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1. Introduction. The purpose of this paper is to develop a method for
generalizing Green’s identities in order to study questions of uniqueness for
quasilinear partial differential equations of second order under nonlinear bound-
ary conditions. In particular, the general theory for elliptic equations is ex-
pounded in detail (§3); and in §4, a number of examples illustrative of the
technique are given

Given a plane region S bounded by a simple closed curve C, it is well-known
that two regular solutions ¢, , ¢, of Neumann’s problem

) £
(1.1) Ap = ¢+ ¢, =0in S, = =honl
for Laplace’s equation differ by at most a constant. Here s denotes arc length
along C. The usual proof [5] rests upon Green’s integral identity

0 [t
[o352as = [ 16+ 6+ sre] as.

One sets ¢ = ¢, — ¢, to obtain the identity
NG @9_2)
[ 6= 0(2 — 22) as

= fg [(p1 - p2)2 + (91 - (Zz)z + (@1 — ¢2)(Ad, — Ad,)] dS,
where, following Monge, we write

dd; 09, ¢, s %, .
pi:%’ Qi='g/‘, r; aq;z; ¢ t¢=—£§‘§, (’L=1,2).

If ¢, and ¢, are two solutions of the boundary problem (1.1), the integral over C
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and hence the integral over 8 in (1.2) vanish, from which p, = ps, ¢, = ¢,
readily follows to imply the stated result.
In place of Laplace’s equation, we consider the quasilinear equation

{1.3) L[¢] = Ar 4+ 2Bs + Ct = D,

where A, B, C, D are functions of z, y, ¢, p, ¢; and instead of (1.1), pose the
boundary problem

S, éi’=f(x,y,¢,p, g on C.

1.4) Li¢] =D i s

We seek those functions f for which a suitable generalization of the Green
identity (1.2) can be found which will yield information on the uniqueness of

the solution.
We begin by replacing (1.2) by the generalized identity

asn [ {1, % 1, %) g,
= L [uéipi + vduQi + umri + (uac + vm)s:' + va&ti + U, + U,,] dS,

obtained through Gauss’s theorem. Here

(1.6) hh=1@ydé 0,00, F=1®9 6,0, %),
and
T = 7(2, Y, b: , Py 4,
with
u = 1lfips — fipl, v = rlaqy — figal;

and we employ the summation convention for repeated indices. The region 8
is permitted to be multiply connected, with its boundary C composed of a finite
number of smooth, simple closed curves. For simplicity, the functions f, , fa , 7
are generally assumed single-valued and real analytic in their arguments. The
functions ¢, , ¢ , which may be multi-valued, are of class ¢’ in S 4+ C and C”
in 8.

If for suitable multipliers A\, , A, we impose the conditions

Up, "y + (U, + 0,081 + vt = ML[¢1],
Up, T2 + (u'an + vm)sz + va.tz = >\2L[¢2]
on 7 and §, the identity (1.5) becomes

i)

(1.8) fa 7-(f, 9 _ 4 —Q?i%) ds = fs Wops + 10,05 4+ MNL[6:] + u, + ,) dS.

“on on
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Hence, if ¢, and ¢, are two solutions of the boundary problem (1.4), then (1.8)
reduces to

1.9 L W 0i + v45.0: + MDDy +u, +0,) dS = 0,

where D; = D(x, ¥, ¢: , D« , ¢:); and our problem is to avail ourselves of whatever
arbitrariness remains in the choice of + and f so that (1.9) will enable us to
determine the conditions under which the solution to (1.4) is unique.

The question of existence of solutions to (1.4) is, of course, of great interest.
Our investigation is limited to the study of uniqueness in case a solution to a
given problem exists. We leave untouched the question of whether a solution
actually exists.

2. Overdetermined systems. In solving (1.7), we are led to seek solutions
of the system ({1])

"iﬂn_l__'b_‘l‘_tﬂa:%:)\ um._:uh"l_vm_”_aa__)\.
A] o 2Bl Cl 1o A2 2Bz - 2 o 2
or equivalently,
Up, = év Uy, = ”14—2‘1)
P ay 9 Ps T as )
2.1 Cy Cs
2B 2B
u(lx = _vzu + &CTI vdl ) ua: = ‘_'117, + _6:2 vd: b

provided C, 5% 0, C; 5% 0. Setting ¢ = 7f,f; in (1.6), we see that u, » must
have the special form

e eoefp-8) e di-g)

The system (2.1) is a special case of the general overdetermined system,
(2 3) U, = Wy, + by, , Uy, = Qolz, + by, ,

Uy, = Ci¥s, + diby, , Uyy = Coly + doby, ,

of four partial differential equations for two unknown functions %, » of four
independent variables z, , ¥ , %2 , Y2 - Here, the coefficients a, , b, , ¢, , d, in the
first component system are functions of z, , ¥, only, and are assumed to be single-
valued and real analytic in some region R, of the (x, , y,)-plane; similarly, the
coefficients @, , by , ¢z , ds in the second component system are functions of x, , ¥
only, and are single-valued and real analytic in some region R, of the (z; , ¥,)-
plane. Finally, 4 and v are single-valued and real analytic functions of z, ,
Y, %2, Yo i By X Ry

A detailed study of such systems may be found in [6] and [7], with particular
emphasis being placed, in view of (2.2), on solutions of the form

2.4 u = ¢g:[P; — P}, v = ¢-[Q — Q,],
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in which P, , @, depend only on «, , 4; ; Py, @ only on z, , ¥, ; and ¢ depends
on all four variables. For the remainder of this paper, we shall be concerned
only with some particular systems (2.1) arising in the study of the uniqueness
of solutions for certain partial differential equations. We shall prove only those
properties of such systems relevant to our analysis.

It is clear that every overdetermined system (2.3) will possess solutions

2.5) U= U — Uy, V=0 — Vs,

where u, , v, depend only on z, , ¥, ; and u, , v, , only on x, , ¥, . Such solutions,
we term separable; and moreover, functions such as u and v in (2.5) are also called
separable. More generally, if a solution may be written in the form (2.4), it is
termed quasi-separable.

3. Elliptic systems. The system
U, = av, + by,
U, = cv, + dv,

is termed elliptic if (@ — d)® -+ 4bc < 0. It may be shown ([6], [7]) that if one
of the component systems in the overdetermined system (2.3) is elliptic, then
every solution will be separable unless the other component system is also
elliptic and the two systems share a pair of constant, complex conjugate eigen-
values r == 7s. In this case, the solution of (1.3) is

14

r
u-—U+;V, v =

’

where U + 4V is an arbitrary analytic functionof ¢, = &, -+ 99, &5 = & + @12,
and the functions

&(z; , ya), (s, ¥i)
are solutions of the Beltrami equations ([4])
sk = (a'f - r)”:i ’ st = ¢iny + (di - T)’Tui s i=1,2.

This reduces the search for quasi-separable solutions in the elliptic case to the
search for quasi-separable solutions of the Cauchy-Riemann equations

UE: = V’h ? Ufa = V’h )
U"h = -fol U’la = _an ;

i.e., to the determination of those analytic functions F = U 4 ¢V of two complex
variables {; , ¢, for which

(3.2) U = oP, V = oQ,
with

3.1)

P = Pl(fl ’ 771) - P2(£2 ’ "72); Q = Q1(51 ’ 771) - Qz(&'z y 7)2):
g = O'(EI yMm s &, "72)-
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Such functions will in general be termed quasi-separable analytic functions
of £y, {2 ; and in particular, those for which

U = UI(EI ) 771) - Uz(gz y "72): V = V1(£1 ) "11) - Vz(fz ’ 772);
so that

I = §(5) — f2(¢2),

are called separable. The question of quasi-separable analytic functions of
t1, &2 is completely answered by the following theorem ([6)], [7]):

Theorem 3.1. The only quasi-separable analytic functions F of two complex
variables {1, = & -+ iny, {2 = & -+ i are those oblained from separable analytic
functions H through the operations H, H™*, and e”. Conversely, if H is separable
analytic, H, H™, and e” are quasi-separable analytic.

If ¢ is constant in (3.2), F is separable and the conclusion of the first statement
of the theorem is satisfied. In completing the proof of the first statement, we
therefore without loss of generality assume o is not constant. By definition, if
F is quasi-separable, it has the form (3.2). Thus, since H = log F is an analytic
function of {, , {3 in a cut domain, its real and imaginary parts

R =log(U*+ V3, @ = arctan—g
satisfy the Cauchy-Riemann equations

B, = 0,,, R, =0,

R, = -0, R, = —0,,.

Consequently, ® = arctan (@, — Q:)/(P, — P,) must satisfy the integrability
conditions

(3.5)

(3.4)

®$xfx + ®mm =0, ®Ea29 + ®7laﬂ: =0,
®517la - ®7715: = 0: ®51§s + ®171'l: = 0.

If O is separable (see 2.5), then (3.4) insures that R is also separable; and
again the claim of the first statement is satisfied, since F = ¢” for a separable H.

If © is not separable, then it is immediate that for each ¢ = 1, 2 ,the func-
tions P; and @, are independent. For suppose, without loss of generality, that
P, , @, are functionally dependent. Then

PpQ, — Pp.Q,, =0,
and from this we deduce that
(3.6) PO, —P,0, =0, .0, —2@,0,=0.
Differentiation of (3.6) yields the system
3.7 PO, — PO, = 0, QeOh.t. — @104, = 0,
P80, — PO, =0, @Q.0,, —Q,0,, =0;
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and discarding the case P;, = P,, = 0, Q;, = @,, = 0 as leading to a separable
®, we get

®5152®111711 - ®Exﬂa®mh = 0‘

From this and (3.5), we would immediately arrive at a contradiction to the
hypothesis: ® not separable. Thus functional independence is established, and
the first equation in (3.5) yields:

(3.8) PP+ @) Qet. + Quin) — QP° + @)(Prt, + Pony)
- 2(P* — @)(Q:.Pr. + Q..P,) + 2PQ(P:, + Pi — Qi — Q) = 0.

This identity in the variables & , 7: , £ , 7. continues to hold if the variables
£, , 1, are held constant, and £, , 7, allowed to vary. Since P, , @, are functionally
independent, the variables P, @ may be regarded as independent variables,
and the coefficients of the cubic (3.8) in P, @, as constants with respect to &, ,
ns . It follows that the coeflicients in (3.8) must vanish identically, and we have

PE;E: + Pmm = 0) PhQEx + Pan: = O:
Q}Exfx + Qﬂx"h = 0) ?x + P?h - sz - ?lx = 0'

These equations are satisfied if and only if P + 4Q or P — #Q is an analytic
function of ¢, ; and by analogy, we obtain the identical result for ¢, .

Tinally, we shall conclude that P — 4@ is in fact an analytic function of
&1, &2 - Since we already know that U 4 iV = o(P -+ Q) is also analytie, it
follows that the product ¢(P® 4+ @) of these two analytic functions, being
real, must be a constant. Hence F = H™' for a separable H, and the proof
of the first statement of the theorem is completed.

The proof that P — @ is analytic is by contradiction. For let us suppose,
without loss of generality, that it is not an analytic function of ¢, . Then, as
already observed, it follows from (3.9) that P + ¢ is an analytic function of
t1,a8is U + 2V = o(P + 4Q), so that ¢ is independent of £, , 5, . Thus

F(h I 3'2) = O'(fz)[P + iQ_l:
where P - 4Q is analytic in {, ; and F, in ¢, , &, . It further is immediate that

(3.9)

0 = Fi,5, = op,[P + 1Q];, = of,[P — iQ];, .

Since by assumption, [P — 1Q];, 5% 0, it follows that ¢ must be complex analytic
in ¢, , and hence constant, a contradiction. Thus P — #Q is in fact analytic.

Conversely, if H is a separable analytic function of ¢, , ¢, , it is by definition
quasi-separable; and it is moreover easy to see that H™" is also quasi-separable
analytie, for
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and H is separable. To complete the proof of the theorem, all that remains
to be shown is that e” is quasi-separable. If we write H = R + 40, with

R = R1(£1 3 771) - Rz(Ez ’ ’72); 0 = 01(51 ’ 771) - 02(52 ’ 772);

we find
{20 —120
B Ra-Rs i(hi—02) _ Ri-Rs € -+ € "
¢ =e ¢ =€ TUNYR) (402
e + e
But then
eH - o_(el'Zﬂl + e—i?an),

where

o = 1e® sec (6, + 6,)

is real, so that e” is quasi-separable, as claimed.

The representations utilized in the preceding section are essentially unique
up to arbitrary constants. and this fact will be demonstrated in the ensuing
corollaries. We shall confine our interest to non-trivial analytic functions of two
complex variables, 7.e. ones which actually depend on both variables.

Corollary 3.1. If F is a non-trivial separable analytic function of & , ¢a
and if we write F = U + 1V, where U, V has the form (3.2), then o is a constant.

It is clear that the proof of Theorem 3.1 also suffices to establish that if
F = U + iV is any quasi-separable analytic function, even a separable one,
and if U, V has the form (3.2) with ¢ not constant, then ¥ = H™* or ¢” for some
separable function H. But since F itself is also separable analytic, this cannot
happen for non-trivial F, and thus Corollary 3.1 is proven.

Corollary 3.2. If F = H™*, where H is a non-trivial separable analytic func-
tion of &1, ¢z, and if we write F = U + iV, where U, V has the form (3.2), then
o = k/|H|® for some real constant k.

By hypothesis, #/|F|* is a separable analytic function of ¢, , {5 , and hence
F/|F|® is a separable analytic function of §, , {; . Corollary 3.2 is thus an im-
mediate consequence of Corollary 3.1.

Corollary 3.3. If F = ¢, where
H=R+10 = Rl(& ’ "Ix) - Rz(sz s "72) + 'iax(fl ) 771) - iaz(éz ; 7)2)

is a non-trivial separable analytic function of &, = & + im , 2 = & -+ 92, and
if we write F = U + iV, where U, V has the form (3.2), then o = k e* sec (8, +
0, — 0,) for some real constants k, 6, .

From (8.2), it is clear that
(3.10) oP =¢é%cos®, oQ =e®sinO.
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Since R, , 6, are independent functions of £, , 4, ;and R, , 8, , of &, 12, it follows
that P, @ will be separable functions of £ , 4, and & , 9, , %.e. of the form (2.5),
if and only if they are separable functions of R, , 6, and R, , 8, , respectively,
1.e., if and only if

PR:R: = QRan = 0} Pl\’q(’n = QR:h = 07
Por, = Qo,r, = 0, Pos, = Qo,e, = 0.

If we set G = €%/o in (3.10), the second pair of equations in (3.11) implies
Gr, = 0; and the third pair, Gz, = 0. Thus G = G(0, , 0,), and the corollary
follows from (3.11) and elementary trigenometric identities.

(3.11)

4. Nonlinear boundary problems for elliptic equations. The application of
the results on elliptic overdetermined systems just obtained to uniqueness
questions is most clearly illustrated by the example of the equation

4.1) A = F(z,y, ¢, P Q-

We make the assumptions that S is a simply-connected region with boundary C,
and that ¢ is a C? solution of (4.1) in S, continuous in the closure; and attempt
to pose boundary problems whose solution is unique. In the light of (2.1) and
(2.2), we seek to determine those functions f(¢, p, ¢) for which there exist real
valued functions o(x, ¢, 1 , 2, P1, P2, @1 » ¢2) such that

e % _ ]
4.2) U+ iV = a[j(qh 1Py ) [, pe, 92)]

is an analytic function of 2, = p, + %9, , 23 = p. + 729, . By Theorem 1.2, if
this is possible, then necessarily U + ¢V = H, H ™}, or ", where H is a separable
analytic function of 2, , z; . We shall consider these three cases in the ensuing
sections.

41. U 4 <V separable. If U - iV is separable analytic (and non-trivial),
then Corollary 3.1 tells us that

(4'3) o= O'(CE, Y 1¢'2)) f= f(d’)

Under these restrictions, (1.5) becomes

Fi@ gﬂ
an aon
(4.9) fca(x, Yy 1 5 b2) @) " 1@y ds

- [ {U¢,»p.~ + Vg + a(% - FT) + "’(Ti - %) + «r(qf— - %)} ds,

where f; = f(¢.) and F; = F(x, ¥, ¢: , Pi, :),1 = 1, 2.
When o = (¢, , ¢2), this identity has been studied in great detail by M. H.
Martin ([8], {91, [10], [11]); and in its simplest forms reduces to the classical



ELLIPTIC PROBLEMS 515

identities of potential theory ([5]). Its most familiar application occurs in the
special case f = 1, ¢ = ¢, — ¢, , for which it reduces to the identity (1.2). From
this it follows that any two solutions of the boundary problem

(45) Ap = F(.’E, Y, ¢) in S; ¢ = —-G(«S‘, ¢) on C

differ by a constant if F, G are continuous in their arguments and non-decreasing
in ¢. This result, for F = 0, is due to Carleman [3]. Actually, one may clearly
extend the result to yield a uniqueness theorem, where ¢, = —G(s, ¢) holds
only on a portion of the boundary, and where ¢ is specified as some function
of arc length on the remainder.

Although the identity (1.2) discussed in the preceding paragraph is well-
known, the following identity, valid for any two solutions ¢, , ¢, of the equation

Ad + [grad o] -[grad ¢] + k |grad ¢ = g(o, z, 1),

where the constant k and the function a(z, y) are given, is new, and is a direct
application of our methods:

a+2kd — _(_959_1_ _ Q_‘_ﬁz)
fce Wiy ¢2)< on " on) &

= fs e* o w4+ kwl((p, — p2)° + (@1 — &)

+ wlgle: , 2, ¥) — g(¢. , =, ¥)1} d8S.

Here w is an arbitrary function of ¢; — ¢, . If we take w = (¢, — ¢y)e "7,
then both w and w’ + kw are positive, and the following theorem emerges:

Theorem 4.1. Ifg(x,y, ¢) and G(s, ) are continuous functions, non-decreasing
i ¢, then any two soluiions of the boundary problem

Ap + [grad o]-[grad ¢] + k |grad ¢° = g(z, v, ¢) in 8,
¢ = h(s) on Cl y ¢n = ""G(S, d’) on Cn

differ by at most a constant. Here the functions o = afz, y), h(s), and the constant
k are also given, and C = C, + C, .

4.2. Two integral identities and Stekloff’s problem. For harmonic functions,
the Stekloff boundary condition that ¢, = ¢h(s) has long been a source of study,
usually with some restriction on the sign of A(s). In seeking to avoid such
restrictions, Martin [8] made use of the following identity, obtainable from
(4.4) by setting ¢ = ¢ :

@5 [ N6 22— 0.2 a5 = [ 1602 4D + pulan — rag] a5,

an

Here A = ¢,/¢, must be assumed C* in S and continuous in the closure.
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In order to study a wide class of problems, of which Stekloff’s problem is.
a special case, we consider the boundary condition ¢, = f(¢)k(¢, s); and in place
of \, introduce the quantity u = §(¢.)/f(¢>) = f1/f. , which we take to be C*
in S and continuous in S 4 C. (Here and henceforth it will be understood that
all remarks remain valid provided that u is more generally defined as the unique-
solution with the required continuity properties for the equation f(¢,) = pf(¢s).
It is important to note that this uniqueness implies that {*(¢.) > 0 on a dense
subset of S.) We obtain at once the identity:

4.6) /;'#(fz % —h %%) ds = ,/,; [ff(p? + ) - 2uf{(pps + 0:142)
+ p,zfg(pg + &) + w(f: &by — f1 Ad)] dS.

The uniqueness theorems obtainable from this identity may be derived from

the following basic theorem. Applications to the most familiar cases will be
given as corollaries.

Theorem 4.2. Given G(¢, x, y) continuous and f(¢) continuously differentiable
in 8 + C, and h(¢, 8} continuous on C, if ¢, s a solution to the boundary problem

(4.8) Ad = f($)G@, z,y) tn S, ¢. = f@h(¢,s) on C,

then any other solution ¢, for which the ratio p = {(¢1)/f(¢2) ¢ C'(S) and con-
tinuous in S8 + C, for which the inequalities G, , 2, ¥) = G(¢2, 2, ¥) and 0 <
f'(¢1) = f(¢a) hold on a dense subset of S, and for which the inequality h(¢. , S) =

h(¢. , S) holds on C, must be linearly dependent on ¢, . In fact, p and ¢, ~ pps
must both be constant.

(If the condition 0 < f'(¢,) < f(¢) on a dense subset of S is replaced by the
conditions 0 = f'(¢1) = f'(¢2) and f(¢2) > O on a dense subset W of S, it is
still possible to conclude that p is constant. The integrand in (4.9) is non-positive
at every point, and hence identically zero. Moreover, at each point of W such
that f'(¢,) > 0, we have already seen that (u + ul)fs = 0. At those points
where f'(¢;) = 0, we may conclude from (4.9) that x*(p; + ¢5) = 0. Yet it is
still true from the definition of u that

(uz + w)fe = (o — witp)® + (g — wfign)’
In this case, the facts that f/ = 0 and »*(p? + ¢7) = 0 lead at once to the result
2 + 1))fs = 0. Thus (¢} + w)f2 = 0 on W; and by continuity, on S. Since
fa > 0 on a dense subset of 8, it follows that g, = p, = 0in S, and so x is con~
stant.)
It follows from (4.6) and the conditions on p, G, h that

(4.9) f W@ + &) — 26fims + 60 + wHE + )] dS < 0.

Moreover, since f; < f; , it is immediate from (4.9) that

[ 11 = w0 + (@ = w1 as < 05
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and hence, because f{ > 0 on a dense subset of S, that

(4.10) P = up2, 91 = uQa .

With (4.10) established, to prove the theorem it is clearly necessary and sufficient
to prove that u is constant; and to this end, we examine the quantity T' = p,p, 4
1,02 - On the one hand, T is simply A¢, — u A, , and so it follows from (4.8)
and the condition G(¢, , z, ¥) = G(¢s , x, ¥) that T has everywhere the same
sign as f(¢,). However, from (4.10) and the definition of x, we have that

hT = (L — H®: + ¢).

Thus, since f{ =< 4, the product f,T is not positive; and therefore must, by the
above, vanish identically. Hence 7' is identically zero, and it is an immediate
consequence of (4.10) and the definition of x that (12 4+ wk2)f2 = 0. Finally,
since u is C*(S) and fz > 0 on a dense subset of 8, it follows that g, = p, = 0
in 8; and so p is constant.

Corollary 4.1. (Stekloff Problem). If ¢, is a solution to the boundary problem
Ap = ¢’G(¢: z, y) m S; b, = ¢h(¢'; S) on C:

then any other solution ¢, for which the ratio N = ¢,/¢» 15 C*(S) and continuous
on S -+ C, for which G(¢, , z, y¥) = G(¢2, x, y) in S, and for which hig, , §) =
h(ps , 8) on C, must be a multiple of ¢ .

The corollary is an immediate consequence of Theorem 4.2; and with G
and h independent of ¢, it is proved by Martin in [8]. As he points out ([9]),
the requirement that ¢,/¢, be C*(S) cannot be completely eliminated. For
example, given any positive integer k, the real and imaginary parts of the analytic
function 2* are both of course harmonic, and they satisfy the boundary condi-
tion ¢, = k¢ on |z| = 1. They are certainly not linearly dependent.

The methods and results pertaining to the Stekloff problem can be generalized,
and one obtains the following important corollary.

Corollary 4.2. Let the continuous functions G{(¢, x, y) and h(p, s) be given
on S8 4 C and on C respectively, and let the positive integer k also be given. Further,
let ¢, , ¢ be two distinct solutions to the boundary problem

Ap = "G, 2, y) in S, ¢ =¢""h, 89 on C,
subject to the following conditions:
() » = o1"*/e3** is C*(S) and continuous on S + C, and |u| £ 1,
(i) 7#f k is odd, then ¢, and ¢, are both non-negative,

Gil) Gy, 2, ¥) = G2, x, y) n S,
(iv) h(ps 5 8) < h(gs, 8) on C.

Then either ¢, is constant or ¢, = —¢, . In fact, for k odd, condition (ii) insures
that ¢, is constant.
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Simply define f(¢) = ¢'**. All of the hypotheses of Theorem 4.2 are satisfied,
except possibly the condition that 0 < fi{¢,) = fi(¢2) on a dense subset of S.
But in light of the remark following Theorem 4.2, we may still conclude that
¢, must be a constant multiple of ¢, , say ¢, = me, . If m is zero, Corollary 4.2
is established. If m is different from zero, the condition f > 0 on a dense subset
of 8 implies the same condition for f2 , and hence, in this case, for f'(¢,). Thus,
in fact, all of the hypotheses of Theorem 4.2 are satisfied (except in the trivial
case), and we may conclude that ¢, — (P1**/d."*)¢, is constant. Making the
substitution ¢, = me¢, , we obtain that ¢,(1 — m") is constant. Thus, either ¢,
itself is constant, or m* = 1. Since ¢, and ¢, are distinct, the stated conclusion
is immediate.

When G and % do not depend explicitly on ¢, or more generally, when equality
holds in (iii) and (iv), one may prove the same result with the word “positive’
substituted for “negative’” in (ii). One simply replaces the functions ¢, , ¢. , G,
and b by their negatives. Using a somewhat different technique, Martin ([11])
essentially proved the corollary, extended in the manner just indicated, for the
case when @ and h are independent of ¢. His method, however, is valid only for
IN| < 1, whereas the method of proof here permits relaxation of the strict
inequality.

4.8. (U+4iV)™" separable. In the case U-+iV=H"", where H is a separable
analytic (non-trivial) function of z, , 2z, , it follows readily from (4.2) that
f= @ + ¢)K(, z, y). For by Corollary 3.2, it is immediate that z,/f, — Z/f.
is an analytic function of 2z, and 2, , hence Z;/f; is an analytic function of 2,
for each ¢ = 1, 2. Moreover, (p? -+ ¢)/f: , thus an analytic function of z; ,
is at the same time real-valued; and therefore constant with respect to p: , ¢: .

We look now only at the simplest such case, K(¢, , ¥) = 1, and are led to
the identity
@e [ e (e ‘”’2)

¢ |V1 - V2|2

(wq&lvl + w¢zv2) (Ivz|2 vy — |V1l2 Vo)
3 das,
— v,
valid, when the integrands are contmuous, for any two harmonic functions
¢, , ¢ . Here v; = grad ¢, , ¢ = 1, 2. Verification is immediate once it is es-
tablished that the vector
Vol vi — [Wi[° v,
Vi — V.|

is divergenceless. The possible singularities of the integrands in (4.6), albeit
isolated, present difficulties when one attempts to obtain uniqueness results,
and the following is offered only as a weak example of the results possible.

Theorem 4.3. If the gradient vector of one non-constant solution of the boundary
problem

Ap =0 in 8, ¢,.=® + i) on C
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never exceeds in length the gradient vector of a second such solution, then the two
gradient vectors must at some point be identical. Thus the gradients of any two
non-constant solutions must at some point have the same length.

The first statement is the only one which needs proving, and we prove it
by contradiction. Assume that |v; — v,° > 0 at every point for two solutions
é1 , ¢, for which, say, |v,| = |vi|. Placing w = ¢, in (4.6), and introducing the
angle 0 between v, and v, , we find

f Jv1|2 lvzl (ivz‘ - |;71‘ cos 6) ds = 0.
8 IV1 - V2|

From |v,| = |v,|, it follows that the integrand is non-negative; and its vanishing
implies v, = v, , a contradiction which establishes the theorem.

4.4. Log (U + iV) separable. When U -+ iV = ¢, where H is separable
analytic (and non-trivial) as a function of z, , 2z, , we invoke Corollary 3.3,
writing
H=R+10 =R1(p1 y 1 ;¢1;¢27x7y) '—Rz(pz;Q2;¢1:¢2;x7y)

+ 00Dy a b b2, 2, Y) — 10:(P2 , G2y 1,00, T, )

We obtain at once that ¢ = 1K (¢, , ¢: , , y)e” sec (8, + 0, — 6,), where 6, may
also depend on ¢, , ¢. , 2, y. It follows from (4.2) that

1(20,—0 i (00—20
i{201—~00) +el( ° n));

or to rephrase this,

2 29 1 iy s

2 W BN SR P

FThROEC T
where ¥, , ¥, are harmonic in p; , ¢, and in p. , ¢. respectively. Regarding for
the moment everything as held fixed except 2, and z, , we have the system
of relations

@ s=Lertmtim,  G=1,9,

for some constant m - ¢n. For given j, this is a system of two equations, and
elimination of f;/K between them yields the identity

p; _ cosy; + m
48 g; sinyg; +n

But clearly the only solutions ¢; of (4.8) that can be harmonic in p; , g; are
linear combinations of the arc tangent of p;/¢; , and in fact it is just trigonometric
manipulation to show that the coefficient of the arc tangent must be —1 or —2.

In the remainder of this section, we shall develop an integral identity when
the coefficient is in fact —1 as an example of the results obtainable. The tech-
nique for developing an identity for the coefficient —2 is analogous.
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When ¢; = —arctan p,;/q; + b, where b is constant, we obtain easily upon
differentiation of (4.8) with respect to p,;/q; that m = n = 0; and this result,
together with (4.7), yields at once the result that

4.9) fi = =K |Z,~‘, j=1,2.

If we now reintroduce dependence on the variables ¢, , ¢2 , , ¥, we see that K,
since it must satisfy two equations (4.9), can depend only on z, y. Since K is
otherwise an arbitrary function, we choose the plus sign in (4.9), so that f; =
K(z, y) |2

We now have from (4.2) that the function

U4V = (ﬁ‘— ~ f——)
TV =K\l T Tl
must be analytic. Multiplication by z;%;? yields (in a cut domain) another
analytic function

c (2 2\ 1.~
K (—IZ‘ - l—z-z—l)zl*zg* .
But it is easily verified that this function is pure imaginary, and hence it must
be independent of 2, , 2, . Since ¢ is real, we may write, for some arbitrary func-
tiOIl w(¢l ’ ¢2 » &y y);
2l
o _ &)
el el

Choosing w == ¢, — ¢, , we obtain from (1.5) the identity

0 1 0 o
(1 — ¢2)(IV2| '5% - IV1| 5%)

(IV1| lvzl - Vl'Vz)ii

0=w(¢1 ,¢2,x,y)

ds

(4.10) fo

= [ (vl + vl vl = vi-v? as,
valid for any two harmonic functions ¢, , ¢, provided |vy| |vo| % vi'v; , or
equivalently, J = piga — paqx 5 0. Thus we obtain the following theorem.

Theorem 4.4. If ¢, , ¢5 are any two non-constant solutions of the boundary
problem

Apb=0 in 8, é=g6 on C., ¢.=h(se @ +)* on C,,

where h 1s non-increasing in ¢ on the boundary C = C; + Cs , then at some point
the Jacobian of ¢, , ¢, with respect to x, y must vanish.

~ Again, singularities of the integrand over C in (4.10) make the theorem
difficult to extend, but this line of investigation appears nevertheless potentially
fruitful in studying problems such as these.
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