
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000 707

Unit Commitment by Lagrangian Relaxation and
Genetic Algorithms
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Abstract—This paper presents an application of a combined
the Genetic Algorithms (GA’s) and Lagrangian Relaxation (LR)
method for the unit commitment problem. Genetic Algorithms
(GA’s) are a general purpose optimization technique based on
principle of natural selection and natural genetics. The La-
grangian Relaxation (LR) method provides a fast solution but
it may suffer from numerical convergence and solution quality
problems. The proposed Lagrangian Relaxation and Genetic
Algorithms (LRGA) incorporates Genetic Algorithms into La-
grangian Relaxation method to update the Lagrangian multipliers
and improve the performance of Lagrangian Relaxation method
in solving combinatorial optimization problems such as unit
commitment problem. Numerical results on two cases including a
system of 100 units and comparisons with results obtained using
Lagrangian Relaxation (LR) and Genetic Algorithms (GA’s), show
that the feature of easy implementation, better convergence, and
highly near-optimal solution to the UC problem can be achieved
by the LRGA.

I. INTRODUCTION

T HE task of Unit Commitment (UC) involves scheduling
the on/off status, as well as the real power outputs, of

thermal units for use in meeting forecasted demand over a fu-
ture short-term (24–168 hour) horizon. The resultant schedule
should minimize the system production cost during the period
while simultaneously satisfying the load demand, spinning re-
serve, physical and operational constraints of the individual unit.
Since improved UC schedule may save the electric utilities mil-
lions of dollars per year in production costs, UC is an impor-
tant optimization task in the daily operation planning of modern
power systems.

Due to its goal, the UC problem has commonly been formu-
lated as a nonlinear, large scale, mixed-integer combinatorial
optimization problem with constraints. The exact solution to the
problem can be obtained only by complete enumeration, often
at the cost of a prohibitively computation time requirement
for realistic power systems[1]. Research endeavors, therefore,
have been focused on, efficient, near-optimal UC algorithms
which can be applied to large-scale power systems and have
reasonable storage and computation time requirements. A
survey of literature on the UC methods reveals that various
numerical optimization techniques have been employed to
approach the UC problem. Specifically, there are priority
list methods [2][3], integer programming [4][5], dynamic
programming [6]–[11], branch-and-bound methods [15],
mixed-integer programming [14], and Lagrangian relaxation
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methods [12][13]. Among these methods, the priority list
method is simple and fast but the quality of final solution is
rough. Dynamic programming methods which are based on
priority lists are flexible but the computation time suffers from
“curse of dimensionality.” Branch-and-bound adopts a linear
function to represent the fuel consumption and time-dependent
start cost and obtains the required lower and upper bounds. The
shortcoming of branch-and-bound is the exponential growth
in the execution time with the size of the UC problem. The
integer and mixed-integer methods adopt linear programming
technique to solve and check for an integer solution. These
methods have only been applied to small UC problem and have
required major assumptions which limit the solution space.
The Lagrangian relaxation method provides a fast solution but
it may suffer from numerical convergence and solution quality
problems.

Aside from the above methods, there is another class of nu-
merical techniques applied to UC problem. Specifically, there
are artificial Neural Network[16][17], Simulated Annealing
(SA)[18], and Genetic Algorithms (GA’s) [19][20][23][28].
These methods can accommodate more complicated con-
straints and are claimed to have better solution quality. SA is a
powerful, general-purpose stochastic optimization technique,
which can theoretically converge asymptotically to a global
optimum solution with probability 1. One main drawback,
however, of SA is that it takes much CPU time to find the
near-global minimum. GA’s are a general-purpose stochastic
and parallel search method based on the mechanics of natural
selection and natural genetics. GA’s are a search method to
have potential of obtaining near-global minimum.

In this paper, we apply an Lagrangian Relaxation and Ge-
netic Algorithms (LRGA) method in solving the UC problem.
The basic idea of LRGA is that Genetic Algorithms (GA’s are
incorporated into Lagrangian Relaxation (LR) method to update
the Lagrangian multipliers and improve the performance of La-
grangian Relaxation method. A description of LRGA method is
presented in Section II. Then a detailed application of LRGA
method to UC is given in Section III. The analysis of the LRGA
method is given in Section IV. Numerical tests on two cases
using LRGA, LR and GA’s are compared in Section V. Finally,
a conclusion is given in Section VI.

II. L AGRANGIAN RELAXATION AND GENETIC ALGORITHMS

The Lagrangian Relaxation (LR) method solves the unit com-
mitment problem by “relaxing” or temporarily ignoring the cou-
pling constraints and solving the problem as if they did not
exist. The LR decomposition procedure, based on the dual op-
timization theory, generates a separable problem by integrating
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some coupling constraints into the objective function, through
“penalty factors,” which are functions of the constraint viola-
tion. The “penalty factors,” referred to as Lagrangian multi-
pliers, are determined iteratively. Instead of solving the primal
problem, one can solve the dual by maximizing the Lagrangian
function with respect to the Lagrangian multipliers, while min-
imizing with respect to the unit commitment control variable.

The LR decomposition procedure is dependent on the ini-
tial estimates of the Lagrangian multipliers and on the method
used to update the multipliers. Another difficulty with LR based
methods is that computational performance is very dependent
on the method by which the Lagrangian multipliers are updated.
Currently most techniques used for estimating the Lagrangian
multipliers rely on a sub-gradient algorithm or heuristics.

The Lagrangian Relaxation and Genetic Algorithms (LRGA)
method incorporates Genetic Algorithms (GA’s) into La-
grangian Relaxation (LR) to update the Lagrangian multipliers
and improve the performance of LR method. The Genetic
Algorithms (GA’s) combine the adaptive nature of the natural
genetics or the evolution procedures of organs with functional
optimizations. By simulating “the survival of the fittest” of Dar-
winiam evolution among chromosome structures, the optimal
chromosome (solution) is searched by randomized information
exchange. The three prime operators associated with the GA’s
are reproduction, crossover and mutation. An explanation of
these genetic operators applied to UC problem is given in
Explanation 4 of Section III. The LRGA method consists of a
two-stage cycle. The first stage is to search for the constrained
minimum of Lagrangian function under constant Lagrangian
multipliers by two-state dynamic programming. The second
stage is to maximize the Lagrangian function with respect to
the Lagrangian multipliers adjusted by Genetic Algorithms.
Fig. 1 shows the basic configuration of the LRGA algorithm.

III. A PPLICATION TOUNIT COMMITMENT PROBLEM

In this section, we first formulate the UC problem, and then
present a detailed LRGA algorithm for solving the UC problem.

The objective of the UC problem is the minimization of the
total production costs over the scheduling horizon. Therefore,
the objective function is expressed as the sum of fuel and
start-up costs of the generating units. Mathematically, the
function is as follows:

(1)

Due to the operational requirements, the minimization of the
objective function is subjected to the following constraints:

(a) power balance constraints

(2)

(b) spinning reserve constraints

(3)

Fig. 1. The basic configuration of the LRGA algorithm.

(c) generation limit constraints

(4)

(d) minimum up-time constraints

for (5)

(e) minimum down-time constraints

for (6)

where the notations used are
:fuel cost function of the-th unit with generation
output, , at the -th hour. Usually, it is a quadratic
polynomial with coefficients and as follows:

: the number of units,
: the number of hours.
: the generation output of the-th unit at the -th
hour,
: the generation matrix with ;

, as elements,
: start-up cost of the-th unit,
: the on/off status of the-th unit at the -th hour,
and when off, when on,
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: the schedule matrix with , ;
, as elements,

: load demand at the-th hour,
: spinning reserve at the-th hour,
: minimum generation limit of-th unit,
maximum generation limit of-th unit,
: minimum up-time of -th unit,

: minimumdown-time of -th unit.
By assigning nonnegative Lagrangian multipliers

, and , to the con-
straints (2) and (3), respectively, we can then form the
corresponding Lagrangian function

(7)

The Lagrangian relaxation procedure solves the UC problem
by “relaxing” or temporarily ignoring the coupling constraints
and solving the problem as if they did not exist. This is done
through the dual optimization procedure which attempts to
reach the constrained optimum by maximizing the Lagrangian
function with respect to the Lagrangian multipliers and

, while minimizing with respect to the control variable
and in UC problem, that is:

where

subject to constraints (4),(5) and (6) Assume thatand are
fixed, we minimize the Lagrangian functionas follows. First
from Eq.(7) we have

The term

can be solved separately for each generating unit, without regard
for what is happening on the other generating units. Then the
minimum of the Lagrangian function is found by solving the
minimum for each generating unit over all time periods; that is

subject to constraints (4),(5) and (6). The minimum of La-
grangian function is easily found by solving
a two-state dynamic programming problem in two variables
for each unit. In order to maximize the Lagrangian function
with respect to the Lagrangian multipliers, the adjustment of
Lagrangian multipliers must be done carefully. Most refer-
ences to adjust Lagrangian multipliers use a combination of
subgradient search and various heuristics to achieve a rapid
solution. In this paper, we use the Genetic Algorithms to adjust
the Lagrangian multipliers and improve the performance of
Lagrangian Relaxation method. A step-by-step LRGA method
for the UC problem is outlined as follows.

The LRGA Algorithm for UC
Step 1: Initialize the parameters such

as the size of population, the mutation
rate, the crossover rate, the max gener-
ation, the duality gap, etc.

Step 2: Initialize a population of chromo-
somes and , (Lagrangian multipliers)

Step 3: While (generation_number
max_generation or the duality gap is
greater than a predetermined threshold)
do decode every chromosome to obtain
normalized and ;

translate normalized and
to actual and ;

Step 4: Solve the constrained minimum
of Lagrangian function for each unit
to obtain and for ;

; using two-state dynamic pro-
gramming;

Step 5: Calculate the dual value using ob-
tained and
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Step 6: Using to solve economic dis-
patch to obtain ; Calculate the
primal value

Step 7: calculate the relative duality gap

Step 8: calculate Fitness function (FIT)

FIT

Step 9: Rank chromosomes according to
their FIT;

Step 10: Select fittest parents for repro-
duction;

Step 11: Apply crossover & mutation to
obtain new chromosomes in order to maxi-
mize Lagrangian function;

Step 12: generation_number: generation_
number
end while

Step 13: print out the final solution;

Some explanations regarding the LRGA method are given in
the following.

Explanation 1: A chromosome in the LRGA method corre-
sponds to an encoded normalized Lagrangian multipliers ma-
trix, shown in Fig. 2

The advantage of using Lagrangian multipliers matrix in-
stead of unit on/off state as the encoded parameter is that the
number of bits of chromosome will be entirely independent of
the number of units. The more encoding bits there are, the higher
the resolution and the slower the convergence. In this paper, we
use 12 bits to represent Lagrangian multipliers. The decoding
of the encoded normalized Lagrangian multipliers can be ex-
pressed as:

Fig. 2. Matrix form of a chromosome.

Translating normalized and to actual La-
grangian multipliers and using

where , , and are the maximum and min-
imum values of Lagrangian multipliers.

For example, assume that an encoded normalized Lagrangian
multiplier is

and

Then the decoding of the encoded normalized Lagrangian mul-
tiplier is calculated as

The actual Lagrangian multiplier is calculated as

Explanation 2: The minimum of Lagrangian function
is easily found by solving as a two-state dy-

namic programming problem in two variables for each unit as
was done for the forward dynamic-programming solution of
the unit commitment problem itself. The scheme of two-state
dynamic programming can be visualized in the figure below,
which shows the only two possible states (i.e. or 1)
and subjects to the minimum up/down time for unit.
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Fig. 3. Uniform crossover operator.

where is the start-up cost for unit. The solution to

for unit

means finding the path with the least cost from the initial time
to the last time and subjecting to 1 constraints

(4),(5) and (6).
Explanation 3: Since LRGA method uses the relative duality

gap as its basis of the converging rule, the fitness function of the
chromosome is expressed as follows:

FIT

where : a scaling coefficient,

the relative duality gap

: the maximum of within the population.
Explanation 4: There are three genetic operators in the

LRGA, namely, reproduction, crossover, and mutation. The
reproduction operator is a prime selection operator that an old
chromosome is copies into a “mating pool” according to the
“roulette wheel parent selection” technique[21],[27]. In this
technique, the chromosome with larger fitness value have a
higher probability to be selected.

The crossover operator recombines the extremely important
features of two chromosome to make the offspring chromosome
not only inherit some important characteristics from their parent
chromosomes but also have the chance to get closer to the op-
timal solution. In the LRGA, we adopt a new crossover tech-
nique known as “uniform crossover” which exchanges bits be-
tween the parent chromosome to create two new offspring chro-
mosomes by a randomly generated mask. The scheme of “uni-
form crossover” is shown in Fig. 3. In the random mask, the “1”
represents bit swapping and “0” denotes bit unchanged.

The mutation operator allows us to create new chromosome
in the population and provides background variation depending

Fig. 4. Mutation operator.

on a mutation probability. The scheme of mutation operator is
shown in Fig. 4.

Explanation 5: The “roulette wheel parent selection” tech-
nique is used to select the “best” parent chromosomes according
to their fitness. It consists of the following steps:

Step 1: Sum the fitness of all chromosomes in the popula-
tion; call it the FITSUM.

Step 2: Generate a random number,, between 0 and
FITSUM.

Step 3: Return the first chromosome whose fitness, added
to the fitness of preceding chromosomes, is greater
than or equal to .

IV. A NALYSIS OF THE LRGA METHOD

The Lagrangian Relaxation (LR) method for solving UC
problems involves two optimization processes; one for solving
the individual subproblems and the other for adjusting the
values of the Lagrangian multipliers. Even though the optimum
solution to the individual unit subproblems can easily be found,
global optimum of overall original problem is not guaranteed as
a consuquence of the non convexity of the primal function. The
dual problem always has a lower dimension than the primal
problem. The difference in value between the primal and dual
function yields the duality gap which provides a measure of
the suboptimality of the solution. Most of the LR research has
therefore concentrated on finding an appropriate technique for
updating the Lagrangian multipliers, while minimizing the
duality gap. Most of the studies update the Lagrangian mul-
tipliers using sub-gradient algorithm. In [29] the Lagrangian
multipliers are updated using a sub-gradient algorithm and
the Dynamic Programming method is used for solving the
individual unit subproblems. The use of sub-gradient algorithm
to update these multipliers can result in infeasible spinning re-
serve solution [13]. Another difficulty with LR based methods
is that computational performance is very dependent on the
method by updating the Lagrangian multipliers.

The Lagrangian Relaxation and Genetic Algorithms (LRGA)
method incorporates Genetic Algorithms (GA’s) into La-
grangian Relaxation (LR) method to update the Lagrangian
multipliers and improve the performance of LR method.
The GA’s combine an artificial survival of the fittest with
genetic operators abstracted from nature to form a surprisingly
robust mechanism that is suitable for a variety of optimization
problems. One of the advantages of GA’s is using stochastic
operators instead of deterministic rules to search a solution. By
simulating “the survival of the fittest” of Darwiniam evolution
among chromosome structures, the optimal chromosome
(solution) is searched by randomized information exchange,
thus allowing it to escape from local optimum in which other
algorithm might land.
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TABLE I
COMPARISON OFSEARCH PERFORMANCEBETWEENLRGA AND LR

The three prime operators associated with the GA’s are repro-
duction, crossover and mutation. Another attractive property of
GA’s is that it searches for many optimum chromosomes in par-
allel. The advantage of using normalized Lagrangian multipliers
instead of units on/off state as the encoded parameter is that the
number of bits of chromosome will be entirely independent of
number of units and only dependent of number of hours.

V. NUMERICAL SIMULATIONS

In this section, two cases are studied to illustrate the effec-
tiveness of the proposed LRGA method in terms of its solution
quality. The first case compares LRGA with Lagrangian
Relaxation (LR) in terms of duality gap. The second case
compares LRGA with LR and Genetic Algorithms (GA’s) in
terms of production cost. The LRGA program is coded in Turbo
C and implemented on a compatible personal computer (PC
486DX2-66). In order to avoid misleading results due to the
stochastic nature of the LRGA, 20 runs were averaged for each
case, with each run starting with random initial populations.

Case 1: 3-unit system by LRGA and LR:In this case, a
simple three-generator, four-hour unit commitment schedule
determined by the proposed LRGA method is compared to-
that determined by the Lagrangian Relaxation(LR)[1]. The
system unit data and the load demands are shown in Appendix
I. The control parameter settings of LRGA are population size
60, probability of crossover 0.8, probability of mutation 0.1
and duality gap 0.02 . The performance of the LRGA compared
with that of LR is given in Table I. The CPU times of LRGA
and LR are about l-second for the case. From this result, it is
shown that the performance by LRGA is better than that of LR
in terms of duality gap and primal cost.

Case 2: Up to 100-Unit Systems by LRGA, LR and GA’s:In
this case, the up to 100-generator, 24-hour unit commitment
schedule determined by the proposed LRGA method is com-
pared to that determined by the Lagrangian Relaxation (LR) and
Genetic Algorithms (GA’s)[28]. The system unit data and the
load demands are shown in Appendix II. The control parameter
settings of LRGA are probability of crossover 0.8, probability
of mutation 0.0333 and duality gap 0.02. The performance of

TABLE II
COMPARISON OFFINAL PRODUCTION COST FOR UP TO100-UNIT SYSTEMS

AMONG LRGA, LR AND GA ’S

the LRGA compared with that of LR and GA’s is given in Table
II. From this result, it is shown that the performance by LRGA
is better than that of LR and GA’s in terms of production cost.
Since the CPU times are not reported in reference [28] and no
knowledge of what kind of computer hardware is used in [28],
CPU times are not comparable. We show CPU times of LRGA
only. It is observed that CPU times of LRGA increase with the
number of units. However with the progress in the hardware of
parallel computing, the speed of LRGA can be greatly improved
by means of parallel processing of GA’s.

VI. CONCLUSION

The paper solves the unit commitment (UC) problem by the
Lagrangian Relaxation and Genetic Algorithms (LRGA) which
incorporated the Genetic Algorithms (GA’s) into the Lagrangian
Relaxation (LR) method to update the Lagrangian multipliers
and improve the performance of LR method. The advantage of
using normalized Lagrangian multipliers instead of units’ on/off
state as the encoded parameters is that the number of bits of
chromosome will be entirely independent of number of units
and only dependent of number of hours. This is particularly at-
tractive in large-scale systems. The numerical tests and results
show that better solution of the unit commitment (UC) problem
can be obtained by the LRGA method than LR and GA’s.

APPENDIX I
UNIT DATA AND LOAD DEMAND FOR CASE 1

UNIT DATA FOR 3-UNIT SYSTEM

LOAD DEMAND FOR 4-HOUR
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APPENDIX II
UNIT DATA AND LOAD DEMANDS FORCASE 2

LOAD DEMAND FOR 24-HOUR

The problem data were scaled appropriately for the problems
with more units. The reserve was assumed to be 10% of the
demand.

DATA FOR THE 10-UNIT SYSTEM
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