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Abstract

The objective of the paper is to investigate and compare the performance of some of the unit root tests

in micro-panels which have been suggested in the literature. The framework is an autoregressive panel

data model allowing for heterogeneity in the intercept but not in the autoregressive parameter. The

tests being considered can be used to distinguish between the null hypothesis of each time-series process

being a random walk and the alternative hypothesis of each time-series process being stationary with

individual-specific levels but the same autoregressive parameter. In addition, the tests are all based

on usual t-statistics corresponding to least squares estimators of the autoregressive parameter resulting

from different transformations of the model. The performance of the tests is investigated by deriving

the local power of the tests when the autoregressive parameter is local-to-unity. The results show that

the assumption concerning the initial values is important in this matter. The outcome of a simulation

experiment demonstrates that the local power of the tests provides a good approximation to their actual

power in finite samples.
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1 Introduction

In this paper we investigate unit root inference in panel data models where the cross-section dimension

is much larger than the time-series dimension. So we consider traditional micro-panels. At present there

is a large econometric literature dealing with unit root testing in panel data models which has developed

during the last ten years. Contrary to the previous literature on dynamic panel data models, a large

part of this new literature considers macro-panels where the cross-section and time-series dimensions are

similar in magnitude. Banerjee (1999) and Baltagi & Kao (2000) review many of the contributions to

the literature on unit root testing in panel data models. Reviews of the literature on dynamic micro-

panels are provided in Hsiao (1986), Baltagi (1995) and recently Arellano (2003) of which only the latter

discusses the issue of unit roots.

The analysis in this paper is done within the framework of a first-order autoregressive panel data

model allowing for individual-specific levels. This means that we are testing the null hypothesis of each

time-series process being a random walk without drift against the alternative hypothesis of each time-

series process being stationary with individual-specific levels but the same autoregressive parameter for

all cross-section units. This means that the model does not allow for individual-specific linear time trends.

In the autoregressive panel data model there are two sources of persistency. One is the autoregressive

mechanism which is the same for all cross-section units and the other is the unobserved individual-specific

term. The unit root hypothesis can then be considered as an extreme case where all persistency is caused

by the autoregressive mechanism. The hypothesis is of interest since many economic variables at the

individual level, such as income of individuals and firm level variables, are found to be persistent over

time. For a discussion of this issue see Section 5 in Arellano (2003).

The main contribution of the paper is to provide analytical results about the performance of some of

the unit root tests which have been suggested in the literature. More specifically, to provide analytical

results about the asymptotic power of these tests when the value of the autoregressive parameter is close

to unity. This is done by deriving the limiting distributions of the corresponding test statistics under

local alternatives when the autoregressive parameter is local-to-unity. The results are used to compare

the performance of different tests in terms of their local power. In addition they reveal how the local

power of the tests is affected by the nuisance parameters of the data generating process (DGP). Until

now the power properties of unit root tests in micro-panels have only been investigated and compared

in simulation studies, see for example Bond, Nauges & Windmeijer (2002) and Hall & Mairesse (2002).

However, the outcome of these might depend on the particular choice of nuisance parameters in the

simulation setup in a non-transparent way. Therefore, it seems to be a useful contribution within this

research area. The paper by Breitung (2000) is related to this paper as it investigates the local power of

some of the unit root tests in macro-panels.

We consider three different unit root tests. The corresponding test statistics are all t-statistics based

on least squares (LS) estimators of the autoregressive parameter which result from different transfor-

mations of the autoregressive panel data model. The transformations are the following: (i) the original
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model, (ii) the model with variables expressed in terms of deviations from the initial values, and (iii) the

model with variables expressed in terms of deviations from individual-specific time-series means. The

unit root test corresponding to (i) is suggested by Bond, Nauges & Windmeijer (2002) and is based

on the OLS estimator of the autoregressive parameter. The reason for choosing this statistic is that

the OLS estimator in spite of being inconsistent under the alternative hypothesis is consistent under

the null hypothesis of a unit root. Under the alternative hypothesis the inconsistency is caused by the

individual-specific terms. The unit root tests corresponding to (ii) and (iii) are suggested by Breitung &

Meyer (1994) and Harris & Tzavalis (1999), respectively. Contrary to the OLS estimator, the LS esti-

mators corresponding to (ii) and (iii) are invariant with respect to the individual-specific levels. Clearly,

this leads to tests which are invariant with respect to individual-specific levels even in finite samples. It

means that under the null hypothesis they are invariant with respect to the initial values and under the

mean stationary alternative they are invariant with respect to the unobserved individual-specific terms.

In particular, the LS estimators corresponding to (ii) and (iii) do not have an asymptotic bias caused by

the individual-specific terms. Instead they suffer from different types of biases. Also by performing these

transformations of the variables there might be a loss of precision in the corresponding LS estimators.

The LS estimator of the autoregressive parameter corresponding to (ii) is consistent under the null

hypothesis and inconsistent under the covariance stationary alternative. It is well-known that the within-

group estimator of the autoregressive parameter corresponding to (iii) is inconsistent under the covariance

stationary alternative and suffers from the so-called Nickell-bias, see Nickell (1981). Under the null

hypothesis Harris & Tzavalis (1999) show that this is also the case but that the asymptotic bias does not

depend on any nuisance parameters but instead is a function of the time-series dimension of the panel.

Therefore they suggest to use the bias adjusted within-group estimator. In addition, they show that the

limiting variance of the bias adjusted within-group estimator only depends on the time-series dimension

of the panel. So instead of the t-statistic they consider a normalized coefficient statistic. However, the

expression for the limiting variance is only valid when strong assumptions are imposed on the errors. As

the usual t-statistic does not rely on such strong assumptions, we suggest to use this statistic.

From the description above, it is not straightforward to determine which test is best in terms of having

the highest power. The results in this paper show that the asymptotic power of the tests under local

alternatives differs depending on the assumption being made about the initial values, i.e. whether these

are such that the time-series processes become mean stationary or covariance stationary. Altogether,

the results show that the local power of the Breitung-Meyer test is always higher than the local power

of the Harris-Tzavalis test. Furthermore, in some situations the local power of the OLS test is higher

than the local power of the Breitung-Meyer test. This is most likely to be the case when the time-series

processes are covariance stationary.

The paper is organized as follows. In Section 2, the basic model is specified. In Section 3, we

investigate and compare the three different unit root tests described above. This is done by deriving

the limiting distributions of the corresponding test statistics under local alternatives. In Section 4, the

2



analytical results are illustrated in a simulation study. In Section 5, we provide some concluding remarks.

2 The model and assumptions

We consider the first-order autoregressive panel data model with individual-specific intercepts defined

by

yit = ρyit−1 + (1− ρ)αi + εit for i = 1, ...,N and t = 1, ..., T (1)

where −1 < ρ ≤ 1 and for every i = 1, ..., N the sequence {εit}∞t=1 is white noise. For notational
convenience we assume that the initial values yi0 are observed such that the actual number of observations

over time equals T + 1. The model provides a framework for testing the null hypothesis of each time-

series process being a random walk against the alternative hypothesis of each time-series process being

stationary with an individual-specific level. To specify the model further the assumptions below are

imposed.

Assumption 1 εit is independent across i, t with E (εit) = 0, E
¡
ε2it
¢
= σ2iε and E

¡
ε4it
¢
= E

¡
ε4is
¢
for

all t, s = 1, ..., T . In addition εit is independent of αi and yi0.

Assumption 2 αi is iid across i with E (αi) = 0, E
¡
α2i
¢
= σ2α and E

¡
α4i
¢
<∞.

Assumption 3 For −1 < ρ ≤ 1 the initial values satisfy yi0 = 1{|ρ|<1}αi +
p
τ (ρ)εi0 where εi0 is

independent of αi and independent across i with E (εi0) = 0 and E
¡
ε2i0
¢
= σ2iε. The scaling function

τ (ρ) can be on the following forms: (i) τ (ρ) = τ for 0 ≤ τ <∞ when −1 < ρ ≤ 1, (ii) τ (ρ) = 1/ ¡1− ρ2
¢

when −1 < ρ < 1.

Assumption 4 The following hold:

(i) E |εit|4+δ < K <∞ for some δ > 0 and all i = 1, ..., N, t = 0, 1, ..., T

(ii) 1
N

PN
i=1 σ

2
iε → σ2ε > 0 as N →∞

(iii) 1
N

PN
i=1 σ

4
iε → σ4ε as N →∞

(iv) 1
N

PN
i=1E

¡
ε4it
¢→m4 as N →∞

Assumption 1 states that the errors εit are independent over cross-section units and time and allowed

to be heteroskedastic over cross-section units but not over time. Further, they are independent of the

individual-specific term αi and the initial value yi0. The assumption about independency over time is

stronger than the usual assumption about εit being serially uncorrelated. It is a simplifying assumption

made in order to derive the asymptotic properties of the test statistics in Section 3. Assumption 2

concerning αi is standard in dynamic panel data models. Assumption 3 specifies the initial values. When

ρ = 1 the assumption states that the initial values have finite variance. When |ρ| < 1 the assumption

implies that initial values are such that the time-series processes for yit become mean stationary and

we consider two different assumptions about the dispersion of the initial deviation from the stationary
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level. In (i) where τ (ρ) = τ the dispersion does not depend on the autoregressive parameter whereas

in (ii) where τ (ρ) = 1/
¡
1− ρ2

¢
it does. In the latter case the time-series processes become covariance

stationary. The distinction appears to be very important for the results in Section 3. Note that εit is

independent of εi0 by Assumption 1. Finally, Assumption 4 is a technical assumption which enables us to

derive the asymptotic properties of the statistics of interest by applying standard asymptotic theory. The

assumption states that the innovations εit have uniformly bounded moments of order slightly greater than

four and that the cross-section average of their variances, squared variances and fourth order moments

have well-defined limits as the cross-section dimension N tends to infinity. Note that when the errors

εit are homoskedastic across units then σ4ε = σ22ε. Assumption 4 (iv) is only required in relation to the

test statistic suggested by Harris & Tzavalis (1999), as this is the only statistic of the ones considered

in this paper which depends on fourth order moments.

3 The test statistics and their asymptotic properties

We consider the testing problem where the null hypothesis and the alternative hypothesis are given by

H0 : ρ = 1 HA : |ρ| < 1 (2)

In the following we consider local alternatives where ρ is modelled as being local-to-unity. More specifi-

cally, we consider local-to-unity sequences for ρ defined by

ρ = 1− c

Nk
for k, c > 0 (3)

This means that as the sample size N increases, the value of the parameter ρ is in a N−k neighborhood

of unity. So instead of deriving asymptotic representations based on ρ being constant as N increases we

derive asymptotic representations based on c = (1− ρ)Nk being constant as N increases. The idea is

that these representations will provide good approximations to the actual distributions of the relevant

statistics. With one exception the LS estimators of ρ considered in this paper converge weakly to normal

distributions at the rate
√
N and therefore we consider local-to-unity sequences for ρ with k = 1

2 . In

one situation, the LS estimator must be normalized differently in order to converge weakly to a non-

degenerate distribution under the local alternative and the local-to-unity sequence is defined accordingly.

Note that c = 0 corresponds to the null hypothesis of ρ being unity.

It appears that the limiting distributions of the different statistics under the local alternative defined

by (3) depend on the assumption being made about the dispersion of the initial deviation from the

stationary level. According to Assumption 3, we consider the following two situations

(i) and − 1 < ρ ≤ 1 : τ (ρ) = τ <∞ (4)

(ii) and − 1 < ρ < 1 : τ (ρ) =
1

1− ρ2
(5)
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Under the local-to-unity sequence for ρ given by ρ = 1− c/Nk this corresponds to

(i) and c ≥ 0 : τ (ρ) = τ = O (1) (6)

(ii) and c > 0 : τ (ρ) =
Nk

2c
+ o(N−k) (7)

where (7) holds according to Lemma 1 in Appendix A.1. When the initial values are such that the time-

series processes become mean stationary but not covariance stationary as given by (6), the variability of

the variable yit is bounded as N tends to infinity. On the other hand, when the initial values are such

that the time-series processes become covariance stationary as given by (7), the variance of the initial

deviation from the stationary level is of order Nk and hence this term dominates the behavior of the

variable yit as N tends to infinity. Under the null hypothesis, the variance of the initial value and by

that the variance of yit is bounded as N tends to infinity. Hence, the asymptotic behavior of yit is similar

under the mean stationary local alternative and under the null hypothesis of ρ being unity but different

under the covariance stationary local alternative.

3.1 OLS

The equation in (1) can be rewritten as the following regression model

yit = ρyit−1 + uit

uit = (1− ρ)αi + εit
for i = 1, ...,N and t = 1, ..., T (8)

The OLS estimator of the autoregressive parameter ρ is defined by

ρ̂OLS =

Ã
NX
i=1

y0i,−1yi,−1

!−1Ã NX
i=1

y0i,−1yi

!
(9)

where yi = (yi1, ..., yiT )
0 and yi,−1 = (yi0, ..., yiT−1)

0. The estimator is consistent when ρ = 1 whereas

inconsistent when |ρ| < 1. In the latter case, the inconsistency is attributable to the term αi which

appears in both the regressor yit−1 and the regression error uit. As αi appears with the factor (1− ρ) in

uit the covariance between the regressor and the regression error is positive and decreases towards zero as

ρ approaches unity. Now the regressor yit−1 can be expressed as the sum of the two independent terms αi

and (yit−1 − αi) which are the stationary level and the deviation from the stationary level, respectively.

If the variability of the two terms are of similar order as ρ approaches unity, the asymptotic bias of ρ̂OLS

is positive and decreases towards zero as ρ approaches unity. This describes the situation where the initial

values are such that the time-series processes become mean stationary but not covariance stationary. On

the other hand, if the behavior of yit−1 is dominated by the term (yit−1 − αi) as ρ approaches unity, the

asymptotic bias of ρ̂OLS will be zero when ρ approaches unity. This describes the situation where the

initial values are such that the time-series processes become covariance stationary.

The discussion above is formalized by the results given in Proposition 1 below. The proposition

provides the limiting distribution of the OLS estimator ρ̂OLS under both the null hypothesis when ρ is

unity and local alternatives when ρ is local-to-unity. We consider different local alternatives depending

on the assumption being made about the initial values as given by (i) and (ii) in Assumption 3.
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Proposition 1 Under Assumption 1, 2, 3 (i), 4 and the local-to-unity sequence for ρ given by ρ =

1− c/
√
N for c ≥ 0, the limiting distribution of the OLS estimator ρ̂OLS is given by

√
N (ρ̂OLS − ρ)

w→ N

Ã
c

σ2α
σ2α +

¡
τ + T−1

2

¢
σ2ε

,
1

T

1{c>0}σ2ασ2ε +
¡
τ + T−1

2

¢
σ4ε¡

1{c>0}σ2α +
¡
τ + T−1

2

¢
σ2ε
¢2
!

as N →∞ (10)

Under Assumption 1, 2, 3 (ii), 4 and the local-to-unity sequence for ρ given by ρ = 1 − c̃/N for c̃ > 0,

the limiting distribution of the OLS estimator ρ̂OLS is given by

N (ρ̂OLS − ρ)
w→ N

µ
0, c̃

σ4ε
σ22ε

2

T

¶
as N →∞ (11)

The proof of Proposition 1 is given in Appendix A.2. The proposition shows that in the unit root

case when c = 0, the estimator ρ̂OLS is
√
N -consistent and its limiting variance is decreasing in τ , T

and σ22ε/σ4ε. As indicated above, it turns out that the asymptotic behavior under local alternatives is

very different depending on the assumption concerning the initial values. When the initial values are

such that the time-series processes become mean stationary, the estimator ρ̂OLS has an asymptotic bias

of order 1/
√
N under the local alternative. The bias is always positive and increasing in σ2α/σ2ε and

c (i.e. for a fixed N it is decreasing in ρ at the rate 1/
√
N) and decreasing in τ and T . The limiting

variance of ρ̂OLS is decreasing in τ , T and σ22ε/σ4ε and increasing in σ2α/σ2ε. On the other hand, when

the initial values are such that the time-series processes become covariance stationary, the estimator

ρ̂OLS is N -consistent under the local alternative. This means that ρ̂OLS estimates the parameter ρ very

precisely when its true value is close to unity. Further, the limiting variance of ρ̂OLS is increasing in c̃

(i.e. for a fixed N it is decreasing in ρ at the rate 1/N) and decreasing in T and σ22ε/σ4ε. This rather

surprising result is explained as follows. When ρ is local-to-unity, the behavior of yit for t = 0, ..., T is

dominated by the initial deviation from the stationary level (yi0 − αi). More specifically, the variance

of (yi0 − αi) is of order N under the local-to-unity sequence for ρ given by 1 − c̃/N for c̃ > 0, see the

result in (7), whereas the variance of the remaining terms in yit is bounded as N tends to infinity. This

implies that the numerator in (9) must be normalized by N in order to converge in distribution and

the denominator in (9) must be normalized by N2 in order to converge in probability. The consistency

is a result of the term (yi0 − αi), which dominates the behavior of the regressor, being independent

of the term αi. This indicates that the asymptotic representation in (11) is only appropriate when the

variances of αi and εit are much smaller than the variance of (yi0 − αi). Once the variances are of similar

magnitude, the asymptotic representation in (10) is expected to provide a better approximation to the

actual distribution of ρ̂OLS.

The unit root test based on the usual t-statistic is obtained by normalizing (ρ̂OLS − 1) appropriately.
For this purpose we need a consistent estimator of the limiting variance of ρ̂OLS and we use White’s

heteroskedastic consistent estimator, see White (1980). Under the covariance stationary local alternative

this estimator must be normalized differently in order to be consistent. Letting k = 1
2 and k = 1 refer

to the situations where ρ̂OLS converges in distribution at the rate
√
N and N respectively, White’s
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heteroskedastic consistent estimator of the limiting variance of ρ̂OLS is given by the following expression

V̂OLS(k) =

Ã
1

N2k

NX
i=1

y0i,−1yi,−1

!−1
1

N2k

NX
i=1

y0i,−1ûiû
0
iyi,−1

Ã
1

N2k

NX
i=1

y0i,−1yi,−1

!−1
(12)

where the vector of residuals is ûi = yi − ρ̂OLSyi,−1. The t-statistic is then defined as

tOLS = V̂OLS (k)
− 1
2 Nk (ρ̂OLS − 1) (13)

The proposition below provides the limiting distribution of the t-statistic.

Proposition 2 Under Assumption 1, 2, 3 (i), 4 and the local-to-unity sequence for ρ given by ρ =

1− c/
√
N for c ≥ 0, the limiting distribution of the OLS t-statistic tOLS is given by

tOLS
w→ N

−cµτ + T − 1
2

¶sµ
σ2α
σ2ε

+

µ
τ +

T − 1
2

¶
σ4ε
σ22ε

¶−1
T , 1

 as N →∞ (14)

Under Assumption 1, 2, 3 (ii), 4 and the local-to-unity sequence for ρ given by ρ = 1 − c̃/N for c̃ > 0,

the limiting distribution of the OLS t-statistic tOLS is given by

tOLS
w→ N

−sc̃
σ22ε
σ4ε

T

2
, 1

 as N →∞ (15)

The proof of Proposition 2 is given in Appendix A.2. The proposition shows that under the null

hypothesis of a unit root, the t-statistic tOLS is asymptotically standard normal. So unit root inference

is carried out by employing critical values from the standard normal distribution. Furthermore, the

proposition shows that under the mean stationary alternative, the local power is increasing in τ , T and

σ22ε/σ4ε (the location parameter is shifted to the left when these parameters increase) and decreasing

in σ2α/σ2ε (the location parameter is shifted to the right when σ2α/σ2ε increases). Under the covariance

stationary alternative, the local power only depends on T and σ22ε/σ4ε and is increasing in both. As

discussed above, the limiting distribution in (15) will only provide a good approximation to the actual

distribution of the t-statistic when the behavior of yit is dominated by the initial deviation from the

stationary level.

Altogether, the advantage of using the OLS unit root test is that it is expected to have high power

under the covariance stationary alternative even for values of ρ very close to unity. However, if the

assumption about the time-series processes being covariance stationary is not valid, the power of the test

for values of ρ close to unity is expected to be low when σ2α/σ2ε is high. This will be most pronounced

for small values of T .

3.2 Breitung-Meyer

Subtracting the initial value yi0 from both sides of the equation in (1) yields the following regression

model
yit − yi0 = ρ (yit−1 − yi0) + vit

vit = (ρ− 1) (yi0 − αi) + εit
for i = 1, ..., N and t = 1, ..., T (16)
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The LS estimator of ρ obtained from this regression equation is defined by

ρ̂0 =

Ã
NX
i=1

ỹ0i,−1ỹi,−1

!−1Ã NX
i=1

ỹ0i,−1ỹi

!
(17)

where ỹi = yi − yi0ιT , ỹi,−1 = yi,−1 − yi0ιT and ιT is a T × 1 vector of ones. Again the estimator
is consistent when ρ = 1 whereas inconsistent when |ρ| < 1. In the latter case, its asymptotic bias

equals 1
2 (1− ρ) under the assumption about covariance stationarity, see Breitung & Meyer (1994). As

an example, this means that the asymptotic bias equals 0.050, 0.025 and 0.005 when ρ equals 0.90, 0.95

and 0.99, respectively. The inconsistency is attributable to the term (yi0 − αi) as it appears in both

the regressor (yit−1 − yi0) and the regression error vit. The covariance between the regressor and the

regression error decreases towards zero as ρ approaches unity when the variance of (yi0 − αi) is kept

constant. However, the decrease might be offset if the variance of (yi0 − αi) increases as ρ approaches

unity. This is exactly what happens when the initial values are such that the time-series processes

become covariance stationary.

Proposition 3 below provides the limiting distribution of the Breitung-Meyer estimator ρ̂0 under both

the null hypothesis when ρ is unity and the local alternative when ρ is local-to-unity. In this case, the

local alternatives are the same irrespective of the assumption about the dispersion of the initial deviation

from the stationary level.

Proposition 3 Under Assumption 1, 2, 3, 4 and the local-to-unity sequence for ρ given by ρ = 1−c/√N,
the limiting distribution of the Breitung-Meyer estimator ρ̂0 is given by

(i) and c ≥ 0 :
√
N (ρ̂0 − ρ)

w→ N

µ
0,
σ4ε
σ22ε

2

T (T − 1)
¶

as N →∞ (18)

(ii) and c > 0 :
√
N (ρ̂0 − ρ)

w→ N

µ
c

2
,
σ4ε
σ22ε

2

T (T − 1)
¶

as N →∞ (19)

The proof of Proposition 3 is given in Appendix A.3. The proposition shows that in the unit root case

and under the mean stationary local alternative ρ̂0 is
√
N-consistent. Under the covariance stationary

alternative ρ̂0 has a positive asymptotic bias of order 1/
√
N . The limiting variance of ρ̂0 does not depend

on the assumption being made about the initial values and it is a simple function of T and σ22ε/σ4ε which

is increasing in both. As indicated above, the results follow by using that when the variance of (yi0 − αi)

is of order less than
√
N , the asymptotic bias disappears under the local alternative. This is the case

when the initial values are such that the time-series processes are mean stationary but not covariance

stationary, see the result in (6). On the contrary, when the initial values are such that the time-series

processes become covariance stationary this is not the case, as the variance of (yi0 − αi) in this case is

of order
√
N , see the result in (7).

As before White’s heteroskedastic consistent estimator of the limiting variance of ρ̂0 is given by the

following expression

V̂0 =

Ã
1

N

NX
i=1

ỹ0i,−1ỹi,−1

!−1
1

N

NX
i=1

ỹ0i,−1v̂iv̂
0
iỹi,−1

Ã
1

N

NX
i=1

ỹ0i,−1ỹi,−1

!−1
(20)
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where the vector of residuals is v̂i = ỹi − ρ̂0ỹi,−1. The t-statistic is then defined as

t0 = V̂
− 1
2

0

√
N (ρ̂0 − 1) (21)

When the errors εit are homoskedastic across units such that σ4ε = σ22ε, the limiting variance of ρ̂0 is

a function of T only. Therefore, it is possible to use a normalized coefficient statistic when testing the

unit root hypothesis. The statistic is defined in the following way

t̄0 =

r
T (T − 1)

2

√
N (ρ̂0 − 1) (22)

The proposition below provides the limiting distributions of the test statistics defined above.

Proposition 4 Under Assumption 1, 2, 3, 4 and the local-to-unity sequence for ρ given by ρ = 1−c/√N,
the limiting distribution of the Breitung-Meyer t-statistic t0 is given by

(i) and c ≥ 0 : t0
w→ N

−csσ22ε
σ4ε

T (T − 1)
2

, 1

 as N →∞ (23)

(ii) and c > 0 : t0
w→ N

− c
2

s
σ22ε
σ4ε

T (T − 1)
2

, 1

 as N →∞ (24)

The limiting distribution of the normalized coefficient statistic t̄0 is given by

(i) and c ≥ 0 : t̄0
w→ N

Ã
−c
r

T (T − 1)
2

,
σ4ε
σ22ε

!
as N →∞ (25)

(ii) and c > 0 : t̄0
w→ N

Ã
− c

2

r
T (T − 1)

2
,
σ4ε
σ22ε

!
as N →∞ (26)

The proof of Proposition 4 is given in Appendix A.3. The proposition shows that under the null

hypothesis of a unit root, the t-statistic t0 is asymptotically standard normal. So again unit root

inference is carried out by employing critical values from the standard normal distribution. Further, the

proposition shows that the local power of the tests is increasing in both T and σ22ε/σ4ε. Also, the local

power of the tests is higher under the mean stationary alternative compared to under the covariance

stationary alternative as the location parameter in the first case is twice as large in absolute value as

in the second case. The difference is explained by the positive asymptotic bias of the Breitung-Meyer

estimator ρ̂0 in the latter case. The test based on the normalized coefficient statistic t̄0 is asymptotically

equivalent to the test based on the t-statistic t0 when σ4ε = σ22ε. When this is not the case, the test

based on the normalized coefficient statistic will be distorted when employing critical values from the

standard normal distribution. In a one-sided test it will tend to reject the null hypothesis of a unit root

too often when σ4ε > σ22ε. In this case the test is oversized. The opposite is true when σ4ε < σ22ε. So

unless there is any prior knowledge about the ratio σ22ε/σ4ε, the unit root test should be based on the

t-statistic. Note, that if σ22ε 6= σ4ε such that there is a difference between the local power of the two

tests, this difference decreases as T increases. However, the size distortion is not affected by T and hence

it remains as T increases.

9



The advantage of using the Breitung-Meyer unit root test is that the local power only depends on

one nuisance parameter. Further, the test is invariant with respect to the individual-specific levels even

in finite samples. This means that the size of the test is invariant with respect to the initial values and

the power of the test is invariant with respect to the individual-specific term αi under mean stationary

alternatives.

3.3 Harris-Tzavalis

The within-group transformation of the original model is obtained by subtracting the individual time-

series means from the variables in equation (1). This yields the following regression model

yit − 1
T

PT
t=1 yit = ρ

³
yit−1 − 1

T

PT
t=1 yit−1

´
+wit

wit = εit − 1
T

PT
t=1 εit

for i = 1, ..., N and t = 1, ..., T (27)

The within-group estimator of ρ is then defined by

ρ̂WG =

Ã
NX
i=1

y0i,−1QTyi,−1

!−1Ã NX
i=1

y0i,−1QT yi

!
(28)

where QT is a T×T symmetric and idempotent matrix defined as QT = IT− 1
T ιT ι

0
T where IT is the T×T

identity matrix and ιT ι0T is a T × T matrix of ones. It is well-known that this estimator is inconsistent

when |ρ| < 1. The asymptotic bias is often referred to as the Nickell-bias since Nickell (1981) is the

first to provide an analytical expression for it. Under the assumption about the time-series processes

being covariance stationary, the asymptotic bias is a function of ρ and T which is always negative when

0 < ρ < 1 and decreases numerically as T increases. Harris & Tzavalis (1999) show that the asymptotic

bias of the within-group estimator equals −3/ (T + 1) when ρ = 1. As this expression does not depend

on any nuisance parameters, their idea is to base a unit root test on the bias adjusted within-group

estimator. Proposition 5 below provides the limiting distribution of ρ̂WG under both the null hypothesis

of a unit root and the local alternative when ρ is local-to-unity.

Proposition 5 Under Assumption 1, 2, 3, 4 and the local-to-unity sequence for ρ given by ρ = 1−c/√N,
the limiting distribution of the adjusted within-group estimator ρ̂WG is given by

(i) and c ≥ 0 :
√
N

µ
ρ̂WG − ρ+

3

T + 1

¶
w→ N

µ
−c T − 2
2 (T + 1)

,
k1m4 + k2σ4ε

σ22ε

¶
as N →∞ (29)

(ii) and c > 0 :
√
N

µ
ρ̂WG − ρ+

3

T + 1

¶
w→ N

µ
c

T + 4

4 (T + 1)
,
k1m4 + k2σ4ε

σ22ε

¶
as N →∞ (30)

where

k1 =
12 (T − 2) (2T − 1)
5T (T − 1) (T + 1)3 k2 =

3
¡
17T 3 − 44T 2 + 77T − 24¢
5T (T − 1) (T + 1)3 (31)

The proof of Proposition 5 is given in Appendix A.4. The proposition shows that except in the unit

root case, the adjusted within-group estimator has an asymptotic bias of order 1/
√
N under the local

alternative. The bias is negative under the assumption about mean stationarity and positive under the

10



assumption about covariance stationarity. This means that the adjustment is respectively too big and

too small. The limiting variance of ρ̂WG is the same in the unit root case and under the two local

alternatives. It depends on fourth order moments of the errors εit through the term m4. As k1 < k2 the

fourth order moments receive less weight than the squared second order moments.

Harris & Tzavalis (1999) assume that the errors εit are iid normally distributed across i such that

σ4ε = σ22ε and m4 = 3σ
2
2ε. In this case, the limiting variance of ρ̂WG only depends on T and is given by

the following expression

ṼWG = 3k1 + k2 =
3
¡
17T 2 − 20T + 17¢
5 (T − 1) (T + 1)3 (32)

Therefore, Harris & Tzavalis (1999) suggest using the normalized coefficient statistic as a unit root test

statistic. It is defined as follows

t̄WG = Ṽ
− 1
2

WG

√
N

µ
ρ̂WG − 1 +

3

T + 1

¶
(33)

However, as before it is also possible to use the usual t-statistic as a test statistic. White’s heteroskedas-

ticity consistent estimator of the limiting variance of the bias adjusted within-group estimator is given

by the following expression

V̂WG =

Ã
1

N

NX
i=1

y0i,−1QTyi,−1

!−1
1

N

NX
i=1

y0i,−1QT ω̂iω̂
0
iQTyi,−1

Ã
1

N

NX
i=1

y0i,−1QTyi,−1

!−1
(34)

where the vector of residuals is ŵi = QT yi − ρ̂WGQTyi,−1. The bias adjusted within-group t-statistic is

then defined in the following way

tWG = V̂
− 1
2

WG

√
N

µ
ρ̂WG − 1 +

3

T + 1

¶
(35)

The limiting distributions of these test statistics are given in Proposition 6 below.

Proposition 6 Under Assumption 1, 2, 3, 4 and the local-to-unity sequence for ρ given by ρ = 1−c/√N,
the limiting distribution of the adjusted within-group t-statistic tWG is given by

(i) and c ≥ 0 : tWG
w→ N

µ
−c 3T

2 (T + 1)
σ2ε

q
(k1m4 + k2σ4ε)

−1, 1
¶

as N →∞ (36)

(ii) and c > 0 : tWG
w→ N

µ
−c 3T

4 (T + 1)
σ2ε

q
(k1m4 + k2σ4ε)

−1
, 1

¶
as N →∞ (37)

The limiting distribution of the Harris-Tzavalis normalized coefficient statistic t̄WG is given by

(i) and c ≥ 0 : t̄WG
w→ N

−c 3T

2 (T + 1)

s
5 (T − 1) (T + 1)3
3 (17T 2 − 20T + 17) ,

k̃1m4 + k̃2σ4ε
σ22ε

 as N →∞ (38)

(ii) and c > 0 : t̄WG
w→ N

−c 3T

4 (T + 1)

s
5 (T − 1) (T + 1)3
3 (17T 2 − 20T + 17) ,

k̃1m4 + k̃2σ4ε
σ22ε

 as N →∞ (39)

where

k̃1 =
4 (T − 2) (2T − 1)

T (17T 2 − 20T + 17) k̃2 =
17T 3 − 44T 2 + 77T − 24
T (17T 2 − 20T + 17) (40)
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The proof of Proposition 6 is given in Appendix A.4. Once again unit root inference based on

the adjusted t-statistic tWG can be carried out by employing critical values from the standard normal

distribution. Further, the local power of the test statistics is increasing in T , σ22ε/σ4ε and σ22ε/m4. It

turns out that the local power is higher under the mean stationary alternative than under the covariance

stationary alternative and we see that the location parameter in the first case is twice as large in

absolute value as in the second case. This was also the case for the Breitung-Meyer test statistics, see

Proposition 4. The unit root test based on the Harris-Tzavalis normalized coefficient statistic t̄WG is

asymptotically equivalent to test based on the t-statistic tWG when the errors εit are normally distributed

and homoskedastic across units. If at least one of these assumptions is violated, the test is likely to be

distorted when employing critical values from the standard normal distribution. The test will tend to

reject the null hypothesis too often when σ4ε > σ22ε and when the excess kurtosis of εit is positive, i.e.

m4 > 3σ22ε. Therefore, the Harris-Tzavalis normalized coefficient statistic should not be used for unit

root inference unless the underlying assumptions have been verified by having been tested.

As with the Breitung-Meyer unit root test, the Harris-Tzavalis unit root test is invariant with respect

to the individual-specific levels even in finite samples. However, the local power of the Harris-Tzavalis

test depends on more nuisance parameters. A more serious disadvantage of this test is that the bias

adjustment of the within-group estimator ρ̂WG depends crucially on the errors εit being homoskedastic

over time. If this assumption is violated the Harris-Tzavalis unit root test is likely to be distorted. To

avoid this problem, Kruiniger & Tzavalis (2001) suggest using an estimator of the asymptotic bias in the

adjustment of ρ̂WG. In the unit root case, the estimator of the asymptotic bias is consistent. However,

in this paper we only investigate the performance of the unit tests when the errors εit are homoskedastic

over time. Therefore, we do not consider this different bias adjustment in detail but we note that it is

available.

3.4 Comparison of the tests

Below we list the main findings about the local power of the tests based on the t-statistics. They follow

immediately from the results in Proposition 2, 4 and 6.

1. The local power of the Breitung-Meyer test is always higher than the local power of the Harris-

Tzavalis test.

2. Under the assumption about mean stationarity, the local power of the OLS test is higher than the

local power of the Breitung-Meyer test when σ2α
σ2ε

< σ4ε
σ22ε

τ
³
1 + 2τ

T−1
´
.

3. Under the assumption about covariance stationarity, the local power of the OLS test is higher than

the local power of the Breitung-Meyer test when ρ > T−5
T−1 .

4. Under the assumption about mean stationarity and when σ4ε = σ22ε and m4 = 3σ22ε the local

power of the OLS test is higher than the local power of the Harris-Tzavalis test when σ2a
σ2ε

<µ
4(17T2−20T+17)
15T (T−1)(T+1)

¡
τ + T−1

2

¢− 1¶¡τ + T−1
2

¢
.
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Figure 1 below illustrates some of these results. In each figure, the local power of one-sided tests at the

5% significance level based on the t-statistics is graphed as a function of c = (1− ρ)
√
N . As an example,

when σ4ε = σ22ε the local power of the Breitung-Meyer test is obtained as Φ
³
−1.645 + c

p
T (T − 1) /2

´
where Φ denotes the distribution function of the standard normal. The local power is calculated under

the assumption about mean stationarity and the following parameter values: τ = 1, σ4ε = σ22ε and

m4 = 3σ
2
2ε. The figures correspond to the value of T + 1 being 5 or 10 and the value of σ

2
α/σ2ε being 1

or 10. For this choice of parameters, the local power of the Breitung-Meyer test and the Harris-Tzavalis

test only depends on T . We see that the local power of the Breitung-Meyer test is higher than the local

power of the Harris-Tzavalis test for all values of c. When σ2α/σ2ε = 1 the local power of the OLS test

is highest for all values of c, whereas when σ2α/σ2ε = 10 the local power of the OLS test is lowest for all

values of c.

Figure 1: Comparison of the local power under mean stationarity

4 Simulation experiments

In this section the analytical results obtained in Section 3 are illustrated in a simulation experiment.

The simulated model is the following

yi0 = 1{|ρ|<1}αi + εi0 (41)

yit = ρyit−1 + (1− ρ)αi + εit (42)

with

εit ∼ iidN (0, 1) αi ∼ iidN
¡
0, σ2α

¢
εi0 ∼ iidN (0, τ (ρ)) (43)
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We consider different values of T , N and ρ which are T + 1 = 5, 10, 15, N = 100, 250, 500, 1000 and

ρ = 0.90, 0.95, 0.99, 1.00. The results are based on 5000 replications of the model. In Table 1 and 2

we report the empirical rejection probabilities of one-sided unit root tests based on the t-statistics with

the critical value taken from the standard normal distribution at the nominal 5% significance level.

For comparison the analytical rejection probabilities (i.e. the local power) are reported in brackets.

We consider different simulation setups where the value of σ2α is either 1 or 10. This parameter will

only affect the OLS test as the two other tests do not depend on this parameter under the alternatives

considered here. Further, the simulation setups depend on the variance of initial error term τ (ρ). Table

1 corresponds to the unit root case and the mean stationary alternative both with τ (ρ) = 1 and Table

2 corresponds to the covariance stationary alternative with τ (ρ) = 1/
¡
1− ρ2

¢
.

In Table 1, we see that the empirical size of all tests is close to the nominal size of 0.05 and the

empirical power is quite high even for values of ρ close to unity such as ρ = 0.95. Further, the increase

in power can be quite dramatic when increasing T + 1 from 5 to 10. For example, when ρ = 0.99 and

N = 1000 the power of the Breitung-Meyer test increases from 0.20 to 0.57, the power of the Harris-

Tzavalis test increases from 0.16 to 0.38, and the power of the OLS test increases from 0.21 to 0.59 when

σ2α = 1 and from 0.12 to 0.33 when σ2α = 10. When comparing the different tests we see the results

described in Section 3.4. To summarize, the power of the Breitung-Meyer test is always higher than the

power of the Harris-Tzavalis test, and the OLS test has the highest (lowest) power of the three tests

when σ2α = 1 (σ
2
α = 10). Finally, we see that the empirical rejection probabilities are quite close to the

analytical rejection probabilities. This demonstrates that under the mean stationary alternative, the

local power provides a good approximation to the actual power.

In Table 2, the most striking result is that the OLS test has very high power even for values of ρ very

close to unity such as ρ = 0.99. According to the analytical results in Section 3.1, this will be the case

unless the variability of the variable of interest is dominated by the variability of the individual-specific

term. This is also the main conclusion from the simulation studies in the papers by Hall & Mairesse

(2002) and Bond, Nauges & Windmeijer (2002) where the time-series processes are covariance stationary

in the simulation setups. The empirical power of the OLS test is always higher than that of the Breitung-

Meyer test and the Harris-Tzavalis test. In addition, the empirical power of the Breitung-Meyer test is

always higher that of the Harris-Tzavalis test, and compared to Table 1 the empirical power of these

tests is lower. These findings are all in accordance with the analytical results in Section 3. Again, we

see that the empirical power is quite close to the analytical power except for the OLS test with σ2α = 10.

As explained in Section 3.1, this is to be expected.

Finally, the tables in Appendix B contain more detailed information about the outcome from the

simulation experiments. In addition, the appendix contains figures with a graphical comparison of the

empirical and local power.
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Table 1: Empirical and analytical (in brackets) rejection probabilities when τ (ρ) = 1

ρ T + 1 N OLS, σ2α = 1 OLS, σ2α = 10 Breitung-Meyer Harris-Tzavalis

0.900 5 100 0.8032 (0.8480) 0.3702 (0.4088) 0.6838 (0.7895) 0.5624 (0.6665)
0.900 5 250 0.9892 (0.9951) 0.6660 (0.7228) 0.9566 (0.9871) 0.8654 (0.9491)
0.900 5 500 1.0000 (1.0000) 0.8962 (0.9354) 0.9992 (0.9999) 0.9906 (0.9986)
0.900 5 1000 1.0000 (1.0000) 0.9930 (0.9977) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 10 100 1.0000 (1.0000) 0.9430 (0.9871) 0.9994 (1.0000) 0.9474 (0.9977)
0.900 10 250 1.0000 (1.0000) 0.9994 (1.0000) 1.0000 (1.0000) 0.9998 (1.0000)
0.900 10 500 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 10 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 15 100 1.0000 (1.0000) 0.9998 (1.0000) 1.0000 (1.0000) 0.9978 (1.0000)
0.900 15 250 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 15 500 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 15 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)

0.950 5 100 0.3694 (0.3788) 0.1840 (0.1742) 0.3180 (0.3372) 0.2768 (0.2718)
0.950 5 250 0.6504 (0.6801) 0.2822 (0.2992) 0.5720 (0.6147) 0.4630 (0.4983)
0.950 5 500 0.8868 (0.9104) 0.4516 (0.4746) 0.8232 (0.8630) 0.6938 (0.7502)
0.950 5 1000 0.9916 (0.9951) 0.6828 (0.7228) 0.9748 (0.9871) 0.9240 (0.9491)
0.950 10 100 0.8796 (0.9218) 0.5674 (0.6147) 0.8548 (0.9123) 0.6200 (0.7231)
0.950 10 250 0.9978 (0.9993) 0.8864 (0.9218) 0.9966 (0.9990) 0.9102 (0.9708)
0.950 10 500 1.0000 (1.0000) 0.9888 (0.9964) 1.0000 (1.0000) 0.9950 (0.9996)
0.950 10 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.950 15 100 0.9958 (0.9992) 0.8906 (0.9563) 0.9926 (0.9991) 0.8564 (0.9618)
0.950 15 250 1.0000 (1.0000) 0.9990 (0.9999) 1.0000 (1.0000) 0.9964 (0.9999)
0.950 15 500 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.950 15 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)

0.990 5 100 0.0968 (0.0842) 0.0780 (0.0664) 0.0936 (0.0808) 0.0924 (0.0753)
0.990 5 250 0.1146 (0.1108) 0.0810 (0.0776) 0.1108 (0.1043) 0.1034 (0.0940)
0.990 5 500 0.1502 (0.1475) 0.0908 (0.0920) 0.1452 (0.1363) 0.1276 (0.1188)
0.990 5 1000 0.2088 (0.2119) 0.1244 (0.1155) 0.1954 (0.1921) 0.1622 (0.1614)
0.990 10 100 0.1712 (0.1509) 0.1190 (0.1043) 0.1566 (0.1480) 0.1306 (0.1156)
0.990 10 250 0.2574 (0.2493) 0.1552 (0.1509) 0.2424 (0.2432) 0.1784 (0.1743)
0.990 10 500 0.3798 (0.3914) 0.2128 (0.2180) 0.3670 (0.3809) 0.2528 (0.2596)
0.990 10 1000 0.5926 (0.6147) 0.3292 (0.3372) 0.5672 (0.5997) 0.3822 (0.4090)
0.990 15 100 0.2528 (0.2475) 0.1750 (0.1650) 0.2526 (0.2448) 0.1766 (0.1682)
0.990 15 250 0.4340 (0.4511) 0.2746 (0.2795) 0.4258 (0.4457) 0.2728 (0.2863)
0.990 15 500 0.6770 (0.6941) 0.4168 (0.4424) 0.6646 (0.6873) 0.4182 (0.4535)
0.990 15 1000 0.9104 (0.9191) 0.6554 (0.6831) 0.9020 (0.9149) 0.6524 (0.6971)

1.000 5 100 0.0568 (0.0500) 0.0568 (0.0500) 0.0622 (0.0500) 0.0634 (0.0500)
1.000 5 250 0.0538 (0.0500) 0.0538 (0.0500) 0.0542 (0.0500) 0.0594 (0.0500)
1.000 5 500 0.0546 (0.0500) 0.0546 (0.0500) 0.0550 (0.0500) 0.0574 (0.0500)
1.000 5 1000 0.0520 (0.0500) 0.0520 (0.0500) 0.0504 (0.0500) 0.0552 (0.0500)
1.000 10 100 0.0638 (0.0500) 0.0638 (0.0500) 0.0624 (0.0500) 0.0640 (0.0500)
1.000 10 250 0.0564 (0.0500) 0.0564 (0.0500) 0.0600 (0.0500) 0.0608 (0.0500)
1.000 10 500 0.0548 (0.0500) 0.0548 (0.0500) 0.0486 (0.0500) 0.0558 (0.0500)
1.000 10 1000 0.0454 (0.0500) 0.0454 (0.0500) 0.0456 (0.0500) 0.0500 (0.0500)
1.000 15 100 0.0554 (0.0500) 0.0554 (0.0500) 0.0582 (0.0500) 0.0626 (0.0500)
1.000 15 250 0.0578 (0.0500) 0.0578 (0.0500) 0.0530 (0.0500) 0.0562 (0.0500)
1.000 15 500 0.0502 (0.0500) 0.0502 (0.0500) 0.0476 (0.0500) 0.0532 (0.0500)
1.000 15 1000 0.0442 (0.0500) 0.0442 (0.0500) 0.0458 (0.0500) 0.0490 (0.0500)
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Table 2: Empirical and analytical (in brackets) rejection probabilities when τ (ρ) = 1/
¡
1− ρ2

¢
ρ T + 1 N OLS, σ2α = 1 OLS, σ2α = 10 Breitung-Meyer Harris-Tzavalis

0.900 5 100 0.9966 (0.9977) 0.8826 (0.9977) 0.3358 (0.3372) 0.3014 (0.2718)
0.900 5 250 1.0000 (1.0000) 0.9972 (1.0000) 0.6036 (0.6147) 0.5192 (0.4983)
0.900 5 500 1.0000 (1.0000) 1.0000 (1.0000) 0.8512 (0.8630) 0.7600 (0.7502)
0.900 5 1000 1.0000 (1.0000) 1.0000 (1.0000) 0.9814 (0.9871) 0.9460 (0.9491)
0.900 10 100 1.0000 (1.0000) 0.9978 (1.0000) 0.8878 (0.9123) 0.7368 (0.7231)
0.900 10 250 1.0000 (1.0000) 1.0000 (1.0000) 0.9982 (0.9990) 0.9756 (0.9708)
0.900 10 500 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9990 (0.9996)
0.900 10 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 15 100 1.0000 (1.0000) 1.0000 (1.0000) 0.9966 (0.9991) 0.9652 (0.9618)
0.900 15 250 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (0.9999)
0.900 15 500 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)
0.900 15 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000)

0.950 5 100 0.9338 (0.9354) 0.7588 (0.9354) 0.1696 (0.1509) 0.1566 (0.1301)
0.950 5 250 0.9998 (0.9996) 0.9806 (0.9996) 0.2580 (0.2493) 0.2306 (0.2048)
0.950 5 500 1.0000 (1.0000) 1.0000 (1.0000) 0.3830 (0.3914) 0.3252 (0.3139)
0.950 5 1000 1.0000 (1.0000) 1.0000 (1.0000) 0.6032 (0.6147) 0.5038 (0.4983)
0.950 10 100 0.9996 (0.9990) 0.9788 (0.9990) 0.4314 (0.4424) 0.3202 (0.2993)
0.950 10 250 1.0000 (1.0000) 1.0000 (1.0000) 0.7586 (0.7663) 0.5592 (0.5492)
0.950 10 500 1.0000 (1.0000) 1.0000 (1.0000) 0.9474 (0.9563) 0.8086 (0.8040)
0.950 10 1000 1.0000 (1.0000) 1.0000 (1.0000) 0.9984 (0.9990) 0.9722 (0.9708)
0.950 15 100 1.0000 (1.0000) 0.9994 (1.0000) 0.7438 (0.7703) 0.5560 (0.5254)
0.950 15 250 1.0000 (1.0000) 1.0000 (1.0000) 0.9762 (0.9832) 0.8670 (0.8546)
0.950 15 500 1.0000 (1.0000) 1.0000 (1.0000) 0.9998 (0.9999) 0.9862 (0.9852)
0.950 15 1000 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (0.9999)

0.990 5 100 0.4268 (0.4088) 0.3790 (0.4088) 0.0780 (0.0640) 0.0742 (0.0616)
0.990 5 250 0.7216 (0.7228) 0.6682 (0.7228) 0.0800 (0.0734) 0.0822 (0.0693)
0.990 5 500 0.9328 (0.9354) 0.8878 (0.9354) 0.0944 (0.0852) 0.0898 (0.0789)
0.990 5 1000 0.9982 (0.9977) 0.9922 (0.9977) 0.1108 (0.1043) 0.1000 (0.0940)
0.990 10 100 0.6946 (0.6831) 0.6324 (0.6831) 0.1006 (0.0893) 0.0956 (0.0776)
0.990 10 250 0.9566 (0.9563) 0.9308 (0.9563) 0.1298 (0.1209) 0.1048 (0.0983)
0.990 10 500 0.9984 (0.9990) 0.9960 (0.9990) 0.1618 (0.1650) 0.1298 (0.1262)
0.990 10 1000 1.0000 (1.0000) 1.0000 (1.0000) 0.2266 (0.2432) 0.1722 (0.1743)
0.990 15 100 0.8598 (0.8416) 0.8086 (0.8416) 0.1328 (0.1214) 0.1182 (0.0963)
0.990 15 250 0.9944 (0.9944) 0.9878 (0.9944) 0.1928 (0.1865) 0.1452 (0.1347)
0.990 15 500 1.0000 (1.0000) 1.0000 (1.0000) 0.2694 (0.2815) 0.1950 (0.1892)
0.990 15 1000 1.0000 (1.0000) 1.0000 (1.0000) 0.4260 (0.4457) 0.2782 (0.2863)
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5 Conclusions

In this paper we have investigated the performance of some of the unit root tests which have been

suggested in the literature. To do this we have derived the asymptotic power of the tests under local

alternatives. We find that the local power of the Breitung-Meyer test is always higher than the local power

of the Harris-Tzavalis test. In addition, the Harris-Tzavalis test is very sensitive to minor deviations

from the underlying assumptions, such as the error terms being heteroskedastic instead of homoskedastic

over time. Given these results, the Harris-Tzavalis unit root test seems useless. The results concerning

the OLS test clearly demonstrate that the specification of the initial values is important. Under the

covariance stationary alternative, the local power of the OLS test is substantially higher than the local

power of the Breitung-Meyer test. Under the mean stationary alternative, this is less likely to be the

case. The reason is that, unlike the Breitung-Meyer test, the OLS test is not invariant with respect to

the individual-specific levels. Moreover, the local power of the OLS test is low when the variation in the

individual-specific terms is high. Altogether, the Breitung-Meyer test seems to be more robust.

The tests considered in this paper are based on the assumption that the AR parameter is the same

for all cross-section units. Nevertheless, it would be interesting to investigate the asymptotic power of

the tests against local alternatives where the AR parameter differs across cross-section units. Since the

corresponding LS estimators can be considered as estimators of the mean AR parameter, there are good

reasons to expect the tests to have power against alternatives where the mean AR parameter is less than

unity. For example the alternative where the AR parameter is less than unity for at least a group of

cross-section units. However, the additional asymptotic bias of the LS estimators resulting from ignoring

heterogeneity in the AR parameter will also affect the power. Other things being equal, a positive bias

will have a negative effect on the power and vice versa. It would also be interesting to compare the

unit root tests considered in this paper and the unit root test suggested by Im, Pesaran & Shin (2003)

as they are based on very different test statistics. More specifically, the framework considered by Im,

Pesaran & Shin (2003) explicitly allows for alternatives where the AR parameter is less than unity for

at least a group of cross-section units and their test is based on the cross-section average of individual

Dickey-Fuller test statistics. This suggests some directions for future research.
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A Appendix

This appendix contains the proofs of the propositions in Section 3. The proofs are all based on standard

asymptotic theory, see for example White (2001). We start out with some results that are useful in the

following.

A.1 Preliminary lemmas and results

Lemma 1 Under the local-to-unity sequence for ρ given by ρ = 1−c/Nk for k, c > 0 the following holds

ρt = 1− t
c

Nk
+ o

¡
N−k

¢
(44)

1

1− ρ2
=

Nk

2c
+ o

¡
N−k

¢
(45)

Proof: The binomial formula yields

ρt =
³
1− c

Nk

´t
= 1− t

c

Nk
+

t (t− 1)
2!

c2

N2k
− t (t− 1) (t− 2)

3!

c3

N3k
+ ...+

(−c)t
Nkt

and the results follow directly. ¤

Lemma 2 Let X and Y be random variables with E |X|r <∞ and E |Y |r <∞ for some r > 0. Then

E |X + Y |r ≤ cr (E |X|r +E |X|r) where cr = 1 for r ≤ 1 and cr = 2r−1 for r > 1.

Proof: See Proposition 3.8 in White (2001). ¤

Lemma 3 Let εi be a sequence of random variables with E |εi|4+δ < K for some δ > 0 and all i =

1, ...,N . Then for k ≤ 4, E |εi|k < K + 1 for all i = 1, ..., N .

Proof: Using the inequality |εi|k ≤ |εi|m+1 for k < m we have that E |εi|k ≤ E |εi|4+δ+1 < K+1 for

k ≤ 4. ¤

In the following we consider different transformations of εi = (εi1, ..., εit)
0. We use that ιT is a T × 1

vector of ones and that CT (ρ) is the T × T matrix and AT (ρ) is the T × 1 vector defined as

CT (ρ) =



0 0 · · · 0 0

1 0 · · · ...
...

ρ
. . .

. . .
...
...

...
. . .

. . . 0
...

ρT−2 · · · ρ 1 0

 AT (ρ) =


1
ρ
ρ2

...
ρT−1

 (46)

Note that CT (ρ) = CT (1) + O
¡
N−k

¢
and AT (ρ) = ιT + O

¡
N−k

¢
when ρ = 1 − c/Nk according to

Lemma 1.
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Lemma 4 Under Assumption 1, 4 and the local-to-unity sequence for ρ given by ρ = 1−c/Nk for c ≥ 0
and k > 0 the following results hold

E
¯̄
ε0iCT (ρ)

0
CT (ρ) εi

¯̄2+δ1
< K1 <∞ for some δ1 > 0 and all i = 1, ..., N (47)

E
¯̄
ε0iAT (ρ)AT (ρ)

0 εi
¯̄2+δ1

< K2 <∞ for some δ1 > 0 and all i = 1, ..., N (48)

E
¯̄
ε0iCT (ρ)

0 ιT ι0TCT (ρ) εi
¯̄2+δ1

< K3 <∞ for some δ1 > 0 and all i = 1, ..., N (49)

E
¯̄
ε0iCT (ρ)

0 εi
¯̄2+δ1

< K4 <∞ for some δ1 > 0 and all i = 1, ..., N (50)

E
¯̄
ε0iCT (ρ)

0 ιT ι0T εi
¯̄2+δ1

< K5 <∞ for some δ1 > 0 and all i = 1, ..., N (51)

Proof of Lemma 4:

To show (47) we use that

E

¯̄̄̄
¯

tX
s=1

ρt−sεis

¯̄̄̄
¯
4+δ

≤
Ã

tX
s=1

³
E
¯̄
ρt−sεis

¯̄4+δ´ 1
4+δ

!4+δ
≤ t4+δ

³
|1− c|T (4+δ) + 1

´
K (52)

where the first inequality follows by Minkowski’s inequality and the second inequality follows from

|ρ|(t−s)(4+δ) = ¯̄1− c/Nk
¯̄(t−s)(4+δ) ≤ |1− c|T (4+δ) +1 together with E |εit|4+δ < K which holds accord-

ing to Assumption 4 (i). This implies that

E
¯̄
ε0iCT (ρ)

0CT (ρ) εi
¯̄2+δ/2

= E

¯̄̄̄
¯̄T−1X
t=1

Ã
tX

s=1

ρt−sεis

!2 ¯̄̄̄¯̄
2+δ/2

≤

T−1X
t=1

E ¯̄̄̄¯
tX

s=1

ρt−sεis

¯̄̄̄
¯
4+δ
 1

2+δ/2


2+δ/2

≤ K
³
|1− c|T (4+δ) + 1

´ÃT−1X
t=1

t2

!2+δ/2
≡ K1 <∞

where the first inequality follows by Minkowski’s inequality and the second inequality follows by the

result above. This proves (47). The results in (48) and (49) are shown in a similar manner.

To show (50) we use that

E

¯̄̄̄
¯

tX
s=1

ρt−sεisεit

¯̄̄̄
¯
2+δ/2

≤
E ¯̄̄̄¯

tX
s=1

ρt−sεis

¯̄̄̄
¯
4+δ

E |εit|4+δ
1

2

≤ t2+δ/2
³
|1− c|T (4+δ) + 1

´ 1
2

K

where the first inequality follows by the Cauchy-Schwarz inequality and the second inequality follows

from (52) above and E |εit|4+δ < K. This implies that

E
¯̄
ε0iCT (ρ)

0 εi
¯̄2+δ/2

= E

¯̄̄̄
¯
TX
t=1

tX
s=1

ρt−sεisεit

¯̄̄̄
¯
2+δ/2

≤

 TX
t=1

E ¯̄̄̄¯
tX

s=1

ρt−sεisεit

¯̄̄̄
¯
2+δ/2

 1
2+δ/2


2+δ/2

≤ K
³
|1− c|T (4+δ) + 1

´ 1
2

Ã
TX
t=1

t

!2+δ/2
≡ K4 <∞

where the first inequality follows by Minkowski’s inequality and the second inequality follows by the

result above. This proves (50). The result in (51) is shown in a similar manner. ¤
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Lemma 5 Under Assumption 1, 4 and the local-to-unity sequence for ρ given by ρ = 1−c/Nk for c ≥ 0
and k > 0 the following results hold

1

N

NX
i=1

ε0iCT (ρ)
0CT (ρ) εi

P→ σ2ε
T (T − 1)

2
as N →∞ (53)

1

N

NX
i=1

ε0iCT (ρ)
0 ιT ι0TCT (ρ) εi

P→ σ2ε
T (T − 1) (2T − 1)

6
as N →∞ (54)

Proof of Lemma 5:

To show (53) we use Markov’s Law of Large Numbers which can be applied according to (47) in Lemma

4. This gives the following result

1

N

NX
i=1

ε0iCT (ρ)
0CT (ρ) εi − 1

N

NX
i=1

E
¡
ε0iCT (ρ)

0CT (ρ) εi
¢ P→ 0 as N →∞

We also have that

1

N

NX
i=1

E
¡
ε0iCT (ρ)

0CT (ρ) εi
¢
=
1

N

NX
i=1

σ2iε tr
¡
CT (ρ)

0CT (ρ)
¢→ σ2ε

T (T − 1)
2

as N →∞

as 1
N

PN
i=1 σ

2
iε → σ2ε as N → ∞ by Assumption 4 (ii), tr

¡
CT (ρ)

0CT (ρ)
¢
= tr

¡
CT (1)

0CT (1)
¢
+

O
¡
N−k

¢
by Lemma 1 and tr

¡
CT (1)

0CT (1)
¢
= T (T−1)

2 . Altogether this proves the result in (53).

By using similar arguments we show (54). In this case Markov’s Law of Large Numbers can be ap-

plied according to (49) in Lemma 4. We also have that

1

N

NX
i=1

E
¡
ε0iCT (ρ)

0 ιT ι0TCT (ρ) εi
¢
=
1

N

NX
i=1

σ2iει
0
TCT (ρ)CT (ρ)

0 ιT → σ2ε
T (T − 1) (2T − 1)

6
N →∞

as ι0TCT (ρ)CT (ρ)
0 ιT = ι0TCT (1)CT (1)

0 ιT + O
¡
N−k

¢
= T (T−1)(2T−1)

6 + O
¡
N−k

¢
. This proves the

result in (54). ¤

Lemma 6 Under Assumption 1 the following result hold

E
³¡
ε0iCT (ρ)

0 εi
¢2´

= σ4iε tr
¡
CT (ρ)

0CT (ρ)
¢

(55)

Proof of Lemma 6:

We have that

E
¡
ε0iCT (ρ)

0 εi
¢2

= E

Ã
TX
t=2

¡
ρt−2εi1 + ...+ εit−1

¢
εit

TX
s=2

¡
ρs−2εi1 + ...+ εis−1

¢
εis

!

=
TX
t=2

TX
s=2

E
¡¡
ρt−2εi1 + ...+ εit−1

¢ ¡
ρs−2εi1 + ...+ εis−1

¢
εitεis

¢
=

TX
t=2

E
³¡
ρt−2εi1 + ...+ εit−1

¢2
ε2it

´
=

TX
t=2

E
³¡
ρt−2εi1 + ...+ εit−1

¢2´
E
¡
ε2it
¢

= σ4iε

TX
t=2

³
ρ2(t−2) + ...+ ρ2 + 1

´
= σ4iε tr

¡
CT (ρ)

0CT (ρ)
¢
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where the third and fourth line hold since εit and εis for s 6= t are independent with means zero implying

that
¡
ρt−2εi1 + ...+ εit−1

¢
and εis are independent when t ≤ s with E

³¡
ρt−2εi1 + ...+ εit−1

¢2´
=

σ2iε
¡
ρ2(t−2) + ...+ ρ2 + 1

¢
. ¤

A.2 Proofs of the propositions in Section 3.1: OLS

For −1 < ρ ≤ 1 the following expression for yit is obtained by recursive substitution in (1)

yit =
¡
1− ρt

¢
αi + ρtyi0 + ρt−1εi1 + ...+ εit for t = 1, ..., T (56)

Inserting the expression for the initial value given in Assumption 3 yields

yit = 1{|ρ|<1}αi + ρt
p
τ (ρ)εi0 + ρt−1εi1 + ...+ εit for t = 0, ..., T (57)

Using stacked notation, the regressor yi,−1 and the regression error ui can be expressed as follows

yi,−1 = 1{|ρ|<1}αiιT +CT (ρ) εi +AT (ρ)
p
τ (ρ)εi0 (58)

ui = (1− ρ)αiιT + εi (59)

where ιT is a T × 1 vector of ones and CT (ρ) is the T ×T matrix and AT (ρ) is the T × 1 vector defined
in (46).

Proof of Proposition 1:

Using the equation in (9) we have that

Nk (ρ̂OLS − ρ) =

Ã
1

N2k

NX
i=1

y0i,−1yi,−1

!−1
1

Nk

NX
i=1

y0i,−1ui for k > 0 (60)

Proposition 1 now follows by the results in Lemma 7 below.

Lemma 7 Under Assumption 1, 2, 3 (i), 4 and the local-to-unity sequence for ρ given by ρ = 1− c/
√
N

for c ≥ 0, the following results hold

1

N

NX
i=1

y0i,−1yi,−1
P→ T

µ
1{c>0}σ2α +

µ
τ +

T − 1
2

¶
σ2ε

¶
as N →∞ (a1)

1√
N

NX
i=1

y0i,−1ui
w→ N

µ
cTσ2α, T

µ
1{c>0}σ2ασ2ε +

µ
τ +

T − 1
2

¶
σ4ε

¶¶
as N →∞ (b1)

Under Assumption 1, 2, 3 (ii), 4 and the local-to-unity sequence for ρ given by ρ = 1 − c̃/N for c̃ > 0,

the following results hold

1

N2

NX
i=1

y0i,−1yi,−1
P→ 1

2c̃
Tσ2ε as N →∞ (a2)

1

N

NX
i=1

y0i,−1ui
w→ N

µ
0,
1

2c̃
Tσ4ε

¶
as N →∞ (b2)
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Proof of Lemma 7:

(a1) Using the expression for yi,−1 given in equation (58) we have

y0i,−1yi,−1 = R1i + 2R2i + 2R3i + 2R4i (61)

where

R1i = 1{|ρ|<1}α2i ι
0
T ιT + ε0iCT (ρ)

0CT (ρ) εi + ε2i0τ (ρ)AT (ρ)
0AT (ρ)

R2i = 1{|ρ|<1}αiι0TCT (ρ) εi

R3i = 1{|ρ|<1}αiι0TAT (ρ)
p
τ (ρ)εi0

R4i = ε0iCT (ρ)
0AT (ρ)

p
τ (ρ)εi0

We prove the result in (a1) by showing that

1

N

NX
i=1

R1i
P→ T

µ
1{c>0}σ2α +

µ
τ +

T − 1
2

¶
σ2ε

¶
as N →∞ (62)

1

N

NX
i=1

Rki
P→ 0 as N →∞ for k = 2, 3, 4 (63)

The result in (62) is obtained by using the following

1

N

NX
i=1

1{|ρ|<1}α2i ι
0
T ιT

P→ T1{c>0}σ2α as N → ∞ (64)

1

N

NX
i=1

ε0iCT (ρ)
0CT (ρ) εi

P→ σ2ε
T (T − 1)

2
as N → ∞ (65)

1

N

NX
i=1

ε2i0τ (ρ)AT (ρ)
0AT (ρ)

P→ Tσ2ετ as N → ∞ (66)

The first holds since 1
N

PN
i=1 α

2
i

P→ σ2α by Kolmogorov’s Law of Large Numbers. The second result holds

according to (53) in Lemma 5. The third result holds since 1
N

PN
i=1 ε

2
i0

P→ σ2ε as N →∞ by Markov’s

Large of Large Numbers which can be applied since E |εi0|4+δ < K for all i = 1, ..., N in combination with

that τ (ρ) = τ and AT (ρ) = ιT+O
³
N−

1
2

´
such that AT (ρ)

0AT (ρ) = ι0T ιT+O
³
N−

1
2

´
= T+O

³
N−

1
2

´
.

Next, we show (63) by showing that E
¯̄̄
1
N

PN
i=1Rki

¯̄̄2
→ 0 as N →∞ for k = 2, 3, 4. We have that

E

¯̄̄̄
¯ 1N

NX
i=1

Rki

¯̄̄̄
¯
2

=
1

N2

NX
i=1

NX
j=1

E (RkiRkj) =
1

N2

NX
i=1

E
¡
R2ki

¢
for k = 2, 3, 4

as the sequence Rki is independent across i with E (Rki) = 0 as αi, εi0 and εi are all independent of

each other with means zero. This gives

1

N2

NX
i=1

E
¡
R22i
¢
=
1

N

1

N

NX
i=1

σ2iε1{|ρ|<1}σ
2
αι
0
TCT (ρ)CT (ρ)

0 ιT =
1

N
O (1)
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which holds as 1
N

PN
i=1 σ

2
iε = O (1) and ι0TCT (ρ)CT (ρ)

0 ιT = O (1). This shows that E
¯̄̄
1
N

PN
i=1R2i

¯̄̄2
→

0 as N →∞. We also have
1

N2

NX
i=1

E
¡
R23i
¢
=
1

N

1

N

NX
i=1

σ2iε1{|ρ|<1}σ
2
αι
0
TAT (ρ)AT (ρ)

0 ιT τ =
1

N
O (1)

which holds as 1
N

PN
i=1 σ

2
iε = O (1) and ι0TAT (ρ)AT (ρ)

0 ιT = O (1). This shows that E
¯̄̄
1
N

PN
i=1R3i

¯̄̄2
→

0 as N →∞. Finally, by using similar argument we have

1

N2

NX
i=1

E
¡
R24i
¢
=
1

N

1

N

NX
i=1

σ4iεAT (ρ)
0CT (ρ)CT (ρ)

0AT (ρ) τ =
1

N
O (1)

This shows that E
¯̄̄
1
N

PN
i=1R4i

¯̄̄2
→ 0 as N →∞. Altogether, we have obtained the desired limits and

(a1) is proved.

(b1) Using the expression for yi,−1 given in (58) and the expression for ui given in (59) we have

y0i,−1ui = Q1i +Q2i +Q3i +Q4i (67)

where

Q1i = 1{|ρ|<1}αiε0iιT + ε0iCT (ρ)
0 εi + ε0iAT (ρ)

p
τ (ρ)εi0

Q2i = α2i (1− ρ)T

Q3i = αi (1− ρ) ι0TCT (ρ) εi

Q4i = αi (1− ρ) ι0TAT (ρ)
p
τ (ρ)εi0

We prove the result in (b1) by showing that

1√
N

NX
i=1

(Q1i +E (Q2i))
w→ N

µ
cTσ2α, T

µ
1{c>0}σ2ασ2ε +

µ
τ +

T − 1
2

¶
σ4ε

¶¶
as N →∞ (68)

and

1√
N

NX
i=1

(Q2i −E (Q2i))
P→ 0 as N →∞ (69)

1√
N

NX
i=1

Qki
P→ 0 as N →∞, for k = 3, 4 (70)

To show the result in (68) we use that

E (Q1i) +E (Q2i) = E (Q2i) = 1{|ρ|<1}σ2α (1− ρ)T (71)

Var (Q1i +E (Q2i)) = E
¡
Q21i
¢

= 1{|ρ|<1}σ2ασ
2
iεT + σ4iε tr

¡
CT (ρ)

0CT (ρ)
¢
+ σ4iεAT (ρ)

0AT (ρ) τ (ρ) (72)

where we have used that εi0, αi and εi are all independent of each other with means zero such that all

covariances between the terms in Q1i are zero. In addition we have used the result in Lemma 6. Using
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this we have

1√
N

NX
i=1

E (Q1i +Q2i) → cTσ2α as N →∞

1

N

NX
i=1

Var (Q1i +E (Q2i)) → 1{c>0}Tσ2ασ2ε + T

µ
τ +

T − 1
2

¶
σ24ε as N →∞

which holds as 1
N

PN
i=1 σ

2
iε → σ2ε, 1

N

PN
i=1 σ

4
iε → σ4ε as N → ∞ and tr

¡
CT (ρ)

0CT (ρ)
¢
= T (T−1)

2 +

O
³
N−

1
2

´
and AT (ρ)

0AT (ρ) = T + O
³
N−

1
2

´
by Lemma 1. The result in (68) now follows by the

Liapounov Central Limit Theorem which can be applied since E |Q1i|2+δ
0
< K0 for some δ0 > 0 and all

i = 1, ..., N . Letting δ0 = min {2, δ1} this is seen in the following way

E |Q1i|2+δ
0 ≤ 22+2δ

0 ³
E |αi|2+δ

0
E |ε0iιT |2+δ

0
+E

¯̄
ε0iCT (ρ)

0 εi
¯̄2+δ0

+E |ε0iAT (ρ)|2+δ0E |τεi0|2+δ
0´

≤ 22+2δ
0 ³¡

E
¡
α4i
¢
+ 1
¢
(K2 + 1) +K4 + τ2+δ

0
(K + 1) (K2 + 1)

´
(73)

where the first inequality follows by Lemma 2 and by using that αi and εi0 are both independent of εi

and the second inequality follows by the result in Lemma 3 together with (48) and (50) in Lemma 4.

Here we have used that ε0iιT = ε0iAT (1).

Next, to show (69) we show that E
¯̄̄
1√
N

PN
i=1 (Q2i −E (Q2i))

¯̄̄
→ 0 as N →∞. We have that

E

¯̄̄̄
¯ 1√N

NX
i=1

(Q2i −E (Q2i))

¯̄̄̄
¯
2

=
1

N

NX
i=1

NX
j=1

Cov (Q2i, Q2j) =
1

N

NX
i=1

Var (Q2i)

≤ 1

N

NX
i=1

E
¡
α4i
¢
(1− ρ)2 T 2 = O

¡
N−1

¢
where the first line holds as Q2i is independent across i, the first inequality holds as Var (Q2i) ≤ E

¡
Q22i

¢
and the last equality sign holds as E

¡
α4i
¢
= O (1) and (1− ρ)2 = O

¡
N−1

¢
. To show (70) we show that

E
¯̄̄
1√
N

PN
i=1Qki

¯̄̄
→ 0 as N →∞ for k = 3, 4. We have that

E

¯̄̄̄
¯ 1√N

NX
i=1

Q3i

¯̄̄̄
¯
2

=
1

N

NX
i=1

NX
j=1

E (Q3iQ3j) =
1

N

NX
i=1

E
¡
Q23i
¢

=
1

N

NX
i=1

σ2iεσ
2
α (1− ρ)2 ι0TCT (ρ)CT (ρ)

0 ιT = O
¡
N−1

¢
where first line holds as Q3i is independent across i with mean zero since αi and εi are independent with

means zero, and the last line holds as 1
N

PN
i=1 σ

2
iε = O (1), ι0TCT (ρ)CT (ρ)

0 ιT = O (1) and (1− ρ)2 =

O
¡
N−1

¢
. Thus, E

¯̄̄
1√
N

PN
i=1Q3i

¯̄̄2
→ 0 as N →∞. Finally, we also have that

E

¯̄̄̄
¯ 1√N

NX
i=1

Q4i

¯̄̄̄
¯
2

=
1

N

NX
i=1

NX
j=1

E (Q4iQ4j) =
1

N

NX
i=1

E
¡
Q24i
¢

=
1

N

NX
i=1

σ2iεσ
2
α (1− ρ)2 ι0TAT (ρ)AT (ρ)

0 ιT τ = O
¡
N−1

¢
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where first line holds as Q4i is independent across i with mean zero since αi and εi0 are indepen-

dent with means zero, and the last line holds as 1
N

PN
i=1 σ

2
iε = O (1), ι0TAT (ρ)AT (ρ)

0 ιT = O (1) and

(1− ρ)2 = O
¡
N−1

¢
. Thus, E

¯̄̄
1√
N

PN
i=1Q4i

¯̄̄2
→ 0 as N →∞. Altogether, we have obtained the desired

limits and the result in (b1) is proved.

(a2) Using the expression for y0i,−1yi,−1 given in (61) we prove the result by showing that

1

N2

NX
i=1

R1i
P→ 1

2c̃
Tσ2ε as N →∞ (74)

1

N2

NX
i=1

Rki
P→ 0 as N →∞ for k = 2, 3, 4 (75)

As the results in (64) and (65) also hold for ρ = 1−c̃/N the probability limit of 1
N2

PN
i=1R1i is determined

by the probability limit of the cross-section average of the third term in R1i. We have that

1

N2

NX
i=1

ε2i0τ (ρ)AT (ρ)
0AT (ρ) =

1

N

1

N

NX
i=1

ε2i0
1

1− ρ2
AT (ρ)

0AT (ρ)
P→ 1

2c̃
Tσ22ε as N →∞

as 1
N

PN
i=1 ε

2
i0

P→ σ2ε as N → ∞, AT (ρ)
0AT (ρ) = T + O

¡
N−1

¢
and τ (ρ) = N

2c̃ + o
¡
N−1

¢
by Lemma

1. This proves the result in (74). We show (75) by showing that E
¯̄̄
1
N2

PN
i=1Rki

¯̄̄2
→ 0 as N →∞ for

k = 2, 3, 4. By using similar arguments as when showing (63) we have that

E

¯̄̄̄
¯ 1N2

NX
i=1

Rki

¯̄̄̄
¯
2

=
1

N4

NX
i=1

NX
j=1

E (RkiRkj) =
1

N4

NX
i=1

E
¡
R2ki

¢
for k = 2, 3, 4

and that 1
N4

PN
i=1E

¡
R22i
¢
= 1

N3O (1), 1
N4

PN
i=1E

¡
R23i
¢
= 1

N2O (1) and 1
N4

PN
i=1E

¡
R24i
¢
= 1

N2O (1).

This proves the result in (75) and (a2) is proved.

(b2) Using the expression for y0i,−1ui given in (67) we prove the result by showing that

1

N

NX
i=1

(Q1i +E (Q2i))
w→ N

µ
0,
1

2c̃
Tσ4ε

¶
as N →∞ (76)

and

1

N

NX
i=1

(Q2i −E (Q2i))
P→ 0 as N →∞ (77)

1

N

NX
i=1

Qki
P→ 0 as N →∞, for k = 3, 4 (78)

Markov’s Law of Large Numbers the cross-section average of the first two terms in Q1i converge to

zero in probability when N tends to infinity. Hence the cross-section average of the third term in Q1i

determines the limiting distribution of 1
N

PN
i=1Q1i. We have that E (ε

0
iAT (ρ) εi0) = 0 as εi and εi0 are

independent and that

1

N

NX
i=1

Var (ε0iAT (ρ) εi0) =
1

N

NX
i=1

σ4iεAT (ρ)
0AT (ρ)→ Tσ4ε as N →∞
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Applying the Liapounov Central Limit Theorem yields

1√
N

NX
i=1

ε0iAT (ρ) εi0
w→ N (0, Tσ4ε) as N →∞

This in turn implies that

1

N

NX
i=1

ε0iAT (ρ) εi0
p
τ (ρ)

w→ N

µ
0,
1

2c̃
Tσ4ε

¶
asN →∞ (79)

as
p
τ (ρ) /N =

p
1/ (2c̃) + o

³
N−

1
2

´
by Lemma 1. Using that 1

N

PN
i=1E (Q2i) =

1
N

PN
i=1 σ

2
αT

c̃
N → 0

as N →∞ gives the result in (76). By using similar arguments as when showing (69) and (70) we have

that

E

¯̄̄̄
¯ 1N

NX
i=1

Qki −E (Qki)

¯̄̄̄
¯
2

≤ 1

N2

NX
i=1

NX
j=1

E (QkiQkj) =
1

N2

NX
i=1

E
¡
Q2ki

¢
for k = 2, 3, 4

and that 1
N2

PN
i=1E

¡
Q22i
¢
= 1

NO
¡
N−2

¢
, 1

N2

PN
i=1E

¡
Q23i

¢
= 1

NO
¡
N−2

¢
and 1

N2

PN
i=1E

¡
Q24i
¢
=

1
NO

¡
N−1

¢
. This proves the result in (76) and (77). Altogether, we have proved the result in (b2).

¤

Proof of Proposition 2:

Proposition 2 follows by the results already obtained and Lemma 8 given below.

Lemma 8 Under Assumption 1, 2, 3 (i), 4 and the local-to-unity sequence for ρ given by ρ = 1− c/
√
N

for c ≥ 0, the following result holds

1

N

NX
i=1

y0i,−1ûiû
0
iyi,−1

P→ T

µ
1{c>0}σ2ασ2ε +

µ
τ +

T − 1
2

¶
σ4ε

¶
as N →∞ (a1)

Under Assumption 1, 2, 3 (ii), 4 and the local-to-unity sequence for ρ given by ρ = 1 − c̃/N for c̃ > 0,

the following result holds

1

N2

NX
i=1

y0i,−1ûiû
0
iyi,−1

P→ 1

2c̃
Tσ4ε as N →∞ (a2)

Combining the results in (a1) and (a2) in Lemma 8 above with (a1) and (a2) in Lemma 7 we have that

V̂OLS (k) =

Ã
1

N2k

NX
i=1

y0i,−1yi,−1

!−1
1

N2k

NX
i=1

y0i,−1ûiû
0
iyi,−1

Ã
1

N2k

NX
i=1

y0i,−1yi,−1

!−1

P→


1

T

1{c>0}σ2ασ2ε +
¡
τ + T−1

2

¢
σ4ε¡

1{c>0}σ2α +
¡
τ + T−1

2

¢
σ2ε
¢2 as N →∞ when k = 1

2

c̃
σ4ε
σ22ε

2

T
as N →∞ when k = 1

Using the expression for tOLS in (13) we have that

tOLS = V̂OLS (k)
− 1
2 Nk (ρ̂OLS − 1) = V̂OLS (k)

− 1
2 Nk (ρ̂OLS − ρ)− cV̂OLS (k)

− 1
2 (80)
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Using this, the results in Proposition 1 yields the results in Proposition 2.

Proof of Lemma 8

Inserting the expression for ûi given by ûi = ui + (ρ− ρ̂OLS) yi,−1 yields

1

N2k

NX
i=1

y0i,−1ûiû
0
iyi,−1 =

1

N2k

NX
i=1

y0i,−1uiu
0
iyi,−1 + (ρ− ρ̂OLS)

2 1

N2k

NX
i=1

y0i,−1yi,−1y
0
i,−1yi,−1

+2 (ρ− ρ̂OLS)
1

N2k

NX
i=1

y0i,−1yi,−1y
0
i,−1ui

As Nk (ρ̂OLS − ρ) = O (1) by Proposition 1, we prove the result by showing that

(i) :
1

N

NX
i=1

y0i,−1uiu
0
iyi,−1

P→ T

µ
1{c>0}σ2ασ2ε +

µ
τ +

T − 1
2

¶
σ4ε

¶
as N →∞ (81)

(ii) :
1

N2

NX
i=1

y0i,−1uiu
0
iyi,−1

P→ 1

2c̃
Tσ4ε as N →∞ (82)

1

N4k

NX
i=1

y0i,−1yi,−1y
0
i,−1yi,−1

P→ 0 as N →∞ (83)

1

N3k

NX
i=1

y0i,−1yi,−1y
0
i,−1ui

P→ 0 as N →∞ (84)

According to (61) we have y0i,−1yi,−1 =
P4

k=1Rki and according to (67) we have y0i,−1ui =
P4

i=1Qki.

Using these expressions and Lemma 3 we have

E
¡
R21i
¢ ≤ 4

³
E
¡
α4i
¢
T 2 +E

³¡
ε0iCT (ρ)

0 CT (ρ) εi
¢2´

+E
¡
ε4i0
¢
τ (ρ)2

¡
AT (ρ)

0AT (ρ)
¢2´

= O (1) τ (ρ)2

E
¡
R22i
¢ ≤ σ2ασ

2
iει
0
TCT (ρ)CT (ρ)

0 ιT = O (1)

E
¡
R23i
¢ ≤ σ2ασ

2
iει
0
TAT (ρ)AT (ρ)

0 ιT τ (ρ) = O (1) τ (ρ)

E
¡
R24i
¢
= σ4iεAT (ρ)

0CT (ρ)CT (ρ)
0AT (ρ) τ (ρ) = O (1) τ (ρ)

and

E
¡
Q21i

¢
= σ4iε tr

¡
CT (ρ)

0
CT (ρ)

¢
= O (1)

E
¡
Q22i

¢
= E

¡
α4i
¢
(1− ρ)2 T 2 = O

¡
N−2k

¢
E
¡
Q23i

¢
= σ2ασ

2
iε (1− ρ)2 ι0TCT (ρ)CT (ρ)

0 ιT = O
¡
N−2k

¢
E
¡
Q24i

¢
= σ2ασ

2
iε (1− ρ)2 ι0TAT (ρ)AT (ρ)

0 ιT τ (ρ) = O
¡
N−2k

¢
τ (ρ)

To show the result in (81) we first of all show that

(i) :
1

N

NX
i=1

Q21i
P→ T

µ
1{c>0}σ2ασ2ε +

µ
τ +

T − 1
2

¶
σ4ε

¶
as N →∞

(ii) :
1

N2

NX
i=1

Q21i
P→ 1

2c̃
Tσ4ε as N →∞
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The results follow by (72) and (76) respectively and Markov’s Law of Large Numbers. Next, we show that
1

N2k

PN
i=1 y

0
i,−1uiu

0
iyi,−1− 1

N2k

PN
i=1Q

2
1i

P→ 0 asN →∞ by showing thatE
¯̄̄
1

N2k

PN
i=1

¡
y0i,−1uiu

0
iyi,−1 −Q21i

¢¯̄̄
→ 0 as N →∞. We have

E

¯̄̄̄
¯ 1N2k

NX
i=1

¡
y0i,−1uiu

0
iyi,−1 −Q21i

¢¯̄̄̄¯
≤ 1

N2k

NX
i=1

E |Q2i +Q3i +Q4i|2 + 2E |Q1i (Q2i +Q3i +Q4i)|

≤ 1

N2k

NX
i=1

µ
4E
¡
Q22i +Q23i +Q24i

¢
+
q
2E (Q21i)E (Q

2
2i +Q23i +Q24i)

¶

=

 O
³
N−

1
2

´
when τ (ρ) = τ and k = 1

2

1
NO (1) when τ (ρ) = 1

1−ρ2 and k = 1

where the first inequality results from the triangle inequality, the second inequality results from the

Cauchy-Schwarz inequality and Lemma 2 and the last line holds according to the expressions for E
¡
Q2ki

¢
for k = 1, 2, 3, 4 given above. Thus, E

¯̄̄
1

N2k

PN
i=1

¡
y0i,−1uiu0iyi,−1 −Q21i

¢¯̄̄ → 0 as N → ∞. Altogether
this proves the result in (81).

To show (83) and (84) we show that E
¯̄̄
1
N2

PN
i=1

¡
y0i,−1yi,−1

¢2 ¯̄̄→ 0 and E
¯̄̄
1

N
3
2

PN
i=1 y

0
i,−1yi,−1y

0
i,−1ui

¯̄̄
→

0 as N →∞. We have

E

¯̄̄̄
¯ 1N4k

NX
i=1

¡
y0i,−1yi,−1

¢2 ¯̄̄̄¯ =
1

N4k

NX
i=1

E
³
(R1i +R2i +R3i +R4i)

2
´

≤ 1

N4k

NX
i=1

³
E
¡
R21i
¢ 1
2 +E

¡
R22i
¢ 1
2 +E

¡
R23i
¢ 1
2 +E

¡
R24i
¢ 1
2

´2
=

( 1
NO (1) when τ (ρ) = τ and k = 1

2

1
N3kO

¡
N2k

¢
when τ (ρ) = 1

1−ρ2 and k = 1

where the inequality results from Minkowski’s inequality and the last line holds according to the ex-

pressions for E
¡
R2ki

¢
for k = 1, 2, 3, 4 given above. Thus E

¯̄̄
1

N4k

PN
i=1

¡
y0i,−1yi,−1

¢2 ¯̄̄ → 0 as N → ∞.
Finally, we have

E

¯̄̄̄
¯ 1N3k

NX
i=1

y0i,−1yi,−1y
0
i,−1ui

¯̄̄̄
¯ ≤ 1

N3k

NX
i=1

r
E
³¡
y0i,−1yi,−1

¢2´³
E
¡
y0i,−1ui

¢2´
≤ 1

N3k

NX
i=1

Ã
4X

k=1

E
¡
R2ki

¢ 1
2

!Ã
4X

k=1

E
¡
Q2ki

¢ 1
2

!

=

( 1√
N
O (1) when τ (ρ) = τ and k = 1

2

1
N2kO

¡
Nk
¢
when τ (ρ) = 1

1−ρ2 and k = 1

where the first inequality results from the triangle inequality and the Cauchy-Schwarz inequality, the

second inequality results from Minkowski’s inequality and the last line holds according to the expressions

for E
¡
R2ki

¢
and E

¡
Q2ki

¢
for k = 1, 2, 3, 4 given above. Thus, E

¯̄̄
1

N3k

PN
i=1 y

0
i,−1yi,−1y0i,−1ui

¯̄̄
→ 0 as

N →∞. Altogether, we have obtained the desired limits and the result is proved. ¤
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A.3 Proofs of the propositions in Section 3.2: Breitung-Meyer

For −1 < ρ ≤ 1 the following expression for yit − yi0 is obtained by recursive substitution in (16)

yit − yi0 =
¡
ρt − 1¢ (yi0 − αi) + ρt−1εi1 + ...+ εit for t = 1, ..., T (85)

Inserting the expression for the initial value given in Assumption 3 yields

yit − yi0 =
¡
ρt − 1¢pτ (ρ)εi0 + ρt−1εi1 + ...+ εit for t = 1, ..., T (86)

Using stacked notation, the regressor ỹi,−1 and the regression error vi can be expressed as follows

ỹi,−1 = yi,−1 − ιT yi0 = CT (ρ) εi +BT (ρ)
p
τ (ρ)εi0 (87)

vi = εi + (ρ− 1)
p
τ (ρ)ιT εi0 (88)

where ιT is a T×1 vector of ones, CT (ρ) is the T×T matrix defined in (46) and BT (ρ) is the T×1 vector
defined as BT (ρ) =

£
0, ρ− 1, ..., ρT−1 − 1¤0. Note that BT (ρ) = −c/

√
N [0, 1, ..., T − 1]+o

³
N−

1
2

´
when

ρ = 1− c/
√
N according to Lemma 1.

Proof of Proposition 3:

Using the equation in (17) we have that

√
N (ρ̂0 − ρ) =

Ã
1

N

NX
i=1

ỹ0i,−1ỹi,−1

!−1
1√
N

NX
i=1

ỹ0i,−1vi (89)

Proposition 3 now follows by the results in Lemma 9 below.

Lemma 9 Under Assumption 1-4 and the local-to-unity sequence for ρ given by ρ = 1 − c/
√
N , the

following results hold

(i) + (ii) :
1

N

NX
i=1

ỹ0i,−1ỹi,−1
P→ σ2ε

T (T − 1)
2

as N →∞ (a)

(i) :
1√
N

NX
i=1

ỹ0i,−1vi
w→ N

µ
0, σ4ε

T (T − 1)
2

¶
as N →∞ (b1)

(ii) :
1√
N

NX
i=1

ỹ0i,−1vi
w→ N

µ
c

2
σ2ε

T (T − 1)
2

, σ4ε
T (T − 1)

2

¶
as N →∞ (b2)

Proof of Lemma 9:

(a) Using the expression for ỹi,−1 given in equation (87) we have

ỹ0i,−1ỹi,−1 = R1i +R2i + 2R3i (90)

where

R1i = ε0iCT (ρ)
0CT (ρ) εi

R2i = ε2i0τ (ρ)BT (ρ)
0BT (ρ)

R3i = ε0iCT (ρ)
0BT (ρ)

p
τ (ρ)εi0
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We prove the result by showing that

1

N

X
R1i

P→ σ2ε
T (T − 1)

2
as N →∞ (91)

1

N

X
Rki

P→ 0 as N →∞ for k = 2, 3 (92)

We have that

1

N

NX
i=1

E (R1i) =
1

N

NX
i=1

σ2iε tr
¡
CT (ρ)

0
CT (ρ)

¢→ σ2ε
T (T − 1)

2
as N →∞

since 1
N

PN
i=1 σ

2
iε → σ2ε as N → ∞ by Assumption 4 and tr

¡
CT (ρ)

0CT (ρ)
¢
= tr

¡
CT (1)

0 CT (1)
¢
+

O
³
N−

1
2

´
= T (T−1)

2 +O
³
N−

1
2

´
by Lemma 1. The result in (91) then follows by Markov’s Law of Large

Numbers which can be applied since E |R1i|1+δ1 ≤ E |R1i|2+δ1 +1 < K1+1 for all i = 1, ..., N according

to Lemma 2 and (47) in Lemma 4.

Next, we show (92) by showing that E
¯̄̄
1
N

PN
i=1Rki

¯̄̄
→ 0 as N →∞ for k = 2, 3. We have that

E

¯̄̄̄
¯ 1N

NX
i=1

R2i

¯̄̄̄
¯ ≤ 1

N

NX
i=1

E
¡
ε2i0
¢
τ (ρ)BT (ρ)

0BT (ρ)

=
1

N

NX
i=1

σ2iετ (ρ)BT (ρ)
0BT (ρ) = O

³
N−

1
2

´
(93)

where the first inequality results from the triangle inequality and the last equality sign holds as
1
N

PN
i=1 σ

2
iε = O (1) by Assumption 4 and τ (ρ) = O

³
N

1
2

´
and BT (ρ) = O

³
N−

1
2

´
by Lemma 1. Thus,

E
¯̄̄
1
N

PN
i=1R2i

¯̄̄
→ 0 as N →∞. Finally, we have that

E

¯̄̄̄
¯ 1N

NX
i=1

R3i

¯̄̄̄
¯ ≤ 1

N

NX
i=1

E
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εi0ε

0
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¯̄̄
≤ 1

N
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0CT (ρ) εi

¢
τ (ρ)

=
1

N

NX
i=1

q
E (ε2i0)E (ε

2
it) tr

¡
CT (ρ)

0BT (ρ)BT (ρ)
0CT (ρ)

¢
τ (ρ)

=
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N

NX
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σ4iε

q
τ (ρ)BT (ρ)

0CT (ρ)CT (ρ)
0BT (ρ) = O

³
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1
4

´
(94)

where the first inequality results from the triangle inequality, the second inequality results from the

Cauchy-Schwarz inequality and the last line holds by using the same arguments as above. Thus,

E
¯̄̄
1
N

PN
i=1R3i

¯̄̄
→ 0 as N →∞. Altogether, the desired results hold and part (a) is proved.

(b1) and (b2) Using the expressions for ỹi,−1 and vi given in equations (87)and (88) we have

ỹ0i,−1vi = Q1i +Q2i +Q3i +Q4i (95)
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where

Q1i = ε0iCT (ρ)
0
εi

Q2i = ε0iCT (ρ)
0
ιT (ρ− 1)

p
τ (ρ)εi0

Q3i = ε0iBT (ρ)
p
τ (ρ)εi0

Q4i = ε2i0τ (ρ) (ρ− 1)BT (ρ)
0 ιT

We show that

(i) :
1√
N

NX
i=1

(Q1i +E (Q4i))
w→ N

µ
0, σ4ε

T (T − 1)
2

¶
as N →∞ (96)

(ii) :
1√
N

NX
i=1

(Q1i +E (Q4i))
w→ N

µ
c

2
σ2ε

T (T − 1)
2

, σ4ε
T (T − 1)

2

¶
as N →∞ (97)

and

1√
N

NX
i=1

Qki
P→ 0 as N →∞, for k = 2, 3 (98)

1√
N

NX
i=1

(Q4i −E (Q4i))
P→ 0 as N →∞ (99)

First to show (96) and (97) we note that

E (Q1i) = E
¡
ε0iCT (ρ)

0 εi
¢
= σ2iε tr (CT (ρ)) = 0

Var (Q1i) = E
¡
Q21i
¢
= σ4iε tr

¡
CT (ρ)

0CT (ρ)
¢

where we have used Lemma 6. Using this we find

1

N

NX
i=1

Var (Q1i) =
1

N

NX
i=1

E
¡
Q21i

¢→ σ4ε
T (T − 1)

2
as N →∞ (100)

Then the Liapounov Central Limit Theorem, which can be applied since E |Q1i|2+δ1 < K4 for all

i = 1, ..., N according to (50) in Lemma 4, gives

1√
N

NX
i=1

Q1i
w→ N

µ
0, σ4ε

T (T − 1)
2

¶
as N →∞ (101)

Also we have that

1√
N

NX
i=1

E (Q4i) = −c
Ã
1

N

NX
i=1

σ2iε

!
τ (ρ)

µ
(1 + 2 + ...+ (T − 1)) −c√

N
+ o

³
N−

1
2

´¶
which implies

(i) :
1√
N

NX
i=1

E (Q4i)→ 0 as N →∞ (102)

(ii) :
1√
N

NX
i=1

E (Q4i)→ c

2
σ2ε

T (T − 1)
2

as N →∞ (103)
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Using this in combination with (101) yields the results in (96) and (97).

Next, we show (98) by showing that E
¯̄̄
1√
N

PN
i=1Qki

¯̄̄2
→ 0 as N →∞ for k = 2, 3. We have that

E

¯̄̄̄
¯ 1√N

NX
i=1

Q2i

¯̄̄̄
¯
2

=
1

N

NX
i=1

NX
j=1

E (Q2iQ2j) =
1

N

NX
i=1

E
¡
Q22i
¢

(104)

=
1

N

NX
i=1

σ4iετ (ρ) (ρ− 1)2 ι0TCT (ρ)CT (ρ)
0 ιT = O

³
N−

1
2

´
where the first line holds as the sequence Q2i is independent across i with mean zero and the last line

holds as 1
N

PN
i=1 σ

4
iε = O (1), τ (ρ) = O

³
N

1
2

´
, (ρ− 1)2 = O (N) and ι0TCT (ρ)CT (ρ)

0 ιT = O (1). Thus

E
¯̄̄
1√
N

PN
i=1Q2i

¯̄̄2
→ 0 as N →∞. Using similar arguments we have

E

¯̄̄̄
¯ 1√N

NX
i=1

Q3i

¯̄̄̄
¯
2

=
1

N

NX
i=1

E
¡
Q23i

¢
=
1

N

NX
i=1

σ4iετ (ρ)BT (ρ)
0BT (ρ) = O

³
N−

1
2

´
(105)

such that E
¯̄̄
1√
N

PN
i=1Q3i

¯̄̄2
→ 0 as N →∞. Finally we show (99) by showing that

E
¯̄̄
1√
N

PN
i=1 (Q4i −E (Q4i))

¯̄̄2
→ 0 as N →∞. We have

E

¯̄̄̄
¯ 1√N

NX
i=1

(Q4i −E (Q4i))

¯̄̄̄
¯
2

=
1

N

NX
i=1

NX
j=1

Cov (Q4i,Q4j) ≤ 1

N

NX
i=1

E
¡
Q24i

¢
=

1

N

NX
i=1

E
¡
ε4i0
¢
τ (ρ)2 (ρ− 1)2BT (ρ)

0 ιT = O
³
N−

1
2

´
(106)

The first line holds as the sequence Q4i − E (Q4i) is independent across i with mean zero. The rest

follows by using the same arguments as above. Altogether, the desired results hold and part (b1) and

(b2) is proved. ¤

Proof of Proposition 4:

The proposition follows by the results already obtained in the previous and Lemma 10 given below.

Lemma 10 Under Assumption 1-4 and the local-to-unity sequence for ρ given by ρ = 1 − c/
√
N for

c ≥ 0 the following result holds
NX
i=1

ỹ0i,−1v̂iv̂
0
iỹi,−1

P→ σ4ε
T (T − 1)

2
as N →∞ (a)

Combining the result in Lemma 10 with (a) in Lemma 9 we have that

V̂0 =

Ã
1

N

NX
i=1

ỹ0i,−1ỹi,−1

!−1
1

N

NX
i=1

ỹ0i,−1v̂iv̂
0
iỹi,−1

Ã
1

N

NX
i=1

ỹ0i,−1ỹi,−1

!−1
P→ σ4ε

σ22ε

T (T − 1)
2

as N →∞ (107)
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Using the expressions for t0 and t̄0 given in (21) and (22) respectively we have that

t0 = V̂
− 1
2

0

√
N (ρ̂0 − 1) = V̂

− 1
2

0

√
N (ρ̂0 − ρ)− cV̂

−1
2

0 (108)

t̄0 =

r
T (T − 1)

2

√
N (ρ̂0 − 1) =

r
T (T − 1)

2

√
N (ρ̂0 − ρ)− c

r
T (T − 1)

2
(109)

Using this the results in Proposition 3 yields the results in Proposition 4.

Proof of Lemma 10:

Inserting the expression for v̂i given by v̂i = vi + (ρ− ρ̂0) ỹi,−1 yields

1

N

NX
i=1

ỹ0i,−1v̂iv̂
0
iỹi,−1 =

1

N

NX
i=1

ỹ0i,−1viv
0
iỹi,−1 + (ρ− ρ̂0)

2 1

N

NX
i=1

ỹ0i,−1ỹi,−1ỹ
0
i,−1ỹi,−1

+2 (ρ− ρ̂0)
1

N

NX
i=1

ỹ0i,−1ỹi,−1ỹ
0
i,−1vi

As
√
N (ρ̂0 − ρ) = O (1) by Proposition 3, we prove the result by showing that

1

N

NX
i=1

ỹ0i,−1viv
0
iỹi,−1

P→ σ4ε
T (T − 1)

2
as N →∞ (110)

1

N2

NX
i=1i

¡
ỹ0i,−1ỹi,−1

¢2 P→ 0 as N →∞ (111)

1

N
3
2

NX
i=1

ỹ0i,−1ỹi,−1ỹ
0
i,−1vi

P→ 0 as N →∞ (112)

According to (90) we have ỹ0i,−1ỹi,−1 =
P3

k=1Rki and according to (95) we have ỹ0i,−1vi =
P4

i=1Qki.

Using these expressions we have

E
¡
R21i
¢
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³¡
ε0iCT (ρ)

0CT (ρ) εi
¢2´
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¢
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0BT (ρ)
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¢
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R23i
¢
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0
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³
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´
and

E
¡
Q21i
¢
= E

³¡
ε0iCT (ρ)

0
εi
¢2´

= σ4iε tr
¡
CT (ρ)

0
CT (ρ)

¢
= O (1)

E
¡
Q22i
¢
= σ4iε (ρ− 1)2 τ (ρ) ι0TCT (ρ)CT (ρ)

0
ιT = O

³
N−

1
2

´
E
¡
Q23i
¢
= σ4iετ (ρ)BT (ρ)

0BT (ρ) = O
³
N−

1
2

´
E
¡
Q24i

¢
= E

¡
ε4i0
¢
τ (ρ)2 (ρ− 1)2BT (ρ)

0 ιT ι0TBT (ρ) = O
¡
N−1

¢
To show the result in (110) we first of all show that

1

N

NX
i=1

Q21i =
1

N

NX
i=1

ε0iCT (ρ)
0 εiε0iCT (ρ) εi

P→ σ4ε
T (T − 1)

2
as N →∞

This follows by (100) and Markov’s Law of Large Numbers which can be applied since E
¯̄
Q21i

¯̄1+δ1/2 =
E |Q1i|2+δ1 < K4 for all i = 1, ..., N according to (50) in Lemma 4. Next, we show that
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1
N

PN
i=1 ỹ

0
i,−1viv

0
iỹi,−1− 1

N

PN
i=1Q

2
1i

P→ 0 as N →∞ by showing that E
¯̄̄
1
N

PN
i=1

¡
ỹ0i,−1viv

0
iỹi,−1 −Q21i

¢¯̄̄
→ 0 as N →∞. We have

E
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¯ 1N

NX
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¡
ỹ0i,−1viv

0
iỹi,−1 −Q21i

¢¯̄̄̄¯ ≤ 1

N

NX
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E |Q2i +Q3i +Q4i|2 + 2E |Q1i (Q2i +Q3i +Q4i)|

≤ 1

N

NX
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µ
4E
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Q22i +Q23i +Q24i
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+
q
2E (Q21i)E (Q

2
2i +Q23i +Q24i)

¶
= O

³
N−

1
2

´
where the first inequality results from the triangle inequality, the second inequality results from the

Cauchy-Schwarz inequality and Lemma 2 and the last line holds according to the expressions for E
¡
Q2ki

¢
for k = 1, 2, 3, 4 given above. Thus, E

¯̄̄
1
N

PN
i=1

¡
ỹ0i,−1viv

0
iỹi,−1 −Q21i

¢¯̄̄→ 0 as N →∞. Altogether this
proves the result in (110).

To show (111) and (112) we show that E
¯̄̄
1
N2

PN
i=1

¡
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¢2 ¯̄̄→ 0 and E
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0
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¯̄̄
→ 0 as N →∞. We have
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N
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where the inequality follows by Lemma 2 and the last line holds according to the expressions for E
¡
R2ki

¢
for k = 1, 2, 3 given above. Thus E

¯̄̄
1
N2

PN
i=1

¡
ỹ0i,−1ỹi,−1

¢2 ¯̄̄→ 0 as N →∞. Finally, we have
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¯̄̄̄
¯ ≤ 1
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3
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!Ã
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E
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=
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N
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where the first inequality results from the triangle inequality and the Cauchy-Schwarz inequality, the sec-

ond inequality results from Minkowski’s inequality and the last line holds according to the expressions for

E
¡
R2ki

¢
for k = 1, 2, 3 and E

¡
Q2ki

¢
for k = 1, 2, 3, 4 given above. Thus, E

¯̄̄
1

N
3
2

PN
i=1 ỹ

0
i,−1ỹi,−1ỹ

0
i,−1vi

¯̄̄
→

0 as N →∞. Altogether, we have obtained the desired limits and the result is proved. ¤

A.4 Proofs of the propositions in Section 3.3: Harris-Tzavalis

Using the expressions for yi,−1 and ui given in (58) and (59) and that QT ιT = 0 we have

QTyi,−1 = QTCT (ρ) εi +QTAT (ρ)
p
τ (ρ)εi0 (113)

QTui = QT εi (114)
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where QT is the symmetric idempotent T × T matrix defined as QT = IT − 1
T ιT ι

0
T and CT (ρ) is the

T × T matrix and AT (ρ) is the T × 1 vector both defined in (46).

Proof of Proposition 5:

Using the expression for ρ̂WG in equation (28) we have

√
N

µ
ρ̂WG − ρ+

3

T + 1

¶

=

Ã
1

N

NX
i=1

y0i,−1QTyi,−1

!−1
1√
N

NX
i=1

µ
y0i,−1QT εi +

3

T + 1
y0i,−1QTyi,−1

¶
(115)

Proposition 5 now follows by the results in Lemma 11 below.

Lemma 11 Under Assumption 1, 2, 3, 4 and the local-to-unity sequence for ρ given by ρ = 1− c/
√
N

the following results hold

1

N

NX
i=1

y0i,−1QT yi,−1
P→ σ2ε

(T − 1) (T + 1)
6

as N →∞ (a)

(i) :
1√
N

NX
i=1

µ
y0i,−1QT εi +

3

T + 1
y0i,−1QT yi,−1

¶
w→ N (−cσ2εb1, g1m4 + g2σ4ε) as N →∞ (b1)

(ii) :
1√
N

NX
i=1

µ
y0i,−1QT εi +

3

T + 1
y0i,−1QT yi,−1

¶
w→ N (cσ2εb2, g1m4 + g2σ4ε) as N →∞ (b2)

where

b1 =
(T − 1) (T − 2)

12
b2 =

(T − 1) (T + 4)
24

(116)

and

g1 =
(T − 1) (T − 2) (2T − 1)

15T (T + 1)
g2 =

(T − 1) ¡17T 3 − 44T 2 + 77T − 24¢
60T (T + 1)

(117)

Proof of Lemma 11:

(a) Using the expression for QTyi,−1 given in equation (113) above we have

y0i,−1QT yi,−1 = R1i +R2i + 2R3i (118)

where

R1i = ε0iCT (ρ)
0QTCT (ρ) εi

R2i = ε2i0τ (ρ)AT (ρ)
0QTAT (ρ)

R3i = ε0iCT (ρ)
0QTAT (ρ)

p
τ (ρ)εi0

We prove the result by showing that

1

N

NX
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R1i
P→ σ2ε

(T − 1) (T + 1)
6

as N →∞ (119)

1

N

NX
i=1

Rki
P→ 0 as N →∞ for k = 2, 3 (120)
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The result in (119) follows by Markov’s Large of Large Numbers which can be applied according to (47)

and (49) in Lemma 4. This gives

1

N

NX
i=1

R1i =
1

N

NX
i=1

ε0iCT (ρ)
0 CT (ρ) εi − 1

T

1

N
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¶
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as N →∞

Next, we show (120) by showing that E
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1
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→ 0 as N →∞ for k = 2, 3. We have that
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´
where the inequality follows by the triangle inequality and the last equality sign holds as 1
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2
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O (1), τ (ρ) = O
³
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´
and AT (ρ)
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. The last valuation follows as AT (ρ) =

ιT +O
³
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1
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´
and QT ιT = 0. Thus, E

¯̄̄
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PN
i=1R2i

¯̄̄
→ 0 as N →∞. We also have that
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where the inequality follows from the triangle inequality and the Cauchy-Schwarz inequality and the last

equality sign holds as 1
N

PN
i=1 σ

2
iε = O (1), τ (ρ) = O

³
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1
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´
, CT (ρ) = O (1) and AT (ρ)

0QT = O
³
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´
.

Thus, E
¯̄̄
1
N

PN
i=1R3i

¯̄̄
→ 0 as N → ∞. Altogether, we have obtained the desired limits and the result

in (a) is proved.

(b1) and (b2) Using the expression for QTyi,−1 given in (113) we have

y0i,−1QT εi = Q1i +Q2i (121)

where

Q1i = ε0iCT (ρ)
0QT εi

Q2i = ε0iQTAT (ρ)
p
τ (ρ)εi0

We show the results in (b1) and (b2) by showing that

(i) :
1√
N

NX
i=1

µ
Q1i +

3

T + 1
(R1i +E (R2i))

¶
w→ N (−cσ2εb1, g1m4 + g2σ4ε) as N →∞ (122)

(ii) :
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µ
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3
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(R1i +E (R2i))
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and

1√
N

NX
i=1

Q2i
P→ 0 as N →∞ (124)

1√
N

NX
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(R2i −E (R2i))
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NX
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To show (122) and (123) we use that according to Lemma 1

AT (ρ) = ιT − ÃT
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N
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1
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´
(127)

CT (ρ) = CT (1)− C̃T
c√
N
+ o

³
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´
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where the T × 1 vector ÃT and the T × T matrix C̃T are defined as

ÃT =


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. . .
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Using this we have
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where we have used the following results
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This implies that
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Also using the expression for AT (ρ) in (127) and that ι0TQT we have
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as τ (ρ) =
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2c according to Lemma 1 and the following result
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These results can be found in Harris & Tzavalis (1999) p. 222. It has been checked that they are correct.

We can now apply the Liapounov Central Limit Theorem to the sequence 1√
N

PN
i=1

³
Q1i +

3
T+1R1i

´
as

both Q1i and R1i have bounded moments of order slightly greater than two according to the result in

Lemma 4. Altogether, this proves the results in (122) and (123).
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Next, we show the result in (124) by showing that E
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gether, we have proved the results in (b1) and (b2). ¤

Proof of Proposition 6:

The proposition follows by the results already obtained in the previous and Lemma 12 given below.

Lemma 12 Under Assumption 1, 2, 3, 4 and the local-to-unity sequence for ρ given by ρ = 1− c/
√
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for c ≥ 0 the following result holds
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where k1 and k2 are defined in (31). Using the expressions for t̄WG and tWG given in (33) and (35)

respectively we have that
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where ṼWG is defined in (32). Using this, the results in Proposition 5 yields the results in Proposition 6.

Proof of Lemma 12:

Inserting the expression for ω̂i given by ω̂i = QT εi + (ρ− ρ̂WG)QTyi,−1 yields
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and that
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The result in (137) holds by Markov’s Law of Large Numbers which can be applied according to (47)

and (49) in Lemma 4 and (50) and (51) also in Lemma 4 together with the result in (133). Using the

expressions for Rki for k = 1, 2, 3 and Qki for k = 1, 2 we have
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To prove (138) we show that E
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where the inequality follows by the triangle inequality and the Cauchy-Schwarz inequality and the last

line holds by using the expression for Q1i and Q2i given above. To prove (139) we use that
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tained the desired limits and the result is proved. ¤
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B Appendix

This appendix contains additional information on the outcome of the simulation experiments in Section

4. In the tables, the mean and standard deviation of the estimator of the autoregressive parameter are

reported. In Table 7-10 the columns corresponding to Test 1 and Test 2 show the empirical rejection

probabilities of the tests corresponding to the t-statistic and the normalized coefficient statistic, respec-

tively. In the figures, graphs of the local power is shown together with plots of the empirical power from

the simulation experiments. Using the same notation as in the tables, Test 1 and Test 2 in Figure 3 and

4 correspond to the t-statistic and the normalized coefficient statistic, respectively.

Figure 2: Power of the OLS test
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Figure 3: Power of the Breitung-Meyer tests

Figure 4: Power of the Harris-Tzavalis tests
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Table 3: OLS statistics when σ2α = 1 and τ (ρ) = 1

ρ T + 1 N Mean Std. Dev. Empirical power Local power

0.900 5 100 0.9309 0.0283 0.8032 0.8480
0.900 5 250 0.9321 0.0178 0.9892 0.9951
0.900 5 500 0.9324 0.0128 1.0000 1.0000
0.900 5 1000 0.9324 0.0091 1.0000 1.0000
0.900 10 100 0.9226 0.0166 1.0000 1.0000
0.900 10 250 0.9233 0.0103 1.0000 1.0000
0.900 10 500 0.9238 0.0072 1.0000 1.0000
0.900 10 1000 0.9241 0.0051 1.0000 1.0000
0.900 15 100 0.9201 0.0124 1.0000 1.0000
0.900 15 250 0.9207 0.0079 1.0000 1.0000
0.900 15 500 0.9209 0.0055 1.0000 1.0000
0.900 15 1000 0.9210 0.0039 1.0000 1.0000

0.950 5 100 0.9637 0.0275 0.3694 0.3788
0.950 5 250 0.9648 0.0173 0.6504 0.6801
0.950 5 500 0.9651 0.0125 0.8868 0.9104
0.950 5 1000 0.9652 0.0089 0.9916 0.9951
0.950 10 100 0.9589 0.0153 0.8796 0.9218
0.950 10 250 0.9595 0.0095 0.9978 0.9993
0.950 10 500 0.9599 0.0066 1.0000 1.0000
0.950 10 1000 0.9602 0.0046 1.0000 1.0000
0.950 15 100 0.9573 0.0108 0.9958 0.9992
0.950 15 250 0.9579 0.0069 1.0000 1.0000
0.950 15 500 0.9581 0.0048 1.0000 1.0000
0.950 15 1000 0.9582 0.0034 1.0000 1.0000

0.990 5 100 0.9913 0.0270 0.0968 0.0842
0.990 5 250 0.9924 0.0169 0.1146 0.1108
0.990 5 500 0.9927 0.0122 0.1502 0.1475
0.990 5 1000 0.9928 0.0087 0.2088 0.2119
0.990 10 100 0.9905 0.0142 0.1712 0.1509
0.990 10 250 0.9911 0.0088 0.2574 0.2493
0.990 10 500 0.9915 0.0062 0.3798 0.3914
0.990 10 1000 0.9917 0.0043 0.5926 0.6147
0.990 15 100 0.9905 0.0096 0.2528 0.2475
0.990 15 250 0.9910 0.0061 0.4340 0.4511
0.990 15 500 0.9912 0.0042 0.6770 0.6941
0.990 15 1000 0.9912 0.0030 0.9104 0.9191

1.000 5 100 0.9979 0.0318 0.0568 0.0500
1.000 5 250 0.9991 0.0200 0.0538 0.0500
1.000 5 500 0.9996 0.0141 0.0546 0.0500
1.000 5 1000 0.9998 0.0099 0.0520 0.0500
1.000 10 100 0.9989 0.0152 0.0638 0.0500
1.000 10 250 0.9994 0.0096 0.0564 0.0500
1.000 10 500 0.9998 0.0066 0.0548 0.0500
1.000 10 1000 1.0000 0.0046 0.0454 0.0500
1.000 15 100 0.9992 0.0098 0.0554 0.0500
1.000 15 250 0.9997 0.0062 0.0578 0.0500
1.000 15 500 0.9999 0.0043 0.0502 0.0500
1.000 15 1000 1.0000 0.0031 0.0442 0.0500
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Table 4: OLS statistics when σ2α = 10 and τ (ρ) = 1

ρ T + 1 N Mean Std. Dev. Empirical power Local power

0.900 5 100 0.9822 0.0133 0.3702 0.4088
0.900 5 250 0.9827 0.0084 0.6660 0.7228
0.900 5 500 0.9828 0.0060 0.8962 0.9354
0.900 5 1000 0.9828 0.0043 0.9930 0.9977
0.900 10 100 0.9753 0.0081 0.9430 0.9871
0.900 10 250 0.9757 0.0050 0.9994 1.0000
0.900 10 500 0.9759 0.0036 1.0000 1.0000
0.900 10 1000 0.9760 0.0025 1.0000 1.0000
0.900 15 100 0.9721 0.0064 0.9998 1.0000
0.900 15 250 0.9725 0.0040 1.0000 1.0000
0.900 15 500 0.9727 0.0028 1.0000 1.0000
0.900 15 1000 0.9727 0.0020 1.0000 1.0000

0.950 5 100 0.9902 0.0137 0.1840 0.1742
0.950 5 250 0.9907 0.0087 0.2822 0.2992
0.950 5 500 0.9907 0.0062 0.4516 0.4746
0.950 5 1000 0.9907 0.0044 0.6828 0.7228
0.950 10 100 0.9852 0.0083 0.5674 0.6147
0.950 10 250 0.9856 0.0051 0.8864 0.9218
0.950 10 500 0.9858 0.0037 0.9888 0.9964
0.950 10 1000 0.9859 0.0026 1.0000 1.0000
0.950 15 100 0.9826 0.0064 0.8906 0.9563
0.950 15 250 0.9830 0.0040 0.9990 0.9999
0.950 15 500 0.9831 0.0028 1.0000 1.0000
0.950 15 1000 0.9831 0.0020 1.0000 1.0000

0.990 5 100 0.9975 0.0141 0.0780 0.0664
0.990 5 250 0.9980 0.0089 0.0810 0.0776
0.990 5 500 0.9980 0.0064 0.0908 0.0920
0.990 5 1000 0.9980 0.0046 0.1244 0.1155
0.990 10 100 0.9960 0.0086 0.1190 0.1043
0.990 10 250 0.9964 0.0053 0.1552 0.1509
0.990 10 500 0.9966 0.0038 0.2128 0.2180
0.990 10 1000 0.9967 0.0027 0.3292 0.3372
0.990 15 100 0.9954 0.0064 0.1750 0.1650
0.990 15 250 0.9958 0.0041 0.2746 0.2795
0.990 15 500 0.9959 0.0028 0.4168 0.4424
0.990 15 1000 0.9959 0.0020 0.6554 0.6831

1.000 5 100 0.9979 0.0318 0.0568 0.0500
1.000 5 250 0.9991 0.0200 0.0538 0.0500
1.000 5 500 0.9996 0.0141 0.0546 0.0500
1.000 5 1000 0.9998 0.0099 0.0520 0.0500
1.000 10 100 0.9989 0.0152 0.0638 0.0500
1.000 10 250 0.9994 0.0096 0.0564 0.0500
1.000 10 500 0.9998 0.0066 0.0548 0.0500
1.000 10 1000 1.0000 0.0046 0.0454 0.0500
1.000 15 100 0.9992 0.0098 0.0554 0.0500
1.000 15 250 0.9997 0.0062 0.0578 0.0500
1.000 15 500 0.9999 0.0043 0.0502 0.0500
1.000 15 1000 1.0000 0.0031 0.0442 0.0500
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Table 5: OLS statistics when σ2α = 1 and τ (ρ) = 1/
¡
1− ρ2

¢
ρ T + 1 N Mean Std. Dev. Empirical power Local power

0.900 5 100 0.9151 0.0200 0.9966 0.9977
0.900 5 250 0.9157 0.0126 1.0000 1.0000
0.900 5 500 0.9158 0.0091 1.0000 1.0000
0.900 5 1000 0.9159 0.0064 1.0000 1.0000
0.900 10 100 0.9150 0.0136 1.0000 1.0000
0.900 10 250 0.9154 0.0084 1.0000 1.0000
0.900 10 500 0.9158 0.0059 1.0000 1.0000
0.900 10 1000 0.9159 0.0041 1.0000 1.0000
0.900 15 100 0.9152 0.0107 1.0000 1.0000
0.900 15 250 0.9157 0.0069 1.0000 1.0000
0.900 15 500 0.9159 0.0048 1.0000 1.0000
0.900 15 1000 0.9159 0.0034 1.0000 1.0000

0.950 5 100 0.9539 0.0149 0.9338 0.9354
0.950 5 250 0.9543 0.0093 0.9998 0.9996
0.950 5 500 0.9544 0.0067 1.0000 1.0000
0.950 5 1000 0.9544 0.0047 1.0000 1.0000
0.950 10 100 0.9538 0.0101 0.9996 0.9990
0.950 10 250 0.9541 0.0063 1.0000 1.0000
0.950 10 500 0.9543 0.0044 1.0000 1.0000
0.950 10 1000 0.9544 0.0031 1.0000 1.0000
0.950 15 100 0.9539 0.0079 1.0000 1.0000
0.950 15 250 0.9543 0.0050 1.0000 1.0000
0.950 15 500 0.9544 0.0035 1.0000 1.0000
0.950 15 1000 0.9544 0.0025 1.0000 1.0000

0.990 5 100 0.9900 0.0070 0.4268 0.4088
0.990 5 250 0.9902 0.0044 0.7216 0.7228
0.990 5 500 0.9902 0.0031 0.9328 0.9354
0.990 5 1000 0.9902 0.0022 0.9982 0.9977
0.990 10 100 0.9901 0.0047 0.6946 0.6831
0.990 10 250 0.9901 0.0030 0.9566 0.9563
0.990 10 500 0.9902 0.0021 0.9984 0.9990
0.990 10 1000 0.9902 0.0015 1.0000 1.0000
0.990 15 100 0.9901 0.0037 0.8598 0.8416
0.990 15 250 0.9901 0.0024 0.9944 0.9944
0.990 15 500 0.9902 0.0017 1.0000 1.0000
0.990 15 1000 0.9902 0.0012 1.0000 1.0000
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Table 6: OLS statistics when σ2α = 10 and τ (ρ) = 1/
¡
1− ρ2

¢
ρ T + 1 N Mean Std. Dev. Empirical power Local power

0.900 5 100 0.9650 0.0126 0.8826 0.9977
0.900 5 250 0.9654 0.0079 0.9972 1.0000
0.900 5 500 0.9655 0.0057 1.0000 1.0000
0.900 5 1000 0.9655 0.0041 1.0000 1.0000
0.900 10 100 0.9648 0.0082 0.9978 1.0000
0.900 10 250 0.9652 0.0051 1.0000 1.0000
0.900 10 500 0.9654 0.0036 1.0000 1.0000
0.900 10 1000 0.9654 0.0025 1.0000 1.0000
0.900 15 100 0.9650 0.0066 1.0000 1.0000
0.900 15 250 0.9653 0.0042 1.0000 1.0000
0.900 15 500 0.9654 0.0029 1.0000 1.0000
0.900 15 1000 0.9655 0.0021 1.0000 1.0000

0.950 5 100 0.9744 0.0110 0.7588 0.9354
0.950 5 250 0.9746 0.0069 0.9806 0.9996
0.950 5 500 0.9747 0.0050 1.0000 1.0000
0.950 5 1000 0.9746 0.0036 1.0000 1.0000
0.950 10 100 0.9742 0.0073 0.9788 0.9990
0.950 10 250 0.9744 0.0045 1.0000 1.0000
0.950 10 500 0.9746 0.0032 1.0000 1.0000
0.950 10 1000 0.9746 0.0023 1.0000 1.0000
0.950 15 100 0.9743 0.0058 0.9994 1.0000
0.950 15 250 0.9746 0.0037 1.0000 1.0000
0.950 15 500 0.9746 0.0026 1.0000 1.0000
0.950 15 1000 0.9746 0.0018 1.0000 1.0000

0.990 5 100 0.9915 0.0065 0.3790 0.4088
0.990 5 250 0.9917 0.0040 0.6682 0.7228
0.990 5 500 0.9917 0.0029 0.8878 0.9354
0.990 5 1000 0.9916 0.0020 0.9922 0.9977
0.990 10 100 0.9915 0.0043 0.6324 0.6831
0.990 10 250 0.9916 0.0027 0.9308 0.9563
0.990 10 500 0.9916 0.0019 0.9960 0.9990
0.990 10 1000 0.9917 0.0013 1.0000 1.0000
0.990 15 100 0.9915 0.0034 0.8086 0.8416
0.990 15 250 0.9916 0.0022 0.9878 0.9944
0.990 15 500 0.9916 0.0015 1.0000 1.0000
0.990 15 1000 0.9916 0.0011 1.0000 1.0000
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Table 7: Breitung-Meyer statistics when τ (ρ) = 1

ρ T + 1 N Mean Std. Dev. Test 1 Test 2 Local power

0.900 5 100 0.9081 0.0440 0.6838 0.7038 0.7895
0.900 5 250 0.9093 0.0278 0.9566 0.9598 0.9871
0.900 5 500 0.9099 0.0195 0.9992 0.9996 0.9999
0.900 5 1000 0.9102 0.0139 1.0000 1.0000 1.0000
0.900 10 100 0.9100 0.0201 0.9994 0.9998 1.0000
0.900 10 250 0.9107 0.0126 1.0000 1.0000 1.0000
0.900 10 500 0.9113 0.0089 1.0000 1.0000 1.0000
0.900 10 1000 0.9115 0.0062 1.0000 1.0000 1.0000
0.900 15 100 0.9112 0.0141 1.0000 1.0000 1.0000
0.900 15 250 0.9119 0.0089 1.0000 1.0000 1.0000
0.900 15 500 0.9122 0.0062 1.0000 1.0000 1.0000
0.900 15 1000 0.9123 0.0044 1.0000 1.0000 1.0000

0.950 5 100 0.9503 0.0428 0.3180 0.3336 0.3372
0.950 5 250 0.9515 0.0270 0.5720 0.5848 0.6147
0.950 5 500 0.9520 0.0190 0.8232 0.8300 0.8630
0.950 5 1000 0.9524 0.0135 0.9748 0.9750 0.9871
0.950 10 100 0.9513 0.0185 0.8548 0.8794 0.9123
0.950 10 250 0.9520 0.0117 0.9966 0.9974 0.9990
0.950 10 500 0.9525 0.0082 1.0000 1.0000 1.0000
0.950 10 1000 0.9528 0.0057 1.0000 1.0000 1.0000
0.950 15 100 0.9518 0.0124 0.9926 0.9960 0.9991
0.950 15 250 0.9525 0.0078 1.0000 1.0000 1.0000
0.950 15 500 0.9528 0.0055 1.0000 1.0000 1.0000
0.950 15 1000 0.9529 0.0039 1.0000 1.0000 1.0000

0.990 5 100 0.9879 0.0417 0.0936 0.0966 0.0808
0.990 5 250 0.9890 0.0263 0.1108 0.1136 0.1043
0.990 5 500 0.9896 0.0185 0.1452 0.1468 0.1363
0.990 5 1000 0.9899 0.0131 0.1954 0.2036 0.1921
0.990 10 100 0.9888 0.0171 0.1566 0.1686 0.1480
0.990 10 250 0.9894 0.0108 0.2424 0.2590 0.2432
0.990 10 500 0.9899 0.0075 0.3670 0.3798 0.3809
0.990 10 1000 0.9902 0.0053 0.5672 0.5812 0.5997
0.990 15 100 0.9892 0.0109 0.2526 0.2744 0.2448
0.990 15 250 0.9898 0.0069 0.4258 0.4490 0.4457
0.990 15 500 0.9900 0.0048 0.6646 0.6826 0.6873
0.990 15 1000 0.9901 0.0034 0.9020 0.9074 0.9149

1.000 5 100 0.9978 0.0414 0.0622 0.0634 0.0500
1.000 5 250 0.9989 0.0261 0.0542 0.0570 0.0500
1.000 5 500 0.9995 0.0184 0.0550 0.0574 0.0500
1.000 5 1000 0.9998 0.0131 0.0504 0.0526 0.0500
1.000 10 100 0.9987 0.0167 0.0624 0.0696 0.0500
1.000 10 250 0.9993 0.0106 0.0600 0.0672 0.0500
1.000 10 500 0.9998 0.0074 0.0486 0.0524 0.0500
1.000 10 1000 1.0001 0.0051 0.0456 0.0470 0.0500
1.000 15 100 0.9991 0.0105 0.0582 0.0626 0.0500
1.000 15 250 0.9997 0.0066 0.0530 0.0620 0.0500
1.000 15 500 0.9999 0.0046 0.0476 0.0536 0.0500
1.000 15 1000 1.0000 0.0033 0.0458 0.0468 0.0500
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Table 8: Breitung-Meyer statistics when τ (ρ) = 1/
¡
1− ρ2

¢
ρ T + 1 N Mean Std. Dev. Test 1 Test 2 Local power

0.900 5 100 0.9478 0.0430 0.3358 0.3490 0.3372
0.900 5 250 0.9489 0.0271 0.6036 0.6168 0.6147
0.900 5 500 0.9495 0.0191 0.8512 0.8596 0.8630
0.900 5 1000 0.9499 0.0136 0.9814 0.9836 0.9871
0.900 10 100 0.9485 0.0188 0.8878 0.9084 0.9123
0.900 10 250 0.9493 0.0116 0.9982 0.9980 0.9990
0.900 10 500 0.9497 0.0083 1.0000 1.0000 1.0000
0.900 10 1000 0.9499 0.0058 1.0000 1.0000 1.0000
0.900 15 100 0.9488 0.0127 0.9966 0.9982 0.9991
0.900 15 250 0.9496 0.0081 1.0000 1.0000 1.0000
0.900 15 500 0.9499 0.0056 1.0000 1.0000 1.0000
0.900 15 1000 0.9500 0.0039 1.0000 1.0000 1.0000

0.950 5 100 0.9728 0.0423 0.1696 0.1720 0.1509
0.950 5 250 0.9739 0.0267 0.2580 0.2672 0.2493
0.950 5 500 0.9745 0.0188 0.3830 0.3896 0.3914
0.950 5 1000 0.9749 0.0134 0.6032 0.6110 0.6147
0.950 10 100 0.9736 0.0177 0.4314 0.4540 0.4424
0.950 10 250 0.9743 0.0110 0.7586 0.7722 0.7663
0.950 10 500 0.9748 0.0078 0.9474 0.9544 0.9563
0.950 10 1000 0.9750 0.0054 0.9984 0.9986 0.9990
0.950 15 100 0.9739 0.0115 0.7438 0.7772 0.7703
0.950 15 250 0.9746 0.0073 0.9762 0.9806 0.9832
0.950 15 500 0.9749 0.0051 0.9998 0.9998 0.9999
0.950 15 1000 0.9750 0.0036 1.0000 1.0000 1.0000

0.990 5 100 0.9928 0.0417 0.0780 0.0810 0.0640
0.990 5 250 0.9939 0.0263 0.0800 0.0846 0.0734
0.990 5 500 0.9945 0.0185 0.0944 0.0972 0.0852
0.990 5 1000 0.9948 0.0131 0.1108 0.1134 0.1043
0.990 10 100 0.9937 0.0169 0.1006 0.1090 0.0893
0.990 10 250 0.9943 0.0106 0.1298 0.1360 0.1209
0.990 10 500 0.9948 0.0074 0.1618 0.1728 0.1650
0.990 10 1000 0.9950 0.0052 0.2266 0.2336 0.2432
0.990 15 100 0.9941 0.0107 0.1328 0.1414 0.1214
0.990 15 250 0.9947 0.0067 0.1928 0.2030 0.1865
0.990 15 500 0.9949 0.0047 0.2694 0.2860 0.2815
0.990 15 1000 0.9950 0.0033 0.4260 0.4382 0.4457
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Table 9: Harris-Tzavalis statistics when τ (ρ) = 1

ρ T + 1 N Mean Std. Dev. Test 1 Test 2 Local power

0.900 5 100 0.2960 0.0585 0.5624 0.5580 0.6665
0.900 5 250 0.2970 0.0373 0.8654 0.8704 0.9491
0.900 5 500 0.2971 0.0261 0.9906 0.9916 0.9986
0.900 5 1000 0.2974 0.0183 1.0000 1.0000 1.0000
0.900 10 100 0.5958 0.0326 0.9474 0.9584 0.9977
0.900 10 250 0.5967 0.0205 0.9998 0.9998 1.0000
0.900 10 500 0.5974 0.0144 1.0000 1.0000 1.0000
0.900 10 1000 0.5975 0.0100 1.0000 1.0000 1.0000
0.900 15 100 0.7010 0.0229 0.9978 0.9988 1.0000
0.900 15 250 0.7020 0.0143 1.0000 1.0000 1.0000
0.900 15 500 0.7023 0.0101 1.0000 1.0000 1.0000
0.900 15 1000 0.7024 0.0071 1.0000 1.0000 1.0000

0.950 5 100 0.3427 0.0585 0.2768 0.2574 0.2718
0.950 5 250 0.3438 0.0375 0.4630 0.4590 0.4983
0.950 5 500 0.3439 0.0261 0.6938 0.6976 0.7502
0.950 5 1000 0.3443 0.0183 0.9240 0.9254 0.9491
0.950 10 100 0.6399 0.0318 0.6200 0.6248 0.7231
0.950 10 250 0.6407 0.0201 0.9102 0.9168 0.9708
0.950 10 500 0.6415 0.0141 0.9950 0.9964 0.9996
0.950 10 1000 0.6416 0.0098 1.0000 1.0000 1.0000
0.950 15 100 0.7416 0.0220 0.8564 0.8686 0.9618
0.950 15 250 0.7426 0.0138 0.9964 0.9972 0.9999
0.950 15 500 0.7429 0.0098 1.0000 1.0000 1.0000
0.950 15 1000 0.7430 0.0069 1.0000 1.0000 1.0000

0.990 5 100 0.3862 0.0584 0.0924 0.0852 0.0753
0.990 5 250 0.3873 0.0375 0.1034 0.0968 0.0940
0.990 5 500 0.3875 0.0261 0.1276 0.1248 0.1188
0.990 5 1000 0.3880 0.0183 0.1622 0.1618 0.1614
0.990 10 100 0.6852 0.0309 0.1306 0.1256 0.1156
0.990 10 250 0.6860 0.0195 0.1784 0.1774 0.1743
0.990 10 500 0.6867 0.0137 0.2528 0.2548 0.2596
0.990 10 1000 0.6868 0.0095 0.3822 0.3836 0.4090
0.990 15 100 0.7853 0.0209 0.1766 0.1756 0.1682
0.990 15 250 0.7863 0.0132 0.2728 0.2784 0.2863
0.990 15 500 0.7866 0.0093 0.4182 0.4270 0.4535
0.990 15 1000 0.7866 0.0066 0.6524 0.6636 0.6971

1.000 5 100 0.3980 0.0584 0.0634 0.0560 0.0500
1.000 5 250 0.3991 0.0375 0.0594 0.0598 0.0500
1.000 5 500 0.3993 0.0261 0.0574 0.0564 0.0500
1.000 5 1000 0.3998 0.0183 0.0552 0.0548 0.0500
1.000 10 100 0.6983 0.0306 0.0640 0.0588 0.0500
1.000 10 250 0.6991 0.0193 0.0608 0.0586 0.0500
1.000 10 500 0.6998 0.0135 0.0558 0.0548 0.0500
1.000 10 1000 0.6999 0.0094 0.0500 0.0502 0.0500
1.000 15 100 0.7987 0.0206 0.0626 0.0618 0.0500
1.000 15 250 0.7997 0.0130 0.0562 0.0550 0.0500
1.000 15 500 0.8000 0.0092 0.0532 0.0534 0.0500
1.000 15 1000 0.8000 0.0065 0.0490 0.0510 0.0500
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Table 10: Harris-Tzavalis statistics when τ (ρ) = 1/
¡
1− ρ2

¢
ρ T + 1 N Mean Std. Dev. Test 1 Test 2 Local power

0.900 5 100 0.9375 0.0583 0.3014 0.2916 0.2718
0.900 5 250 0.9382 0.0368 0.5192 0.5148 0.4983
0.900 5 500 0.9388 0.0262 0.7600 0.7600 0.7502
0.900 5 1000 0.9394 0.0184 0.9460 0.9472 0.9491
0.900 10 100 0.9290 0.0316 0.7368 0.7418 0.7231
0.900 10 250 0.9299 0.0196 0.9756 0.9798 0.9708
0.900 10 500 0.9303 0.0138 0.9990 0.9992 0.9996
0.900 10 1000 0.9304 0.0098 1.0000 1.0000 1.0000
0.900 15 100 0.9246 0.0221 0.9652 0.9712 0.9618
0.900 15 250 0.9258 0.0139 1.0000 1.0000 0.9999
0.900 15 500 0.9263 0.0098 1.0000 1.0000 1.0000
0.900 15 1000 0.9264 0.0068 1.0000 1.0000 1.0000

0.950 5 100 0.9677 0.0582 0.1566 0.1464 0.1301
0.950 5 250 0.9684 0.0368 0.2306 0.2202 0.2048
0.950 5 500 0.9691 0.0262 0.3252 0.3216 0.3139
0.950 5 1000 0.9697 0.0184 0.5038 0.5020 0.4983
0.950 10 100 0.9641 0.0310 0.3202 0.3204 0.2993
0.950 10 250 0.9651 0.0192 0.5592 0.5644 0.5492
0.950 10 500 0.9655 0.0136 0.8086 0.8186 0.8040
0.950 10 1000 0.9657 0.0096 0.9722 0.9750 0.9708
0.950 15 100 0.9622 0.0214 0.5560 0.5660 0.5254
0.950 15 250 0.9634 0.0135 0.8670 0.8758 0.8546
0.950 15 500 0.9639 0.0095 0.9862 0.9882 0.9852
0.950 15 1000 0.9641 0.0066 1.0000 1.0000 0.9999

0.990 5 100 0.9916 0.0582 0.0742 0.0702 0.0616
0.990 5 250 0.9924 0.0368 0.0822 0.0802 0.0693
0.990 5 500 0.9931 0.0261 0.0898 0.0894 0.0789
0.990 5 1000 0.9938 0.0184 0.1000 0.0990 0.0940
0.990 10 100 0.9915 0.0304 0.0956 0.0934 0.0776
0.990 10 250 0.9926 0.0189 0.1048 0.1042 0.0983
0.990 10 500 0.9930 0.0133 0.1298 0.1310 0.1262
0.990 10 1000 0.9932 0.0094 0.1722 0.1754 0.1743
0.990 15 100 0.9911 0.0207 0.1182 0.1174 0.0963
0.990 15 250 0.9924 0.0130 0.1452 0.1482 0.1347
0.990 15 500 0.9928 0.0092 0.1950 0.1986 0.1892
0.990 15 1000 0.9930 0.0064 0.2782 0.2810 0.2863
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