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Abstract We show that the maximum number of unit distances or of diameters in
a set of n points in d-dimensional Euclidean space is attained only by specific types
of Lenz constructions, for all d ≥ 4 and n sufficiently large depending on d . As a
corollary, we determine the exact maximum number of unit distances for all even
d ≥ 6 and the exact maximum number of diameters for all d ≥ 4 and all n sufficiently
large depending on d .

Keywords Erdős problem · Combinatorial geometry · Unit distance problem · Lenz
construction · Diameters · Erdős–Simonovits stability theorem · Erdős–Stone
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1 Introduction

1.1 Unit Distances

For a finite subset S of Euclidean d-space R
d , let u(S) denote the number of pairs of

points in S at distance 1. Define

ud(n) = max
{
u(S) : S ⊂ R

d , |S| = n
}
.

Erdős initiated the study of u2(n) in [4] and of ud(n) in the higher-dimensional
case d ≥ 3 in [5]. The cases d = 2 and d = 3 are the most difficult. Erdős [4] obtained
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the superlinear lower bound

u2(n) ≥ n
1+ c

log logn ,

which he conjectured to be tight [9–12]. The best known upper bound is

u2(n) ≤ cn4/3,

due to Spencer, Szemerédi, and Trotter [27]. See Székely [32] for a particularly sim-
ple proof.

For d = 3, the known lower (Erdős [5]) and upper bounds (Clarkson et al. [3]) are
the following:

cn4/3 log logn ≤ u3(n) ≤ cn3/2β(n),

where β(n) is an extremely slowly growing function related to the inverse Ackerman
function.

For d ≥ 4 (the subject of this paper), the situation changes drastically. Lenz, as
reported in [5], observed that if we take p := �d/2� circles in pairwise orthogonal 2-
dimensional subspaces, each with center at the origin and radius 1/

√
2, then any two

points on different circles are at unit distance. Therefore, if n points are chosen by
taking n/p + O(1) points on each circle, p−1

2p
n2 − O(1) unit distances are obtained.

Erdős [5] showed that since Kp+1(3), the complete (p + 1)-partite graph with three
vertices in each class, does not occur as a unit-distance graph in R

d , the Erdős–Stone
theorem [17] gives:

ud(n) = p − 1

2p
n2 + o

(
n2) for all d ≥ 4.

Using an extremal graph theory result of Erdős [6] and Simonovits [26], Erdős [7]
determined the exact value of ud(n) when d ≥ 4 is even and n is a sufficiently large
(depending on d) multiple of 2d = 4p. The n/p points on each circle are then the
vertices of n/(4p) squares. This determines ud(n) asymptotically for all sufficiently
large n up to an O(1) term (still for d even). Brass [1] (together with a number
theoretical result of van Wamelen [33]) determined u4(n) completely. For n ≥ 5,

u4(n) =
{

�n2/4� + n if n is divisible by 8 or 10,

�n2/4� + n − 1 otherwise.

For odd d ≥ 5, Erdős and Pach [14] showed that

ud(n) = p − 1

2p
n2 + Θ

(
n4/3).

For the lower bound, they observed that the Lenz construction can be improved
when d is odd by replacing one of the circles by a 2-sphere of radius 1/

√
2 in a

3-dimensional space orthogonal to the other 2-dimensional subspaces and by plac-
ing the points on the sphere such that the unit distance occurs at least cn4/3 times
(a construction of Erdős, Hickerson, and Pach [13]). For the upper bound, they used
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a stability result in extremal graph theory [2, Chap. 5, Remark 4.5(ii)] together with
the fact that the maximum number of unit distances among n points on a 2-sphere is
O(n4/3) [3].

1.2 Diameters

For a finite subset S of R
d , we call a pair of points in S a diameter if their distance

equals the diameter of S. Let M(S) denote the number of diameters in S. Define

Md(n) = max
{
M(S) : S ⊂ R

d , |S| = n
}
.

Erdős [4] showed that M2(n) = n for n ≥ 3. Vázsonyi conjectured, as reported in [4],
that M3(n) = 2n − 2 for n ≥ 4. This was independently proved by Grünbaum [17],
Heppes [18], and Straszewicz [28]. For a new proof, see [30].

As in the case of unit distances, the situation is completely different when d ≥ 4.
Erdős [5] showed that for d ≥ 4, Md(n) = p−1

2p
n2 + o(n2), the same asymptotics as

ud(n). For other work on this problem by Hadwiger, Lenz, and Yugai, see the survey
of Martini and Soltan [22].

2 New Results

If d ≥ 4 is even, let p = d/2, and consider any orthogonal decomposition R
d =

V1 ⊕· · ·⊕Vp with all Vi 2-dimensional. In each Vi , let Ci be the circle with center at
the origin o and radius ri such that r2

i + r2
j = 1 for all distinct i and j . When d ≥ 6,

this implies that each ri = 1/
√

2. For the purposes of Lemma 8 below, we call the p

circles C1, . . . ,Cp an even-dimensional Lenz system. We define an even-dimensional
Lenz configuration to be any translate of a finite subset of

⋃p

i=1 Ci .
If d ≥ 5 is odd, let p = �d/2�, and consider any orthogonal decomposition R

d =
V1 ⊕ · · · ⊕ Vp with V1 3-dimensional and all other Vi (i = 2, . . . , p) 2-dimensional.
Let Σ1 be the sphere in V1 with center o and radius r1, and for each i = 2, . . . , p, let
Ci be the circle with center o and radius ri such that r2

i + r2
j = 1 for all distinct i, j .

When d ≥ 7, necessarily each ri = 1/
√

2. Again, as needed for Lemma 8, we call
the 2-sphere and p − 1 circles Σ1,C2, . . . ,Cp an odd-dimensional Lenz system. We
define an odd-dimensional Lenz configuration to be any translate of a finite subset of
Σ1 ∪ ⋃p

i=2 Ci . (Later we distinguish between weak and strong Lenz configurations
as a technical notion inside the proofs. The definition here coincides with a strong
Lenz construction in the sequel.)

We call a set S of n points in R
d an extremal set with respect to unit distances

[diameters] if u(S) = ud(n) [M(S) = Md(n)].

Theorem 1 For each d ≥ 4, there exists N(d) such that all extremal sets of n ≥ N(d)

points (with respect to unit distances or diameters) are Lenz configurations.

The proof uses a typical technique in extremal graph and hypergraph theory [16,
20, 23, 26]: First prove a stability result for sets that are close to extremal, thus giving
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approximate structural information, and then use extremality to deduce more exact
structural information.

For even d ≥ 6, it is then possible to determine ud(n) exactly. On the other hand,
for odd d ≥ 5, the main obstacle to determine ud(n) is our lack of knowledge of the
function f (m) which gives the exact maximum number of unit distances between m

points on a 2-sphere of radius 1/
√

2 (for odd d ≥ 7) and the function g(m) which
gives the exact maximum number of unit distances between m points on a 2-sphere
of arbitrary radius [13, 31] (for d = 5).

Let tp(n) denote the number of edges of the Turán p-partite graph on n vertices.
This is the complete p-partite graph with �n/p� or 
n/p� vertices in each class [2,
Chapter VI]. We do not need the exact value of tp(n), only that

tp(n) = p − 1

2p
n2 − O(1).

Corollary 2 Let d ≥ 6 be even. For all sufficiently large n (depending on d),

ud(n) =

⎧
⎪⎨

⎪⎩

tp(n) + n − r if 0 ≤ r ≤ p − 1,

tp(n) + n − p if p ≤ r ≤ 3p − 1,

tp(n) + n − 2d + r if 3p ≤ r ≤ 4p − 1,

where p = d/2, and r is the remainder when dividing n by 4p = 2d .

For all d ≥ 4, it is possible to determine Md(n) exactly if n is large. The most
complicated case is d = 5, where it is necessary to know the maximum number of
diameters in a set of n points on a 2-sphere in R

3. For each n ≥ 6, we construct a
set of n points in R

3 with 2n − 2 diameters, all lying on a sphere (see Lemma 7(e)
below).

Corollary 3 For all sufficiently large n (depending on d),

M4(n) =
{

t2(n) + 
n/2� + 1 if n �≡ 3 (mod 4),

t2(n) + 
n/2� if n ≡ 3 (mod 4);
M5(n) = t2(n) + n;
Md(n) = tp(n) + p for even d ≥ 6, where p = d/2;

Md(n) = tp(n) + 
n/p� + p − 1 for odd d ≥ 7, where p = �d/2�.

We use two stability theorems to prove Theorem 1, one for even dimensions and
one for odd dimensions.

Theorem 4 For all ε > 0 and even d ≥ 4, there exist δ > 0 and N such that any set of

n ≥ N points in R
d with at least (

p−1
2p

− δ)n2 unit distance pairs can be partitioned
into S0, S1, . . . , Sp such that |S0| < εn and for each i = 1, . . . , p,

n

p
− εn < |Si | < n

p
+ εn
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and Si is on a circle Ci such that the circles C1, . . . ,Cp have the same center and
are mutually orthogonal.

Theorem 5 For all ε > 0 and odd d ≥ 5, there exist δ > 0 and N such that any set S

of n ≥ N points in R
d with at least (

p−1
2p

−δ)n2 unit distance pairs can be partitioned
into S0, S1, . . . , Sp such that |S0| < εn and for each i = 1, . . . , p,

n

p
− εn < |Si | < n

p
+ εn,

S1 is on a 2-sphere Σ1, Si is on a circle Ci , i = 2, . . . , p, and Σ1,C2, . . . ,Cp have
the same center and are mutually orthogonal.

Corollary 6 Let d ≥ 4. If a set S of n points in R
d has at least (

p−1
2p

− o(1))n2 unit
distance pairs, then S is a Lenz configuration except for o(n) points.

3 Overview of the Paper

In Sect. 4 we prove some geometrical lemmas.
In Sect. 5 we determine the maximum number of unit distances and diameters

in even-dimensional Lenz configurations, introduce the notions of weak and strong
Lenz configuration in odd dimensions, show that the weak Lenz configurations with
the largest number of unit distances or diameters are strong Lenz configurations, and
determine the maximum number of diameters in strong Lenz configurations. Corol-
laries 2 and 3 then follow, given that extremal sets are Lenz configurations (weak
Lenz configurations when d ≥ 5 is odd).

In Sect. 6 we use the Erdős–Simonovits stability theorem from extremal graph
theory to prove Theorems 4 and 5, from which Corollary 6 is immediate.

Finally, in Sect. 7 we use the stability theorems (Theorems 4 and 5) to show that
sets of points that are extremal with respect to unit distances or diameters are (weak)
Lenz configurations, thereby finishing the proof of Theorem 1.

4 Geometric Preliminaries

We denote the distance between points a and b in R
d by |ab|. The unit distance

graph of a set S of n points in R
d is defined by joining any two points at distance 1.

Let u(S) denote the number of (unordered) unit distance pairs in S. Two points in S

at distance 1 are neighbors. For any point x and finite set S, let u(x,S) denote the
number of points in S that are at distance 1 to x. Similarly, for any finite sets A and
B , let u(A,B) denote the number of (ordered) unit distance pairs (a, b) with a ∈ A

and b ∈ B .
Whenever we work with diameters, we assume that the diameter of S is 1 and then

we use the notation u(S), u(x,S), and u(A,B) as before. In this case we call the unit
distance graph of S the diameter graph of S.
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We continually use the following two basic lemmas in the sequel. The first deals
with unit distances and diameters on circles and 2-spheres, and the second one with
unit distances in dimensions higher than 3.

Lemma 7 Let S be a set of n points in R
3.

(a) If S lies on a circle of radius 1/
√

2, then

u(S) ≤
{

n if n is divisible by 4,

n − 1 otherwise.

Equality is possible for all n by letting S be the union of the vertices of �n/4�
inscribed squares and n − 4�n/4� vertices of an additional square.

(b) If S has diameter 1 and lies on a circle, then

u(S) ≤
{

n if n is odd,

n − 1 if n is even.

Equality is possible for all n ≥ 2, for a circle of suitable radius depending on n.
(c) If S has diameter 1 and lies on a circle of radius > 1/

√
3, then u(S) = 1.

(d) If S lies on a 2-sphere, then u(S) = O(n4/3). When the radius equals 1/
√

2, there
exists a set S with u(S) = Ω(n4/3).

(e) If S has diameter 1 and lies on a 2-sphere, then u(S) ≤ 2n − 2. Equality is
possible for each n ≥ 4, n �= 5, for a 2-sphere of suitable radius depending on n.

(f) If S has diameter 1 and lies on a 2-sphere of radius ≥ 1/
√

2, then u(S) ≤ n.
Equality is possible for all n ≥ 3 and all radii ≥ 1/

√
2.

Proof Statements (a), (b), and (c) are straightforward, except perhaps that u(S) ≤
n − 1 for an even number of concyclic points of diameter 1. This follows essentially
from the easily seen observation that if the diameter graph of points of some concyclic
points contains a cycle, then it consists only of this cycle, together with the well-
known fact that all cycles in diameter graphs in the plane are odd [19, 29].

The upper bound in (d) is due to Clarkson et al. [3]. The simplest known proof of
it is by adapting Székely’s proof [32] for the planar case. The lower bound in (d) is
due to Erdős, Hickerson, and Pach [13].

Statement (f) can be found in Kupitz, Martini, and Wegner [21]. It follows as
in the planar case [25, Theorem 13.13] from the observation that any two diame-
ters, when drawn as short great circular arcs on the 2-sphere, must intersect. Ex-
amples of n points with n diameters are easily found for all radii larger than
1/

√
2; they have essentially the same structure as in the plane; see [21] for de-

tails.
The upper bound of 2n − 2 in (e) is the Grünbaum–Heppes–Straczewicz upper

bound for diameters in R
3 [25, Theorem 13.14]. (For a new proof, see [30].) The

following is a short proof for points on a 2-sphere. For a point x on the sphere, denote
its opposite point by x′. Colour the n given points blue and their opposite points red.
For any diameter xy, join the blue point x and the red point y′ by a short arc of
the great circle passing through them and do the same with x′ and y. This defines a
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Fig. 1 Circle C with points x1
to xn−3

bipartite geometric graph on the sphere, with all the arcs of the same length r , say. It
is easily seen that this graph is planar: if the arcs ab′ and cd ′ intersect, then by the
triangle inequality the arc ad ′ or the arc b′c will be shorter than r . Then either |ad|
or |bc| will be larger than the diameter, a contradiction. This graph has 2n vertices.
By Euler’s formula, a bipartite planar graph on 2n vertices has at most 4n − 4 edges.
Since this is twice the number of diameters, the upper bound follows.

The only statement that remains to be proved is that 2n − 2 diameters can be
attained on a 2-sphere for each n ≥ 4, n �= 5. For even n ≥ 4, the following construc-
tion is described in Neaderhouser and Purdy [24]. Consider the vertex set of a regular
(n − 1)-gon of diameter 1 and choose another point on the axis of symmetry of the
polygon at distance 1 to the n−1 vertices. This gives n points with 2n−2 diameters.

For odd n ≥ 7, a more involved construction is needed. Place n − 3 points
x1, . . . , xn−3 on the circle C of radius r and center o in the xy-plane such that the
diameter 1 occurs between consecutive xi ’s (Fig. 1).

Note that r and n determine everything up to isometry. We fix r later in the proof.
Let xn−2 be the point on the positive z-axis at distance 1 to each point of C. Then
xn−2 and C are on a unique sphere Σ with center o′ and radius s, say. Note that o′ is
on the positive z-axis.

We now want to find points xn−1 and xn on Σ such that

|x1xn−1| = |xn−3xn−1| = |x2xn| = |xn−4xn| = |xn−1xn| = 1

and

|xn−2xn−1| ≤ 1, |xn−2xn| ≤ 1,

as in Fig. 2.
This will give 2n − 2 diameters in the set S := {x1, . . . , xn}. For any value of r ,

there will clearly be unique points xn−1, xn ∈ Σ \ {xn−2} that satisfy

|xn−3xn−1| = |x1xn−1| = |x2xn| = |xn−4xn| = 1.

It remains to find an appropriate value of r so that

|xn−1xn| = 1, |xn−2xn−1| ≤ 1, |xn−2xn| ≤ 1.
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Fig. 2 15 points with 28
diameters on a sphere

Fig. 3 Circle C′

We reduce this to a two-dimensional problem (Fig. 3). Let a and b be the mid-
points of x1xn−3 and x2xn−4, respectively. Consider the intersection of Σ with the
plane oabxn−2. This is a circle C′ with center o′ and radius s. By symmetry, xn−1

and xn lie on C′, and |axn−2| = |axn−1| and |bxn−2| = |bxn|. Therefore, ao′ bisects
�xn−2axn−1, and bo′ bisects �xn−2bxn. Clearly, |oa| > |ob|, and both |oa| and |ob|
are strictly monotone functions of r .

We now consider r to be a variable ranging in the interval (1/2, r0), where

r0 :=
(

2 cos
π

2(n − 4)

)−1

.
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On the one hand, r > 1
2 , and in the limit, as r → 1

2 , the diameters xixi+1 all coincide,
and limr→1/2|oa| = limr→1/2|ob| = 0. It follows that

lim
r→1/2

|xn−2xn−1| = lim
r→1/2

|xn−2xn| = 0,

hence

lim
r→1/2

|xn−1xn| = 0. (1)

On the other hand, r < r0, where in the limit, as r → r0, x1 and xn−3 coincide, and
the points form the vertex set of a regular (n − 4)-gon. Thus

lim
r→r0

|oa| = r0,

lim
r→r0

|ob| → 2r0 sin
π

n − 4
,

and

lim
r→r0

|xn−2a| = 1.

Since 2r0 > 1, limr→r0 xn−1 is a point below the chord 	 of C′ through a and b. (Note
that 	 is a diameter of C.) Also,

lim
r→r0

|x2a| = lim
r→r0

|xn−4a| = 1,

hence limr→r0 xn = a. Since xn−1 is lower than xn (because |oa| > |ob|), xn−1

reaches 	 before xn. Since |xnb| = |xn−2b|, the chord xnb is below o′. Since at this
stage (with xn−1 ∈ 	) the chord bxn−1 is below o′, the chord xn−1xn is also be-
low o′. Thus, before xn−1 reaches 	, there is a stage where xn−1xn passes through
o′ with both xn−1 and xn still above 	, and therefore their distances to xn−2 are at
most 1. From s > r > 1 it follows that |xn−1xn| > 1. By (1), at some earlier stage,
|xn−1xn| < 1. Therefore, at some inbetween stage, |xn−1xn| = 1. This finishes the
construction for odd n ≥ 7. �

We remark that the exception n �= 5 in Lemma 7(f) is genuine. Suppose that there
exist 5 points on a 2-sphere with 8 diameters. Then one of the points must be incident
to 4 diameters. The other 4 points are then concyclic, and among them there can be
at most 3 diameters (Lemma 7(b)), a contradiction.

Lemma 8 Let d ≥ 4, and set p := �d/2�.

(a) Suppose that A1, . . . ,Ap ⊆ R
d are given such that |Ai | ≥ 3 for each i, and

|ab| = 1 for all a ∈ Ai and b ∈ Aj with distinct i and j . Then the Ai are con-
tained in some translate of a Lenz system, i.e., there exists a Lenz system and
v ∈ R

d such that after some relabeling of the indices, Ai − v ⊆ Ci for i ≥ 2, and
A1 − v ⊆ C1 or A1 − v ⊆ Σ1 depending on whether d is even or odd.
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(b) There does not exist p + 1 sets A1, . . . ,Ap+1 ⊆ R
d each containing at least 3

points such that any two points in different sets are at distance 1.
(c) Suppose that the point x ∈ R

d is at distance 1 to at least three points of each of
the circles Ci , i ≥ 2, in some Lenz system. Then x ∈ C1 if d is even, or x ∈ Σ1 if
d is odd.

(d) Let d ≥ 7 be odd. Let C be a circle on Σ1 in some Lenz system with v ∈ V1
perpendicular to C. Suppose that the point x ∈ R

d is at distance 1 to at least
three points of each of the circles C and Ci , i ≥ 3. Then x is on the sphere with
center o and radius 1/

√
2 in the 3-dimensional space spanned by V2 and v.

Proof In this proof we denote the affine hull of a set A by aff(A). Statements (c) and
(d) are easy to prove. Note that if a point is at the same distance to 3 points on a circle,
then its orthogonal projection on the affine hull of the circle is the center of the circle.

Statement (b) was originally observed by Erdős [5]. In fact, both (b) and (a) follow
from the easily seen observation that if A,B ⊆ R

d are such that |A|, |B| ≥ 3 and
|ab| = 1 for all a ∈ A, b ∈ B , then A and B lie on unique spheres in aff(A) and
aff(B), respectively, and these affine spaces are orthogonal. However, aff(A) and
aff(B) need not intersect, so the only difficulty is perhaps to prove the existence of v

in (a).
Consider, for example, the case of odd d in (a). The pairwise orthogonality of

all aff(Ai) implies that p − 1 of them have dimension 2, and one has dimension 3.
Without loss of generality, let dim aff(A1) = 3.

We show that any two aff(Ai) intersect. Suppose that aff(A1)∩ aff(A2) = ∅. Then
dim aff(A1 ∪A2) = 6, and since aff(A1 ∪A2) and aff(Ai), i ≥ 3, are pairwise orthog-
onal, we obtain a contradiction with the dimension. It follows similarly that any other
pair of affine hulls has nonempty intersection.

Thus aff(A1) ∩ aff(A2) = {v}, say. It remains to show that all other aff(Ai) also
contain v. Suppose, for example, that v /∈ aff(A3). Then aff(A1)∩ aff(A3) = {v1} and
aff(A2) ∩ aff(A3) = {v2} with v1, v2 �= v. Furthermore, v1 �= v2, otherwise aff(A1) ∩
aff(A2) would contain more than one point. Thus aff(A1 ∪ A2) ∩ aff(A3) contains a
line. This contradicts the orthogonality of aff(A1 ∪ A2) and aff(A3).

The case where d is even is similar. �

5 Optimized Lenz Configurations

5.1 Even Dimensions d ≥ 6

We have already defined a Lenz configuration in the introduction. For any Lenz con-
figuration S on n points lying on p = d/2 mutually orthogonal circles Ci with center
o and radius 1/

√
2, we define Si := S ∩ Ci and ni := |Si |.

5.1.1 Unit Distances

When d ≥ 6 is even, define

uL
d (n) = max

{
u(S) : S is a Lenz configuration of n points in R

d
}
.
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We call any Lenz configuration S of n points in R
d for which u(S) = uL

d (n) an
optimized Lenz configuration (for unit distances).

Proposition 9 Let d ≥ 6 be even, n ≥ 1, p = d/2, and n ≡ r(mod 2d), 0 ≤ r ≤
2d − 1. Then

uL
d (n) =

⎧
⎪⎨

⎪⎩

tp(n) + n − r if 0 ≤ r ≤ p − 1,

tp(n) + n − p if p ≤ r ≤ 3p − 1,

tp(n) + n − 2d + r if 3p ≤ r ≤ 4p − 1.

Proof Consider an optimized Lenz configuration S on p pairwise orthogonal circles
C1, . . . ,Cp . We may rearrange the points on each circle without changing the number
of unit distances between circles. By Lemma 7(a) and maximality, each u(Si) = ni if
ni ≡ 0(mod 4) and u(Si) = ni − 1 otherwise. The problem is now that of maximizing
the function

u(n1, . . . , np) :=
( ∑

1≤i<j≤p

ninj

)
+ n − p + k(n1, . . . , np)

over all nonnegative n1, . . . , np that sum to n, where k(n1, . . . , np) equals the number
of ni divisible by 4. This easy but tedious exercise finishes the proof. �

5.1.2 Diameters

Still for even d ≥ 6, define

ML
d (n) = max

{
M(S) : S is a Lenz configuration of n points in R

d
}
.

We call any diameter 1 Lenz configuration S of n points in R
d for which M(S) =

u(S) = ML
d (n) an optimized Lenz configuration (for diameters).

Proposition 10 Let d ≥ 6 be even, n ≥ d , and p = d/2. Then

ML
d = tp(n) + p.

Proof Consider an optimized Lenz configuration S of diameter 1 on p pairwise or-
thogonal circles C1, . . . ,Cp . By Lemma 7(c), each u(Si) ≤ 1. Therefore, u(S) ≤
tp(n) + p. Equality is clearly possible if n ≥ d by dividing the n points as equally as
possible between the p circles and ensuring that a diameter occurs within each Si . �

5.2 The Dimension d = 4

For any Lenz configuration S on n points lying on orthogonal circles C1 and C2 with
common center o and radii r1 and r2 such that r2

1 + r2
2 = 1, define Si := S ∩ Ci and

ni := |Si |.
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5.2.1 Unit Distances

This section is included for the sake of completeness. As for even d ≥ 6, define

uL
4 (n) = max

{
u(S) : S is a Lenz configuration of n points in R

4}.

As shown by Brass [1] and van Wamelen [33]:

Proposition 11 Let n ≥ 5. Then

uL
4 (n) =

{
t2(n) + n if n is divisible by 8 or 10,

t2(n) + n − 1 otherwise.

5.2.2 Diameters

As for even d ≥ 6, define

ML
4 (n) = max

{
u(S) : S is a Lenz configuration of n points in R

4}.

We call any diameter 1 Lenz configuration S of n points in R
4 for which M(S) =

u(S) = ML
4 (n) an optimized Lenz configuration (for diameters).

Proposition 12 Let n ≥ 6. Then

ML
4 (n) =

{
t2(n) + 
n/2� + 1 if n �≡ 3 (mod 4),

t2(n) + 
n/2� if n ≡ 3 (mod 4).

Proof Consider an optimized Lenz configuration S of diameter 1 on pairwise or-
thogonal circles C1 and C2. Without loss of generality, r1 ≤ r2. We now apply
Lemma 7(b), (c). If u(S2) > 1, then r2 ≤ 1/

√
3, hence r1 ≥ √

2/3 > r2, a contra-
diction. Therefore, u(S2) ≤ 1. Also, u(S1) ≤ n1, and if n1 is even, u(S1) ≤ n1 − 1. It
follows that

u(S) ≤
{

n1n2 + n1 + 1 if n1 is odd,

n1n2 + n1 if n1 is even.

By considering the four cases of n modulo 4, it is easily checked that the maximum
over all nonnegative ni with n1 + n2 = n is as in the statement of the theorem. For
n ≥ 6, it is also easy to see that there are configurations that attain this maximum. �

5.3 Odd Dimensions d ≥ 7

We introduce the notion of a weak Lenz configuration. Let d ≥ 7 be odd, p = (d −
1)/2, and consider any orthogonal decomposition R

d = V0 ⊕ V1 ⊕ · · · ⊕ Vp with
dimV0 = 1 and dimVi = 2 (i = 1, . . . , p). For each i = 1, . . . , p, let Σi be the sphere
in V0 ⊕ Vi with center o and radius 1/

√
2, and let Ci be the circle Vi ∩ Σi . Let p+

and p− be the two points in V0 at distance 1/
√

2 from o. Thus p+ and p− are the
north and south poles of each Σi when Ci is considered to be its equator.
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A strong Lenz configuration of n points in R
d is a translate of a finite subset

of C1 ∪ · · · ∪ Cp−1 ∪ Σp for some orthogonal decomposition. (This is merely the
odd-dimensional “Lenz configuration” of Sect. 2.) A weak Lenz configuration of n

points in R
d is a translate of a finite subset of a Σ1 ∪ · · · ∪ Σp for some orthogonal

decomposition. Strong Lenz configurations are clearly also weak. If S is a weak Lenz
configuration, we assume without loss of generality that it is a subset of Σ1 ∪· · ·∪Σp

and we define Si := S ∩Σi \ {p+,p−} (i = 1, . . . , p), S0 := S ∩ {p+,p−}, ni := |Si |
(i = 0, . . . , p), n := |S|.
5.3.1 Unit Distances

For odd d ≥ 7, define

uL
d (n) = max

{
u(S) : S is a weak Lenz configuration of n points in R

d
}
.

We call any weak Lenz configuration S of n points in R
d for which u(S) = uL

d (n)

an optimized Lenz configuration (for unit distances). Unlike the even-dimensional
case, we cannot give an expression for uL

d (n) more accurate than the estimate
uL

d (n) = tp(n) + Θ(n4/3) of Erdős and Pach [14]. However, we next show that an
optimized Lenz configuration must be strong for n sufficiently large depending on
d . This implies that uL

d (n) can be determined if the function f (n), which gives the
maximum number of unit distances for n points on a 2-sphere of radius 1/

√
2, is

known.

Lemma 13 For any distinct i and j , no point of Σi \ Ci can be at unit distance to
any point of Σj \ Cj .

Proof Choose x ∈ Σi and y ∈ Σj . Then x = λip
+ + vi and y = λjp

+ + vj for
unique λi, λj ∈ R and vi ∈ Vi , vj ∈ Vj . Then 〈x, y〉 = λiλj /2, hence |xy|2 = ‖x‖2 −
2〈x, y〉 + ‖y‖2 = 1 − λiλj . If x /∈ Ci and y /∈ Cj , then λi, λj �= 0 and |xy| �= 1. �

Proposition 14 For each odd d ≥ 7, there exists N(d) such that all optimized Lenz
configurations for unit distances on n ≥ N(d) points in R

d are strong Lenz configu-
rations.

Proof Let S be an optimized Lenz configuration on n points. Suppose that S is not a
strong Lenz configuration. Thus, without loss of generality, Si \ Ci �= ∅ for i = 1,2.
We aim for a contradiction.

Since u(S1 \ C1) = O(|S1 \ C1|4/3) (Lemma 7(d)) and S1 \ C1 �= ∅, there exists
x ∈ S1 \ C1 with u(x,S1 \ C1) = O(|S1 \ C1|1/3) = O(n1/3). Also, since x �= p±,
u(x,C1) ≤ 2. Therefore, u(x,S1) = O(n1/3). Note that for each i = 2, . . . , p, x is at
distance 1 to all points in Si ∩Ci but, by Lemma 13, to none of Si \Ci . If we replace x

by a new point on C1, we lose at most u(x,S1) unit distances and gain
∑p

i=2|Si \Ci |.
Since u(S) is the maximum over all weak Lenz configurations,

p∑

i=2

|Si \ Ci | ≤ u(x,S1) = O
(
n1/3).
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By instead considering a point x ∈ S2 \ C2 we similarly obtain that

p∑

i=1
i �=2

|Si \ Ci | = O
(
n1/3).

Therefore, |Si \ Ci | = O(n1/3) for each i = 1, . . . , p.
We can now bound u(S) from above. Note that each point of S0 is at unit distance

to each point of Ci , but to none of Σi \ Ci , each point of Σi \ {p+,p−} is at unit
distance to at most two points of Ci , u(Si ∩Ci) ≤ |Si ∩Ci | (Lemma 7(a)), and u(Si \
Ci) = O(|Si \ Ci |4/3) (Lemma 7(d)). This gives:

u(Si) ≤ u(S0 ∪ Si)

= u(S0, Si) + u(Si ∩ Ci) + u(Si ∩ Ci,Si \ Ci) + u(Si \ Ci)

≤ 2|Si ∩ Ci | + |Si ∩ Ci | + 2|Si \ Ci | + O
(|Si \ Ci |4/3)

= O(n) + O
((

n1/3)4/3) = O(n).

Therefore, (grouping S0 and S1 together)

u(S) ≤ tp(n) + u(S0 ∪ S1) +
p∑

i=2

u(Si)

= tp(n) + O(n),

which contradicts u(S) = uL
d (n) = tp(n) + Θ(n4/3) for large n. �

5.3.2 Diameters

For odd d ≥ 7, define

ML
d (n) = max

{
M(S) : S is a weak Lenz configuration of n points in R

d
}
.

We call any diameter 1 weak Lenz configuration S of n points in R
d for which

M(S) = u(S) = ML
d (n) an optimized Lenz configuration (for diameters). We show

that an optimized Lenz configuration must be strong for large n, and furthermore
determine the exact value of ML

d (n).

Proposition 15 For each odd d ≥ 7, there exists N(d) such that all optimized Lenz
configurations for diameters on n ≥ N(d) points in R

d are strong Lenz configura-
tions. Furthermore,

ML
d (n) = tp(n) +

⌈
n

p

⌉
+ p − 1 = tp(n − 1) + n − 1 + p.

Proof Choose a set S of n points equally distributed between the orthogonal circles
C1, . . . ,Cp−1 and 2-sphere Σp such that the diameter of each S ∩ Ci is 1 and also
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S ∩Σp \Cp = {p+} and |S ∩Cp| = 
n/p�−1. Then clearly u(S) = tp(n)+
n/p�+
p − 1. Therefore, ML

d (n) ≥ tp(n) + 
n/p� + p − 1. We need this lower bound in a
moment.

Now let S be any optimized Lenz configuration on n points. Let ki := |Si \ Ci |
(i = 1, . . . , p). We have to show that S is a strong Lenz configuration, i.e., that ki = 0
for all i = 1, . . . , p except at most one.

First consider the case where S0 �= ∅; without loss of generality, S0 = {p+}. Then

u(S) = u
(
S \ {

p+}) +
p∑

i=1

u
(
p+, Si

)

=
∑

1≤i<j≤p

u(Si, Sj ) +
p∑

i=1

u(Si) +
p∑

i=1

u
(
p+, Si

)

=
∑

1≤i<j≤p

u(Si, Sj ) +
p∑

i=1

u
(
Si ∪ {

p+})

=
∑

1≤i<j≤p

|Si ||Sj | −
∑

1≤i<j≤p

kikj +
p∑

i=1

u
(
Si ∪ {

p+})
(Lemma 13)

≤ tp(n − 1) −
∑

1≤i<j≤p

kikj +
p∑

i=1

(ni + 1) (Lemma 7(f))

= tp(n − 1) −
∑

1≤i<j≤p

kikj + n − 1 + p

= tp(n) + 
n/p� + p − 1 −
∑

1≤i<j≤p

kikj .

However, u(S) = ML
d (n) ≥ tp(n)+
n/p�+p−1, hence

∑
1≤i<j≤p kikj = 0, which

implies that ki = 0 for all i except one. This finishes the case S0 �= ∅.
Next consider the case where S0 = ∅. Without loss of generality, S1 \ C1 �= ∅,

otherwise, by Proposition 10, u(S) ≤ tp(n) + p, a contradiction for large n. By
Lemma 7(f), u(S1) ≤ n1. If we remove the points in S1, place p+ into S0 and choose
n1 − 1 new points of diameter 1 on C1 to form another set S′ of diameter 1, we then
lose at most n1 diameters and gain n1 + k1

∑p

i=2 ki . By maximality,
∑p

i=2 ki = 0,
i.e., the original S was already a strong Lenz configuration and u(S) = u(S′). Since
p+ ∈ S′, this case is reduced to the previous one. The theorem is proved. �

5.4 The Dimension d = 5

Consider an orthogonal decomposition R
5 = V0 ⊕ V1 ⊕ V2 such that dimV0 = 1

and dimV1 = dimV2 = 2. Choose r1 ∈ (0,1). Let Σ1 be the 2-sphere in V0 ⊕ V1
with center o and radius r1. Let C2 be the circle in V2 with center o and radius

r2 :=
√

1 − r2
1 . Then any point of Σ1 and any point of C2 are at unit distance. We call
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Fig. 4 Spheres Σi and circles Ci of a weak Lenz configuration in R
5

a translate of a finite subset of Σ1 ∪C2 a strong Lenz configuration (equivalent to the
5-dimensional “Lenz configuration” of Sect. 2).

To define a weak Lenz configuration takes more care than for odd d ≥ 7. Choose
an additional parameter r ∈ [0, r1) and a point o′ ∈ V0 at distance r to o. Let C1 be

the circle with center o′ and radius s1 :=
√

r2
1 − r2 in the plane of V0 ⊕ V1 parallel to

V1 that passes through o′. Let Σ2 be the 2-sphere in V0 ⊕V2 with center o′ and radius

s2 :=
√

r2
2 + r2. Then Ci ⊂ Σi (i = 1,2) (Fig. 4). Note that s2

1 + s2
2 = 1, hence any

point of Σ2 and any point of C1 are at unit distance. Similarly to Lemma 13, no point
of Σ1 \ C1 can be at unit distance to a point of Σ2 \ C2. We call a translate of a finite
subset of Σ1 ∪ Σ2 a weak Lenz configuration. As before, strong Lenz configurations
are clearly weak. Assume without loss of generality that the weak Lenz configuration
S ⊂ Σ1 ∪Σ2. Each Σi has two poles: {p+

1 ,p−
1 } := V0 ∩Σ1 and {p+

2 ,p−
2 } := V0 ∩Σ2.

In general, Σ1 and Σ2 may not have a point in common. If they do, the common
points will be coinciding poles. Define S0 := S ∩ V0, Si := S ∩ Σi \ V0 (i = 1,2),
ni := |Si | (i = 0,1,2), and n := |S|.

5.4.1 Unit Distances

As for odd d ≥ 7, define

uL
5 (n) = max

{
u(S) : S is a weak Lenz configuration of n points in R

5}.

We call any weak Lenz configuration S of n points in R
5 satisfying u(S) = uL

5 (n)

an optimized Lenz configuration (for unit distances). Again the best known estimate
is uL

5 (n) = t2(n) + Θ(n4/3), due to Erdős and Pach [14]. We show that an optimized
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Lenz configuration is strong for sufficiently large n. As before, this implies that uL
5 (n)

can be determined if the function g(n), which gives the maximum number of unit
distances for n points on a 2-sphere of arbitrary radius, is known.

Proposition 16 For all sufficiently large n, all optimized Lenz configurations for unit
distances on n points in R

5 are strong Lenz configurations.

Proof Let S be an optimized Lenz configuration on n points. Suppose that S1 \ C1 �=
∅ and S2 \C2 �= ∅. By Lemma 7(d), there exist points xi ∈ Si \Ci with u(xi, Si \Ci) =
O(n1/3) (i = 1,2). Since xi /∈ S0, u(xi,Ci) ≤ 2. Thus u(xi, Si) = O(n1/3). If we
replace each xi by a new point on Ci , we lose at most O(n1/3) unit distances and
gain |S1 \ C1| + |S2 \ C2|. Since S is extremal, |S1 \ C1| + |S2 \ C2| = O(n1/3). We
bound u(S) from above as in the case of odd d ≥ 7. For each i = 1,2:

u(Si) ≤ u(Si ∪ S0)

= u(S0) + u(S0, Si) + u(Si ∩ Ci) + u(Si ∩ Ci,Si \ Ci) + u(Si \ Ci)

≤ 4 + 4|Si ∩ Ci | + |Si ∩ Ci | + 2|Si \ Ci | + O
(|Si \ Ci |4/3)

= O(n),

hence,

u(S) = u(S1, S2) + u(S0 ∪ S1) + u(S0 ∪ S2) + u(S0) + u(S1) + u(S2)

≤ t2(n) + O(n),

which contradicts u(S) = t2(n) + Θ(n4/3).
Therefore, some Si \ Ci = ∅; without loss of generality, S2 \ C2 = ∅. To show

that S is a strong Lenz configuration, it remains to show that S0 ⊂ Σ1. Suppose then
without loss of generality that p+

2 ∈ S0 and p+
2 /∈ Σ1. Then p±

1 �= p+
2 . Since p+

1 is
at unit distance to each point of C2, and p+

1 and p+
2 are different points in V0, it

follows that p+
2 is not at unit distance to any point in S2. If we replace p+

2 by a
new point on C2, we lose at most one unit distance (possibly between p+

2 and p−
2 )

and gain |S ∩ Σ1 \ C1| unit distances. By extremality, |S ∩ Σ1 \ C1| ≤ 1. Therefore,
except for at most 3 points (in addition, p+

2 ∈ S0 and possibly p−
2 ∈ S0), S is on two

orthogonal circles, and for this essentially 4-dimensional configuration, we obtain
u(S) ≤ t2(n) + O(n) as before, a contradiction.

It follows that S is a strong Lenz configuration. �

5.4.2 Diameters

As for odd d ≥ 7, define

ML
5 (n) = max

{
u(S) : S is a weak Lenz configuration of n points in R

5}.

We call any diameter 1 weak Lenz configuration S of n points in R
5 satisfying

M(S) = u(S) = ML
5 (n) an optimized Lenz configuration (for diameters). Again an



18 Discrete Comput Geom (2009) 41: 1–27

optimized Lenz configuration is strong for large n, and the exact value of ML
5 (n) can

be determined. This is more intricate than for odd d ≥ 7.

Proposition 17 For all sufficiently large n, all optimized Lenz configurations for
diameters on n points in R

5 are strong Lenz configurations. Furthermore, ML
5 (n) =

t2(n) + n.

Proof We first describe two types of strong Lenz configurations on n points with
t2(n) + n diameters.

In the first construction, choose r1 such that there exists a set S1 of n1 points of
diameter 1 on Σ1 with 2n1 − 2 diameters. By Lemma 7(e) this is possible if n1 ≥ 4,
n1 �= 5. Choose any set S2 of n2 = n − n1 points of diameter 1 on C2. (Note that
r1 < 1/

√
2 by Lemma 7(f), which gives r2 > 1/

√
2 > 1/

√
3. Then by Lemma 7(c),

we can have at most one diameter of length 1 on C2.) Let S := S1 ∪ S2. Then

u(S) = u(S1, S2) + u(S1) + u(S2)

= n1n2 + 2n1 − 2 + 1 = n1(n2 + 2) − 1

≤ t2(n + 2) − 1 = t2(n) + n.

Equality is possible by taking n1 = �n/2� + 1 or 
n/2� + 1. Keeping in mind that
n1 ≥ 4, n1 �= 5, we obtain t2(n) + n diameters for all n ≥ 6, n �= 8.

In the second construction, first choose r2 such that there exists a set S2 of n2

points of diameter 1 on C2 with n2 diameters (a regular star polygon). By Lemma 7(b)
this is possible if n2 ≥ 3 is odd. Then r2 ≤ 1/

√
3 by Lemma 7(c), and r1 ≥ √

2/3 >

1/
√

2. By Lemma 7(f) we can then choose a set S1 of n1 = n−n2 points of diameter
1 on Σ1 with n1 diameters if n1 ≥ 3. Let S := S1 ∪ S2. Then

u(S) = u(S1, S2) + u(S1) + u(S2)

= n1n2 + n1 + n2 = (n1 + 1)(n2 + 1) − 1

≤ t2(n + 2) − 1 = t2(n) + n.

Equality is possible by taking n1 = �n/2�, n2 = 
n/2� or n1 = 
n/2�, n2 = �n/2�.
Keeping in mind the requirements that n2 ≥ 3 must be odd and n1 ≥ 3, we obtain
t2(n) + n diameters for all n ≥ 6, n �≡ 0(mod 4). (It is because this second, simpler
construction does not work for all n that we need the construction in Lemma 7(e) of
an odd number n1 of points on a 2-sphere with 2n1 − 2 diameters.)

Summarizing, ML
5 (n) ≥ t2(n) + n for all n ≥ 9. It is easy to see that every strong

Lenz configuration with at least t2(n) + n diameters must be one of the above two
constructions for sufficiently large n. We now turn to weak Lenz configurations.

Let S be an optimized Lenz configuration on n points. We distinguish between
two cases.

First case: S ∩Σ1 ∩Σ2 �= ∅. Any point in S ∩Σ1 ∩Σ2 must be a common pole of
Σ1 and Σ2, say p+

1 = p+
2 . Since this point is at distance 1 to C1 and C2, it follows that

|p+
1 p−

1 |, |p+
2 p−

2 | > 1. Therefore, S ∩Σ1 ∩Σ2 contains only one point p := p+
1 = p+

2
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at distance 1 to both C1 and C2. Let ki := |Si \ Ci | (i = 1,2). Then

t2(n) + n ≤ u(S)

= u(S1, S2) + u
(
S1 ∪ {p}) + u

(
S2 ∪ {p})

= n1n2 − k1k2 + u
(
S1 ∪ {p}) + u

(
S2 ∪ {p}). (2)

If u(Si ∪ {p}) ≤ ni + 1 for both i = 1,2, then by substituting into (2),

t2(n) + n ≤ n1n2 − k1k2 + n1 + 1 + n2 + 1

= (n1 + 1)(n2 + 1) − k1k2 + 1

≤ t2(n + 1) − k1k2 + 1 (note n1 + n2 + 1 = n)

= t2(n) + 
n/2� − k1k2 + 1.

Therefore, �n/2� + k1k2 ≤ 1, a contradiction.
Without loss of generality, we may therefore assume that u(S1 ∪ {p}) > n1 + 1.

By Lemma 7(f), r1 < 1/
√

2, which gives r2 > 1/
√

2 and u(S2 ∪{p}) ≤ n2 + 1 (again
Lemma 7(f)). Also, u(S1 ∪ {p}) ≤ 2(n1 + 1) − 2 = 2n1 (Lemma 7(e)). Substituting
into (2), we have

t2(n) + n ≤ n1n2 − k1k2 + 2n1 + n2 + 1

= (n1 + 1)(n2 + 2) − k1k2 − 1

≤ t2(n + 2) − k1k2 − 1

= t2(n) + n − k1k2.

It follows that k1k2 = 0, S is a strong Lenz configuration, and u(S) = t2(n) + n.
Second case: S ∩ Σ1 ∩ Σ2 = ∅. Then S may still contain poles, but a pole of Σi

in S is not at distance 1 to Ci (otherwise it would also be a pole of the other sphere).
We now define Ti = S ∩ Σi (i = 1,2). Then T1, T2 partition S (and we forget about
the partition S0, S1, S2). Let mi := |Ti | and ki := |Ti \ Ci | (i = 1,2). As in the first
case,

t2(n) + n ≤ u(S)

= u(T1, T2) + u(T1) + u(T2)

= m1m2 − k1k2 + u(T1) + u(T2). (3)

If u(Ti) ≤ mi for both i = 1,2, then by substituting into (3),

t2(n) + n ≤ m1m2 − k1k2 + m1 + m2

= (m1 + 1)(m2 + 1) − k1k2 − 1

≤ t2(n + 2) − k1k2 − 1

= t2(n) + n − k1k2.
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It follows that k1k2 = 0, S is a strong Lenz configuration, and u(S) = t2(n) + n.
Otherwise, without loss of generality, u(T1) > m1. As in the first case,

u(T1) ≤ 2m1 − 2 (4)

and

u(T2) ≤ m2. (5)

Since each point in Ti \Ci is at distance 1 to at most two points of Ti ∩Ci (recall that
in this case a pole is not at distance 1 to any point on Ci ), we also obtain

u(T1) = u(T1 ∩ C1) + u(T1 ∩ C1, T1 \ C1) + u(T1 \ C1)

≤ |T1 ∩ C1| + 2|T1 \ C1| + 2|T1 \ C1| − 2

= m1 + 3k1 − 2 (6)

and, since r2 > 1/
√

2,

u(T2) = u(T2 ∩ C2) + u(T2 ∩ C2, T2 \ C2) + u(T2 \ C2)

≤ 1 + 2|T2 \ C2| + |T2 \ C2|
= 1 + 3k2. (7)

Substituting (5) and (6) into (3), we have

t2(n) + n ≤ m1m2 − k1k2 + m1 + 3k1 − 2 + m2

= (m1 + 1)(m2 + 1) − k1(k2 − 3) − 3

≤ t2(n + 2) − k1(k2 − 3) − 3

= t2(n) + n − k1(k2 − 3) − 2.

Therefore, k1(k2 − 3) + 2 ≤ 0, hence k2 ≤ 2.
Substituting (4) and (7) into (3), we have

t2(n) + n ≤ m1m2 − k1k2 + 2m1 − 2 + 3k2 + 1

= m1(m2 + 2) − (k1 − 3)k2 − 1

≤ t2(n + 2) − (k1 − 3)k2 − 1

= t2(n) + n − (k1 − 3)k2.

Therefore, (k1 −3)k2 ≤ 0. If k2 > 0, then k1 ≤ 3, and substituting (6) and (7) into (3),

t2(n) + n ≤ m1m2 − k1k2 + m1 + 3k1 − 2 + 3k2 + 1

= m1(m2 + 1) + O(1)

≤ t2(n + 1) + O(1)

= t2(n) + 
n/2� + O(1),
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a contradiction. It follows that k2 = 0, hence S is a strong Lenz configuration, and
u(S) = t2(n) + n. �

6 Stability Theorems

We formulate the stability theorem of Erdős [8] and Simonovits [26] (see also [2,
Chap. 5, Theorem 4.2]) in the following convenient way. Let Kr(t) denote the com-
plete r-partite graph with t vertices in each class.

Stability Theorem For any p, t ≥ 2 and any ε > 0, there exist N and δ > 0 such that
if G is any graph with n ≥ N vertices and at least (

p−1
2p

− δ)n2 edges which does not
contain Kp+1(t), then the vertices of G can be partitioned into sets S0, S1, . . . , Sp

such that |S0| < εn,

n

p
− εn < |Si | < n

p
+ εn for each i = 1, . . . , p,

and for each i = 1, . . . , p, each x ∈ Si is nonadjacent to less than εn vertices of
G − Si .

We now use the Stability Theorem to prove Theorems 4 and 5.

Proof of Theorem 4 Without loss of generality, ε < 1/(3p2). By Lemma 8(b),
Kp+1(3) does not occur in the unit distance graph of S. Let S0, S1, . . . , Sp be the
partition coming from the Stability Theorem. Suppose that S1 does not lie on any
circle. Let A1 be a set of 4 nonconcyclic points of S1. For each i = 2, . . . , p, let Ai

consist of 3 points of Si such that any two vertices in distinct Ai ’s are adjacent. This
is possible, since each x ∈ Si is at unit distance to all points in S \ Si except for εn

points, and (4 + 3(p − 2))εn + 3 < n/p − εn if n > 9p2. The unit distance graph of⋃p

i=1 Ai contains a complete p-partite graph with 4 vertices in the one class A1 and
3 vertices in each other class Ai , i = 2, . . . , p. By Lemma 8(a), each Ai is concyclic,
a contradiction.

Therefore, each Si (i = 1, . . . , p) is concyclic. To see that these circles are orthog-
onal, choose 3 points from each Si as above to form a Kp(3). Again by Lemma 8(a)
each class lies on a circle Ci , with C1, . . . ,Cp mutually orthogonal. Since there is a
unique circle through any 3 noncollinear points, Si ⊂ Ci for each i = 1, . . . , p. �

The following is the even-dimensional case of Corollary 6.

Corollary 18 Fix an even d ≥ 4. If a set S of n points in R
d has at least (

p−1
2p

−
o(1))n2 unit distance pairs, then S is a Lenz configuration except for o(n) points.

Proof of Theorem 5 Without loss of generality, ε < 1/(4p2). By Lemma 8(b),
Kp+1(3) does not occur in the unit distance graph of S. Let S0, S1, . . . , Sp be the
partition coming from the Stability Theorem using ε′ = ε/5. Suppose that S1 does
not lie on any 2-sphere. Let A1 be a set of 5 noncospherical points of S1. For each
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i = 2, . . . , p, let Ai consist of 3 points of Si such that any two vertices in distinct
Ai ’s are adjacent. This is possible, since each x ∈ Si is at unit distance to all points in
S \ Si except for ε′n points, and (5 + 3(p − 2))ε′n + 3 < n/p − ε′n if n > 4p. The
unit distance graph of

⋃p

i=1 Ai contains a complete p-partite graph with 5 vertices in
one class and 3 vertices in each other class. By Lemma 8(a), each Ai is on a 2-sphere,
a contradiction.

Therefore, each Si (i = 1, . . . , p) is on a 2-sphere. If each Si lies on a circle, then,
as in the even-dimensional case, it follows that these circles are orthogonal, and the
proof is finished. Without loss of generality S1 is then not concyclic. Let Σ1 denote
the unique 2-sphere on which S1 lies. Let A1 be a set of 4 noncoplanar points of S1.

We now slightly modify the partition of S. There are less than 4ε′n points of⋃p

i=2 Si not at distance 1 to each point of A1. Remove these points from
⋃p

i=2 Si and
add them to S0. Thus we may assume that each point of A1 is joined to all of

⋃p

i=2 Si ,
but then |S0| < 5ε′n = εn for each i = 1, . . . , p, ||Si | − n/p| < εn, and each point of
Si is joined to less than εn points of S \ Si . We show that for this modified partition,
S2, . . . , Sp are on circles C2, . . . ,Cp , with Σ1,C2, . . . ,Cp mutually orthogonal.

Suppose that some Si (i = 2, . . . , p) is not concyclic, without loss of generality
S2. Let A2 be a set of 4 nonconcyclic points from S2, and, as before, for i = 3, . . . , p,
let Ai consist of 3 points from Si such that all vertices in different Ai ’s are adjacent.
By Lemma 8(a), all Ai , i = 2, . . . , p, must lie on circles, a contradiction.

Therefore, each Si (i = 2, . . . , p) is on a circle Ci . As in the proof of Theorem 4, to
see that Σ1,C2, . . . ,Cp are mutually orthogonal, choose 4 noncoplanar points from
S1 and 3 points from the other Si that form a complete p-partite graph, and apply
Lemma 8(a). �

The following is the odd-dimensional case of Corollary 6.

Corollary 19 Fix an odd d ≥ 5. If a set S of n points in R
d has at least (

p−1
2p

−
o(1))n2 unit distance pairs, then S is a strong Lenz configuration except for o(n)

points.

7 Extremal Sets Are (Weak) Lenz Configurations

The following three propositions, completing the proof of the main theorem, now
follow relatively simply from the stability theorems.

Proposition 20 For each even d ≥ 4, there exists N(d) such that all sets of n ≥
N(d) points in R

d extremal with respect to unit distances or diameters are Lenz
configurations.

Proof When considering diameters assume that the diameter is 1. In both cases, an
extremal set S on n points has at least tp(n) = p−1

2p
n2 − O(1) unit distances, so we

may apply Theorem 4 (with ε = 1/(2p2)). Thus, for n sufficiently large depending
on d , there is a partition S0, S1, . . . , Sp of S with |S0| < εn and for i = 1, . . . , p,
||Si | − n/p| < εn and the Si are on orthogonal circles Ci .
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We use the extremality of S to show that S0 ⊂ ⋃p

i=1 Ci . Let x ∈ S0. If u(x,Si) ≥ 3
for all i = 2, . . . , p, then by Lemma 8(c), x ∈ C1. Thus, without loss of generality,
u(x,Si) ≤ 2 for at least two i’s, say i = 1,2. Then

u(x,S) =
p∑

i=0

u(x,Si) ≤ |S0| − 1 + 2 + 2 +
p∑

i=3

|Si |

< εn − 1 + 4 + (p − 2)

(
n

p
+ εn

)
=

(
1 − 2

p
+ ε(p − 1)

)
n + 3.

If we remove x and replace it with a new point x′ ∈ C1, then

u
(
x′, S \ {x}) ≥ u

(

x′,
p⋃

i=2

Si

)

=
p∑

i=2

|Si |

> (p − 1)

(
n

p
− εn

)
=

(
1 − 1

p
− (p − 1)ε

)
n.

In the case of diameters, we have to take care that x′ does not increase the diameter.
This can be done as follows.

Since all points of C1 are already at unit distance to all points of
⋃p

i=2 Ci , it is
sufficient to choose x′ at distance at most 1 to each point of S0. When d ≥ 6, C1
has radius 1/

√
2, hence S1 is contained in a 90◦ arc γ of C1. The set of points on

C1 at distance larger than 1 from some y ∈ S0 is a (perhaps empty) subarc of γ .
Such a subarc does not contain any point of S1 and is therefore between some two
consecutive points of S1. Since |S1| ≥ |S0|+ 1 for n sufficiently large, there exist two
consecutive points of S1, say a and b, with no subarc between them. Therefore, all
points on C1 between a and b are at distance at most 1 to all points of S0, and we
may choose x′ to be any point on C1 between a and b. When d = 4, one of the two
circles C1 and C2 has radius at least 1/

√
2, and the above argument also works for

this circle.
Since S is extremal, such a modification cannot increase the number of unit dis-

tances. Thus, u(S) ≥ u(S ∪ {x′} \ {x}), hence u(x,S) ≥ u(x′, S \ {x}), i.e.,
(

1 − 2

p
+ ε(p − 1)

)
n + 3 >

(
1 − 1

p
− ε(p − 1)

)
n,

which is a contradiction if ε = 1/(2p2) and n ≥ 3p2.
We have shown that S0 ⊂ ⋃p

i=1 Ci for large n, which implies that S is a Lenz
configuration. �

Proposition 21 For each odd d ≥ 7, there exists N(d) such that all sets of n ≥
N(d) points in R

d extremal with respect to unit distances or diameters are weak
Lenz configurations.

Proof Again in the case of diameters, assume that the diameter is 1. Again we apply
Theorem 5 (with ε = 1/(4p2)). Thus, for n sufficiently large depending on d , there is
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a partition S0, S1, . . . , Sp of S with |S0| < εn and for i = 1, . . . , p, ||Si |−n/p| < εn,
S1 is on a sphere Σ1, each Si (i = 2, . . . , p) is on a circle Ci , and Σ1,C2, . . . ,Cp are
mutually orthogonal and all have radius 1/

√
2.

To show that S is a weak Lenz configuration, it is sufficient to show that each
point of S0 not on Σ1 lies on the 2-sphere of radius 1/

√
2 containing some Ci (i =

2, . . . , p) in the subspace generated by Ci and some fixed diameter of Σ1.
As in the proof of Proposition 20, there exists a point x′ ∈ C2 that does not increase

the diameter. Since S is extremal, for any x ∈ S,

u(x,S) ≥ u
(
x′, S \ {x}) ≥

p∑

i=1
i �=2

|Si |

> (p − 1)

(
n

p
− εn

)
=

(
1 − 1

p
− (p − 1)ε

)
n. (8)

For i = 2, . . . , p, define

Ti := {
x ∈ S0 : u(x,Si) ≤ 2

}
.

For any point x ∈ Σ1, u(x,Si) = |Si | > n
p

− εn ≥ 3 for n > 4p, and therefore
⋃p

i=2 Ti ⊆ S0 \ Σ1. Conversely, if x ∈ S0 and u(x,Si) ≥ 3 for each i = 2, . . . , p,
then x ∈ Σ1 (Lemma 8(c)). It follows that

⋃p

i=2 Ti = S0 \ Σ1. We next show that
T2, . . . , Tp partition S0 \ Σ1. If not, there exists x ∈ S0 \ Σ1 with u(x,Si) ≤ 2 and
u(x,Sj ) ≤ 2 for distinct i, j ∈ {2, . . . , p}. Then

u(x,S) = u(x,S0) + u(x,S1) +
p∑

i=2

u(x,Si)

< εn +
(

n

p
+ εn

)
+ 2 + 2 + (p − 3)

(
n

p
+ εn

)

=
(

1 − 2

p
+ (p − 1)ε

)
n + 4,

which contradicts the lower bound (8) when n > 8p.
Note that the neighbors in S1 of an x ∈ S0 \ Σ1 all lie on a circle Cx , say, on Σ1.

We now show that Cx is the same circle for all x ∈ S0 \ Σ1. First we bound u(x,S1)

from below:

u(x,S) = u(x,S0) + u(x,S1) +
p∑

i=2

u(x,Si)

< εn + u(x,S1) + 2 + (p − 2)

(
n

p
+ εn

)

= u(x,S1) +
(

1 − 2

p
+ (p − 1)ε

)
n + 2,



Discrete Comput Geom (2009) 41: 1–27 25

which, together with estimate (8), gives

u(x,S1) >

(
1

p
− 2(p − 1)ε

)
n − 2. (9)

If Cy �= Cx for some y ∈ S0 \ Σ1, then

|S1| ≥ u(x,S1) + u(y,S1) − 2 > 2

(
1

p
− 2(p − 1)ε

)
n − 6.

This contradicts |S1| < n
p

+ εn when n > 8p2.
Therefore, the neighbors in S1 of any x ∈ S0 \ Σ1 are on the same circle Cx =: C.

For each i = 2, . . . , p, let Σi be the sphere of radius 1/
√

2 which has Ci as great
circle in the 3-space containing Ci and the diameter of Σ1 perpendicular to C. Since
T2, . . . , Tp form a partition of S0 \ Σ1, each point of Ti is at distance 1 to at least 3
points of each Cj , j �= i. By (9), each point of S0 \ Σ1 also has at least 3 neighbors
on C if n ≥ 10p. By Lemma 8(d) it follows that Ti ⊂ Σi . Since also Si ⊂ Σi , we
obtain that S is a weak Lenz configuration for large n. �

Proposition 22 For all sufficiently large n, all sets of n points in R
5 extremal with

respect to unit distances or diameters are weak Lenz configurations.

Proof An extremal set S of n points has at least n2/4 unit distances, so by Theo-
rem 5 with ε = 1/11 we obtain that for sufficiently large n, S can be partitioned
into S0, S1, S2 such that |S0| < εn, ||Si | − n/2| < εn (i = 1,2), S1 is on a sphere
Σ1 of radius r1, S2 is on a circle C2 of radius r2, with Σ1 and C2 orthogonal, and
r2

1 + r2
2 = 1.

As in the proof for odd d ≥ 7, if r2 ≥ 1/
√

2, we can find a point x′ ∈ C2 that does
not increase the diameter. Otherwise, r1 ≥ 1/

√
2, and we consider the intersection of

Σ1 and all balls in the 3-space of Σ1 of radius 1 centered at points in S ∩ Σ1. This
gives a spherically convex set on Σ1 containing S ∩ Σ1. Any new point x′ in this set
is at distance at most 1 to all points of S. As before, replacing any point x ∈ S by
x′ gives u(x,S) > ( 1

2 − ε)n. Note that if u(x,S2) ≥ 3 for some x ∈ S0, then x ∈ Σ1.
Therefore, u(x,S2) ≤ 2 for all x ∈ S0 \ Σ1. Next we bound u(x,S1) from below for
all x ∈ S0 \ Σ1:

(
1

2
− ε

)
n < u(x,S) = u(x,S0) + u(x,S1) + u(x,S2)

< εn + u(x,S1) + 2,

hence

u(x,S1) >

(
1

2
− 2ε

)
n − 2.

The neighbors in S1 of an x ∈ S0 \ Σ1 lie on a circle C1, say, of Σ1. If the neighbors
of some other y ∈ S0 \ Σ1 lie on another circle of Σ1, then
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n

2
+ εn > |S1| > u(x,S1) + u(y,S1) − 2

> (1 − 4ε)n − 6.

Therefore, 5εn > n/2 − 6, a contradiction for n sufficiently large. It follows that
all neighbors in S1 of any y ∈ S0 \ Σ1 are on C1. Let the radius of C1 be s1. By
Lemma 8(c), each x ∈ S0 \ Σ1 lies on the complementary sphere Σ2 of radius s2,
where s2

1 + s2
2 = 1, and C2 ⊂ Σ2. We have shown that S is a weak Lenz configuration

for large n. �
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4. Erdős, P.: On sets of distances of n points. Am. Math. Mon. 53, 248–250 (1946)
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