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Abstract

In C++, test code is often interwoven with the unit we want to test. Dur-
ing the test development process we often have to modify the public interface
of a class to replace existing dependencies; e.g. a supplementary setter or
constructor function is added for dependency injection. In many cases, extra
template parameters are used for the same purpose. All existing solutions
have serious detrimental effects on the code structure and sometimes on the
run-time performance as well. In this paper, we overview existing dependency
replacement techniques of C++ and we evaluate their advantages and disad-
vantages. We introduce our non-intrusive, compiler instrumentation based
testing approach that does not have such disadvantages. All non-intrusive
testing methods (including our new method) require access to an object’s in-
ternal state in order to setup a test. Thus, to complement our new solution,
we also present different approaches to conveniently access private members
in C++. To evaluate these techniques, we created a proof-of-concept imple-
mentation which is publicly available for further testing.

Keywords: C++, unit test, instrumentation, friend, access control

1 Introduction

Testing is essential in modern software development [1, 13, 5, 18] to improve the
quality of a system and reduce the cost of maintenance. There are different layers of
testing from unit tests to stability, functional and integration tests. In this paper
we focus on unit testing, which is the most language-specific method. However,
some of the findings we discuss might be extended to different/higher level tests as
well.

During a unit test we check the behaviour of the unit under test. If we do
functional programming and work with pure functions alone (where all functions
are free from side-effects) then testing is easy because we just provide a specific
input and assert for the desired output. However, in the object-oriented paradigm,
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we have objects in some kind of state. This means the object is dependent on
other objects that represent the internal state. Testing our object using these
dependencies may be problematic; e.g. the dependency may represent a database
or a network connection, whose behaviour can be hard or expensive to simulate. In
order to create independent, resilient and efficient tests [45] in most cases we need
to substitute some (or even all) of the dependencies with test doubles. We refer to
this substitution of dependencies as dependency replacement.

In object-oriented programming languages, the dependency replacement often
requires the modification of the original public interface of the unit under test.
For instance, new setter or constructor functions have to be added to a class,
otherwise dependency replacement would not work. Nevertheless, there are cases
where these new functions are not intended to be used in production code. We refer
to all those testing approaches which require source code modification as intrusive
testing. Moreover, in C++, source code modification for testing could result in
performance degradation, e.g. introducing a new runtime interface and virtual
functions just because of testing might worsen the performance of the production
code. Also, in legacy code bases often there are no unit tests. Refactoring such
legacy code in order to provide tests is almost impossible because we cannot verify
correctness without having unit tests; hence it is a vicious circle. We can break
the circle with non-intrusive tests, though all of the existing non-intrusive testing
methods for C++ have some drawbacks.

In this paper, we investigate a new, non-intrusive, compiler instrumentation
based testing approach that does not have these disadvantages. All non-intrusive
testing methods (including our new method) often require access to an object’s
internal members in order to set up a test. Thus, to complement our new method,
we present different approaches to conveniently access private members in C++.

This paper is organized as follows. In Section 2, we describe principles of de-
pendency replacement in object-oriented programming and we discuss the existing
techniques of dependency replacement in C++. We show how we can replace de-
pendent C++ functions with compiler instrumentation in Section 3. Then the
access of private members is discussed in Section 4. Here, we inspect how we can
access members with our alternative approaches without intrusively changing the
unit we wish to test. We present how we could enhance the use of friends with our
extension idea to friends. After, we overview related work in Section 5. In Section
6, we outline future work and possible directions for better testing experience in
C++. Our paper concludes in Section 7.

2 Dependency Replacement in C++

Figure 1 shows a typical object under test, its dependencies and their possible
replacements. If A and B are objects and “A depends on B”, then we say that A
is a dependant of B and B is a dependency of A. As for dependency replacement
the dependant object is referred as the system under test (SUT). Sometimes we
refer to that as the unit under test. In this study, we use the following definitions
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Figure 1: Dependency Replacement

for test doubles: Fake classes provide empty definitions of functions in a way that
the unit tests can pass. Fakes are the simplest doubles to cut down dependencies.
Stub classes implement additionally some very basic behaviour, therefore they may
be more complex than fakes. We can set up a stub to return with a specific value.
Mock classes are used to formulate expectations, such as how many times a member
function is called with a certain value.

There are several design patterns for dependency replacement like the Factory
Method and Abstract Factory [7], the Service Locator [44, 6] and the Dependency
Injection (DI) [37, 38, 43].

It is important to emphasize that dependency injection is different from the
abstract concept of dependency replacement. Dependency injection (DI) is one
realization – amongst many others – of dependency replacement. DI is used mostly
in object-oriented languages with runtime reflection, like Java and C#. All of these
patterns can be used in the popular, managed languages and in C++ as well. Java
and C# provides well documented DI frameworks (like the Unity Container in C#
[29], and the Spring framework in Java [19]), therefore DI is the widespread method
for performing dependency replacement in these managed languages. However,
there is no generally accepted DI framework for C++.

Objects in the context of OOP are represented by classes in C++. Since
C++ is not a strict object oriented language, we must investigate other language
constructs like free functions and function templates from the viewpoint of depen-
dency replacement. Generally speaking, a dependant C++ entity (class, function,
class template or function template) can have different kinds of dependencies. For
instance, it may have a dependency on

• a global object (e.g. via a singleton).
• a global function (via a function call),
• an object via a pointer or reference,
• a type (e.g. via a type template parameter, or the type of a member),
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2.1 C++ Seams

A seam is an abstract concept introduced by Feathers [4] as an instrument via we
can alter behaviour without changing the original unit. Dependency replacement
is done via seams in C++. Actually, there are four different kinds of seams in C++
[35, 28]:

1. Link seam: Change the definition of a function via some linker specific setup.

2. Preprocessor seam: With the help of the preprocessor, redefine function
names to use an alternative implementation.

3. Object seam: Based on inheritance to inject a subclass with an alternative
implementation.

4. Compile seam: Inject dependencies at compile-time through template param-
eters.

The enabling point of a seam is the place where we can make the decision to use one
behaviour or another. Different seams have different enabling points. For example,
replacing the constructor argument for the implementation of an interface with
a mock implementation when a unit test is set up is an object seam with the
constructor as an enabling point.

2.1.1 Link Seams

We can use a link seam e.g. to replace the implementation of a free function or a
member function. For instance:

// A.hpp
void foo();
// A.cpp
void foo() { ... };
// MockA.cpp
void foo() { ... };
// B.cpp
#include "A.hpp"
void bar() { foo(); ... }

On the one hand, when we need to test the bar() function then we should link
the test executable to the MockA.o object file. On the other hand, we should link
the production code with A.o. Link-time dependency replacement is not possible if
the dependency is defined in a static library or in the same translation unit where
the SUT is defined. It is also not feasible to use link seams if the dependency is
implemented as an inline function [35]. This makes the use of this seam cumber-
some or practically impossible when the dependant unit is a template or when the
dependency is a template. The enabling point for a link seam is always outside
of the program text. This makes the use of link seams quite difficult to identify.
On top of all, link-time substitution requires strong support from the build system
we are using. Thus, we might have to specialize the building of the tests for each
and every unit. This does not scale well and can be really demanding regarding to
maintenance.
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2.1.2 Preprocessor Seams

Preprocessor seams can be applied to replace the invocation of a global function to
an invocation of a test double [27]. Let us consider the following code snippet:

void *my_malloc(size_t size) {
//...
return malloc(size);

}

void my_free(void *p) {
//...
return free(p);

}

#define free my_free
#define malloc my_malloc

void unitUnderTest() {
int *array = (int *)malloc(4 * sizeof(int));
// do something with array
free(array);

}

We can replace the standard malloc() and free() functions with our own imple-
mentation. One example usage may be to collect statistics or do sanity checks in
my_malloc and my_free functions. These seams can be applied conveniently in C,
but not in C++. As soon as we use namespaces, the preprocessor might generate
code which cannot be compiled because of the ambiguous use of names. Hazardous
side effects of macros are also well known.

2.1.3 Object Seams

Object seams are realized by introducing a runtime interface. For example, let us
consider the following C++ class (note, using a const qualifier on the process()

member function and a RAII lock guard instead of explicit locking would make the
code safer, but it would also make our message less visible):

class Entity {
public:

int process(int i) {
if(m.try_lock()) {

auto result = std::accumulate(v.begin(),v.end(),i);
m.unlock();
return result;

}
else { return -1; }

}
void add(int i) {

m.lock();
v.push_back(i);
m.unlock();

}
private:

mutable std::mutex m;
std::vector<int> v;

};
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We would like to test the Entity::process() function for both possible return
values of try_lock. Our objective is to have a test like this:

void test() {
Entity e;
set_try_lock_fails(e);
ASSERT_EQUAL(e.process(1), -1);
set_try_lock_succeeds(e);
ASSERT_EQUAL(e.process(1), 1);

}

We introduced an interface and we can use it to change the behaviour of the mutex
object in runtime. For this, the production specific and test specific implementa-
tions of the interface need to be provided:

struct Mutex {
virtual void lock() = 0;
virtual void unlock() = 0;
virtual bool try_lock() = 0;
virtual ~Mutex() {}

};

struct RealMutex : Mutex { //used in production code
void lock() override { m.lock(); }
void unlock() override { m.unlock(); }
bool try_lock() override { return m.try_lock(); }

private:
std::mutex m;

};

struct StubMutex : Mutex { //used in test code
// defintion of lock() and unlock() as before
bool try_lock_result = false;
bool try_lock() override {

return try_lock_result;
}

};

Now our class should use the interface:
class Entity {
public:

Entity(Mutex& m) : m(m) {}
int process(int i) { if(m.try_lock()) { ... } else { ... } }
//...

private:
Mutex& m;
//...

};

We can see that the enabling point of this seam is the newly added constructor.
The production and the test code might look like this:

void productionClient() {
RealMutex m;
Entity e(m);
// some usage of e

}
void testClient() {

// test setup
StubMutex m;
Entity e(m);
// assertions ...

}
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There is a severe problem with object seams that is illustrated via this specific
example: the mutex object which was exclusively owned by the Entity now is
moved outside. There is nothing to prevent any caller from reusing (misusing)
this mutex. Regarding encapsulation this is fatal. Also, it is not clear who should
create/destroy this object and when. The same problems arise if we replace the
Mutex& with a raw pointer or a smart pointer. Though passing a unique_ptr

in constructor and getting a reference to it via a getter might be an option, but
then we would need to have a getter function for m (to set up the test). Generally
speaking, the following problems may arise when we replace dependency objects:

• Either we deprive the unit under test from the ownership of the dependency
or we use a superfluous getter function.

• We add an otherwise unnecessary constructor or setter function.

• We introduce superfluous pointer semantics via a reference or smart pointer,
which is harmful to cache locality, hence it reduces overall performance [41].

• We have to introduce an interface just for testing. This interface has virtual
functions. Calling them requires extra pointer indirections and this might
result in cache misses and it loses the possibility of inlining, thus it harms the
overall performance [3]. Adding an extra interface makes the program more
complex, hence the program is harder to understand. Note that in some cases
it might be possible to get rid of the additional explicit interface definition
with type erasure [31], but the virtual function calls cannot be avoided even
in this case.

2.1.4 Compile Seams

Our Entity and mutex example would be more natural if we make Entity a tem-
plate and we use the Mutex type as a template parameter:

template <typename Mutex>
class Entity {
public:

int process(int i) { if(m.try_lock()) { ... } else { ... } }
//...

private:
Mutex m;
//...

};

However, because of testing we need to access the mutex outside of the Entity

class. Therefore, one simple approach is to define a getter function:

template <typename Mutex>
class Entity {
public:

int process(int i) { if(m.try_lock()) { ... } else { ... } }
Mutex& getMutex() { return m; } // Use only from tests
//...

private:
Mutex m;
//...

};
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The enabling point of this seam is the template parameter itself. Client code may
use our Entity with the appropriate type parameter:

void productionClient() {
Entity<std::mutex> e;
// some usage of e

}
void testClient() {

struct StubMutex {
//...
bool try_lock_result = false;
bool try_lock() {

return try_lock_result;
}

};
Entity<StubMutex> e;
auto& m = e.getMutex();
m.try_lock_result = false;
ASSERT_EQUAL(e.process(1), -1);
m.try_lock_result = true;
ASSERT_EQUAL(e.process(1), 1);

}

We do not need to add an additional runtime interface this time, so the test client
can use a StubMutex which does not have any virtual functions. Of course, the
implicit compile-time interface [25, item 41] of std::mutex and StubMutex must
match.

With this approach, we introduced a template parameter just because of testing.
The original Entity however was perfectly natural to be a simple class, now it
became a class template. Also, we added an extra getter function to be able to
drive the dependency externally from our class. Needless to say, we increased code
complexity and compilation time [2]. There are some methods with which we could
decrease compile time, but they would further complicate the source code (use of
pimpl [26, item 22]) or the build system setup (using extern templates [12, 14.7.2]).

All four seams have some disadvantages that prevents us from using them or
make us reluctant to use them. Link seams do not work with inline functions and
require patching the build system. Preprocessor seams are problematic with classes
and namespaces. Object seams and compile seams are intrusive and often demand
that we widen the public interface. Also, object seams might introduce additional
performance penalty in the production code. Therefore, we seek for a new seam
which does not have the above-mentioned disadvantages. Our contribution is to
show that such a seam can be implemented and applied in software testing.

3 Compiler Instrumentation for Testing

In software development, it is normal that the compiler generates different code
for verification purposes. In most integrated development environments (IDEs), a
project has two build configurations: namely debug and release. The debug profile
usually does not define the NDEBUG macro; this results in a runtime binary which
does check all the assertions passed to the assert macro [11, 7.2 Diagnostics]. Also,
in the debug profile, the debug symbols are in general attached to the binary and
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the compiler optimizations are turned off. There is a new proposal for C++ that
proposes a minimal system for expressing interface requirements as contracts [34].
Contracts are requirements that an operation places on its arguments for successful
completion and a set of guarantees that it provides upon successful completion. In
this proposal, the authors recommend that compiler implementations offer switches
to select a level of contract checking: on, off, pre-condition only, post-condition only.
Moreover, the LLVM/Clang compiler itself supplies switches to turn on different
verification tools, like the address or the thread sanitizer functionality [17] to report
faulty memory accesses and race conditions.

Our idea here is to change the compiled code to provide the ability to replace
specified functions with their designated test doubles upon a compiler switch. The
test code of our previous example with the Entity and mutex might look like this:

#include "Entity.hpp"

bool try_lock_result;
bool fake_mutex_try_lock(std::mutex* self) { return try_lock_result; }

TEST_F(Fixture, Mutex) {
SUBSTITUTE(&std::mutex::try_lock, &fake_mutex_try_lock);
Entity e;
try_lock_result = false;
EXPECT_EQ(e.process(1), -1);
try_lock_result = true;
EXPECT_EQ(e.process(1), 1);

}

With the SUBSTITUTE macro, we simply replace the try_lock member function
of std::mutex with a free function named fake_mutex_try_lock. The first pa-
rameter of this free function holds a pointer to the object on which the original
try_lock member function has been called.

We have to compile the test binary with the appropriate compiler flag that
enables this kind of instrumentation. In our proof-of-concept implementation [21]
we use the -fsanitize=mock switch with the LLVM/Clang compiler for this pur-
pose. The production code shall be compiled without this flag. Actually, the idea
is quite similar to Clang’s thread sanitizer. Thread sanitizer is a race condition
detector. It instruments each and every memory load and store so it can update
some bookkeeping information to aid the detection [39].

By switching on the -fsanitize=mock flag we instruct the compiler to replace
each and every function call expression with the following pseudo code (let us
suppose that the callee is the foo function):

char* funptr = __fake_hook(&foo);
if (funptr) {

funptr(args...);
} else {

foo(args...);
}

The return value of the call to __fake_hook is a function pointer to the test double
which will be called instead of the original function. If that return value is a
nullptr, then the original function shall not be replaced. If the callee does return
anything other than void, then the expression is transformed in the following way:
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char* funptr = __fake_hook(&foo);
auto ret = result_of(&foo);
if (funptr) {

ret = funptr(args...);
} else {

ret = foo(args...);
}
return ret;

The __fake_hook function is defined in a shared library that we have to link to the
test binary. Its implementation searches for the function pointer which has been
set up by the SUBSTITUTE macro. Our realization uses a simple hash map to store
the pointers for the original and the test double functions.

It is possible to call the replaced function from the test double. For this pur-
pose, we need to mark the test double with a special attribute so as to avoid its
instrumentation. Otherwise, the call site of the original function inside the test
double would also be substituted and lead to an infinite recursion.

It should be mentioned that we can replace a callee function in a call expression
only if the translation unit which holds that particular call expression has been
compiled with the special flag. Quite often, the call expression where we want to
substitute the callee is in the source code of the unit under test; i.e it is in the source
of our active project. Thus, in most cases we do not have to recompile dependency
libraries. We have to recompile dependency libraries only if we wish to substitute
a non-inline callee in the library code itself.

Namespaces and member functions are handled similarly to regular free func-
tions. Despite of the fact that member function pointers are really different from
pointers to free functions, internally the compiler assigns a unique identifier to all
member functions (the address of the function).

A constexpr [12, 5.19] function cannot be replaced with this method when it
is used in a compile-time expression. However, it can be replaced whenever it is
used within a runtime context since this is a runtime instrumentation.

GCC and Clang do not inline any functions when not optimizing unless we
specify the always_inline attribute for the function [8]. Always inline functions
are inlined even when the -fno-inline compiler switch is present [9]. Our instru-
mentation forces the compiler to emit the code of the specific function even when it
is explicitly marked with the always_inline attribute; hence we can replace inline
and always inline functions as well.

3.1 Evaluation

We implemented the above-presented method based on the LLVM/Clang compiler
infrastructure. The modified C++ compiler and the corresponding runtime li-
brary is publicly available online [22, 21]. We measured the performance of the
compilation process itself by compiling its own source code with and without the
instrumentation enabled. In both cases, we started a timer to evaluate the wall
clock time of the build process and we could not discover any significant difference
between the two results. This is quite similar to the compile-time performance
results of other sanitizers (e.g. the thread sanitizer).
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We found in practice that the runtime performance of the generated binary is
slowed down by a factor of 5 to 60. It depends on the number of inlined func-
tions and call expressions. Inlining is an optimization that is turned off by this
instrumentation. Our method costs a lookup and a branching for each and every
call whether it is substituted or not. Our evaluation demonstrates that most of
the reduction in the performance is caused by the lookup, hence it is an important
future work to improve it. We shall use a shadow memory [39] (an offset address
in the program’s virtual memory) to access the test double’s address. This way, we
could achieve a similar performance to the thread sanitizer runtime performance,
which is a slow down by a factor of 5 to 15.

By using our new instrumentation technique, we can write tests without intru-
sively changing the original unit itself. We do not have to add a new constructor
to setup a dependency, and we do not have to add a new getter. Since we do not
have to change the original unit at all, the production code should have the same
performance as it had before adding tests. Furthermore, this method works with
inline and always inline functions. In contrast to link seams, it is really obvious to
identify the use of this seam (via the SUBSTITUTE macro in the test code).

4 Access Private Members

Non-intrusive testing requires the ability to access private data as well. Imagine a
situation where a replaced member function has to access the internal state of the
object to be able to assert on that. For instance, we may wish to check that the
mutex is unlocked when the try_lock member function is called:

bool fake_mutex_try_lock(std::mutex* self) {
EXPECT_EQ(self->locked, true);

}

TEST_F(FooFixture, Mutex) {
SUBSTITUTE(&std::mutex::try_lock, &fake_mutex_try_lock);
// ... as before

}

There are various existing methods available for accessing private members in C++,
but all have certain drawbacks. In this section we overview the existing approaches
and we introduce two new procedures that attempt to overcome the difficulties.

4.1 Access via a shared reference or pointer

In this case, the unit that we wish to test has a constructor or a setter function with
a reference or a pointer parameter through which we can inject the dependency.
An example is:

Entity(Mutex& m) : m(m) {}

We cannot use a unique_ptr this way, since we need to access the dependency
from the test as well; however, unique_ptr provides exclusive ownership only for
the owner.
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4.2 Access via getter

As we saw previously, it might be more natural to use a getter when the unit has
exclusive ownership:

// Use only in tests !
Mutex& getMutex() { return m; }

The disadvantage here is that it violates encapsulation, i.e. it exposes an internal
member.

4.3 Use preprocessor and getter

To protect the internal member, it is possible to define the getter function only
when the unit is built for testing.

#ifdef TEST
Mutex& getMutex() { return m; }

#endif

This requires support from the build system, so during the compilation of each
translation unit of the test executable this flag needs to be defined. Also, test
specific preprocessing is hard coded, which makes it more difficult to see through
the unit’s overall structure. Though it is quite obvious that the getter is used only
for testing, this is actually a benefit.

4.4 Change the access level with the preprocessor

A frequently applied trick is to use the preprocessor to access private members:

#define private public
#include "Unit.h"
#undef private
// Test code comes from here

Although the standard forbids us from redefining keywords [12, 17.6.4.3.1 Macro
names/2], most preprocessors accept this. The obvious drawbacks are easy to see
however. All the other classes that are directly or indirectly included from Unit.h

now expose all their internals. This opens the possibility for errors in the test code
via accidentally accessing members of the dependencies, which we shall not know
about (violating encapsulation).

Also, this approach does not always work. To see this, consider the following
class:

class X { int a; };

The default access specifier is private in the case of C++ classes, therefore the
define directive has no effect. Still, this can be circumvented with an additional
define: #define class struct.

What is more, this is undefined behaviour because the C++ standard specifies
that the order of allocation of non-static data members with different access control
is unspecified [12, 9.2 Class members/13].
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4.5 Friend function or class

In C++, friends have right to access private and protected members. With this
approach, we declare a concrete test function inside the unit to be a friend:

class Entity {
public:

friend void testClient(Entity& e);
Entity(std::unique_ptr<Mutex> m) : m(std::move(m)) {}
int process(int i) { if(m->try_lock()) { ... } else { ... } }
//...

private:
std::unique_ptr<Mutex> m;
//...

};
void testClient(Entity& e) {

// access e.m here
}

We can also declare an in-between class to be a friend; then in the tests we can use
the different member functions of the friend class to access the private members.

4.6 Access via explicit instantiation

So far we have considered only intrusive methods to access private members. But
there are other approaches which do not require intrusive changes in the unit we
wish to test. In this section, we present an interesting non-intrusive technique then
in the forthcoming subsection we present our new solution for accessing private
members as a generalization of this technique.

We can access outside of the declaring class any private member if we exploit the
fact that C++ allows us to pass the address of a private member in explicit instan-
tiation [12, 14.7.2 Explicit instantiation/12]. The standard permits this behaviour,
because otherwise specializing traits for private types would not be possible. Be-
sides private members, we can access private static variables and functions as well
with this technique.

To understand how we can exploit this fact, consider the following class:

class A { static int i; };
int A::i = 42;

We would like to access the static private variable i. Normally, accessing that
private variable results in a compiler error:

int x = A::i; // Error, i is private

Yet, there is an exceptional case, namely when we provide a template argument in
an explicit template specialization. Let us assume that we have a class template
defined, so we can explicitly specialize that:

template struct private_access<&A::i>;

The template argument &A::i has a compile-time available value and it has the
type int*. In this context, &A::i is a completely valid expression, which has
the address of the private variable as the value. We need to expose this address
somehow, so we define the class template private_access as follows:
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template <int* PtrValue> struct private_access {
friend int* get() { return PtrValue; }

};

The template parameter of private_access is a non-type template parameter,
which is a pointer value of type int* known at compile-time. We define the get()
function to return the actual compile-time value of this template parameter. It
returns the address of the private static variable, since the template is instantiated
with that value as an argument. By defining the get() function as a friend it
becomes part of the enclosing namespace scope. Even so, its name is not found
by normal lookup (qualified or unqualified) [12, 7.3.1.2 Namespace member defi-
nitions/3]. Therefore, we need to provide an additional declaration outside of the
class:

int* get();

Putting this all together, our code with a usage example is the following:

class A { static int i; };
int A::i = 42;

template <int* PtrValue> struct private_access {
friend int* get() { return PtrValue; }

};

int* get();

template struct private_access<&A::i>;

void usage() {
int* i = get();
assert(*i == 42);

}

Accessing private, non-static members is quite similar:

1 class A { int i = 42; };
2

3 template<int A::* PtrValue> struct private_access {
4 friend int A::* get() { return PtrValue; }
5 };
6

7 int A::* get();
8

9 template struct private_access<&A::i>;
10

11 void usage() {
12 A a;
13 int A::* ip = get();
14 int& i = a.*ip;
15 assert(i == 42);
16 }

The only difference is in the type of the template argument, which is now int A::*,
a pointer to member. Values of this type may be pointers to any int data member
of the class A. Once we get the pointer to the member in line 13, we can bind this
pointer to an object, and this way, we get a reference to the data member (in line
14).
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4.6.1 Generalized private access

As for our contribution, we generalized the above-presented techniques. We have
created a library which automates the generation of the helper constructs to access
private data members and to call private member functions (both static and non-
static) [20]. So accessing private data members becomes straightforward:

class A { int m_i = 3; };

ACCESS_PRIVATE_FIELD(A, int, m_i)

void foo() {
A a;
auto &i = access_private::m_i(a);
assert(i == 3);

}

Similarly, calling private functions can be achieved like so:

class A {
int m_f(int p) { return 14 * p; }

};

ACCESS_PRIVATE_FUN(A, int(int), m_f)

void foo() {
A a;
int p = 3;
auto res = call_private::m_f(a, p);
assert(res == 42);

}

We deliberately do not use pointer-to-members in the public interface of this macro
library. We think that their use is just an implementation detail that we do not
wish to expose to the user.

As a first design decision, we place all components of this library into an un-
named namespace to prevent multiple definition linker errors. For instance, we
want the following 3 files (a.hpp, x.cpp, y.cpp) to be linkable into an executable
file:

// a.hpp
class A { int m_i = 3; };

// x.cpp
#include "A.hpp"
#include "access_private.hpp"
ACCESS_PRIVATE_FIELD(A, int, m_i)

// y.cpp
#include "A.hpp"
#include "access_private.hpp"
ACCESS_PRIVATE_FIELD(A, int, m_i)
int main() { return 0; }

Then we commence with the generic definition of private_access. We use the
nested namespace private_access_detail as a safeguard, because we wish to
avoid name clashing as the user code might have additional names defined in un-
named namespace:
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namespace {
namespace private_access_detail {

template <typename PtrType, PtrType PtrValue, typename TagType>
struct private_access {

friend PtrType get(TagType) { return PtrValue; }
};

} // namespace private_access_detail
} // namespace

By introducing the PtrType type template parameter, we generalize the type of the
pointer we wish to use. This might be int* or int A::* if we take our examples
from the previous section. We also bring in the TagType type template parameter,
which we use to define different instances of the get() function. This is achieved
implicitly by instantiating the private_access class template with different con-
crete tag types.

Next, we define some helper macros for concatenation:

#define PRIVATE_ACCESS_DETAIL_CONCATENATE_IMPL(x, y) x##y
#define PRIVATE_ACCESS_DETAIL_CONCATENATE(x, y) \

PRIVATE_ACCESS_DETAIL_CONCATENATE_IMPL(x, y)

We use the PRIVATE_ACCESS_DETAIL prefix for all the implementation macros that
are supposed to be hidden from the clients of this macro library.

Afterwards, we introduce a macro which contains all those things that are com-
mon in the implementation of accessing a static or a non-static member:

1 #define PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE(Tag, Class, Type, Name, \
2 PtrTypeKind) \
3 namespace { \
4 namespace private_access_detail { \
5 struct Tag {}; \
6 /* Explicit instantiation */ \
7 template struct private_access<decltype(&Class::Name), \
8 &Class::Name, Tag>; \
9 /* Define the PtrType alias */ \

10 using PRIVATE_ACCESS_DETAIL_CONCATENATE(Alias_, Tag) = Type; \
11 using PRIVATE_ACCESS_DETAIL_CONCATENATE(PtrType_, Tag) = \
12 PRIVATE_ACCESS_DETAIL_CONCATENATE(Alias_, \
13 Tag) PtrTypeKind; \
14 /* declare the get() function */ \
15 PRIVATE_ACCESS_DETAIL_CONCATENATE(PtrType_, Tag) get(Tag); \
16 } \
17 }

The macro parameter Tag is the name of the tag class we want to define and we
also use it as a suffix for the name of the type aliases. Class denotes the qualified
or unqualified name of the class we wish to provide access to. Type is the type of
the member variable. The parameter PtrTypeKind describes what kind of pointer
are we dealing with, namely a simple pointer or a pointer-to-member. For instance,
it may have the strings * or A::*. First, we define the tag type (line 5), then comes
the explicit instantiation with the type and address of the member and with the
recently defined tag type (line 7-8).

Then, we define a type alias (with PtrType_ prefix) for the concrete type of
the pointer (line 9-13). Basically, this alias is formed from the concatenation of
the Type and PtrTypeKind parameters. For example, in the case of a pointer-to-
member, the canonical type of the type alias might be int A::*. The twist here is
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that we need to add two type aliases, because pointer-to-member-functions cannot
be expressed generically with one alias, e.g.:

using PtrType1 = int(int) *; // ERROR
using Alias = int(int);
using PtrType2 = Alias *; // OK

Next, we declare the get() function to make it available for finding by normal
name lookup (line 15).

Following this, we define the specific macro for non-static member fields.

1 #define PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FIELD(Tag, Class, Type, \
2 Name) \
3 PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE(Tag, Class, Type, Name, \
4 Class::*) \
5 namespace { \
6 namespace access_private { \
7 Type &Name(Class &&t) { \
8 return t.*get(private_access_detail::Tag{}); \
9 } \

10 Type &Name(Class &t) { \
11 return t.*get(private_access_detail::Tag{}); \
12 } \
13 using PRIVATE_ACCESS_DETAIL_CONCATENATE(X, Tag) = Type; \
14 using PRIVATE_ACCESS_DETAIL_CONCATENATE(Y, Tag) = \
15 const PRIVATE_ACCESS_DETAIL_CONCATENATE(X, Tag); \
16 PRIVATE_ACCESS_DETAIL_CONCATENATE(Y, Tag) & \
17 Name(const Class &t) { \
18 return t.*get(private_access_detail::Tag{}); \
19 } \
20 } \
21 }

The macro parameters Tag, Class, Type and Name have the exact same meanings
as before. In line 3, we call the previously described macro to generate all the
generic code we need. We pass ”Class::*” as a macro argument, since we are
dealing with non-static members. If we were dealing with static members, then
the argument would be ”*”. Then, we define two overloaded functions in the
enclosing access_private namespace with the name which is equal to the name
of the member we are exposing, e.g. ”m i” (line 7-12). These overloads are for
those cases where the class instance is bound to an rvalue reference or to a non-
const lvalue reference. We bind the result of get() function to the object of the
class; and then we return with a reference to the resulting member. Later, (in lines
13-19) we add another overload that handles the cases where the object is bound
to a const lvalue reference. In this case we would like to preserve the constness
of the object, therefore we should return with a const reference to the member.
So, we create a type alias for this const reference type (lines 13-15). Here, once
again we need to use two type aliases because we would like to avoid warnings that
arise from duplicated const qualifiers. If we used just one alias, then we would get
this warning if the Type macro parameter already contains a const qualifier. After
defining the type alias, we use this in the definition of the third overload (lines
16-19).

The implementation of accessing static fields is very similar to the implementa-
tion of accessing non-static members.



676 Gábor Márton and Zoltán Porkoláb

The realization of calling private member functions, however, requires an expla-
nation:

1 #define PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FUN(Tag, Class, Type, \
2 Name) \
3 PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE(Tag, Class, Type, Name, \
4 Class::*) \
5 namespace { \
6 namespace call_private { \
7 template <typename Obj, \
8 std::enable_if_t<std::is_same< \
9 std::remove_reference_t<Obj>, Class>::value> * = \

10 nullptr, \
11 typename... Args> \
12 auto Name(Obj &&o, Args &&... args) -> decltype( \
13 (std::forward<Obj>(o).*get(private_access_detail::Tag{}))( \
14 std::forward<Args>(args)...)) { \
15 return (std::forward<Obj>(o).* \
16 get(private_access_detail::Tag{}))( \
17 std::forward<Args>(args)...); \
18 } \
19 } \
20 }

Here, we again call the common macro that does the explicit instantiation (lines
3-4). Then we perfect forward both the object and the parameters of the private
function we wish to call (lines 7-17). We bind the pointer-to-member-function
(result of the get() function) to the perfect forwarded object and then we call
the resulting member function with the forwarded arguments (lines 15-17). We
use the same expression’s type as the trailing return type in the header of the
function (lines 12-14). (Note that in C++14 there is no need to specify the trailing
return type.) We also restrict the set of function template instantiations that can
participate in the overload resolution with the enable_if. The goal here is to
exclude a template function when the type of the object is different from the type
of the Class parameter. By doing this, we get a more compact error message if
we misuse the library for some reason. Otherwise we would get error messages
originating from the body of the function template.

The implementation of calling static member functions is very similar to the
implementation of calling non-statics, but we do not need the enable_if there,
since we do not have an object in that case.

Somehow we need to generate unique tag types, so for this we use the built-in
__COUNTER__ macro which returns an integer and is incremented by the prepro-
cessor each time it is referenced. __COUNTER__ is not a standard macro, but it is
available on most mainstream compilers (GCC, Clang, MSVC).

#define PRIVATE_ACCESS_DETAIL_UNIQUE_TAG \
PRIVATE_ACCESS_DETAIL_CONCATENATE(PrivateAccessTag, __COUNTER__)

The macro PRIVATE_ACCESS_DETAIL_UNIQUE_TAG() will generate a unique name
with the prefix PrivateAccessTag. Finally, we can define the main macros of the
library with the help of the unique tag generator:

#define ACCESS_PRIVATE_FIELD(Class, Type, Name) \
PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FIELD( \

PRIVATE_ACCESS_DETAIL_UNIQUE_TAG, Class, Type, Name)
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#define ACCESS_PRIVATE_FUN(Class, Type, Name) \
PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FUN( \

PRIVATE_ACCESS_DETAIL_UNIQUE_TAG, Class, Type, Name)

During the compilation of one translation unit, each invocation of these macros
generates different tag types. Since these tag types are defined in an unnamed
namespace, we will not have any linkage errors of duplicate symbols when linking
multiple translation units together.

Now we have seen how we can access private member fields and how we can call
private member functions, regardless of whether if they are static or not. However,
this library has some limitations. We cannot access private types, because the
only valid context of using that private type is inside the explicit instantiation.
We cannot call private constructors nor destructors. This is because a pointer to
member cannot bind to a constructor (since we do not have the object unless the
constructor is called). Nor can a pointer to member bind to a destructor because
there is no valid expression in C++ to grab the address of a destructor. We have a
link time error in the case of in-class declared const static variables (without an
out-of-class definition). This is because we would take the address of that variable,
and if that is not defined (i.e the compiler does a compile-time insert of the const
value), we would be trying to dereference an undefined symbol. Owing to all of
these limitations we were motivated to come up with a more sophisticated solution.

Note that the Java language has a built in support to achieve something similar.
With setAccessible we can indicate that the reflected object should suppress
access checking when it is used [30].

4.7 Out of class friend

As we saw above, private access via explicit instantiation does not work for all kinds
of private entities. So, our other contribution is to explore the idea of a new lingual
element with which we would be able to access all kinds of private members. In
our non-intrusive approach, we define a function or a class as friend out of the
befriending class:

template <typename Mutex>
class Entity {
public:

int process(int i) { if(m.try_lock()) {} else {} }
//...

private:
Mutex m;
//...

};

friend for(Entity<StubMutex>) void test_try_lock_fails() {
Entity<StubMutex> e;
auto& m = e.m; // access the private member
// set up try_lock result value to false and do the assertions ...

}

Based on the LLVM/Clang compiler (version 3.6.0) [17], we created a proof-of-
concept implementation for out-of-class friends and it is now available online (see
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[23]). The goal of this implementation is to demonstrate that the idea is indeed
feasible, though it is not our objective to provide a full featured perfect realization.
Therefore, we add some restrictions to the functionality and we do not implement
proper error handling.

To ease the implementation, we use C++ attributes [12, 7.6 Attributes] in-
stead of modifying the existing grammar. More specifically, we use the GCC
__attribute__ syntax because the standard [[attribute]] syntax implemen-
tation was not complete in the Clang version we used. By using attributes, we
skip the problem of parsing and we can focus on the new semantic actions. So, the
above definition of test_try_lock_fails with attributes is the following:

__attribute__((friend(Entity<StubMutex>)))
void test_try_lock_fails() {

//...
}

However, prior to this definition we need to explicitly instantiate the Entity class
template.

template class Entity<StubMutex>;

This is required because the attribute’s associated semantic action attempts to
access all the details of its type parameter (Entity<StubMutex>). In a future
study, it might be possible to modify the realization so as to implicitly do the
instantiation during the semantic action of the friend attribute. The instantiation
could be triggered just before accessing the details of the type parameter.

The definition with the attribute behaves exactly as any other in-class defined
friend definition. As such, it is not found by normal lookup unless we declare it
explicitly. Of course we wish it to be found by normal lookup, otherwise we will
not be able to call the function. Overall, this means that our test code should have
the form:

template class Entity<StubMutex>;

__attribute__((friend(Entity<StubMutex>)))
void test_try_lock_fails() {

//...
}
void test_try_lock_fails();

// part of the test framework
void testDriver() {

test_try_lock_fails();
// ... call other test functions

}

Here testDriver is the function which embodies the test framework, whose task
is to execute each test case (or test suite) one-by-one. Another restriction of this
particular realization of out-of-class friends is to allow only functions to be declared
friends in this way.

After defining the constraints of such an attribute-based implementation we can
explore the concrete realization steps. First, we define our new attribute in Clang’s
Attr.td file:
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def OutOfClassFriend : InheritableAttr {
let Spellings = [GCC<"friend">];
let Args = [TypeArgument<"Host">];
let Subjects = SubjectList<[Function]>;
let Documentation = [Undocumented];

}

Spellings defines the list of the supported attribute syntaxes, but this time it is
only the GCC style. The attribute syntax also defines the name of the attribute,
in our case it is friend. Args specifies the list of the attribute arguments. Our
friend attribute has only one argument which is a type. This type argument refers
to the type that we would like to be the host class (the befriending class), i.e. the
class for which we define the additional friend function. Subobjects describes the
list of the lingual elements that might have this attribute. In this case, we only
allow functions to have it. Note that implementing this attribute for classes is an
important issue for future research.

Once we have the attribution definition in place, the Clang infrastructure will
generate all the necessary parsing code. What is left is for us to define the se-
mantic action for the new attribute and to hook that action into the existing com-
plier machinery. As for the hooking, we need to add a new function call in the
ProcessDeclAttribute function. This function is dedicated to apply a specific
attribute to the specified declaration if the attribute applies to declarations. (Our
attribute applies to function declarations.)

static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool IncludeCXX11Attributes) {

//...
case AttributeList::AT_OutOfClassFriend:

handleOutOfClassFriendAttr(S, D, Attr);
break;

//...
}

The semantic action for the new attribute is defined as follows:
1 static void handleOutOfClassFriendAttr(Sema &S, Decl *D,
2 const AttributeList &Attr) {
3 // Get the attribute type argument as QualType
4 ParsedType PT;
5 if (Attr.hasParsedType())
6 PT = Attr.getTypeArg();
7 else { // TODO error handling
8 }
9 TypeSourceInfo *QTLoc = nullptr;

10 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
11 if (!QTLoc)
12 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
13

14 // The type argument must be a CXXRecordDecl
15 RecordDecl *RD = getRecordDecl(QT);
16 assert(RD);
17 CXXRecordDecl *CRD = cast<CXXRecordDecl>(RD);
18 // The attribute is subject of a FunctionDecl
19 FunctionDecl *FD = cast<FunctionDecl>(D);
20 // Set this function as a friend function
21 FD->setObjectOfFriendDecl();
22 // Create a new friend decl for the befriending class



680 Gábor Márton and Zoltán Porkoláb

23 FriendDecl::Create(S.Context, CRD, D->getLocation(),
24 cast<NamedDecl>(D), Attr.getLoc());
25 // For the record, Add the attribute to the Decl
26 D->addAttr(::new (S.Context) OutOfClassFriendAttr(
27 Attr.getRange(), S.Context, QTLoc,
28 Attr.getAttributeSpellingListIndex()));
29 }

The S parameter holds a reference of the monumental Sema class which is responsible
for semantic analysis and AST building in the Clang compiler. The D parameter
represents the declaration which has the attribute. The attribute itself is described
with the Attr parameter. The first step is to get the type parameter of the attribute
as a QualType (line 3-12). A QualType holds the basic type (e.g. int) and all the
qualifiers – if any – on that type. For this, we get the ParsedType from the Attr

with the getTypeArg() function (lines 4-6). A ParsedType is an opaque pointer
for QualTypes, i.e. this is a type erased generic holder, this is something similar to
void*. Next, we get the underlying QualType from the ParsedType and we set the
location of it (lines 10-12). If we cannot get the location information for the type,
we simple set it to the location of the attribute (lines 11-12).

Afterwards, we get the RecordDecl instance from the QualType instance with
the help of the getRecordDecl function (line 15). This function returns a null
pointer if the QualType does not represent a record declaration. In Clang, a
RecordDecl is the type of the AST node that is created for C structs and unions.
Similarly, a CXXRecordDecl is specifically for C++ classes, structs and unions. This
means that we can safely cast the record declaration to a CXXRecordDecl (line 17).
The cast expression used here is a Clang specific cast, which is a “checked cast”
operation. It converts a pointer or reference from a base class to a derived class,
causing an assertion failure if it is not really an instance of the right type [16].

Next, we get the more specific function declaration (FunctionDecl) from the
parameter Decl (line 19). The conversion from Decl to FunctionDecl must suc-
ceed, since we explicitly specified in the Attr.td file that this attribute is valid
only for function declarations. So we use the checked cast again. Then we set up
this function declaration as a friend declaration (line 21).

Later, we create the AST node for this new friend declaration (lines 23-24).
This friend declaration references the previously synthesized CRD pointer as the
befriending class, and the D parameter as the friend declaration. Once we have the
friend declaration in place, the access checking mechanism will assess the target
function like any other regular friend function.

As a last step, we register the attribute for the declaration (lines 26-28). This
step is not essential, but it makes the whole procedure complete. We did this
because in some future static analysis or other tool might want to process this
information.
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5 Related Work

There are many unit test frameworks available for C++ [40, 10, 32]. These frame-
works provide only the basic tooling for creating test suites, test cases and assertions
within the test cases. They do not provide any device for creating tests for legacy
code without refactoring.

The experimental Boost DI framework places an emphasis to ease the creation
of object trees [14]. However this framework requires that all the dependencies be
injected via a constructor, i.e. we should refactor our legacy code intrusively in
order to use it.

Non-intrusive testing can be done by the means of certain seams. Seams were
introduced by Feathers [4]. In his book, he describes what a seam is in the context
of legacy object-oriented code and he defines the three basic seams, these being
preprocessor, link and object seams. He does not focus on C++, for instance he
explains link seams with Java and classpath settings. He presents the refactoring
method called Extract Interface for breaking dependencies.

Rüegg and Sommerlad elaborated the concept of seams in C++ [35]. They
added a new seam for C++, called the compile seam. Their study expanded on the
advantages, disadvantages and usability of the four seams. They presented three
different techniques for linker seams, namely:

• shadow functions through linking order (original function cannot be called),
• wrapping functions with GNU’s linker wrap command line option (the original
function can be called),

• runtime function interception with LD_PRELOAD (the original function can be
called and does not require relinking).

They also created a refactoring tool which is a plug-in for the Eclipse CDT platform
including a C++ based mock object library [28]. Their tool supports refactoring
towards all four mentioned C++ seams. Refactoring towards compile seams is
possible via the technique they call the Extract Template Parameter.

Accessing private non-static data members via static pointers was first presented
by Johannes Schaub [36]. Later it was extended by Chandra Shekhar Kumar [15]
so as to use friend functions instead of static pointers. We also extended Kumar’s
approach to make it simpler and cleaner and we based our generic macro library
implementation on the simplified version. To the best of our knowledge, accessing
private static variables had never been presented before.

6 Vision/Future

With the help of compile-time reflection it would be possible to not change the
Entity only for the simple reason that we wish to test it.
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class Entity {
public:

int process(int i) { if(m.try_lock()) { ... } else { ... } }
//...

private:
std::mutex m;
//...

};

void testClient() {
using EntityUnderTest =

test::ReplaceMemberType<Entity, std::mutex, StubMutex>;
EntityUnderTest e;
auto& m = e.get<StubMutex>();
// Test code as before

}

Here, EntityUnderTest is a type alias to such a type, which is equivalent to the
Entity type except that all of its members with type std::mutex are replaced by
the StubMutex type. Also, this type could give access to its internal mutex instance
via its get function template. The above code requires the language capability of
being able to declare variables and functions based on reflected names and types.
Unfortunately, current C++ compile-time reflection proposals do not handle this
language capability [42, 24]. This kind of reflection is sometimes called intercession
(aka reification). For this technique to work, the given class has to be header-
only, because the compiler has to know its internal layout and types to be able
to replace some of them with another type. This header-only requirement might
sound frightening, but with C++ modules it might be less painful to use header
only classes [33].

7 Conclusion

The interweaving of the original code with the test code is an everyday problem in
C++. Testing object-oriented systems frequently requires the replacement of ob-
jects representing the state of unit under test, either for exercise them or to mock
them with a test double. While in managed programming languages dependency
injection is supported by language features and libraries, in C++ the programmer
often has to apply techniques which spoil the program structure, weaken encapsu-
lation, and degrade performance.

In this paper, we overviewed the most frequent seams and their enabling points
to alter the original behaviour of C++ programs for test purposes. We discussed
the detrimental effects they may cause in the code structure and their compile-time
and run-time performance.

To overcome these difficulties, we decided to introduce a new, non-intrusive
compiler instrumentation-based approach for dependency replacement. The com-
piler collects information on the designated (member)functions at compile-time and
creates a hook to make it possible to replace the called function during run-time.
This technique could be used even in the case of inline functions and header only
classes too, in a way that test code could be independent entirely from the unit
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under test. The idea may be viewed as a new kind of seam that avoids most of the
problems with the existing seams. We implemented this method as a patch for the
LLVM/Clang compiler infrastructure, and evaluated its compile-time and run-time
performance.

All non-intrusive testing methods require access to the internal state of the
objects under test. Our method is of course no exception. Therefore, for the sake
of accessing private members we discussed different techniques available for C++.
Exploiting an exceptional language rule concerning explicit template instantiation
provides an interesting way of accessing private non-static data members. We
generalized the technique to access static members and member functions as well.
Then we created a library to automate the access.

Since our new technique above had still some shortages, we presented a more
generic method to access private or protected members. Friend declarations added
outside of a class could provide a full, non-intrusive solution to separate test related
code from the source of the unit under test. This new language element has the
capability to work on every private assets, data, function, or type. We also realized
a prototype based on C++ attributes to demonstrate the feasibility of the idea.

The out-of-class friends together with the compiler instrumented dependency
replacement solution not only prevent the degradation of the code structure, but
also avoid performance penalties. In a future study we would like to replace whole
types based on the future standardized compile-time reflection of C++.
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[34] Reis, Gabriel Dos, Daniel Garćıa, J., and Logozzo, Francesco. Simple contracts
for C++. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/
n4415.pdf.
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