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ABSTRACT

UniqueProt is a practical and easy to use web
service designed to create representative, unbiased
data sets of protein sequences. The largest possible
representative sets are found through a simple
greedy algorithm using the HSSP-value to establish
sequence similarity. UniqueProt is not a real cluster-
ing program in the sense that the ‘representatives’
are not at the centres of well-defined clusters since
the definition of such clusters is problem-specific.
Overall, UniqueProt is a reasonable fast solution
for bias in data sets. The service is accessible at
http://cubic.bioc.columbia.edu/services/uniqueprot;
a command-line version for Linux is downloadable
from this web site.

INTRODUCTION

The problem of biased data sets. Increasingly often experi-
mentalists face the problem of searching for some ‘significant’
motifs or features in a set of proteins retrieved from common
database searches. When we simply use the sequences with
today’s bias, we risk to over-estimate significance (1). The bias
has two potential sources: (i) certain families could be missing;
or (ii) could be over-represented. Such bias may hinder finding
sequence-patterns that are related to protein structure and/or
function. We cannot solve the first problem since we do not
have any insight into the still undiscovered and missing
sequences of the protein universe. However, we can discard
over-represented sequences by grouping similar proteins.

Inferring functional similarity from sequence
similarity. Supposedly, the mostly desired criterion for grou-
ping two proteins into one ‘family’ is that the two share a
common function. This is by far not an easy task considering
the many different levels of functional roles any particular
protein orchestrates within a living cell. In fact, while such

inferences are accurate for high levels of pairwise sequence
similarity, they become accurate rather rapidly with the level
of divergence between the two proteins (1,2). If we consider
two proteins to have similar function by the token that both
participate in cell cycle control, we need to establish different
thresholds for pairwise sequence similarity that allows to infer
this feature by homology (K.O.Wrzeszczynski and B.Rost,
manuscript submitted). We need to apply yet a different battery
of thresholds to infer that: (i) two proteins dwell in the same
sub-cellular compartment (3, K.O.Wrzeszczynski and B.Rost,
manuscript submitted); (ii) that they belong to the same groups
of cellular function (4), have similar binding sites (5) or belong
to similar descriptions according to the GeneOntology (6,7).

Inferring structural similarity from sequence
similarity. Arguably, the feature that is most conserved with
evolutionarily diverging sequences is protein structure (8–10).
If we consider protein sequences as simple strings of letters,
mathematics suggests that the probability of finding 10 in 20
aligned residues (50%) is much higher than that of finding 100
in 200 (also 50%) (11). Sander and Schneider (12) accounted for
this obvious reality of sequence analysis by introducing an
empirical threshold that related alignment length and pairwise
sequence identity in a way allowing to automatically determine
families of proteins with similar structure in their HSSP data-
base. A refined version of this original HSSP curve proved to
better discriminate between proteins of similar and non-similar
structure than expectation values from pairwise BLAST
searches (9). Since the functional form of this curve also appears
to rather accurately reflect similarity in sub-cellular localisation
(3, K.O.Wrzeszczynski and B.Rost, manuscripts submitted) and
enzymatic activity (1), we based our bias-reduction tool
UniqueProt on this curve. UniqueProt removes the bias of
sequence-redundant proteins from a given data set in the hope
of acquiring unique sub-sets that constitute more accurate
approximations to the goal of analysing sets representative for
the protein universe. However, users should be careful about
submitting data sets with very heterogeneous domain architec-
tures since the UniqueProt algorithm may completely remove
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domain-representatives. Especially the submission of sequence-
fragments is not recommended.

METHOD

Input. The program accepts either a set of sequences in
FASTA format or a list of identifiers from either of the follow-
ing protein databases: SWISS-PROT (13), PDB (14) or
TrEMBL (13). Alternatively, one of the following alignment-
file formats is accepted to bypass the first step of the algorithm
(see below): BLAST, PSIBLAST, pair, markx0, markx1,
markx2, markx3, markx10 or srspair.

HSSP-value to measure sequence similarity. First all
sequences are compared with BLAST (15,16). Then the per-
centage of identical residues and the length (L) of the
BLAST-derived alignment (without including the gaps) are
converted into the HSSP-value (HV) according to Eq. 1.
Here PID is the number of identical residues in the BLAST
alignment times 100 and divided by L. The HSSP-value
reflects whether an alignment is above the HSSP-curve
(9,12) (HSSP-value >0) or below (<0) (Fig. 1). For the first
case (>0) the HSSP-value can be seen as a degree of
sequence-proximity whereas for the latter case (<0) it gives
an estimate about the distance between two compared
sequences. For the case that an alignment file instead of a
FASTA file or list of identifiers is submitted the HSSP-value
is directly derived from the alignment information without per-
forming a BLAST comparison first.

HSSP-valueðL;PIDÞ

¼ PID �

100 for L � 11

480 � L�0:32�f1þexpð�L/1000Þg for L � 450

19:5 for L > 450
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>:
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Algorithm. In order to find the largest sub-set of proteins that
fulfil the constraint that no pair in that set has an HSSP-
value> u (u¼ user defined threshold), we applied a simple
greedy algorithm similar to that employed toward this end by
Hobohm and Sander (17): for each protein P in the submitted
set, the algorithm counts the number of proteins NP that share
an HSSP-value with P larger than u. We consider all proteins
{NP} with HV> u as belonging to the family F(P). Next, we
store the number and identifiers of all neighbours for each pro-
tein and sort the entire data set by the size of the families {F}.
Finally, the greedy algorithm simply works down that list
by starting at protein P0 and excluding all members of family
F(P0). We start either with the largest or the smallest family
(option selected by user). In particular, the algorithm is as fol-
lows. (i) Take singletons: if the family F(P0) contains only one
sequence, P0 is added to the unique list. (ii) Non-singletons: all
family members {F(P0)} except for P0 are erased from the list.
(iii) Overlap to previously identified proteins: if P0 has one
family-member Q that has already been included in the unique
list at a previous step, the representative P0 and all other family
members {F(P0)} except for Q will be removed from the stack.
Note that this situation may have two reasons: (a) because of

the asymmetrical nature of the distance-network generated by
BLAST, and (b) due to some overlap between domains that
invalidates the triangular relation (e.g. A similar to B and A
similar to C does not imply that B is also similar to C). The
algorithm completes if no protein remains in the stack.

User options. The user-defined parameter ‘smallest first’ or
‘largest first’ influences the final set of representatives in the
following way: assume a set of three proteins with A and B
being single domain non-homologous proteins and with C
being a two-domain fusion of A þ B. For a certain HSSP-value
the setting ‘largest first’ would yield one group (A, B, C)
whereas the setting ‘smallest first’ yields two (A,C) and
(B,C). Sequence-space-hopping is a procedure to enlarge pro-
tein families by applying a triangular equation: if HV(A,B)> 0,
HV(B,C)> 0 and HV(A,C)< 0 this usually implies that we can-
not infer the similarity between A and C directly (9,18).
Sequence-space-hopping (or intermediate sequence searches)
explore the fact that B is an intermediate common to families
A and C to infer the similarity between A and C. We enable the
user to apply this concept until no more new homologue
sequences are found. ‘Smallest first’ often leads to families that
can be connected via sequence-space-hopping. In our example
an alignment of A would lead to sequence C and the second-
round alignment of C would bring us back to A but also to
B. Note: the default setting for the algorithm is ‘largest first’.

Output. Since our server accepts a range of HSSP-values
instead of a single value in order to better exploit a once done
BLAST-run on a submitted set, one output-file is produced
for each HSSP-threshold processed by the program. Those
output-files are simple FASTA-files each one of them holding
a single representative set. When using the internet-version of
UniqueProt, the output will be downloadable from our server
in a compressed format (zip or tar) once the job has been
finished. To get a better overview, user-friendly html-files with

Figure 1. HSSP-curve for different values u. The curves illustrate different
HSSP-values u from the original HSSP-curve (Eq. 1). Every pairwise align-
ment can be represented as a point in the graph above. Any naturally evolved
two proteins for which the similarity falls above the curve u¼ 0 are expected to
have similar structures. Higher values provide more cautious estimates about
features common to two proteins and larger sequence-unique sub-sets.
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links to the mentioned FASTA-files can be obtained additionally
and will be included in the compressed archive. These files will
also contain the HSSP-values for each submitted protein-pair.

CONCLUSIONS

Although the program treats sequences as a whole rather than
considering domains, the UniqueProt algorithm is a convenient
and relatively fast way to thin out some set of sequences by
removing bias originating from redundancy without losing the
most important representatives. A data set containing �1000
sequences submitted to our server takes on average 15 min to
complete. There is a restriction on the amount of data (500 kb
for FASTA-files, 20 kb for ID-files, 10 Mb for alignment-files)
in order to prevent overload of our CPU resources. Users who
want to process larger sets can download the software and run
it on their local Linux/Unix machines.

UniqueProt constitutes a level in between a relatively slow
and careful clustering algorithm as used for example in
GeneRAGE (19) and between the extremely fast and crude
bias-reduction scheme CD-HI (20). We compared UniqueProt
to the clustering method on a single data set of 187 nuclear-
matrix associated proteins taken from SWISS-PROT.
GeneRAGE grouped these proteins into 27 clusters. We
grouped the same set through UniqueProt using different
HSSP-values and both algorithm-modes (‘smallest first’ and
‘largest first’). We found the highest overlap between the two
methods at an HSSP-value of 10 and with the mode ‘largest
first’. Seventeen of 27 GeneRAGE clusters contained at least
one representative in the mentioned UniqueProt set. The
reason for the rather high value for the best-fit proximity
threshold (HSSP-value of þ10) was that GeneRAGE grouped
half the proteins in the data set into one cluster and split the
remaining proteins into many small clusters. Although, we
have no good reason to assume that our single test is
representative for all possible data sets, we were encouraged
that UniqueProt is an alternative that works fast, is accessible
and probably accurate enough if the proteins have similar
domain architectures. We plan to investigate to what extent we
could apply the fast algorithm employed in CD-HI (20) to
achieve a first, fast grouping of our results in the future.
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