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Abstract. This paper analyzes the presence and consequences of a unit root in 

periodic autoregressive models for univariate quarterly time series. First, we consider 
various representations of such models, including a new parametrization which 
facilitates imposing a unit root restriction. Next, we propose a class of likelihood ratio 
tests for a unit root, and we derive their asymptotic null distributions. Likelihood ratio 
tests for periodic parameter variation are also proposed. Finally, we analyze the impact 
on unit root inference of misspecifying a periodic process by a constant-parameter 
model. 
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1. INTRODUCTION 

The defining property of a periodic autoregressive (PAR) model of a univariate 
seasonally observed time series is that its parameters vary with the seasons. The 
early literature on univariate periodic time series models includes Gladyshev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 196 1 ), Jones and Brelsford ( 1967), Pagano ( 1978), Troutman ( 1979) and Tiao 
and Grupe (1980), inter alia. Recently, and accompanied by a revived interest in 
the analysis of seasonality in general, periodic models have received growing 
attention in the econometric analysis of seasonal time series; see, for example, 
Osborn (1988, 1991), Birchenhall et al. (1989), Ghysels et al. (1994), Franses 
(1994) and Boswijk and Franses (1995a, b). Given that many economic time 
series display patterns which may be best described by stochastic trends, the 
possibility of unit roots in periodic autoregressive models merits attention. 
Osbom (1988) and Franses (1994) discuss theoretical arguments for, and 
consequences of, the presence of such roots, and Osborn er al. (1988) define the 
concept of periodic integration. This notion refers to the situation where the 
original series contains a stochastic trend, which is eliminated by particular 
linear combinations of successive quarterly observations (called periodic 
differences). 

In this paper we extend the literature on PAR models in three different 
directions. First, we propose a new likelihood ratio (LR) test for a periodic unit 
root in (possibly higher-order) periodic autoregressions. An earlier test for this 
purpose was developed by Franses ( 1994), who applied Johansen's ( 1988) LR 

0143-9782/96/03 22 1-245 JOURNAL OF TIME SERIES ANALYSIS Vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17, No. 3 
( '  1996 Blackwell Publishers Ltd., 108 Cowley Road, Oxford OX4 IJF, UK and 238 Main Street, 
Cambridge, MA 02142. USA. 



222 H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. BOSWIJK AND P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. FRANSES 

test to a vector autoregressive (VAR) representation of the annual vector 
process of quarterly observations. However, the over-parametrization of this 
(unrestricted) VAR model may easily lead to a relatively low power of unit root 
tests. Therefore, this paper proposes a new representation which facilitates 
imposing ‘the unit root restriction directly in the original (univariate) model 
specification. This leads to a new class of LR tests for a single unit root, which 
may be seen as a periodic generalization of the well-known augmented Dickey- 
Fuller test. 

Second, we compare our analysis to a related testing problem which has 
recently been advanced by Ghysels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1994). They derive Wald tests for 
non-periodic (either seasonal or non-seasonal) unit root restrictions in 
unrestricted periodic autoregressions. In the present paper we show that these 
non-periodic unit root hypotheses entail simple parameter restrictions on a 
periodically integrated autoregression, which may be tested using LR statistics 
with an asymptotically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 null distribution. This is a specific application of an 
LR test for periodic parameter variation, which we consider in detail. 

Third, we extend Tiao and Grupe’s (1980) analysis of misspecified non- 
periodic models for periodic processes to the case of periodic integration. We 
show that such misspecification in general leads to an overstatement of the 
number of unit roots and an increase in the lag length. This provides an 
explanation of the trade-off between lag length and periodic parameter 
variation, which is often found in empirical practice. 

The outline of the paper is as follows. In Section 2, we consider various 
representations of periodic autoregressions, and we define the concept of 
periodic integration. Throughout the paper, we focus on quarterly time series, 
but all results can be extended to monthly and other seasonally observed 
processes. In Section 3, we propose and analyze a class of LR tests for a 
single unit root. Furthermore, we analyze LR tests for parameter constancy over 
the seasons, which may be used to test for a non-periodic unit root. In Section 
4, we consider the presence of a unit root in Tiao and Grupe’s (1980) 
misspecified homogeneous model, and study the use of Dickey et d. ’s  (1984) 
seasonal unit root test in periodic autoregressions. In Section 5 we discuss the 
results. 

2. REPRESENTATION 

Consider the periodic autoregressive model of order p (PAR(p)) for a quarterly 
observed univariate time series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{yf, r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, . . ., n}: 

yr = qls-vr-l + . . + qpsyf-p + Er  t = 1, . . ., n (1) 

where qjs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, . . ., p, are periodically varying parameters, i.e. the 
coefficient of yr-j equals qis if time r corresponds to season s. Defining {D,,, 
r = 1, . . ., n, s = 1, . . ., 4)  as a set of seasonal dummy variables, so that 
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Dst zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin season zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and 0 elsewhere, the model may be expressed more explicitly 
as 

s= I s= 1 

In the sequel, we shall use (1) as a short-hand notation for (2); moreover, for any 
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ a l ,  . . ., a4} we shall use the convention &4k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, k E N (i.e. the index s 
satisfies arithmetic modulo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). 

We assume that the starting values {y lPP, . . .,yo} are fixed, and that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ E t }  is 
an independent N ( 0 , d )  sequence. As usual, the normality assumption is 
required only for the construction of LR statistics, the asymptotic properties of 
which may be evaluated under wider distributional assumptions. One of the 
extensions of the model (1) discussed below is to allow for seasonal 
heteroskedasticity, i.e. periodic variation of the error variance. Another 
extension is to include deterministic variables such as seasonal dummies or 
trends. Note that by restricting some appropriately chosen cpjs parameters to 
zero, the lag length may also be varied over the seasons; thus p represents the 
maximum lag length. 

An important aspect of ( 1 )  is that the autocorrelation function and hence 
the spectral density varies throughout the year. Therefore, the process { y t }  is 
non-stationary, which implies that (1) is not a useful representation for the 
analysis of stationarity, unit roots and stochastic trends, see also Osborn 
(1991). These issues are analyzed most conveniently in the multivariate 
representation of (1)  that originates from stacking the observations of { y , }  in 
the annual sequence of (4 x 1 )  vectors YT = ( YIT, . . ., Y ~ T ) ' ,  where Y,T = 
y4(T-l)+s is the observation in season s of year 7; with T =  1, . . ., N and 
N =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl4. This idea of stacking y, into YT was first proposed by Gladyshev 
(1961); we shall call { Y T }  the vector of quarters (VQ) process of { y t } .  The 
univariate model (1 )  of { y t }  can be expressed as the following multivariate 
model of { YT}: 

Here @;, i = 0, . . ., P, are 4 x 4 parameter matrices; @O is lower triangular with 
unit elements on the diagonal, and = -qS-,,, for j < s; further, 

[ ( p  - 1)/4] + 1, where [XI denotes the integer part of x. The (4 x 1) 
vector { E T }  is the VQ process of { E , } ,  an independent N ( 0 , a 2 1 4 )  sequence. 
We shall refer to (3)  as the VQ representation of (1). Notice that, in contrast with 
( l ) ,  this representation has constant parameters. We emphasize that (3)  is merely 
a useful representation to analyze the presence of unit roots and stochastic 
trends; the statistical analysis in the next section will be based on the original 
model (1). 

Let L denote the lag operator, which may operate both on quarterly and on 

@. ,,S, . -  - (~ (4 ;+ , - , ) .~  for i = 1, . . ., P The maximum lag length P equals 
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annual data, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALkx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= XI-k  and LkXr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX T - ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk E N. Define the matrix 
lag polynomial 

@(L) = @I) - @1L - . . . - @ p L P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

so that the VQ representation may be concisely expressed as @(L)YT = ET. 
The vector process { Y T }  in (3) is stationary if the roots of the characteristic 
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 5 )  

are all outside the unit circle. The process is integrated (and possibly 
cointegrated) at the zero frequency if the characteristic equation has some roots 
equal to one and all other roots outside the unit circle. These zero-frequency unit 
roots in the VQ process may correspond to unit roots in the original process { y r }  
at the zero frequency, but also at seasonal frequencies. An intuitive explanation 
of this is that seasonal cycles in {y,} cannot show up as cycles in the annual 
process, because their frequency is too high. For example, the VQ representation 
of a first-order periodic autoregression (p = 1)  has as its characteristic equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q ( z )  = 11 - ( ~ 1 1 ( ~ 1 2 ( ~ 1 3 ( ~ 1 4 ~ I  = 0 (see, for example, Franses, 1994). Defining 
p = (p l l ( p12 (p13(p14 ,  we thus find that { Y T }  is stationary if IpI < 1, and has a 
single unit root if p = 1. The latter includes the non-periodic non-seasonal unit 
root case cpls = 1, Vs, but also the non-periodic seasonal unit root case 
cpls = -1, Vs, corresponding to a half-year cycle (cf. Hylleberg et al., 1990). 

c p ( 4  = I%)l = 0 

DEFINITION 1. Let { y ,  } have the VQ representation (3), with characteristic 
equation ( 5 ) .  

(i) If ( 5 )  has all roots outside the unit circle, then { y , }  is said to be 
periodically integrated of order 0, denoted by y ,  - PI(0). 

(ii) If ( 5 )  has a single root equal to 1 and all other roots outside the unit 
circle, and Y s ~  - 1(1), Vs, then { y , }  is said to be periodically integrated of 
order 1, denoted by yt - PI( 1 ). 

We shall also refer to PI(0) processes as periodically stationary. Until recently, 
the literature on periodic time series has concentrated on such PI(0) processes; 
see, for example, Tiao and Grupe (1980). 

The implications of Definition 1 are analyzed most easily in the error 
correction form of (3): 

(6 )  

where dl = (1 - L) ,  the first-difference operator, and where I7 = -@;I@( I ) ,  
Ti = @ O ' ( @ j + l  + . * . + @ p ) ,  and EF = @;'ET. Periodic stationarity implies that 
@(1), and hence Z7, is non-singular. Periodic integration, on the other hand, 
implies that r ankn  = 3, so that { Y r }  is cointegrated of order (1, l ) ,  .with 
cointegrating rank3, see Engle and Granger (1987). Let B denote the 4 x 3 
matrix of cointegrating vectors. As is well known, B is not unique; what is 
identified is the space spanned by the columns of B, the so-called cointegration 

AYT = Z ~ Y T - ~  +TldlYr- l  + . . * + T p - j d l Y ~ - p + ~  + E? 
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space (see Johansen, 1991). From the assumption that all components of Y, are 
I (1) ,  it follows that B may be represented as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- (P2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B ' =  [ 0 -(P3 

0 0 -(P4 

(7) 

for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcps # 0, s = 2, 3, 4. Defining (PI = 1 / ( ( ~ 2 ( ~ 3 ( ~ 4 ) ,  so that (pI(P2(P3(p4 = 1, 
we have 

and since cointegration of order ( I ,  1) with cointegrating matrix B implies that 
both terms on the right-hand side of Equation (8) are stationary, it follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
yt - qsyr-l has a stationary VQ representation, and thus is periodically 
stationary. In fact, Osbom et al. (1988) take this as the defining property of 
periodic integration, obtained as a specific case of Granger's ( 1986) time-varying 
parameter integration. They call a time series yr periodically integrated if the 
periodic differencing filter 6,y, is required to render it stationary, where 
6, = (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcpJ) with (PI(PZ(P3(P4 = 1. 

This leads to the following representation, which forms the basis of the LR 
tests to be derived in the next section. For any set of constants cps whose 
product equals one, rewrite ( I )  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n- 1 

(recall that (Ps-4k = cp,, k E N), where the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI);, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, are defined 
from the backward recursion (starting from vPs = 0, Vs) 

Vi+I, s - (Pi+l, s q. = 
IS 

' P S - i  

i = p -  1 , .  . ., I 

Jcs = 'PIS - Vls - (Ps. 

If yr - PI(I),  then we may choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqS such that all terms in (9), except zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.n,y,-~, 
are periodically stationary, which implies the restriction .n, = 0, Vs. Conversely, 
this restriction implies that the VQ representation of (9) has at least one unit 
root. Let UT denote the VQ process of u, = (yt - ( ~ ~ y , - ~ ) ,  so that 
UT = 80 YT - 81 Yr-1, where 
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If the VAR representation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUT is given by Y ( L ) U T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Er, then 

@(L)YT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY(L)(&o - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&IL)YT = ET 

Iyu(z)I I&o - & l z l  = Iy(z)l(l - (pI(pZ(p3(p4Z) = 0. 

(12) 

which has the characteristic equation 

(13) 

Since (pI(p2(p3(p4 = 1, this characteristic equation has at least one unit root; 
periodic integration requires that all roots of IY(z)l = 0 are outside the unit 
circle, so that UT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY(L)-'ET is stationary. 

Observe that (9) may be expressed, using the periodic differencing filter 6,, 
as 

n- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

If all periodic parameter variation would be excluded, then 6, = d 1, and (14) 
reduces to the well-known Dickey-Fuller regression. An intermediate case is 
considered by Ghysels et al. (1994), who focus on non-periodic differences 
but allow for other parameter variation; they propose Wald tests for n, = 0, 
Vs in (14), but with 6, restricted to either ( 1  - L )  (a non-seasonal unit root) or 
(1 + L )  (a seasonal unit root). If the only requirement on (p, is that their 
product equals 1, then the representation (9) has three more parameters than ( I ) ,  
so that it is not identified. From (10) it is clear that we may choose (p, such 
that ns = 0, s = 2, 3, 4; the unit root restriction may then be formulated as 
nl = 0. Note that under this restriction, the periodic differences will have to be 
estimated simultaneously with the other parameters. Therefore, the likelihood 
ratio statistic for the hypothesis of periodic integration, derived in the next 
section, will require non-linear least-squares estimation under the unit root 
restriction. 

Since uy = (yt - ( p s y t - ~ )  is periodically stationary with (pI(pZ(p3(p4 = 1, we 
find, by repeated substitution, 

where p = (p1(p~(p3(p4 = 1, so that A ~ Y ,  is a periodic moving average of order 3 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAut (here 4 4  = ( 1  - L4), the annual difference operator). Hence d 4 ~ r  is 
periodically stationary, which suggests that annual differencing a PI( 1 ) process 
may remove its non-stationarity. However, this would lead to overdifferencing, 
which can be seen as follows. The VQ process of d 4 y t  is dl YT, which has the 
following vector moving-average (VMA) representation: 

(16) dl Y T  = ( 0 0  + @IL)ur = ( 0 0  f @ I L ) Y ( L ) - ' E T  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I 2 3  (P3 O 0 I  1 0  

L%(P3(P4 (P3(P4 (P4 1 1  

(P4(PI(P2 (PI(P2 

(P3(P4(PI (P4(PI 

0 0  (PI(PZ(P3 
0 0  0 0 

01 = 

Defining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(L) = (00 + 01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL)Y(L ) - ’ ,  the characteristic equation of this VMA 
matrix polynomial is 

IC(Z)I = 100 + 0 l Z l  pP(z)-ll = (1 - Z ) 3 I Y ( z ) - l l  = 0 (18) 

so the VMA model is not invertible, and, in fact, has three unit roots. Thus three 
of the four unit roots of the 141 - L )  filter applied to YT cancel, leaving only 
one unit root as required. 

The moving-average representation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  6) leads to the so-called common 
trends representation. Consider the power series decomposition C( L )  = 
C(1) + C*(L)(l - L )  (see, for example, Banerjee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 1993, p. 257), where 

(19) C(1) = ( 0 0  + @)Y(l)-’  = ab’Y(l)-’ 

with 

Substitution of (1 9) in (1 6) and integrating both sides yields 

T 

YT = Y o f a b ’ y ( l ) - ’ C E j $ C * ( L ) E ~ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j=  1 

This shows that the four components of YT have a single common stochastic 
trend, given by the partial sum of b ’ y ( l ) - ’ E ~ .  This is in contrast with 
seasonally integrated models, the simplest example of which is d 4 y ,  = E ~ .  The 
VQ representation for this model is dl YT = ET, so that in comparison with (6), 
the cointegrating relationships have disappeared. Thus, in contrast with (2 1 ), 
each of the quarters of a seasonally integrated process have their own stochastic 
trend, in this specific case given by the partial sum of Esr in season s. As a 
consequence, the observations of seasonally integrated processes in successive 
quarters may drift apart unboundedly (see Osborn, 1993). 

All representations considered in this section may be extended to allow for 
periodic intercepts and linear trends: 
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@OYT = @I Y T - I  + . . - + @ p Y ~ - p  + a +PT + ET 

(22) 

(23) 

where T, denotes the year at time t .  The corresponding VQ representation is 

where a = (al, . . ., ad)' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ I , .  . ., P4)'.  The common trends represent- 
ation is obtained simply by replacing ET in (21) by (a + P T +  &), which yields 
after some rewriting: 

Y,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p  + TT + K T ~  +xT 
T 

XT = d 'Y (  l)-' C Ej + C*(L)ET 
j =  I 

where p, z and K are functions of a, P, C(L) and the starting value Y, In 
particular, if b'!P(l)-IP = 0, then K = 0 (no quadratic trend), and if P = 0 and 
b'Y(l)- 'a = 0, then z = K = 0 (no linear trend). Note that XT in (24) represents 
the deviation of YT from its mean (conditional upon the starting value). 

3. TESTING FOR A UNIT ROOT AND PARAMETER VARIATION 

3.1. Testing for a periodic unit root 

Consider again the PAR@) model (1). The null hypothesis to be tested is 

Ho : 1@(1)1 = 0 (25) 
i.e. the characteristic equation l@(z)l = 0 of the VQ representation of (1) has a 
single unit root. As we have shown in the previous section, under the null 
hypothesis the model can be represented as (9) with q1(p2 (p3 (p4  = 1 and ns = 0, 
Vs, i.e. 

(26) 
Recall from (14) that (26) may be seen as a periodic autoregression in periodic 
differences d,y,; replacing these by ordinary differences dly, entails a further 
restriction, namely qs = 1, Vs. 

Under the assumption that { E , }  is an independent N(0, d )  sequence and the 
starting values are fixed, the unrestricted maximum likelihood (ML) estimators 
of the parameters of (2) are obtained by linear least-squares, and the 
unrestricted maximized log-likelihood is given by 

where 8 is the full parameter vector, 8 is the unrestricted maximum likelihood 
estimator, c is a constant and i, are the least-squares residuals from (2). 
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Similarly, the restricted maximized log-likelihood is obtained from non-linear 
least-squares estimation of (26), yielding G2 and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(8) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc - (n/2) In G2. 
Thus, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALR statistic is given by 

LR = -2{ ~ ( 8 )  - ~ ( 6 ) )  = n(lnii2 - In&’). (28) 
In order to allow for a non-zero (periodic) mean under the alternative, a set 

of seasonal dummies may be added to the regressors, leading to the unrestricted 
and restricted- estimators &* and G;, respectively, and the LR statistic 
LR, = n(1nG; - ln&;). Simifarly, if a set of periodic intercepts and linear 
trends is added (see (22)), to test against trend-stationarity, then we obtain 
LR, = n(ln zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA65 - In &:). 

In order to derive the asymptotic null distribution of these statistics, we make 
the following assumption. 

ASSUMPTION 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{yf ,  t = 1 ,  . . ., n }  is generated by (22), with VQ represent- 
ation (23), where 

(i) { E f ,  t = 1 ,  . . ., n }  are independent and identically distributed (i.i.d.) with 
mean zero and variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd; 

(ii) the characteristic equation I@(z)l = 0 has at most a single unit root, and 
all other roots outside the unit circle. 

Note that we do not require normality of the disturbances for the asymptotic 
analysis. In fact, the i.i.d. assumption may be weakened even further to allow for 
martingale differences with constant conditional variance d (and an additional 
higher moment condition). The second part of Assumption 1 excludes the 
possibility that the VQ process is either I(2) or I (1)  with cointegrating rank 
smaller than 3; thus we limit ourselves here to the choice between PI(1) and 
PI(O), see Definition 1 .  An extension of the present analysis to multiple unit 
roots is the subject of current research by the authors. 

LEMMA 1. Consider XT in (24). Under Assumption I ,  we have as N + 00, 

d 

(29) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-XpN] -+ B(r) = waW(r) 

where [my denotes the integer part of r! where B(r) is a 4 x I vector 
Brownian motion process with variance matrix SZ = w’aa’, W(r) is a standard 
(scalar) Brownian motion process and 

1 
r E [0, 1 1  

fl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 = o{bY( l ) -hP( l ) ’ - lb }1 ’2 .  (30) 

Proofs are given in the Appendix. Note that { d X ~ j  has a singular long-run 
variance matrix Q, which is due to the unit roots in the moving-average (MA) 
polynomial. The fact that the four VQ series { X T }  have a single common 
stochastic trend is reflected in the four Brownian motions B(r) being defined 
from a single standard Brownian motion W(r). 
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For any deterministic function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk(r) on the unit interval, define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

Wk(r) = W(r ) . -  1 0  W(t )k ( t ) ’  dt { j :k ( t )k( t ) ’  dt}-’k(r) 

i.e. the projection in L2 of W(r) on the orthogonal complement of k(r), see Park 
and Phillips (1988). With this notation, we can state the main result: 

THEOREM 1. Under HO and Assumption I ,  we have, as n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, 

LR, LR,, LR, 5 { j :F(r)’ dr}-I { l :F(r)  dW(r)}2 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW(r) is a standard Brownian motion process, and 

(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor LR, F(r)  = W(r); 
(ii) for LR,, F(r) = Wk(r) with k(r)  = 1, provided t = 0 in (24); 
(iii) for LR,, F(r)  = Wk(r) with k(r) = (1, r)’, provided ti = 0 in (24). 

Theorem 1 implies that the LR statistics for a unit root in periodic 
autoregressions have the same asymptotic null distributions as the square of 
Fuller’s (1976) 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,1 and 2, statistics. The same distributions appear as special 
cases in Johansen’s (1988, 1991) cointegration analysis, and as such asymptotic 
critical values for LR and LR, are given in Osterwald-Lenum (1992), Tables 0 
and 1.1, respectively (with p - r = 1). Since the distribution of Fuller’s t, 
hardly has any mass at the positive part of the line, critical values for LR, 
may be obtained simply by taking the square of the corresponding critical 
values of 2,. 

If p = 1, then a one-sided test may be based on the studentized statistic sign 
( $ 1  @z 4 9 4 4  - 1 )dLR, where $s are the unrestricted least-squares estimators; 
this statistic has the same asymptotic null distribution as Fuller’s t statistic 
(this is proved in a previous version of the paper, available from the authors 
upon request). Boswijk and Franses (1995a) provide a Monte Carlo study of the 
size and power properties of this studentized LR test, and show that it 
outperforms a Wald-type t test, as well as a ‘coefficient test’ (analogous to 
Fuller’s (1976) n(i ,  - 1)). If p > 1, however, such one-sided tests are not 
feasible, because the cps parameters are not identified without the unit root 
restriction. Therefore, if the null hypothesis is rejected using the LR statistic, 
we still need to check whether all roots of the characteristic equation are 
outside the unit circle. 

Notice that the null distributions of LR, and LR, are evaluated under the 
additional restrictions t = 0 (no linear trend in the level of y,) and ti = 0 (no 
quadratic trend), respectively, but these restrictions are not imposed in the 
calculation of 6’. If, alternatively, we impose such restrictions under the null, 
then the resulting test statistics, say LR*, and LR?, are similar to Dickey and 
Fuller’s (1981) @, and @3 statistics, respectively. Without proof we state that 
LR*, and LR*, in fact have the same asymptotic null distributions as @I and 
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@3, multiplied by 2 (since these are F-type statistics), so that critical values 
from Dickey and Fuller (1981, Tables IV and VI, multiplied by 2) can be used. 

One may wish to extend the tests given above to allow far periodic variation 
in the variance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  1 or periodic heteroskedasticity, i.e. replace o2 by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0:. The 
representational issues discussed in Section 2 do not change with this 
possibility, but of course the format of the LR statistics does. Maximum 
likelihood is now equivalent to weighted (non-linear) least-squares estimation. It 
is easily shown that without the unit root restriction, this is identical to 
ordinary least-squares estimation. Letting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: denote the unrestricted and 
restricted ML variance estimators, the LR statistic becomes 

A 

It can be shown that the LR statistic in (33) has the same asymptotic null 
distribution as the original LR statistic (28) has under the restriction of periodic 
homoskedasticity; to save space we do not provide this proof here. An LR test 
for periodic heteroskedasticity is easily constructed from u: and 62, or from the 
corresponding restricted estimates. Alternatively, a Lagrange multiplier-type 
diagnostic is given by nR2, where R2 is the coefficient of determination in the 
auxiliary regression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

3.2. Testing for periodic parameter variation 

As discussed in Section 2, periodically integrated models are capable of 
capturing non-stationary behaviour that is not explained by non-periodic, 
possibly seasonally integrated models. However, this is in general at the cost 
of a larger number of parameters. Therefore, it is worthwhile to test whether the 
periodic variation in some or all of the parameters is significant, and if not, to 
specify more parsimonious (partially) constant-parameter models. We shall 
discuss two tests for periodic variation. First, we consider the LR test for the null 
hypothesis 

~t~ : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcpis = ' p i ,  s = 2, 3 ,4;  i = 1, . . . , p  (35) 

to be tested in the general unrestricted model (1) (denoted by HI), possibly 
extended by constants and trends. Secondly, we analyze, within the periodically 
integrated model (denoted by Ho), the null hypotheses 

Hrs : cps = 1 vs 

VS. H: : cps = - 1  

Notice that this implies three restrictions in addition to the unit root restriction 
(25). The motivation for this hypothesis is that it reduces the periodic difference 
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6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp,L), required to obtain stationarity, to the ordinary difference filter 
dl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - L),  or the filter (1 + L),  corresponding to a seasonal unit root -1. We 
denote a LR statistic for a hypothesis Ho within a more general model HI by 
LR(HolH1). The asymptotic properties of such tests are given in the next 
theorem. 

THEOREM 2.  Under Assumption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, and as n .--t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00: 

(i) under Hrp, LR(Hr'IH1) -'d x2(3p) ,  whether y, - PI(0) or y, - PI(1); 
(ii) under HFs, LR(HrS(Ho) -+d ~ ~ ( 3 ) ;  under Hi ,  LR(H;(Ho) -+d ~ ~ ( 3 ) .  

The first part of Theorem 2 implies that we can always use conventional 
critical values from the x2 distribution to test periodic variation, even if it is 
not known whether or not the series contains a unit root. This suggests to use 
this test (or an F-version thereof) as a starting point in empirical modelling. If 
the null hypothesis is not rejected, we may proceed with Hylleberg et al.'s 
(1990) analysis of seasonal unit roots; if significant periodicity is found, the 
periodic unit root tests proposed above become relevant. 

Theorem 2 suggests two alternative ways to test the null hypothesis of a 
(non-periodic) random walk in a first-order periodic autoregression. The first 
approach is to test the hypothesis of a non-periodic AR(1) first, using a ~ ' ( 3 )  
test, and then test for a unit root in this AR model using the Dickey-Fuller 
statistic. Alternatively, we may first test for a periodic unit root using our LR 
statistic, and subsequently test whether cps = 1, 'ds, using a x2 (3 )  test. As a 
third possibility, Ghysels et al. (1994) propose to take the two steps together 
and test (inter alia) Hfs against H I ,  i.e. in the unrestricted PAR(1) (or a 
higher-order generalization). The results above indicate that the null 
distribution of such a test should be the sum of a ~ ~ ( 3 )  distribution and the 
distribution in (32) .  Indeed, Ghysels et al. (1994) find for their Wald test for 
HrS, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, 

where &(r) = (B41(r), . . ., B44(r))r is a standard vector Brownian motion 
process and Gl(r) = b'B4(r), where in this case b = ( I ,  I ,  1, 1)'. Let S denote 
an orthogonal matrix, the first column of which is OSb, and let W(r)  = SrB4(r), 
a vector Brownian motion process with variance matrix S'I,S= 14. Partition 
W(r) as (W, ( r ) ,  , . ., W4(r))', so that Ws(r), s = I ,  . . ., 4, are independent 
Brownian motions, with W,( r )  = 0.5brB4(r) = 0.5Gl(r). It is easily checked 
that GI ( r )  and B4( r )  in (37)  may be replaced by W1 (r) and W( r), respectively, so 
that 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is a random variable with the asymptotic distribution of the Dickey- 
Fuller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ statistic, and x2 is a random variable with a x2(3) distribution. The latter 
distribution arises because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWs(r), s = 2, 3, 4, are independent of Wl(r),  so that 
the signed square root of the terms in (38) for s = 2, 3, 4, are standard normal 
variates (this holds conditionally on W I  (r), and since the conditional distribution 
is independent of Wl(r) ,  it holds unconditionally as well). This shows that the 

test can be decomposed into a unit root test and a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 test. Critical values of 
this distribution, as well as extensions to deterministic components and multiple 
unit roots, are tabulated in Ghysels er al. (1 994); note that the two constituents 
t2 and x2 have well-known (and tabulated) distributions. Furthermore, observe 
that if the stastistic rejects the null hypothesis of a non-periodic unit root, 
then the series may be either PI(0) or PI(1) with cps f 1. In other words, the 
alternative hypothesis for this test includes processes with stochastic trending 
behaviour in addition to mean-reverting processes. 

4. UNIT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAROOTS IN THE MlSSPEClFlED HOMOGENEOUS MODEL 

4.1. Representation 

The misspecified homogeneous model (MHM) analyzed by Tiao and Grupe 
(1980; see also Osborn, 1991) is a time-invariant approximation to the periodic 
model. The basis of this approximation is that although the autocovariance 
function (and hence the spectrum) of a periodically stationary process is time 
varying, it averages out to a constant autocovariance function, which corresponds 
to some constant stationary autoregressive moving-average (ARMA) model. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y b  denote the kth order autocovariance of a stationary periodic process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{y,}  in 
season s, and define its annual average 

. 4  

Then the MHM of { y f }  is the ARMA model cp(L)yf = O(L)E,, which has 
{ Y k ,  k = 0, 1, . . .} as its autocovariance function. 

In this section we shall derive the MHM of a periodically integrated process. 
For notational ease, we shall concentrate on the first-order PAR model without 
any deterministic components. Analogous results can be obtained for extensions 
of this model. Because such a process is not (periodically) stationary, we 
cannot define its autocovariances, and we have to analyze its fourth difference 
d4yf to obtain the MHM. Its covariance functions can be readily obtained from 
(16x17) with UT = ET. For example, 

=E[d4Y,d4y1-~Is 11 =E[dlYITdIY4,T-l] =G2(cp1 + 'pl'P:+ c p l d c p : ) .  

(40) 
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In general, we have (recall the notational convention zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 494 and 99-1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 9 3 )  

2 Yls = a249${1 + 99:-1(1 + cp,-2)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
72s = 0299s99s-l(l + 99:-2) 

Y3s = 0 2 9 9 s 9 9 s - 1 9 9 s - 2  

(41) 

and y h  = 0, k > 3 (s = 1 ,  . . ., 4). Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{d4y,} is a periodic MA(3) process, the 
MHM of which is an MA(3) model. The parameters of this MA(3) model may 
be derived from the autocovariances Y k ,  which in turn are obtained by 
substituting (41) in (39). From (15) we observe that without the unit root 
restriction p = I ,  (y, - py,-4) is also a periodic MA(3) process with the same 
parameters. Thus the MHM of a PAR(1) process, whether or not periodically 
integrated, is the ARMA(4,3) model (with intermediate autoregressive 
parameters equal to zero) 

y t  = py,-, + E, + + O ~ E , - ~  + e3E, -3 .  (42) 

We shall derive the values of the MA parameters 0, for two polar cases 
explicitly. First, suppose qs = 1, Vs, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, is a random walk. This means 
that d4y, is overdifferenced; indeed, the autocovariances are given by 70 = 4 d ,  
PI  = 3d, 7 2  = 2d and y3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, which corresponds to O1 = O2 = O3 = 1. This 
defines an MA polynomial with three roots on the unit circle (-1, i and - i ) .  
Thus the MHM of y ,  becomes 

( 1  - ~ 4 ) ~ , = ( 1  + L + L Z + L ~ ) & ,  (43) 
and since (1 - L4) = (1 - L)(1 + L + L2 + L3) ,  three of the four roots on the unit 
circle cancel, and the resulting model is, as expected, ( 1  - L)y, = E,. Thus in this 
example the MHM has exactly the same number of unit roots as the original 
model, simply because the two models coincide. 

Suppose, as a second example, that 9 9 1  = 992 = -1, 993 = 994 = 1 .  Then the 
autocovariances (yos, yls,  yzs, ~ 3 ~ )  are given by d ( 4 ,  -3, -2, -1) for s = 1 ,  
d(4, -3,2, 1) for s = 2, d ( 4 , 3 ,  -2, 1) for s = 3 and d ( 4 , 3 , 2 ,  -1) for s = 4. 
This implies that 70 = 4d and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 k  = 0, k > 0, so that the MHM of (d4y,} is 
simply white noise. Therefore, the misspecified model now has four roots on 
the unit circle, whereas the original (VQ) process has only one unit root. 

In the general case, the relationship between ( e i }  and { r i )  can be derived 
from the autocovariance-generating function. It can be shown that almost 
everywhere in the parameter space, the MHM of {d4y t }  is an invertible MA(3) 
model, so that the conclusion of four roots on the unit circle will hold in 
general. Thus, misspecifying a periodically integrated process with a constant- 
parameter AR model will lead to an overstatement of the number of unit roots, 
and to the erroneous conclusion that the dq filter is required to eliminate the 
stochastic trend in the process. Since seasonal adjustment filters often have a 
factor equal to ( 1  + L + L2 + L 3 )  (see, for example, Ericsson et al., 1994), we 
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may expect that the MHM of a seasonally adjusted PIAR(1, 1) process will 
have a single, non-seasonal unit root. 

A notable effect of the misspecification, which can be clearly observed from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(42), is that the first-order AR structure is lost. Since the MHM is an ARMA 
process (albeit with most of its AR parameters equal to zero), approximating 
this by an AR model, as is often done in the econometric analysis of unit roots, 
may require quite a large lag length and hence a large number of parameters. 
This provides a theoretical explanation of the phenomenon often found in 
empirical practice, that there appears to be a trade-off between lag length and 
periodic parameter variation. That is, whereas a non-periodic model may 
require quite a large number of lags to obtain white noise errors, a periodic 
model often requires a smaller lag length. Thus, the loss in parsimony from 
allowing parameters to vary over the seasons may be offset by a gain from this 
lag length reduction. 

4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATesting 

The number of unit roots in a process critically determines the relevant 
asymptotic null distribution of a unit root statistic. For example, Dickey and 
Fuller’s (1979) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi statistic for a single unit root in a non-periodic autoregression 
has a distribution that depends upon only one Brownian motion process, and is 
given by the signed square root of (32). On the other hand, Dickey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef al.3 (1984, 
henceforth DHF) ?4 statistic for p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 in 

(44) y, = py,-4 + Er t = 1, . . ., n 

satisfies, under the null hypothesis, 

where { Ws(r), r E [0, 13, s = 1, . . ., 4)  are four independent standard Brownian 
motion processes. Because the MHM of the first-order periodic autoregression is 
quite similar (and in some cases identical) to (44), we analyze the properties of 
the DHF statistic in a PIAR (1 , 1 )  model in the next theorem. 

THEOREM 3. Let { y , }  be generated by a jirst-order periodically integrated 
autoregression. As n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcm, 

?4 : 2{ 1: W(r)2 d 1 - } - ” ~ 1 :  W(r)  dW( r )  

where W(r) is a standard Brownian motion process. 

Since W(r) is the same Brownian motion as in Theorem 1, representing the 
single common trend in the process, it follows from this theorem that the 
squared DHF statistic, divided by 4, is asymptotically equivalent to the LR 
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statistic if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ y t )  is a PIAR(1, 1) process. Thus, if the i 4  statistic is used for the 
hypothesis of a periodic unit root, it should be compared with the critical 
values tabulated in Fuller (1976), multiplied by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  rather than those given in 
DHF. The asymptotic distribution of t 4  is the same as given in (45), but with 
W,(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= W(r) (s = 1 ,  . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). The fact that this distribution only depends upon 
one Brownian motion instead of four is yet another reflection of the fact that 
Ho entails only a single unit root, and hence a single common stochastic trend 
in the four VQ series. Observe that the equivalence of (?:/4) and LR only holds 
under the null hypothesis; because LR is designed to discriminate between 
periodic integration and periodic stationarity, it can be expected to be more 
powerful than t 4 ,  which is based on a misspecified model.’ 

Theorem 3 again indicates that specifying a non-periodic model for a 
periodic process leads to an overstatement of the number of unit roots: under 
the hypothesis of periodic integration, the test statistic ?4 does not diverge, but 
has a non-degenerate asymptotic distribution. If the critical values from DHF 
are ‘naively’ used, then the null hypothesis will seldom be rejected. 
Furthermore, the second example above indicates that it is possible that the 
residuals from (44) do not display any serial correlation, so that the 
misspecification may not be detected. A diagnostic for periodic serial 
correlation will then be more informative to indicate the misspecification of 
the non-periodic model. 

5 .  CONCLUDING REMARKS 

In this paper we have discussed inference on unit roots in periodic 
autoregressions. We have shown that the analysis of a non-periodic unit root 
can be easily embedded within periodically integrated autoregressions. Moreover, 
we have analyzed the consequences of specifying a non-periodic model for a 
periodically integrated process. In particular, it has been shown that such 
misspecification may lead to an overstatement of the number of (seasonal) unit 
roots and a spuriously high lag length. 

The main point of the paper is that, for valid inference on stochastic trends 
in seasonal time series, the possibility of periodic differencing should be 
entertained as an intermediate case between first-differencing and annual 
differencing to obtain (periodic) stationarity. For time series with the same 
stochastic trend in each quarter, the annual filter leads to overdifferencing, 
since it neglects the cointegrating relationships between the quarters. On the 
other hand, if this common stochastic trend has a (slightly) different scale 
factor in each quarter, then the first-differencing filter will not eliminate the 
stochastic trend, and thus can be said to underdifference the time series. 
Applying the tests developed in the present paper to quarterly UK macro- 
economic time series, Franses and Paap (1994) show that this periodic 
differencing filter may be relevant in practice: for most series a periodic unit 
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root is found, whereas the restriction corresponding to a first-differencing filter 
is rejected. 

In empirical practice, the use of seasonal time series that are adjusted for 
seasonality using, for example, the Census X-11 filter is still widespread. One 
of the underlying assumptions to justify seasonal adjustment techniques is that 
a univariate time series can be linearly decomposed into four independent 
components, namely a trend, a cyclical component, a seasonal component and 
an irregular (noise) process. This assumption is invalid if a time series is 
periodically integrated, in which case the stochastic seasonal fluctuations cannot 
be separated from the stochastic trend. Moreover, since seasonal adjustment 
filters treat the observations in each of the seasons the same, they are non- 
periodic. Therefore, such filters cannot entirely remove the periodicity in a 
process, even though in practice the parameter variation will be substantially 
decreased. As discussed in Section 4, we may expect that the periodic 
difference filter for a PI(1) series will be drawn towards the non-periodic first- 
difference filter. Thus a PI(1) series may appear to be I ( 1 )  after linear seasonal 
adjustment. 

Throughout the paper we have concentrated on periodic models with a purely 
autoregressive structure of a known order. Analogously to non-seasonal unit 
root tests, this could in principle be extended to periodic ARMA models. The 
evidence from the non-seasonal unit root literature, see, for example, Schwert 
(1989), shows that unit root tests can have very poor size and power properties 
in the presence of moving-average components with a near-unit root. Moreover, 
Schwert’s results suggest that unit root tests can best be performed in so-called 
long autoregressions, where the possibly infinite-order autoregressive represent- 
ation is approximated by an AR model of an order which is finite but 
growing with the sample size. As for the selection of the lag order in practice, 
the analysis of Hall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1994) indicates that a general-to-specific testing strategy 
leads to the most reliable inference on the presence of a unit root if the true 
process is an autoregression of unknown (but finite) order; Ng and Perron 
(1 995) have found the same result when the data are generated by an ARMA 
process. 

In this paper we have only considered the possibility of a single unit root. 
Multiple unit roots may imply either that the VQ process is integrated of order 
d > 1, or that there are less than three cointegration relationships (or both). The 
latter possibility is considered by Franses (1994), using Johansen’s (1988) 
procedure in the VAR model of the VQ process. Within this framework, the 
number of cointegrating relationships can be determined via a sequence of LR 
tests. As noted in the introduction, a disadvantage of this approach is that the 
structure of the original model is lost in the unrestricted VAR model, which 
leads to over-parametrization. This provides a motivation to extend the 
present approach to LR tests for multiple unit roots; this extension is currently 
under investigation by the authors. Of specific interest is the hypothesis of four 
unit roots, since that corresponds to a seasonally integrated model, i.e. a 
(periodically) stationary autoregression in the annual differences. A test for 
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this hypothesis is considered by Ghysels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1994), who provide a 
periodic generalization of Hylleberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.'s (1990) tests for seasonal unit 
roots. For the intermediate cases (i.e. with less than four roots on the unit 
circle), their tests statistics may again be decomposed into a test for multiple 
periodic unit roots, and a test for periodic parameter variation, analogously to 

(38). 
Finally, a multivariate extension of the notion of periodic integration has 

recently been put forward by Boswijk and Franses (1995b), who define and 
analyze periodic error correction and cointegration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA motivation for such 
models is given in Osborn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1993), inter aka. In order to reduce the potential 
over-parametrization of such models, Boswijk and Franses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1995b) consider 
single-equation error correction models with periodic parameter variation only 
in the error correction terms. Their analysis comprises a test for cointegration, 
an estimator of the cointegrating vectors and a test for the weak exogeneity 
assumption implicit in their model. 

H.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF? BOSWIJK AND P. H. FRANSES 

APPENDIX 

PROOF OF LEMMA 1. Because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ E T }  is an i.i.d. sequence with mean zero and variance 
matrix &I4, it satisfies the conditions of a multivariate invariance principle (see, for 
example, Phillips and Durlauf, 1986): 

where E(r)  is a 4 x 1 vector Brownian motion process with variance matrix d 1 4 .  Since 
UT = Y(L)-'Er is a stationary vector autoregression, it can be expressed as UT = 
Y( I)-I ET + D(L)A I ET, with D(L) some matrix power series with exponentially 
decreasing weights, so that 

where U(r)  is a 4 x 1 vector Brownian motion process with variance matrix 
dY( I)-' Y( I) '- ' .  Finally, 

which converges in distribution to (00 + Ol)(l(r) = ab'U(r), cf. (19). Letting W(r) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w- '  b' U(r), the required result obtains. 

PROOF OF THEOREM 1. We shall first prove (32) for LR, and then discuss the extension 
to LR, and LR,. Consider the original model (2), and denote the full parameter vector 
by cp = ( c p ; . ,  . . ., cpi.)', with cpi. = ( cp i l ,  . . ., ( ~ ~ 4 ) .  Next, consider the reparametrization 
(9), with ~ l c p 2 ~ 3 c p 4  = 1 and n2 = n3 = n4 = 0: 

A 0-1 d 
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Recall that the zero restrictions on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAns, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1, are without loss of generality; without these 
restrictions, the model is not identified. Under the null hypothesis, nl = 0 and the 
remaining parameters are identified. Let 8 = (81, &, 8;)’ denote the full parameter vector, 
where 81 = nl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA82 = ( ( ~ 2 ,  cp3. ~ 4 ) ’  and O3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(qi , . . ., qp-l,  .) , with ql. = 
(q ,~,  . . ., q i 4 ) .  Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81 represents the unit root parameter; 82 contains the 
cointegration parameters (with cp1 not included, since it i s  simply defined by l/cp2cp3cp4); 

and 83 contains the coefficients of (periodically) stationary regressors. Under the null 
hypothesis, the relationship between cp and 8 is one-to-one; thus the Jacobian matrix of 
the inverse transformation cp(8), denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = dcp/dO’, is non-singular. 

Let X; = (xi,, . . ., xLr)’ with xi, = (Dll, . . ., D4,)y,-i, so that the model is expressed 
concisely as yr = q ’ x I  + 

I I  

and the unrestricted ML estimator of cp is 

-I n - 1  n 

@ = &: &Y, = cp + (-&,x;) E X , & , .  ( ,Il 1 f = l  r=1 r= I 

Below we shall prove that 4 is consistent; if the restricted estimator @ is consistent as well 
(which we shall assume henceforth), then the usual quadratic expansion of the LR statistic 
will yield 

LR = (4 - @)‘Q,+,(@ - (PI + op(1) 

= (s, - @)‘J-’YN(Y,~J~Q,JYN’)YNJ’-’(@ - (P) + op(l) 

= (6 - e ) t ~ N ( ~ , l ~ , ~ , 1 ) ~ N ( 6  - (P) + oP(l) 

where Y N  = diag(N. 14, V N .  14(p-1)), and where Q,+, and Q8 denote minus the Hessian 
matrices of the log-likelihood formulated in terms of cp and 8, respectively: 

with zf = J’x,. Note that because of the usual block-diagonality of the information matrix 
with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd and the rgmaining parameters, we have excluded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd from the parameter 
vectors cp and 8. Because 81 = 0, and because 82 and 8 3  are unrestricted under the null 
hypothesis, we find 

where A” is the first diagonal element of A - ’ .  From 

= (YN’Q8Y,1)-1Y,1q0 

where qe,  the score vector evaluated in the true value, is implicitly defined, it is clear that 
all results will follow from the limiting behaviour of the normalized Hessian matrix and 
score vector. 

Partition z, = (z,, ,  zir, zi,)’ conformably with 8. Since zr can be expressed as dcp‘x,/ 
do, we find (recall that cp1 = I/cpzcp3cp4) 

WII 

Z I ~  = D i r ~ r - l  ~ 2 r  = 

wp- I .  I 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (&, . . ., D ~ , ) U ~ - ~ .  Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl, and zzl contain stochastic trends, whereas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 3 1  is 
periodically stationary. 

For the I(1) regressors, we first note that from Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and the continuous mapping 
theorem, 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI N  d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-c * T=I Y s - I ,  TET -+ w ~ , - l / ~ W ( r ) d E ( r )  

for s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 1, . . ., 4. This implies, first, that 

Next, let vr = (vl,, . . ., vqr)', and let H denote the 4 x 3 matrix such that z2, = Hu,.  Let 
V,T denote the VQ process of us,; note that this is a different 4 x 1 vector process for 
each s. Partition Y(L) as [ q l ( L ) ,  . . ., q4(L)], where Zy,(L) are 4 x 1 lag polynomials, and 
let Y = Y( 1) and q, = vs( 1). Using the fact that vsr collects all terms with coefficient cps, 
it can be derived from (12) that 

VsT = qs(L)ys-l, T = vsys-1, T f v:(L)dlys-I, T 

where q : ( L )  are 4 x 1 lag polynomials; the second equality is a consequence of the well- 
known power series decomposition. Because L I I  Y,-I, T is I(0) and hence of lower order 
than qsY,-l, T, we have 

which implies 

where A = diag(a4, U I ,  a2, a,), with a, defined in (20). Similarly, we find 

and 

where A1 = (a4,0,0, O)', the first column of A .  
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From the general results of Park and Phillips (1989), we find for the stationary 
regressors 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuS-l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U3-1, T ,  . . ., Us-p, T ) ' ,  and where V3 is a fixed positive definite matrix. 
Moreover, 

1 "  
-~zJf(zI I ,  Z i f )  = Op(1). 
0 2 N  I=I 

In order to summarize the results, define the matrix K = ( ~ / u ) [ A I : Y A H ] .  Then 

K'K I W(r )2d r  0 o-'K'j: W(r )dE( r ) ]  
Yi'Q~yi' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 [ j o 0  v 3 ]  y ; ' ~  A [ 

N(O, V3) 

and hence 

rN(e - e) 

= YNJ-'(@ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq) + op( 1) --9 d [ { 1; ~ ( r ) ~  W(r)da-'(K'K)-'K'E(r) 

N(O, V; ' )  

Note that this implies that @ is consistent. 
Define S(r)  = o- ' (K 'Q- IK 'E(r ) ,  a 4 x 1 vector Brownian motion with variance 

matrix ( K ' i Y - ' .  Letting Sl(r) denote the first component of S(r), the above results imply 

Partition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = [Kl :K2] conformably with S(r). It is well known from partitioned regression 
theory that Sl(r)  may be expressed as 

S1 (r) = U- I ( K  h42Kl)- I K { M2E(r) 

where h42 = I -  K2(K:K2)-'K$. Thus the variance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS1 e uals ( K { M ~ K I ) - ' .  The 
covariance between Sl(r) and o- 'K;E(r )  is equal to ( K i M z K l )  KiM2K2 = 0. However, 
the same is true for the covariance between W(r) = w - ' b ' E ( r )  and u- 'K$E(r) ,  which is 

- b' Y-' Y A H  = - b'AH = 0 

-9 

1 1 
OJU OJU 

where the final equality may be checked simply from the definitions of A, b and H .  Thus 
Sl( r )  and W(r) are independent of the same 3 x I vector Brownian motion u- 'K iE(r ) ;  
and since these are all defined from the same 4 x 1 vector Brownian motion E(r), it 
follows that W(r) and Sl(r)  must be the same up to a scale factor, i.e. 
Sl(r) = ( K \ M ~ K I ) - I / * W ( ~ ) .  Since 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K'K)" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( K i M 2 K I ) - I ,  we find that 

H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP BOSWUK AND P. H. FRANSES 

which, using the relation between Sl(r)  and W(r), reduces to the required expression (32). 
For LR,, we note that since the periodic intercepts enter unrestrictedly, their 

implication is that all regressors should be replaced by the residual of a regression on 
four dummies. This in turn implies that in all relevant formulae, Ysr should be 
replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ysr - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATS), where Y ,  is the average over N years. If t = 0 in (24), then 
( Y s j  - Y,) = (X,r - X,).  The general results from Park and Phillips (1988) now imply 
that W(r) should be replaced by Wk(r) with k =  I .  The analysis for LR, (periodic 
intercepts and linear trends) is entirely analogous. Here we need K = 0 so that Yr does 
not contain a quadratic trend, and so the residual of a regression of YSr on a constant 
and trend is equal to the residual of the same regression with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,, as the dependent 
variable. 

PROOF OF THEOREM 2. Consider first the periodicity test in the unrestricted periodic 
autoregression. If y, - PI(O), then it follows from the general results on stationary 
periodic autoregressions that the LR statistic has a x2(3p)  distribution; cf. Pagano (1978, 
Theorem 4). 

Now suppose y ,  - PI(1). It will be convenient to consider a minor variation on the 
parametrization used in the proof of Theorem 1, where nl is restricted to zero, but the 
restriction t p ~  = l/cp~cp3tp4 is no longer imposed. Thus, we replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO1 = nl by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO l  = cpI ,  
and f3=(Ol,0i,0;)' by O* =(O: ,O i ,O; ) ' .  Define the 4 x 3 matrix R =  
([13:0] - [0:13])'; note that R'(1, 1, 1, 1)' = 0. Moreover, let R = (Ip 8 R). The parameter 
constancy restriction may expressed in terms of O* as 

where cp* = ( c p l ,  cp2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc p 3 ,  ~ 4 ) '  = U%, 02'. 
A quadratic expansion of the LR statistic yields 

LR = (R'e*>~[R'Q~!R]- ' i i '8* + oP(l) 

= (e* - ~ * ) ~ Y , R [ ~ ~ ' ( Y , ~ ~ , . Y , ~ ) - ~ R ] - ~ R ~ Y , ( ~ *  - e*y + oP(i) 

where the second equality follows from the block-diagonality of R. Repeating the 
above analysis for the new parametrization yields the same results as in the proof 
of Theorem I ,  but with K replaced by k? = (w/o)YA.  This implies that the LR statistic 
can be decomposed (asymptotically) as LR= LR, +LR,, where LR, is the LR 
statistic for R'cp* = 0, and LR, is the LR statistic for (Zp-l @ R')v = 0. Moreover, it is 
easily seen that LR, +d x2{3(p - I ) ) ,  independently of LR,. For the latter statistic, we 
find 
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a 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 standard vector Brownian motion process. The covariance between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ( r )  and V(r )  
is given by 

- [R'(A Y'YA)- lR ] " 'ZR ' (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY'Y)-'A-'b. 

Under the null hypothesis, we either have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcps = 1, Vs, or cps = -1, Vs. In the former case, 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= b =  (1 ,  I ,  1, 1)' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA =  14, and in the latter case a =  b = ( I $  -1, 1, - 1 ) '  and 
A = diag(-1, 1, -1 ,  1); thus A- lb = Z(1, 1, 1, 1)'. Moreover, under the null hypothesis 
the matrix Y has a particular structure, satisfying Ys+,,q+k = Ysq, where modulo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
addition is used both for s and q. It can be checked that this structure implies 
R ' ( Y ' W - ' A - I b  = 0. Thus V( r )  and W ( r )  are independent, which implies 

{ j :W(r )2dr} -1 '2 / :W(r)dV(r )  - N ( 0 ,  1 3 )  

and hence LR, -+d ~ ~ ( 3 ) .  Because of the limiting x 2 { 3 ( p  - I ) }  distribution of LR,,, 
independent of LR,, we conclude that LR -'d x2(3p) .  The proof in the case of  fitted 
intercepts and trends is entirely analogous; simply replace W ( r )  by a demeaned or 
detrended standard Brownian motion. 

Consider now part (ii). We first need to derive the properties of 8, the restricted ML 
estimgtor. The score vector and Hessian matrix for the restricted model, denoted by q,9 

and &, are simply obtained by deleting the first element (corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl) of 48 
and the first row and column of @3. Their propertie? are immediately found from the 
proof of Theorem 1, with K replaced by K2. Define V ( r )  = u- ' (K i ) -1 '2K$E(r ) ,  a 3 x 1 
standard vector Brownian motion process. We have already shown that- K i E ( r ) ,  and 
hence V(r ) ,  is independent of W(r).  Assuming (as before) consistency of 8, as  a Taylor 
series expansion of the LR statistic for (32 = ( I ,  I ,  1)' or 82 = -( 1, 1, 1 ) '  yields 

1 
ow 

LR = N(82  - 82) ' (N-2&2)N(82 - 82) + oP( 1) 

and by the same argument as before, the distribution of the last expression is ~ ' ( 3 ) .  

PROOF OF THEOREM 3. The least-squares estimate f i  from (44) can be expressed as 

so that the DHF statistic satisfies 

with u the residual standard error from (44). Using Lemma 1 and the continuous mapping 
theorem, we find 

and 
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Notice that although the joint vector process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ d l Y ~ }  is not serially uncorrelated, the 
individual components {dl Ysr} ,  s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, . . ., 4, are white noise, because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd4yf is 
uncorrelated with d4yf-4. Therefore, there is no ‘bias parameter’ added to the stochastic 
integral, cf. Park and Phillips (1988). Together these results imply that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(j - 1) = OP(W1), 
so that 

Finally, because from ( 1  7) the diagonal elements of 0 0 0 ;  are equal to 

52 5 2  
j jo = - tr(O006 + @ \ @ I )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj- tr([00 + Q~] [@o + @ I ] ’ )  

4 

zero, we have 

5 2  0 2  

4 4 
= - tr (ab’ba’) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u’u) 

because w2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(b’b). Substitution leads to the required result. 

NOTE 

1. A Monte Carlo experiment which compares the finite sample size and power performance of the 
DHF statistic to that of the LR statistic in PAR models is available from the authors upon request. 
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