrtp.ey

We now let h—>7r. The left member of (4.8.4) approaches the limit F(M)
— F(P), where PAT is a diameter of S; the right side diverges if fo9¿0. Hence

/o = 0, and (4.8.3) becomes

(4.8.5) AhF(P) = AhQf(P) (P on E; 0 < h < w),

which may be written

(4.8.6) 2x sin h (F(P) - 0/(P)) =   f (F(Q) - Qf(Q))dsQ.
J C(P.h)

Integrating (4.8.6) with respect to h from 0 to it, and using (4.3.1), we see
that

F(P) - Qf(P) = Fo + /o = 7o (P on E).

This proves (4.8.2), and hence the theorem.
It is worth noting that Lemmas 3.4, 3.7, and 3.8 of [6] hold for the oper-

ator ß as defined in the present paper, if P and A are replaced by S and fa

V. Proof of uniqueness theorems
5.1. Lemma.  Let   Yn(P)   be a spherical surface  harmonic  of degree n,

w = 0, 1, 2, • • • . Then, for P on S,

(5.1.1) ^Yn(P) + n(n+ l)Yn(P) = 0.

Furthermore, for n—1,2,3,---,

(5.1.2) Yn(P) + n(n + l)ßFn(P) = 0.

Proof. Choose a circle C(P, h) on S. Using the formula [l; 145]

2n+ 1

if,
we obtain

2n+ 1

2n+ 1  r C
(5.1.3) Yn(P) = —- F„(<2)P„(cos PQ)dQ (n = 0, 1, 2, • • • ),

4x     J J s

/2n+ 1  r C CYn(Q)dsQ =- I dsQ I  j   F„(Jl7)Pn(cos QM)dM
C{P,h) 4x       J ClP.hl JJs

f f Yn(M)dM f        Pn(cos QM)dsQ.
JJs J ClP.h-)

(5.1.4) 2n+ 1
4x

Applying the addition theorem for Legendre polynomials  [l; 143], we see
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that the last expression in (5.1.4) is equal to

2«+ 1
4x j C(.p,h)

= 2tt sin hPn(cos h)Yn(P).

■ f f Yn(M)dM f Pn(cos h)Pn(cos PM)dsQ
J  J S J C{P,h)

This, together with (2.1.1), gives

(5.1.5) A,Fn(P) = - (1 - P„(cos h))Yn(P).

Hence

1 — P„(cos h)
*Yn(P) = - Yn(P) lim-—-—- = - n(n + 1)F„(P),

*->o      sin1' 2-1/t

since P¿(1) = 2~1«(w+l), as is easily seen from the recursion formula [l ; 33]

(2n + l)P„(x) - Pn+i(x) - P'n-i(x).

Next we note that for «^ 1 the average value of Y„ on 5 is zero, by (1.1.2).
Hence, for «¡gl, ibpYn(P) = Yn(P), by Theorem 4.2. Applying the operator
ß to (5.1.1), (5.1.2) is obtained.

It should be pointed out that (5.1.2) can also be proved directly (but more
laboriously), without use of Theorem 4.2, by substituting (5.1.3) into (4.1.2).

5.2. Theorem. Let f EL on S. Then /(P)~Zn=iF„(P)  if and only if
ty(P)-Zr=iF„(P)/w(w+l). (We refer to (1.2.3) for the notation.)

Proof. We have

f f Qf(Q)Pn(cos PQ)dQ =  ff P„(cos PQ)dQ f f f(M)G(Q, M)dM
J  J S J J S J  J 8

= ff f(M)dM ff Pn(cos PQ)G(Q, M)dQ
(5.2.1)

/(M)OPn(cos PM)dM-a
- f f f(M)Pn(cos PM)dM.
+ X) J J sn(n + 1)

In the last step we applied (5.1.2) to the surface harmonic P„(cos PM). By
(1.2.1), (5.2.1) proves both necessity and sufficiency.

Theorem 5.2 shows that the series ^Q,Yn(P) is analogous to a twice inte-
grated trigonometric series (see [10; 274]).

5.3. Proof of Theorem 2.6. We assume without loss of generality that
Fo = 0. Since F(P) satisfies all hypotheses of Theorem 4.2, ipF(P) exists p. p.
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on S, that is, the given series is Riemann summable p. p. on 5. Noting that
the average value of P on 5 is zero, we have, by Theorem 4.2,

F(P) = tyF(P) (p. p. on S).

By assumption,
00

F(P)-E Yn(P)/n(n + 1).
n=l

Hence
oo

SW(P)-X Yn(P)/n(n + 1),
71=1

which, by Theorem 5.2, implies

*F(P)  ~  £  Yn(P)-
»1=1

This completes the proof.
In the next lemma, which will be used in the proof of Theorem 2.7, we

establish a relation between the Poisson and Riemann sums of a series of
spherical surface harmonics; its analogue, for trigonometric series, is due to
Rajchman and Zygmund [4; 268].

5.4. Lemma. Ze¿/*(P),/*(P) be the upper and lower Poisson sums, and let
y¡/*F(P),ip*F(P) be the upper and lower Riemann sums of the series 2Z«°=i Yn(P),
which is of class K. Then, for P on S, we have

(a) faF(P) £f*(P); (b) U(P)ZrF(P).
Proof. Let M be a point on 5. Since \p*F and fa* F are not changed if a

constant is added to F, we may assume without loss of generality that F(M)
= 0. Let F(r, P), Oi£r<l, be the function which is harmonic in the interior
of 5 and has F(P) as boundary values. Since F(P) is continuous, we have

(5.4.1) limier, M) = F(M) = 0.
r->i

The inequality (a) is trivial if ip*F(M) = — oo. Hence we need only show
that }p*F(M)>m implies f*(M) ¡tm for any finite number m. Consider the
function

U(P) = 1 - cos MP = 1 - Pi(cos MP).

We have U(M)=0,yU(M)=2 (by (5.1.1)). Adding a multiple of U(P) to
F(P), we see that it is sufficient to prove that the inequality

(5.4.2) faF(M) > 0
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implies

(5.4.3) f*(M) è 0.
Put

00

f(r, P) = Z Yn(P)rn (0 á r < 1).
71=1

It follows from Laplace's equation

1      d
sin 6

that

d / dF\ X      d2F      d /    dF\
—   sin«-) + —-:+~ [r2-) = 0
dO \ de /       sin2 O   d<j>2       dr\     dr )

d  /     dF\
(5.4.4) f(r,P)+ T(r2 — ) = 0.

dr \     dr /

We assume that (5.4.2) holds. If (5.4.3) is false, then (5.4.4) implies

(5.4.5) (r2F'(r, M))' > 0 (0áf,ír<l),

where ro is constant, and the primes denote differentiation with respect to r.
By the mean value theorem, and (5.4.1), there exists s, r<s<X, such that

rF(r, M)      F(M) - F(r, M)      F'(s, M)
-=-■-= -= — s-I (s, M).

X - r 1 - X/r (X/s)'

Hence there exists /, s<i<l, such that

rF(r, M)       sF(s, M)

X - r X - s

= t2F'(t, M) - s2F'(s, M).

This expression is positive, for r^ro, by (5.4.5). To obtain a contradiction, it is
now enough to show that (5.4.2) implies

d ( rF(r, M) )
(5.4.6) liminf   —<|—--\ > 0.

r->i       dr (   1 — r   )

Let M be the pole of a spherical coordinate system (0, <j>). The Poisson
formula

1 r%   T      f%  2t    1     _    ~2

F(r, M) = — f      I      -F(e, 0) sin 6 d6d<t>,
4ir J o    J o A3

where

A2 = 1 - 2r cos 6 + r2,
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may be differentiated under the integral sign. We thus obtain

F(r, M)) 1    r * T 2T o  Ml + r)1
> =— —{--->F(e, 0)sinÖ<

1 - r   j        4xJo   Jo     dr\     A3

Since

d   tr(l + 01 (1 - 0(1 + r(3 + cos 6) + r2)>h(5.4.7) — ■{-ÓV I     A3     ) A6

we see that

o  (r(l + r)1
(5.4.8) lim— {--^=0

r^i dr\     A3     )

uniformly for 0<e^f9^x. By (5.4.2) there exists e>0 and h>0 such that

i r2T
(5.4.9) — j      F(6, fadcb ̂  2h sin2 2^0 (0 < 6 ^ «).

2x J o

Since (5.4.7) is non-negative, (5.4.8) and (5.4.9) imply

,.    .     d irPCr, M) Ï
hm inf —<—->

r-i     dr I   1 - r   )
i rf o í>(i + oi r2r

= lim inf  — I    — 1-} sinddd l      F (6, fa deb
r-i      4xJo   dr\     A3     ) Jo

r ' d   (r(\ + r)1
è k lim inf — 1-> sin2 2~ld sin 6 dd

r-i      J o   oV (.     A3     )

1    f « d  lr(l + r)1 /• 2t
= h lim — I    —<-> (1 — cos 6) sin d dd I      d<¿

r-i 4xJ0   or I     A3     j Jo
d(rlrTr2Tl — r2 )

= Mim — <-I       I-(1 - Pi(cosö)) sindddd<t>>
r-i dr (1 — r 4x J Q   Jo A3 )

= Älün-j-J— (l - P1(l)r)\
t-*i dr \1 — r )

= h > 0.

This proves (5.4.6), and hence part (a) of the lemma. The inequality (b) fol-
lows by a change of sign.

5.5. Proof of Theorem 2.7. We assume without loss of generality that
Fo = 0. By (i) there exists a continuous function F(P) such that

F(P) ~ - ¿ Yn(P)/n(n + 1).
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By (ii) and (iii), Lemma 5.4 implies

rF(P) ^ U(P) > - oo (PonS-Z),
^F(P) =S f*(P) < + oo (PonS-Z),

t*F(P) à /*(P) ^ y(P) (P on S).

We see that all requirements of Theorem 2.6 are satisfied. Hence

W(P)  ~  Z   Yn(P).
n—l

The given series has now been shown to be a Laplace series. Hence it is
Poisson summable p. p. on 5, and is the Laplace series of its Poisson sum [l ;
353].

This completes the proof. Since the assumptions of 2.7 imply those of 2.6,
we note that Theorem 2.6 has greater generality than Theorem 2.7.

VI. Appendix
So far we have considered only series of class K. The series of associated

Legendre functions Z«=i (2w+l)P¿(cos 0) sin <b, which is Poisson summable
to zero at all points of S, shows that no condition imposed on the Poisson
sums alone can enable us to infer that the given series is a Laplace series.
The question arises as to whether condition (i) can be omitted in 2.7 if the
given series is assumed to converge. We do not answer this question here, but
will show:

6.1. Theorem. There exist series of spherical surface harmonics which
converge at every point of S, without being of class K.

We define the modulus c» of the spherical surface harmonic Fn by

cl  =  —   f f Y2n(P)dP.
4ttJ J s

HfEL2 on S, and if /~ Z Y„(P), then it follows from Bessel's inequality that
cn = o(X). Hence a necessary condition for ~^Yn(P) to be of class K is that
Cn = o(n2). Thus the following result, which is in marked contrast to the
Cantor-Lebesgue theorem for trigonometric series, implies 6.1.

6.2. Theorem. Given any real number m, there exists a series / \ Yn(P)
which converges at every point P of S, and for which n~mcn-^> oo as n—* ».

Proof. The series
co oo oo

Z Yn(P) = Z Yn(e, <t>) = Z nm+l sin"-1 <? cos 0 sin (n - 1)0,

where (0, <p) is a spherical coordinate system on S, has the desired properties.
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