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Abstract

The segmentation of an argumentative

text into argument units and their non-

argumentative counterparts is the first step

in identifying the argumentative structure

of the text. Despite its importance for

argument mining, unit segmentation has

been approached only sporadically so far.

This paper studies the major parameters of

unit segmentation systematically. We ex-

plore the effectiveness of various features,

when capturing words separately, along

with their neighbors, or even along with the

entire text. Each such context is reflected

by one machine learning model that we

evaluate within and across three domains

of texts. Among the models, our new deep

learning approach capturing the entire text

turns out best within all domains, with an

F-score of up to 88.54. While structural fea-

tures generalize best across domains, the

domain transfer remains hard, which points

to major challenges of unit segmentation.

1 Introduction

Argument mining deals with the automatic identifi-

cation and classification of arguments in a text. It

has become an emerging topic of research mainly

owing to its many applications, such as writing sup-

port tools (Stab and Gurevych, 2014a), intelligent

personal assistants (Rinott et al., 2015), and argu-

ment search engines (Wachsmuth et al., 2017).

Unit segmentation is often seen as the first task

of an argument mining pipeline. It consists in the

splitting of a text into its argumentative segments

(called argument units from here on) and their non-

argumentative counterparts. Afterwards, the roles

that the argument units play in the argumentative

The first two authors equally contributed to this paper.

structure of the text as well as the relations between

the units are classified. Conceptually, an argument

unit may span a clause, a complete sentence, multi-

ple sentences, or something in between. The size

of the units depends on the domain of an argumen-

tative text (in terms of topic, genre, or similar),

but can also vary within a text. This makes unit

segmentation a very challenging task.

As detailed in Section 2, much existing research

on argument mining has skipped the segmentation,

assuming it to be given. For applications, however,

an automatic segmentation is obligatory. Recently,

three approaches have been presented that deal with

the unit segmentation of persuasive essays: Persing

and Ng (2016) rely on handcrafted rules based on

the parse tree of a sentence to identify segments;

Stab (2017) uses sequence modeling based on so-

phisticated features to classify the argumentative-

ness of each single word based on its surrounding

words; and Eger et al. (2017) employ a deep learn-

ing architecture that uses different features to do

the same classification based on the entire essay.

So far, however, it is neither clear what the best seg-

mentation approach is, nor how different features

and models generalize across domains and genres

of argumentative texts.

In this paper, we carry out a systematic study to

explore the major parameters of unit segmentation,

reflected in the following three research questions:

1. What features are most effective in unit seg-

mentation?

2. What is the best machine learning model to

capture the context of a unit that is relevant to

segmentation?

3. To what extent do the features and models

generalize across domains?

We approach the three questions on and across

three existing argumentation corpora, each repre-
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senting a different domain (Section 3): the essays

corpus of Stab (2017), the editorials corpus of Al-

Khatib et al. (2016), and the web discourse corpus

of Habernal and Gurevych (2015). All combina-

tions of training and test domain are considered for

these corpora, resulting in nine experiments.

Given the corpora, we follow the existing ap-

proaches outlined above in tackling unit segmenta-

tion as a token-level classification task (Section 4).

To capture the context around each token, we an-

alyze different semantic, syntactic, structural, and

pragmatic feature types, and we compare three fun-

damental machine learning techniques based on

these features: standard feature-based classifica-

tion realized as a support vector machine (SVM),

sequence modeling realized as linear-chain condi-

tional random field (CRF), and a new deep learning

approach realized as a bidirectional long short-term

memory (Bi-LSTM). These models correspond to

increasingly complex levels of modeling context:

The SVM considers only the current token, result-

ing in an isolated classification for each word. The

CRF is additionally able to consider the preceding

classifications. The Bi-LSTM, finally, can exploit

all words and classifications before and after the

current word.

We evaluate all features and models in Section 5.

Our results provide clear evidence that the capa-

bility of deep learning to model the entire context

is beneficial for unit segmentation within domains.

The Bi-LSTM achieves the highest effectiveness on

each corpus, even outperforming the approach of

Stab (2017) on the essays corpus. Across domains,

however, all three perform similar and notably drop

in effectiveness. Matching intuition, semantic fea-

tures turn out best to characterize argument units in

the in-domain experiments, whereas structural fea-

tures are more effective across domains. Our find-

ings indicate that the concepts of argument units in

the given corpora do not fully match.

Altogether, the contribution of our paper is an

extensive analysis of the benefits and limitations of

standard approaches to argument unit segmentation.

Nevertheless, argument unit segmentation is by far

not a solved task yet, which is why we end with

a discussion of its major challenges in Section 6,

before we finally conclude (Section 7).

2 Related Work

Unit segmentation is a classical segmentation task,

that is related to discourse segmentation (Azar,

1999; Green, 2010; Peldszus and Stede, 2013) as

for rhetorical structure theory (Mann and Thomp-

son, 1988). Both discourse and argument units are

used as building blocks, which are then hierarchi-

cally connected to represent the structure of the

text. However, argument units are closer to classi-

cal logic, with each unit representing a proposition

within the author’s argumentation.

Much existing work on argument mining skips

the segmentation, assuming segments to be given.

Such research mainly discusses the detection of sen-

tences that contain argument units (Teufel, 1999;

Palau and Moens, 2009; Mochales and Moens,

2011; Rooney et al., 2012), the classification of

the given segments into argumentative and non-

argumentative classes (Stab and Gurevych, 2014b),

or the classification of relations between given

units (Stab and Gurevych, 2014b; Peldszus, 2014;

Peldszus and Stede, 2015).

A few publications address problems closely re-

lated to unit segmentation. Madnani et al. (2012)

identify non-argumentative segments, but they do

not segment the argumentative parts. Levy et al.

(2014), on the other hand, try to detect segments

that are argumentatively related to specific topics.

However, they do not segment the whole text.

A unit segmentation algorithm has been already

applied by Al-Khatib et al. (2016) in the creation

of the editorials corpus analyzed in this paper. The

authors developed a rule-based algorithm to auto-

matically pre-segment the corpus texts before the

manual annotation. The algorithm was tuned to

rather split segments in cases of doubt. During the

annotation, annotators were then asked to correct

the segmentation by merging incorrectly split seg-

ments. The authors argue that—even with a simple

algorithm—this approach simplifies the annotation

process and makes evaluating inter-annotator agree-

ment more intuitive.

In the few publications that fully address unit seg-

mentation, a detailed analysis of features and mod-

els is missing. Previous work employs rule-based

identification (Persing and Ng, 2016), feature-

based classification (Lawrence et al., 2014), condi-

tional random fields (Sardianos et al., 2015; Stab,

2017), or deep neural networks (Eger et al., 2017).

Especially the most recent approaches by Stab and

Eger et al. rely on sophisticated structural, syntacti-

cal, and lexical features. Eger et al. even report that

they beat the human agreement in unit segmenta-

tion on the one corpus they consider, but the paper
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does not clarify which linguistic cues are most help-

ful to reach this performance. To remedy this, we

also employ a deep neural network based on Bi-

LSTMs, but we perform a detailed comparison of

models and feature sets.

Previous work trains and tests unit segmentation

algorithms on one single corpus. A frequent choice

is one of the two versions of the Argument Anno-

tated Essay Corpus (Stab and Gurevych, 2014a;

Stab, 2017), which is studied by Persing and Ng

(2016), Eger et al. (2017), Stab (2017) himself, and

also by us. However, for a unit segmentation al-

gorithm to be integrated into applications, it has

to work robustly also for new texts from other do-

mains. This paper therefor extends the discussion

of unit segmentation in this direction.

3 Data

This study uses three different corpora to evaluate

the models that we developed to segment argument

units. The corpora resprented different domains,

particularly in terms of genre. We detail each cor-

pus below, give an overview in Table 1, and provide

example excerpts in Figure 1.

Essays The Argument Annotated Essays Corpus

(Stab and Gurevych, 2014a; Stab, 2017) includes

402 persuasive essays from essayforum.com writ-

ten by students. All essays have been segmented

by three expert annotators into three types of ar-

gument units (major claims, claims, and premises)

and non-argumentative parts. Each argument unit

covers an entire sentence or less. The essays are

on average 359.5 tokens long with 70% of tokens

being part of an argument unit.1 We employ the

test-training split provided by the authors.

Editorials The Webis-Editorials-16 corpus (Al-

Khatib et al., 2016) consists of 300 news editori-

als from the three online news portals Al Jazeera,

Fox News, and The Guardian. Prior to the anno-

tation process, the corpus was automatically pre-

segmented based on clauses. After that, three an-

notators performed the final segmentation by merg-

ing segments and distinguishing argument units

of six types (common ground, assumption, anec-

dote, testimony, statistics, and other) from non-

argumentative parts. The annotation guidelines de-

fine a unit as a segment that spans a proposition (or

two or more interwoven propositions) stated by the

1The percentage of tokens that are part of an argument unit
is calculated from Table 1 as (Arg-B + Arg-I)/Total.

Excerpt of a document in the essays corpus

Excerpt of a document in the editorials corpus

Excerpt of a document in the web discourse corpus

Legend

PremiseClaim Anecdote Assumption

You have to be made of wood not to laugh at this: a private  

Russian bank has given a load to France's National Front.  

The political party, drawn to victory by Marine Le Pen, won 

the recent French elections by almost three times the number  

of votes than President Francios Holllande. Although this is  

news, this wasn't the biggest media reaction of the day.

There are lots of other effects of growing technology on  

transportations and communications, which are mentioned 

as follows. First and for most, email can be count as one of  

the most benefical results of modern technology.  Many years  

ago, peoples had to pay a great deal of mony to post their  

letters, and their payments were related to the weight of their  

letter or boxes, and many accidents may cause problem that  

the post could not be deliver delivered.

Private schools succeed where public schools fail largely  

because in a public school the teach's hand are tied by  

potlitically correct nonsense. They cannot correct errors, 

cannot  encourge high achievers for fear of upsetting the 

regular students , assign homework, or expect respect from 

the students.  The inmates are running the asylum in many 

public schools.

Figure 1: Excerpts of three documents for the es-

says, editorials and web discourse corpus. Each

excerpt is highlighted with argument units as anno-

tated in the original corpus

author to discuss, directly or indirectly, his or her

thesis. This corpus contains the longest documents

with an average of 957.9 tokens. The editorials

are mainly argumentative, with 92% of the tokens

in the corpus being part of an argument unit. We

employ the provided training-test split.

Web Discourse The Argument Annotated User-

Generated Web Discourse corpus (Habernal and

Gurevych, 2016) contains 340 user comments, fo-

rum posts, blogs, and newspaper articles. Each

of these is annotated according to a modified ver-

sion of Toulmin’s model (Toulmin, 1958). In the

corpus, argument units belong to one of five types

(premise, claim, rebuttal, refutation and backing)

and can be arbitrary text spans. Because of the
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Number of tokens

Corpus Part # Documents Arg-B Arg-I Arg-O Total Average

Essays Training 322 4,823 75,621 35,323 115,767 359.5

Test 80 1,266 18,790 8,699 28,755 359.4

Total 402 6,089 94,411 44,022 144,522 359.5

Editorials Training 240 11,323 202,279 17,227 230,829 961.8

Test 60 2,811 49,102 4,622 56,535 942.3

Total 300 14,234 251,381 21,849 287,364 957.9

Web Discourse Training 272 905 32,093 36,731 69,729 256.4

Test 68 224 7,949 8,083 16,256 239.1

Total 340 1,129 40,042 44,814 85,985 252.9

Table 1: Number of documents, tokens per class, and average tokens per document per corpus and part.

latter, the units are on average much longer than

in the other two corpora: 36.5 tokens compared

to 16.5 tokens (essays) and 18.7 tokens (editori-

als).2 The complete documents are relatively short

though (252.9 tokens on average), and they con-

tain many non-argumentative parts: only 48% of

the tokens are part of an argument unit. Since the

authors do not provide any split, we randomly split

the corpus into a training set (80%) and test set

(20%), similar to the other corpora.

The three corpora vary in terms of how argu-

ments are actually annotated in the contained doc-

uments. Following Stab (2017), we converted all

documents into the BIO format, where each token

is labeled according to the position in the segment

that it belongs to as Arg-B (the first token of an

argument unit), Arg-I (any other token of an argu-

ment unit), or Arg-O (not in an argument unit).

4 Method

This paper explores the effectiveness of semantic,

syntactic, structural, and pragmatic features when

capturing tokens separately, along with their neigh-

bors, or along with the entire text. In line with re-

cent work (see Section 2), we address unit segmen-

tation as a token labeling problem. In the following,

we detail each set of features as well as the three

machine learning models that we employ. Each

model reflects one of the outlined contexts used to

classify the tokens. To demonstrate the strengths

and weaknesses of the models, we encode the fea-

tures as analog as possible in each model. However,

some variations are necessary due to differences in

the way the models utilize the features.

2Average length of argument units is calculated from Ta-
ble 1 as (Arg-B + Arg-I)/Arg-B

4.1 Features

For every token, we extract the following semantic,

syntactic, structural and pragmatic features.

Semantic Features Semantic features capture

the meaning of tokens. This work employs the sim-

ple but often effective way of representing meaning

by using the occurrence of each token as a feature

(bag-of-words). We also tested word embeddings

(Pennington et al., 2014) as semantic features, but

found that they performed worse for all models

introduced below except for the Bi-LSTM.

Syntactic Features The syntactic features that

we employ capture the role of a token in a sentence

or argument unit. We resort to standard part-of-

speech (POS) tags as produced by the Stanford

tagger (Toutanova et al., 2003) for this feature set.

Structural Features Structural features capture

the congruence of argument units with sentences,

clauses, or phrases. We employ the Stanford parser

(Klein and Manning, 2003) to identify sentences,

clauses, and phrases in the text and represent them

with token labels. In particular, we use one feature

for each token and structural level (sentence, clause,

phrase), capturing whether the token is at the be-

ginning, within, or at the end of such a structural

span, respectively.

Pragmatic Features Pragmatic features capture

the effects the author of a text intended to have on

the reader. We use lists of discourse markers com-

piled from the Penn Discourse Treebank (Prasad

et al., 2008) and from (Stab, 2017) to identify such

markers in the text. The latter have been specifi-

cally created for detecting argument units. For each

token and discourse marker, we use five binary fea-
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Figure 2: The neural network structure used in our paper with the input feature vectors for three tokens at

the bottom. The labels by Ouput1 are estimated without considering label dependency and are not used;

instead we report the results for Output2, which considers this dependency.

tures that are 1 iff. the token is before the marker,

the beginning of the marker, inside a multi-token

marker, the last token of a multi-token marker, or

after the marker in the sentence, respectively.

4.2 Models

We make use of three common machine learning

models in order to capture an increasing amount

of context for the token labeling: a support vector

machine (SVM), a conditional random field (CRF),

and a bidirectional long short-term memory (Bi-

LSTM). To provide a comparison to results from

related work, we reimplemented the method of Stab

(2017) and use it as a baseline.

Reimplementation The approach of Stab (2017)

is based on a CRF sequence model (Lafferty et al.,

2001). It has been specifically developed for the

segmentation given in the essays corpus. Since the

license of the original implementation prohibited

the author from giving us access to the code, we

fully reimplemented the approach.

Analog to Stab (2017), we employ the CRF-

Suite (Okazaki, 2007) with the averaged perceptron

method (Collins, 2002). For the reimplementation,

we use the exact feature sets described by Stab

(2017): Structural, Syntactic, LexSyn and Prob.

Our reimplementation achieves an F-score of 82.7,

which is slightly worse than the value reported by

Stab (2017) for unit segmentation (86.7). We at-

tribute this difference to implementation details in

the employed features.

SVM We employ a linear SVM model in terms

of a standard feature-based classifier that labels

each consecutive token independently, disregard-

ing the token’s context. In other words, features

of neighboring tokens are not considered by the

SVM. Accordingly, this model does not capture the

transition between labels, as well.

CRF We implement a CRF sequence model to

capture the context around the token for labeling

the token. For labeling, the linear-chain CRF that

we use considers the labels and features of the sur-

rounding tokens within a certain window, which

we chose to be of size 5 for our experiments. We

use the same framework and method as for the

reimplementation.

Since CRFs explicitly capture the local context

of a token, we simplify the pragmatic features for

this model and use only binary features for whether

the token is at the beginning, inside, at the end, or

outside of a discourse marker.

Bi-LSTM Finally, we also build a Bi-LSTM neu-

ral network to capture the entire text as context.

The architecture of the model is illustrated in Fig-

ure 2 and further explained below.

Compared to the CRF, the Bi-LSTM model does

not utilize a window while classifying a token but

considers the whole the text at once. Instead of

using the tokens directly as semantic features, we

use the word embedding of the tokens (Pennington

et al., 2014), as this is common for neural networks.

In particular, we use the standard pre-trained em-
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Test on Essays Test on Editorials Test on Web Discourse

Features Models Essays Editorials Web Dis. Essays Editorials Web Dis. Essays Editorials Web Dis.

Semantic SVM 53.42 40.89 28.89 50.00 53.96 16.20 31.71 26.58 33.34

CRF 76.56 53.06 26.31 66.30 78.90 8.48 37.51 37.25 42.53

Bi-LSTM 87.91 57.11 36.00 60.70 81.56 24.63 41.29 36.44 54.98

Syntactic SVM 49.66 36.14 26.45 49.98 51.36 14.32 28.44 25.33 31.93

CRF 66.79 48.40 15.48 68.30 76.74 5.05 34.73 38.13 24.25

Bi-LSTM 83.10 55.70 21.65 64.92 80.35 15.28 36.58 37.40 43.02

Structural SVM 41.19 36.14 26.45 49.53 77.71 5.96 27.97 37.98 27.52

CRF 60.12 48.41 15.48 68.96 77.55 5.68 34.64 38.30 22.51

Bi-LSTM 69.77 48.63 41.19 61.54 79.62 38.08 35.46 37.75 39.51

Pragmatic SVM 38.75 28.65 30.09 31.33 33.02 22.38 30.85 22.24 35.59

CRF 40.15 31.66 15.48 37.06 40.20 5.02 24.30 30.30 23.70

Bi-LSTM 76.47 54.72 15.24 57.66 75.31 5.24 34.88 36.68 22.76

All SVM 61.40 50.88 31.26 58.84 79.89 22.55 39.14 37.42 42.76

CRF 79.15 52.50 21.74 69.80 81.97 8.00 37.09 37.63 37.74

Bi-LSTM 88.54 57.11 36.97 60.69 84.11 20.85 39.78 36.56 54.51

Reimplementation 82.70 52.00 20.00 67.00 78.00 6.00 31.66 37.30 49.00

Table 2: The in-domain (gray background) and cross-domain macro F-scores on each test (first header row)

after training on one of the training sets (second header row). Each row lists the results of one of the three

models (SVM, CRF, and Bi-LSTM) using one of the four feature types (semantic, syntactic, structural,

and pragmatic) in isolation or their combination (all). For each column, the highest value is marked in

bold. The bottom line shows the F-scores of our reimplementation of the approach of Stab (2017).

bedding of Pennington et al. (2014), which has a

dimensionality of 300. For the other feature sets,

we concatenate all the boolean features described

in the previous section into a sparse feature vector

(more precisely, a one-hot vector).

The architecture in Figure 2 should be viewed

from bottom to top. We first feed the features into

bidirectional LSTMs (Schuster and Paliwal, 1997).

Next, we feed the semantic features into a sepa-

rate Bi-LSTM in order to be able to use a different

kernel for the dense feature vector of the semantic

features than for the one-hot vectors. The output

of the two Bi-LSTM layers is then concatenated

and fed into a fully-connected layer. To model la-

bel dependencies, we add another Bi-LSTM and

another output layer. Both output layers are soft-

max layers, and they are trained to fit the labels of

tokens. We process only the result of the second

output layer, though. As we will see in Section 5,

the second output layer does indeed better capture

the sequential relationship of labels.

5 Experiments

Using the three corpora detailed in Section 3, we

conduct in-domain and cross-domain experiments

to answer the three research questions from Sec-

tion 1. In each experiment, we use the training set

of one corpus for training the model and the test

set of the same or another corpus for evaluating

the model. In all cases, we test all four considered

feature sets both in isolation and in combination.

We report the macro F-score as an evaluation mea-

sure, since this allows for a comparison to related

work and since we consider all three classes (Arg-B,

Arg-I, and Arg-O) to be equally important.

Table 2 lists the macro F-scores of all combi-

nations of features and models as well as of our

reimplementation of the approach of Stab (2017)

for all combinations of training and test set.

5.1 Comparison to Previous Work

To put our results into context, we also imitate the

experiment setting of Stab (2017). For this purpose,

we randomly split the test set of the essays corpus

into five equally-sized subsets and use the student’s

t-test to compare the F-scores of our methods on

each subset with the result of Stab (2017). We find

that our best-performing method, the Bi-LSTM

using all features, achieves a significantly better F-

score (88.54 versus 86.70) with p-value < 0.001.
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Prediction

Label B-B B-I B-O I-B I-I I-O O-B O-I O-O

Gold B-B 0 0 0 0 0 0 0 0 0

B-I 1 956 11 0 152 0 0 0 0

B-O 0 0 0 0 0 0 0 0 0

I-B 0 0 0 0 0 0 0 0 0

I-I 0 71 0 4 16363 78 59 77 872

I-O 0 0 0 0 83 1109 0 0 74

O-B 0 4 0 10 131 0 958 17 144

O-I 0 0 0 0 0 0 0 0 0

O-O 0 129 7 1 1285 157 139 87 5550

Table 3: Confusion matrix opposing the number of gold BIO labels of pairs of consecutive tokens in the

essays corpus to those predicted by our best-performing method, the Bi-LSTM using all features. The

correct predictions (on the diagonal) are marked in bold.

Furthermore, although the results of our reimple-

mentation of the approach of Stab (2017) are lower

than those reported by the author, our own CRF

approach performs comparably well in almost all

cases using simple linguistic features.

5.2 Improvement by Second Output Layer

A side effect of predicting the BIO label of each to-

ken separately is that two consecutive tokens can be

labeled as Arg-O and Arg-I. This is not reasonable,

since it corresponds to a unit without beginning.

Without the second output layer Output2, our neu-

ral network method produced about 400 such pairs.

However, when we added the layer, the number

dropped by half to 200 pairs. While the effect on

the F-score is small, using the second output layer

therefore produces more comprehensible results.

We thus only report the results with Output2.

5.3 Error Analysis

To learn about the behavior of our best-performing

Bi-LSTM model, we carried out an error analysis.

Table 3 presents the confusion matrix of the gold

BIO label pairs and the predicted pairs on the es-

says corpus. While it is not possible to discuss all

errors here, we observed a few typical cases, as

discussed in the following.

In particular, some wrong predictions result from

cases where the Bi-LSTM combines several units

into one. For instance, the two units in “... [the

criminal is repeated second time]; also, [it is re-

garded as the "legalized revenge"...]” are predicted

as one unit. This produces errors of the types (I-

O, I-I), (O-B, I-I), and (O-O, I-I) (gold vs. predic-

tion). Conversely, the Bi-LSTM also sometimes

chops one unit into several units. For instance, the

unit “Crimes kill someone which is illegal; never-

theless, the government use law to punish them...”

is chopped into “[Crimes kill someone which is

illegal]” and “[the government use law to punish

them...]”. This will create (I-I, I-O), (I-I, O-O), and

(I-I, O-B) errors, despite noticing that it may also

make sense for some annotators.

Finally, some (I-O, I-I) errors occurred a number

of times, because of the delimiter of units (such as

",", "." or ";") were not included in the gold data

but predicted as being part of it by our Bi-LSTM.

6 Discussion

Given our experimental results, we come back to

the three research questions we initially raised, and

then turn our head to ongoing research.

6.1 Major Parameters of Unit Segmentation

Our study aims to provide insights into three major

parameters of unit segmentation: features, models,

and domains. Each of them is reflected in one of

our guiding research questions from Section 1.

Research Question 1 What features are most ef-

fective in unit segmentation?

According to the results of the in-domain experi-

ments, the semantic features are the most effective.

The models employing these features, achieve the

highest F-scores, except for the SVM on editorials,

where structural features perform better. However,

there is no feature type that dominates the cross-

domain experiments. At least, the structural fea-

tures seem rather robust when the training and test

sets are from different domains.
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Sentence Clause Phrase

Corpus Label B I E B I E B I E

Essays Arg-B 0.30 -0.19 -0.05 0.23 -0.13 -0.06 0.04 0.04 -0.08

Arg-I -0.30 0.44 -0.30 -0.23 0.34 -0.22 0.04 0.03 -0.08

Arg-O 0.18 -0.37 0.33 0.14 -0.29 0.25 -0.06 -0.04 0.11

Editorials Arg-B 0.75 -0.51 -0.05 0.57 -0.38 -0.07 0.15 -0.09 -0.09

Arg-I -0.53 0.74 0.48 -0.44 0.58 -0.33 0.02 0.12 0.11

Arg-O 0.05 -0.50 0.64 0.09 -0.41 0.47 -0.10 -0.09 0.21

Web Discourse Arg-B 0.48 -0.33 -0.03 0.32 -0.22 -0.04 0.10 -0.06 -0.05

Arg-I -0.12 0.09 0.00 -0.09 0.07 0.00 -0.02 0.01 0.01

Arg-O 0.18 0.01 -0.01 0.01 0.01 0.08 0.00 0.00 0.00

Table 4: Pearson correlation between argument unit boundaries and structural features. Values range from

-1.00 (total negative correlation) to 1.00 (total positive correlation). Absolute values above or equal to 0.40

can be seen as moderately correlated and are marked in bold.

While the results of the semantic features across

essays and editorials — two domains that are com-

parably similar — remain high, the performance

of the models employing them dramatically drop

when tested on web discourse after training on

either of the other. The intuitive explanation for

this decrease in the domain transfer is that impor-

tant content words are domain-specific. Thus, the

learned knowledge from one domain cannot be

transferred to other domains directly. In contrast,

structural features capture more general properties

of argumentative text, which is why we can use

them more reliably in other domains.

As shown in Table 4, the sentence, clause, and

phrase boundaries correlate with the boundaries of

argument units. Especially in the editorials corpus,

the boundaries of sentences and clauses show high

Pearson coefficients. This reveals why we can still

achieve reasonable performance when the training

and test set differ considerably.

Research Question 2 What is the best machine

learning model to capture the context of a unit that

is relevant to segmentation?

Comparing the different models, the SVM per-

forms worst in most experiments. This is not sur-

prising, because the SVM model we used utilizes

local information only. In a few cases, however, the

SVM performed better than the other models, e.g.,

when evaluating pragmatic features on essays that

were learned on web discourse. One reason may be

that such features rather have local relevance. As

a matter of fact, adding knowledge from previous

and preceding tokens will add noise to a model

rather than being beneficial.

Overall, the models employing sequential fea-

tures turn out stronger. Among them, the Bi-LSTM

achieves the best results in most cases regardless

of the domain or the features. This suggests that

context information from the tokens around a to-

ken to be classified is generally useful. In addition,

using neural networks seems to be a better choice

to encode those features.

Another advantage of using a Bi-LSTM is that

this model can utilize all features related to tokens

from the beginning to the end of the document.

This allows the Bi-LSTM to capture long-distance

dependencies. For a CRF, such dependencies are

hard to encode, requiring to increase the complexity

of the model dramatically and thus making the

problem intractable.

Research Question 3 To what extent do the fea-

tures and models generalize across domains?

From the results and the previous discussion, we

conclude that our structural features (capturing the

boundaries of phrases, clauses, and sentences) and

the Bi-LSTM model are the most domain-robust.

Other features, especially the semantic ones tend to

be more domain-dependent. The ability to model

long-distance dependencies and a more advanced

feature encoding indicate why the Bi-LSTM ap-

parently learns more general, less domain-specific

features of the given argumentative texts.

6.2 Major Challenges of Unit Segmentation

The drastic effectiveness loss in the domain transfer

suggests that the notion of an argument unit is not

entirely the same across argumentative text corpora.

This hypothesis is supported by the high variance in
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the size of argument units, ranging from clause-like

segments (Al-Khatib et al., 2016) to partly multiple

sentences (Rinott et al., 2015). At the same time, it

seems reasonable to assume that there is a common

concept behind argument units that connects their

different notions and that distinguishes argument

units from other types of segments. Under this

assumption, a general question arises that we see as

fundamental in research on unit segmentation:

Open Question about Argument Units What

makes argument units different from syntactic and

discourse units, and at what point do they deviate?

The difference between argument units and ele-

mentary discourse units is discussed by Stede et al.

(2016). The authors claim that the boundaries of

the more coarse-grained argument units clearly are

also boundaries of discourse units. While this may

be the case in their corpus as a result of their an-

notation scheme, no reason is given why the claim

should generally be true. Accordingly, for other

corpora such as the essays corpus studied in this

paper, the claim simply does not hold.

In principle, it is possible to more generally study

the raised question based on a matching of argu-

ment units with the syntactic and/or discourse units

in different datasets. A generally satisfying answer

might not exist, though, because we expect the seg-

mentation into argument units to be task-specific to

some extent. Similar observations have been made

for discourse units (Taboada and Mann, 2006). In

case of argument units, some annotations, for ex-

ample, model the hierarchical structure of a text

primarily (Stab, 2017), whereas others aim to cap-

ture self-contained evidence (Rinott et al., 2015).

Even for a given task, however, unit segmentation

remains challenging, though, as underlined by the

limited effectiveness we observed in some experi-

ments. As a result, the notion of an argument unit

is a topic of ongoing discussion in the community.

This brings up another question:

Open Question in Unit Segmentation What

knowledge is needed to effectively perform unit

segmentation?

In particular, it has been discussed controver-

sially in the community as to whether unit segmen-

tation should actually be tackled as the first step

of argument mining. When doing so, no knowl-

edge about the main claims of an argumentation,

the applied reasoning, and similar is given, making

the feasibility of distinguishing argumentative from

non-argumentative parts doubtful. Of course, other

orderings might lead to analog problems, which

would then suggest to jointly approach the differ-

ent steps. We plan to explore the best ordering and

decomposition of mining steps in future work.

7 Conclusion

Most existing research on argument mining either

ignores the task of argument unit segmentation,

assuming the units to be given, or considers an ar-

gument unit to simply span exactly a sentence or

a clause (Teufel, 1999; Palau and Moens, 2009;

Mochales and Moens, 2011; Rooney et al., 2012).

Recently, the task of argument unit segmentation

was tackled on persuasive student essays by casting

the problem as a sequence labeling task, classifying

each token as being either at the beginning, inside,

or outside an argument unit (Stab, 2017; Eger et al.,

2017). Both approaches perform comparably well

while employing different sequential models and

different feature types: Stab (2017) uses local lin-

guistic features whereas Eger et al. (2017) capture

the global semantic and argumentative context.

In this work, we adopt the approach to frame

argument unit segmentation as a sequence label-

ing task. We conduct a systematic comparison

of three machine learning models that encode the

context and the linguistic features of a token dif-

ferently. Among these, our new Bi-LSTM neural

network model utilizes structural, syntactic, lexi-

cal and pragmatic features, and it captures long-

distance dependencies for argument unit segmenta-

tion. In in-domain experiments and cross-domain

experiments on three different corpora, we study

what model and feature set perform best.

Our experiments show that structural and seman-

tic features are the most effective for argument unit

segmentation across domains, while semantic fea-

tures are the best for detecting the boundaries of

argumentative units within domains. We also find

that a sequential model capturing a wider context

(i.e., our Bi-LSTM) tends to perform better within

and across domains. Nevertheless, the results re-

ported in Section 5 show the insufficiency of the

employed linguistic features and machine learning

models for a domain-robust argument unit segmen-

tation. We therefor conclude that further research

is needed in order to clarify the difference between

argument units and other types of units as well

as to find out what knowledge is best to segment

argumentative texts into these units.
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