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Abstract: The set of doubly-stochastic quantum channels and its subset of mixtures of
unitaries are investigated. We provide a detailed analysis of their structure together with
computable criteria for the separation of the two sets. When applied to O(d)-covari-
ant channels this leads to a complete characterization and reveals a remarkable feature:
instances of channels which are not in the convex hull of unitaries can become elements
of this set by either taking two copies of them or supplementing with a completely depo-
larizing channel. These scenarios imply that a channel whose noise initially resists any
environment-assisted attempt of correction can become perfectly correctable.
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I. Introduction

Quantum channels are the most general input-output relations which the framework
of quantum mechanics allows for arbitrary inputs. Physically, they describe any trans-
mission in space, e.g., through optical fibres, and/or evolution in time, as in quantum
memories, from a general open-systems point of view. Mathematically, they are charac-
terized by linear, completely positive maps acting (in the Schrödinger picture) on density
operators in a trace-preserving manner.

The present work investigates the particular class of quantum channels which leaves
the maximally mixed (chaotic or infinite-temperature) state invariant. These channels
are called unital or doubly-stochastic (referring to unital and trace-preserving) and they
appear naturally in contexts with an irreducible symmetry. Apart from their practical
relevance the interest in these channels has various origins: (i) they exhibit many special
properties, e.g., regarding contractivity [1] or fixed points [2] — often allowing for a
more geometric intuition, (ii) for small dimensions their additional constraint is strong
enough to considerably simplify problems [3], and (iii) for sufficiently large dimensions
problems on general channels can often be reduced to their unital counterparts [4–6].

The line of interest taken up by this article concerns the convex structure of the set of
unital channels and, in particular, its relation to the subset of mixtures of unitary chan-
nels. This question was addressed and touched upon in [7–9] where a crucial difference
between the classical and the quantum case was realized: whereas, by Garrett Birk-
hoff’s theorem [10], every doubly stochastic matrix (describing a classical channel) is a
convex combination of reversible ones (i.e., permutations), not every doubly-stochastic
quantum channel has to be a mixture of unitaries. The latter phenomenon became more
significant when it was realized in Ref.[11] that a quantum channel allows for perfect
environment-assisted error correction if and only if it is a mixture of unitaries. Another
remarkable step was made in Ref.[12] where evidence has been provided that asymptot-
ically many copies of a unital channel might always be well approximated by a mixture
of unitaries—a conjectured restoration of Birkhoff’s theorem in the asymptotic limit.

We will (in Sec.V) provide a proof of this conjecture for special instances. This will
result as a simple corollary from a thorough investigation of the convex structure of
the sets of unital channels and of mixtures of unitary conjugations—in particular under
symmetries. Along the way we obtain various other results on the mentioned convex
structures which may be interesting in their own right. An outline of the paper and a
summary of its results follows:

• In Sec.II we provide two characterizations of unital channels: (i) as channels which
are convex combinations of unitaries acting on Hilbert-Schmidt space, and (ii) as
channels which are affine combinations of unitary channels. Moreover, we show that
extreme points of the set of unital channels need not be extremal within the set of all
channels.
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• In Sec.III computable criteria for the separation of unital channels from the set of
mixtures of unitaries are provided and a respective negativity measure is introduced.

• In Sec.IV we focus on covariant channels (in particular w.r.t. O(d)) and show how
symmetry enables us to explicitly determine the above sets and to compute the neg-
ativity measure.

• In Sec.V we apply the acquired tools in order show that families of covariant channels
outside the convex hull of unitary channels can come into this set by either taking
several copies of them or supplementing with a completely depolarizing channel.

II. Unital Quantum Channels

A. Preliminaries. We begin with introducing some notation and basic concepts. Through-
out we will work in the Schrödinger picture and consider quantum channels T with finite
and equal input and output dimensions, i.e., T : Md → Md is a linear map on d × d
(density)matrices. Complete positivity enables a Kraus decomposition

T (ρ) =
∑

i

AiρA†
i ,

∑
i

A†
i Ai = 1, (1)

where the second relation expresses the trace preserving property. A channel is called
unital if T (1) = 1 and as we include the trace preserving property in the definition of a
channel, a unital channel is a doubly-stochastic completely positive map.

It is often convenient to regard Md as a vector space which, when equipped with the
inner product 〈A, B〉 := tr[A† B], forms the Hilbert-Schmidt Hilbert space Hd . Every
channel is thus a linear map on this space and has as such a respective matrix repre-
sentation T̂ ∈ Md2 � B(H).1 We will occasionally use a (non-orthogonal) basis for H
which is obtained from embedded Pauli-matrices in the form

σ
jk

x := | j〉 〈k| + |k〉 〈 j | for all j < k,

σ
jk

y := −i (| j〉 〈k| − |k〉 〈 j |) for all j < k,

σ
j

z := | j〉 〈 j | − | j + 1〉 〈 j + 1| ∀ j = 1, . . . , d − 1, (2)

together with the identity matrix.
Another useful concept is the state-channel duality introduced by Jamiolkowski [13]

which assigns a density operator ρT ∈ Md2 to every channel T via

ρT = (id ⊗ T )(|�〉 〈�|), |�〉 = 1√
d

d∑
j=1

| j, j〉,

where� is a maximally entangled state. The states ρT corresponding to unital channels
are exactly those with reduced density matrices

tr1 [ρT ] = tr2 [ρT ] = 1/d. (3)

Note that due to the linearity of the correspondence the convex structure of channels is
entirely reflected by the convex structure of the set of their dual states. Depending on
what is more convenient we will switch back and forth between T and ρT .

1 B(X) denotes the space of bounded linear operators on X .
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B. Representations. In the remainder of this subsection we will prove the following
characterization of unital channels:

Theorem 1 (Characterization of unital channels). Let T : Md → Md be a quantum
channel. Then the following are equivalent:

1. T is unital (i.e., doubly-stochastic),
2. T is a convex combination of unitaries on Hd , i.e., T̂ = ∑

α pαWα with the p’s
being probabilities and each Wα ∈ Md2 unitary,

3. T (·) = ∑
i λi Ui · U †

i is an affine combination of unitary channels, i.e., the λ’s are
real and sum up to one and each Ui ∈ Md is unitary.

In order to see 1⇔2 we use a result from [1]: for any p > 1 a positive trace-preserving
map T is a contraction in the sense2 of ‖T ‖p→p ≤ 1 iff3 T is unital. In addition we have

‖T ‖2→2 = ∥∥T̂
∥∥∞ so that T is unital iff T̂ is a contraction with respect to the operator

norm. The set of these contractions in turn is the convex hull of unitaries (as can be seen
from the singular value decomposition) which completes 1⇔2.

As 3⇒1 is obvious it remains to show 1⇒3. To this end we introduce

X := {
A ∈ Md : A = A†, tr A = 0

}
,

V := {
A �→ U AU † : U ∈ Md unitary

} ⊂ B(X ).
That is, X is a real linear subspace of H containing all Hermitian operators orthogonal to
1 and V are the unitary conjugations on X . Note that the real linear span of V is invariant
under composition and that the set in Eq. (2) (without the identity) forms a basis of X .
The idea is now to show first how B(X ) can be obtained from V and then to extend this
to the claimed implication 1⇒3 in Thm.1.

Denote the subspace of real linear combinations of vectors {x1, . . . , xn} such that the
coefficients sum to zero by

zerospanR {x1, . . . , xn} :=
{∑

i

λi xi : λi ∈ R,
∑

i

λi = 0

}
.

Lemma 2. For each basis vector B ∈ X in (2) there exists a T ∈ zerospanRV which
maps B to itself and all other basis vectors to zero.

Proof. We explicitly construct such a T w.l.o.g. for σ 12
x . Set

T1(ρ) := 1

2

(
ρ + U1ρU †

1

)
, U1 :=

(
12

−1

)
,

T2(ρ) := 1

2

(
ρ − U2ρU †

2

)
∈ zerospanRV, U2 :=

(
σy

1

)
.

Then for all α ∈ R
4 and σ ≡ (

σx , σy, σz, 12
)
,

A :=
(
α · σ B∗

B C

)
T1�→

(
α · σ 0

0 C

)
T2�→

(
α1σx + α3σz 0

0 0

)
.

2 The norms are defined as ‖T ‖p→q = supA ‖T (A)‖q / ‖A‖p with ‖A‖p = (
tr[(A† A)p/2])1/p .

3 As usual ‘iff’ should be read ‘if and only if’.



Unital Quantum Channels – Convex Structure and Revivals of Birkhoff’s Theorem 1061

In a similar vein we can finally map α3 to zero by a T3, defined as T2 only with σy
in U2 replaced by σz . Then T := T3 ◦ T2 ◦ T1 is the desired operator which satisfies
T (A) = α1σ

12
x , and T ∈ zerospanRV as T2 ∈ zerospanRV . Clearly, the same type of

construction works for all basis vectors in (2). ��

Lemma 3. For every pair of basis vectors B1, B2 ∈ X in (2), there is a T ∈ V such that
T (B1) = B2.

Proof. As B1 and B2 are Hermitian, there are unitaries U1 and U2 such that U †
j B jU j

( j = 1, 2) are both diagonal. These can in turn be mapped onto each other by a permu-
tation in V since they both have eigenvalues (1,−1, 0, . . . , 0). Exploiting that V forms
a group we can compose these steps to obtain T (B1) = B2. ��

Proposition 4. V zero-spans all linear operators on X , that is,

zerospanRV = B(X ).

Proof. For any two basis vectors B1, B2 in (2), by the above lemmas there is a
T ∈ zerospanRV which maps B1 to B2 and all other basis vectors to zero, so that a
linear combination of these T ’s generates any linear map on X . ��

This immediately implies 1⇒3 in Thm.1 as for every unital quantum channel T we
have that T − id ∈ B(X ) so that we can write T (ρ) = ρ +

∑
i λi UiρU †

i with the λ’s
summing up to zero.

Note that Thm.1 implies that mixtures of unitaries form a set of non-zero measure
within the set of doubly stochastic channels. Conversely, assuming that they have non-
zero measure implies the equivalence of 1 and 3.4

C. Extreme points. The set of all unital quantum channels on Md is convex and com-
pact. That is, every unital channel T can be decomposed as

T =
∑

i

pi Ti , (4)

where the p’s are probabilities and the Ti ’s are extremal unital channels, i.e., those
which cannot be further decomposed in a non-trivial way. Despite considerable effort
[7,9,15–17] not much is known about the explicit structure of these extreme points
beyond d = 2 (in which case they are all unitary conjugations [7]). The small contribu-
tion of this subsection is to review the existing results and to apply them in order to show
that channels which are extremal within the set of unital channels are not necessarily
extremal within the convex set of all channels. To the best of our knowledge all known
examples so far were extremal within both sets—although the numerical results stated
in [17] already indicate that this might not be generally true. The main ingredient is the
following theorem which is stated in [9] and based on [18].

4 The fact that they have non-zero measure was proven independently (after the present paper has been
made public) in [14].
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Theorem 5. (Extremal channels). Consider a quantum channel with Kraus operators
{Ai }i=1,...,N . It is an extreme point within the convex set of quantum channels iff the set
of matrices

{
A†

k Al

}
k,l=1...N

(5)

is linearly independent. Assume further that the channel is unital. Then it is extremal
within the convex set of unital channels iff

{
A†

k Al ⊕ Al A†
k

}
k,l=1...N

(6)

is linearly independent.

We will exploit the fact that (5) allows less linearly independent operators than (6):
while (5) gives the simple bound N ≤ d, the set (6) yields N ≤ √

2d.5 For our example
we choose dimension d = 3 and N = 4 linearly independent Kraus operators. The
former ensures that there are non-trivial extreme points, and the latter already implies
that (5) can never be linearly independent as N �≤ d. We start with an Ansatz for the
Jamiolkowski state of the sought channel of the form

ρT = (id ⊗ T )(|�〉 〈�|) =
6∑

i, j=1

xi j |ψi 〉
〈
ψ j

∣∣ ,

where the (|ψi 〉)i span the orthogonal complement of (|kk〉)k , namely

|ψ1〉 = 1√
2
(|12〉 + |21〉), |ψ2〉 = 1√

2
(|13〉 + |31〉), |ψ3〉 = 1√

2
(|23〉 + |32〉),

|ψ4〉 = 1√
2i
(|12〉 − |21〉), |ψ5〉 = 1√

2i
(|13〉 − |31〉), |ψ6〉 = 1√

2i
(|23〉 − |32〉),

and the Hermitian matrix X ≡ (
xi j

)
is given by

X := 1

3

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 0 −i µ1 i µ3 i µ4 0
0 1

2 −i µ1 −i µ4 −(2 + i) µ3 0
i µ1 i µ1

1
2 0 0 2µ2 + i µ3

−i µ3 i µ4 0 1
2 0 −i µ1

−i µ4 (i − 2) µ3 0 0 1
2 i µ1

0 0 2µ2 − i µ3 i µ1 −i µ1
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(7)

The latter is chosen such that ρT satisfies the conditions (3) corresponding to a unital
and trace-preserving map. It remains to choose algebraic numbers µ1, . . . , µ4 ∈ R such
that X is positive semidefinite with rank N = 4, and that at the same time (6) is linearly
independent when plugging in the corresponding Kraus operators. A possible choice for
such a set of parameters is provided in Appendix VIII.

5 In fact, in [16] it was shown that N ≤
√

2d2 − 1 which is, however, practically the same as N ≤ √
2d

when applied to integer N .
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III. Mixtures of Unitary Channels

This section deals with the class of unital channels which can be represented as

T (ρ) =
N∑

i=1

piUiρU †
i , UiU

†
i = 1, pi > 0 ∀ i. (8)

The Jamiolkowski states corresponding to these mixtures of unitary conjugations are
exactly the states which are convex combinations of maximally entangled states. The
rank of the Jamiolkowski state ρT gives a simple bound [19] for the minimal N as there
exists always a decomposition with N ≤ (rank ρT )

2. For d = 2 we can achieve equality
in the general lower bound N ≥ rankρT and, as mentioned before, every unital channel
on M2 is a mixture of unitaries [7]. For d ≥ 3 the question whether a given unital
channel allows for such a representation was investigated and reformulated in [17] but a
general operational way of deciding it remains to be found. The approach in the follow-
ing subsection provides a class of easily computable necessary conditions which, when
applied to covariant channels, will later be extended to necessary and sufficient criteria.

A. Separation witnesses. Since the set (8) of mixtures of unitary channels is convex
and compact, every unital channel which lies outside this set can be separated from
it by a hyperplane — a witness. As this can most easily be expressed on the level of
Jamiolkowski states we introduce the corresponding sets

S := {ρT : ρT = (id ⊗ T ) (|�〉 〈�|) , T : Md → Md cp, tp, unital}
= {

ρ ∈ Md2 : ρ ≥ 0, tr1ρ = tr2ρ = 1/d
}
,

U := conv
{
(1 ⊗ U ) |�〉 〈�|

(
1 ⊗ U †

)
: UU † = 1

}
,

which we will, with some abuse of notation, occasionally also use for channels, i.e., we
will write ‘T ∈ S’ meaning ρT ∈ S. The following shows that we may impose some
structure on the witnesses — they can be taken from the affine span of U .

Proposition 6. (Separation witnesses). Let ρ ∈ S characterize a unital quantum chan-
nel. Then ρ ∈ U , i.e., it is a mixture of maximally entangled states, iff

tr [Wρ] ≥ 0

for all Hermitian operators W ∈ Md2 which satisfy

tr1W = tr2W = 1/d, tr [Wσ ] ≥ 0 ∀ σ ∈ U . (9)

Proof. We have to show that if ρ /∈ U , then there exists such a W with tr [Wρ] < 0.
First note that

X :=
{

A ∈ Md2 : A = A†, tr1 A = tr2 A = 0
}

is a real linear space and S−1/d2 ⊂ X . Set ρ̃ := ρ−1/d2 ∈ X . Using the Hahn-Banach
separation theorem [20, Theorem 1.C in Chap. 1] we find a W̃ ∈ X with

tr
[
W̃ ρ̃

]
< −1/d2, but tr

[
W̃ σ̃

]
≥ −1/d2 ∀ σ̃ ∈

(
U − 1/d2

)
.

Setting W := W̃ + 1/d2 yields the sought witness. ��
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To simplify matters we will in the following also consider Hermitian witnesses which
do not fulfill the l.h.s. of (9) as long as the r.h.s. is satisfied. A class of this kind which
turns out to be particularly useful are operators constructed from the flip operator F :
|k, l〉 �→ |l, k〉 in the form

W = (1 ⊗ B)F
(
1 ⊗ B†) + w(B) 1, B ∈ Md , (10)

where w(B) ∈ R is a constant depending on B such that W fulfills the r.h.s. in (9).
Before we determine this dependence let us note that replacing (1 ⊗ B) by (A ⊗ B) in
Eq. (10) won’t lead to a more general class of witnesses since (A ⊗ B)F

(
A† ⊗ B†

) =(
1 ⊗ B A†

)
F
(
1 ⊗ AB†

)
.

The sharpest constant w(B) for which (10) fulfills the witness condition tr[Wρ] ≥ 0
for all ρ ∈ U is obtained from

w(B) = −min
U

tr
[
(1 ⊗ B)F

(
1 ⊗ B†)(1 ⊗ U ) |�〉 〈�| (1 ⊗ U †)]

= − 1

d
min

U
tr
[

B†U BT U
]

= − 1

d
min

A

{
tr
[
AA

] : σ(A) = σ(B)
}
,

where U is unitary, A ∈ Md and σ(A) denotes the singular values of A. We solve this
matrix optimization problem in Appendix VII A arriving at the following result.

Theorem 7. (Tight witnesses). For any B ∈ Md with singular values σ1 ≥ · · · ≥ σd
the operator in Eq. (10) is a separation witness iff

w(B) ≥ 1

d

{
2
∑d/2

i=1 σ2i−1σ2i , d even

2
(∑(d−1)/2

i=1 σ2i−1σ2i

)
− σ 2

d , d odd.
(11)

Note in particular that for B = 1 and d odd we getw ≥ 1−2/d while for d evenw ≥ 1.
Hence, for even d no channel is separated from U by such a witness (since F + 1 ≥ 0).
However, we will see in Sec. IV B that for d odd it becomes a powerful tool.

B. A negativity measure. There are several possible ways of quantifying the deviation
of a channel T ∈ S\U from being a mixture of unitary channels: one may for instance
follow [17], use the entanglement of assistance [12,21] or the minimal distance to the
set U w.r.t. some distance measure. The representation Thm.1 enables a very natural
alternative approach—a base norm (inspired by [22]). That is, the deviation is quanti-
fied by the smallest negative contribution when representing T as an affine combination
of terms in U . More formally:

Definition 8. (Negativity). For all ρ ∈ S the base norm associated with U is

‖ρ‖U := inf
{
αp + αn : ρ = αp σp − αn σn, αp,n ≥ 0, σp,n ∈ U}

,

and the corresponding negativity is given by

NU (ρ) := inf
{
αn : ρ = αp σp − αn σn, αp,n ≥ 0, σp,n ∈ U}

. (12)



Unital Quantum Channels – Convex Structure and Revivals of Birkhoff’s Theorem 1065

For tr[ρ] = 1 the two are related via ‖ρ‖U = 1 + 2NU (ρ) and obviously NU (ρ) = 0
iff ρ ∈ U . The base norm behaves nicely under concatenation and convex combination.
Writing ‖T ‖U := ‖ρT ‖U we get

Proposition 9. Let Ti ∈ S be a set of quantum channels and pi ≥ 0 probabilities, then
∥∥∥
∏

Ti

∥∥∥U ≤
∏

‖Ti‖U , and
∥∥∥
∑

pi Ti

∥∥∥U ≤
∑

pi ‖Ti‖U .

Both can easily be proven from the definition. The latter can be interpreted as coming
from triangle inequality and homogeneity of the norm. Note also that the above norm
is unitarily invariant in the sense of ‖T V ‖U = ‖V T ‖U = ‖T ‖U for every unitary
conjugation V .

As always measures are easy to define but hard to compute. For covariant channels
we will show the calculation in Sec. IV B.

IV. Covariant Channels

In order to arrive at more explicit results we need some help—coming in the form of sym-
metries imposed on the channels. Consider any subgroup G ⊂ U (d)with elements g ∈ G
and two unitary representations Vg, Ṽg on C

d . We say that a channel T : Md → Md
is G-covariant w.r.t. these representations if for all g ∈ G:

T
(

Vg · V †
g

)
= ṼgT (·)Ṽ †

g . (13)

In this sense the action of the channel ‘commutes with the symmetry’. If Ṽ is an irreduc-
ible representation then T is unital as T (1) = ∫

dg T (VgV †
g ) =

∫
dg ṼgT (1)Ṽ †

g = 1 by
invoking Schur’s Lemma (where dg is the Haar measure). In order to express Eq. (13) in
terms of the Jamiolkowski state ρT we introduce G = {V g ⊗ Ṽg}g∈G and its commutant
G ′ = {X ∈ Md2 : ∀ Ug ∈ G : [X,Ug] = 0}. Covariance of the channel translates then
simply to

ρT ∈ G ′.

As we will see below most of the analysis can w.l.o.g. be restricted to this commutant
which considerably simplifies matters as dim G ′ is for a sufficiently large symmetry
group much smaller than d4, the dimensionality we would have to deal with otherwise.
The map

P(A) :=
∫

dg Ug AU †
g

defines a projection in B(Md2), often called twirl, which maps every matrix A into G ′
and acts as the identity on G ′. Moreover, since G ′ is an algebra it is spanned by a set
of minimal projections {Pi }. These are orthogonal if G ′ is abelian (which happens for
large enough symmetry groups) so that every X ∈ G ′ can be written as X = ∑

i xi Pi

with xi = tr[X Pi ]/tr[Pi ]. In this case we can easily determine6

P(A) =
∑

i

tr[APi ]
tr[Pi ] Pi . (14)

6 Here we have used that tr[P(A)Pi ] = tr[A P(Pi )] = tr[APi ].
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If G ′ fails to be abelian a similar reasoning still applies—for a detailed exposition of
these matters we refer to [22]. In order to see how covariance helps for our purposes let
us denote the set of witnesses by W := {W = W † : ∀σ ∈ U : tr[Wσ ] ≥ 0}.
Proposition 10 (Reduction to the commutant). Let ρ ∈ S ∩ G ′ be the Jamiolkowski
state corresponding to a covariant unital channel. Then ρ ∈ U iff tr[Wρ] ≥ 0 for all
W ∈ W ∩ G ′. Moreover,

‖ρ‖U = inf
{
αp + αn : ρ = αp σp − αn σn, αp,n ≥ 0, σp,n ∈ U ∩ G ′},

which equivalently holds for the negativity NU .

Proof. The crucial point for both parts is that σ ∈ U implies P(σ ) ∈ U which in turn
means that P(W ) ∈ W for every W ∈ W . Therefore due to tr[ρP(W )] = tr[P(ρ)W ] =
tr[ρW ] the set W can w.l.o.g. be restricted to G ′. Regarding the base norm we arrive at
the stated result when starting with any optimal decomposition ρ = αp σp − αn σn and
applying the twirl to both sides of the equation. ��

This suggests the program for the next subsections: fix a symmetry group, identify
the commutant G ′ and determine U , ‖·‖U and NU by exploiting the reduction to G ′.

A. O(d) covariance. The symmetry we will consider is the one of the real orthogonal
group, i.e., G = {O ⊗ O : O ∈ Md real orthogonal}. The most prominent non-trivial
example of a channel having this symmetry is

T (ρ) = (
tr[ρ] 1 − ρT )/(d − 1), (15)

which (for d = 3) gained some popularity as a steady source of counterexamples: for
the multiplicativity of the output p-norm [23], the additivity of the relative entropy of
entanglement [24] and, most relevant in our context, the quantum analogue of Birkhoff’s
theorem [9]. On the level of Jamiolkowski states we can make use of the analysis in [24]
where the commutant G ′ was shown to be abelian and spanned by

G ′ = span
{
1,F, F̂

}
,

where F̂ := d |�〉 〈�|. From there the minimal projections can be identified as

P0 = 1

d
F̂ = |�〉 〈�|,

P1 = 1

2
(1 − F),

P2 = 1

2
(1 + F)− 1

d
F̂,

where (1 ± F)/2 are the projections onto the symmetric and anti-symmetric subspace,
respectively. Consequently, every density operator in G ′ is in the convex hull of the
corresponding normalized density matrices ρi = Pi/tr[Pi ] of which ρ1 corresponds to
the Werner-Holevo channel in (15), ρ0 is the ideal channel and

∑
i Pi/d2 corresponds

to the completely depolarizing channel T (ρ) = tr[ρ] 1/d. Clearly, all of them are unital,
i.e., elements of S. Every state ρ ∈ G ′ is completely characterized by its “coordinates”

(〈F〉 , 〈̂F〉)
ρ
≡ (

tr [ρF] , tr
[
ρF̂

])
.
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Fig. 1. The set of orthogonal covariant channels PS in the Jamiolkowski representation (outer/green
triangle) and the convex hull of unitary channels P U (blue/shaded area), which is described in analytic
terms by Proposition 12. Note that the Werner-Holevo channel ρ− is “furthest away” from the unitaries. The
orange line (from ρ− to ρ+) depicts the U (d) covariant channels, and the dotted unit-square corresponds to
entanglement-breaking channels. Compare with Ref. [24, Fig. 2]

Especially for the extreme points ρi we obtain (see Fig. 1)

state ρ0 ρ1 ρ2

coords (1, d) (−1, 0) (1, 0)
(16)

B. A complete picture. We will now determine the subset U of mixtures of unitary chan-
nels within the set of O(d)-covariant channels. Following the above considerations this
amounts to identifying the corresponding region in the two-dimensional parameter space

U ∩ G ′ ∼=
{(〈F〉 , 〈̂F〉)

ρ
: ρ ∈ U

}

= conv
{(〈F〉 , 〈̂F〉)U : U unitary

}
, (17)

where the index U stands for the expectation value w.r.t. (1⊗U ) |�〉which parameterizes
an extreme point within U . A short calculation reveals that

〈F〉U ≡ tr
[
(1 ⊗ U ) |�〉 〈�|

(
1 ⊗ U †

)
F

]
= 1

d
tr
[
UU

]
,

〈̂
F
〉
U ≡ tr

[
(1 ⊗ U ) |�〉 〈�|

(
1 ⊗ U †

)
F̂

]
= 1

d
|tr U |2 . (18)

The picture depends crucially on whether d is even or odd.
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Theorem 11 (Even dimension). If d is even then U ∩ G ′ = S ∩ G ′, i.e., every O(d)-
covariant channel is a mixture of unitary channels.

Proof. It suffices to note that the expectation values (16,18) with respect to ρi and Ui
coincide for U0 = 1, U1 = diag

(
σy, . . . , σy

)
and U2 = diag (σz, . . . , σz), just by

plugging in (18). ��
So the interesting structure only emerges for d odd (see Fig. 1 for d = 3), for which

we need the following result proven in Appendix VII B:

Proposition 12. Let d ≥ 1 be odd. Then for all x ∈ [−1 + 2
d , 1

]
there exists a unitary

U ∈ U (d) such that tr
[
UU

]
/d = x, and

max
{|tr U | /d : U ∈ U (d), tr

[
UU

]
/d = x

}

=
[

1

2

(
1 − 1

d

)(
1 − 2

d
+ x

)]1/2

+
1

d
=: m(x). (19)

Theorem 13 (Odd dimension). Let d ≥ 3 be odd. Then the extreme points of the set (17)
corresponding to mixtures of unitary channels are

(−1 + 2/d, 0) , (1, 0) and
{(

x, d (m(x))2
)

: x ∈ [−1 + 2/d, 1]
}
. (20)

Proof. “(17) ⊂ conv(20)”: For all unitary U ∈ U (d),

1

d
tr
[
UU

] ∈ [−1 + 2/d, 1],

which follows from the fact that for any matrix A the spectrum of AA is symmetric with
respect to the real axis, the eigenvalues λ, λ have the same algebraic multiplicity, and
the algebraic multiplicity of all negative eigenvalues of AA (if any) is even, see [25].
Together with Prop. 12 we obtain the stated bounds on (17).

“(20) ⊂ (17)”: Set

Q0 := 1

2

⎛
⎝

0 1 − i −1 − i
−1 + i −i 1
1 + i 1 i

⎞
⎠

and ϕ := exp (2π i/3), then the coordinates (20) are obtained by
U0 = diag

(
σy, . . . , σy, Q0

)
, U1 = diag

(
σz, . . . , σz, ϕ, ϕ

2, 1
)

and the unitary matri-
ces which solve the maximization problem (19) (explicitly given in Appendix VII B).

��
The fact that according to Prop. 10, we can restrict to decompositions within the

two-dimensional parameter space, together with the explicit characterization of the set
U ∩ G ′ enables us now to compute the negativity NU , as follows.

We show first that in Eq. (12), σn = ρ2 always obtains the infimum, as illustrated in
Fig. 2. Since U ∩G ′ is convex and closed, the optimal σp,n in (12) are on the boundary of
U ∩G ′, and σn lies either on the segment joining ρ2 and ρ0 or the one joining ρ2 and the
covariant state with coordinates (−1 + 2/d, 0). We may w.l.o.g. assume the former, i.e.,
σn = λ ρ0 + (1− λ)ρ2 for a λ ∈ [0, 1]. Considering decompositions ρ = αp σp −αn σn
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Fig. 2. Negativity as distance measure, exemplified by orthogonal covariant channels. NU is constant along
red lines, which are obtained – in geometric terms – by a uniform scaling of the unitary channel boundary
about ρ2 as origin. σp,n ∈ P U are the optimal states in (12) given ρ ∈ PS\P U

with optimal σp (depending on λ) given ρ and σn via λ, both αp,n are already determined
by the x-coordinates of ρ and σp,n due to αp + αn = 1. Note that the x-coordinates of ρ
and σn remain fixed for all values of λ whereas the x-coordinate of σp is non-increasing
as λ decreases, and so is αn . That is, λ = 0 or equivalently σn = ρ2 minimizes αn .

It follows that a uniform scaling of the boundary of U ∩ G ′ by a factor (1 + αn)

starting from ρ2 as origin yields precisely the set of points with negativity αn .
We may write each ρ ∈ S\U ∩ G ′ in terms of a convex combination of the ρi listed

in Table 16, that is, ρ = ∑
i qi ρi with qi ≥ 0 and

∑
i qi = 1. From Fig. 2 it is evident

that q1 > 0 for all ρ /∈ U . Set q := q0/q1 and distinguish the following two cases due
to the particular shape of U ∩ G ′.

• q > 1
d(d−1) . This corresponds exactly to the area above the dashed line in Fig. 2.

Applying the scaling (1 + αn) to the curve in Theorem 13, an explicit calculation
shows that

NU (ρ) = 1

d − 2

(
d − 1 +

(
d +

2

d − 2

)
q − 2

d − 1

d − 2

√
q2 +

d − 2

d − 1
q

)
q1 − 1,

ρ =
3∑

i=1

qi ρi ∈ S\U with qi ≥ 0,
∑

i

qi = 1, q := q0/q1.
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• q ≤ 1
d(d−1) . In this case the negativity does not depend on q, and we get

NU (ρ) = d

d − 1
q1 − 1.

In particular, NU (ρ) is maximal exactly for the Werner-Holevo channel ρ−, namely
NU (ρ−) = 1/(d − 1).

V. Restoring Birkhoff’s Theorem

Measures quantifying the deviation of a unital channel from being a mixture of unitary
channels are known to be not additive (or multiplicative). That is, a naive extrapolation
from the ‘distance’ between a given T ∈ S\U and U typically leads to an overestimation
of the respective quantity for T ⊗n , i.e., several copies of the channel. This effect was
studied in detail in the context of the entanglement of assistance [12,21]

Ea(ρ) := sup

{∑
i

pi S (tr1	i ) : ρ =
∑

i

pi |	i 〉〈	i |
}
,

where S(ρ) = −tr[ρ log ρ] is the von Neumann entropy, and the supremum has to be
taken over all convex decompositions of the given state ρ ∈ B(Cd ⊗C

d) into pure ones.
As S (tr1	i ) ≤ log d with equality iff 	i is a maximally entangled state we have that
Ea(ρ) ≤ log d with equality iff ρ ∈ U . It was shown in [12] that

∀ρ ∈ S : lim
n→∞

1

n
Ea

(
ρ⊗n) = log d,

which suggests that the approximation ofρ⊗n by an element ofU improves as n increases.
This would mean a restoration of Birkhoff’s theorem in the asymptotic limit. Whether
this statement is valid in general when formulated in terms of norm distances (either for
channels or, supposedly weaker, for states) remains an open problem [26].

In the following subsections we will prove it in the strongest possible sense for a class
of O(d)-covariant channels. We will see that at least for these cases neither the asymp-
totic limit nor an approximation is required—a remarkable effect from the perspective
of environment-assisted error correction (Sec. V C).

More specifically we will show that for a T �∈ U we find T ⊗ T̃ ∈ U when choosing

T : Md → Md , T (ρ) = 1 + δ

d
tr[ρ] 1 − δ ρT , d odd, (21)

with appropriate δ and either T̃ = T (Sec. V A) or T̃ : ρ ∈ MD �→ tr[ρ] 1 ∈ MD
completely depolarizing (Sec. V B). The symmetry of the channels will help us in two
stages: (i) we can use Thm.13 which tells us that T �∈ U for δ > 1/(d + 1), and (ii) it
circumvents having to find an explicit decomposition in terms of unitary channels for
T ⊗ T̃ : if the convex hull of the relevant G ′ expectation values of any set of unitary
channels contains the ones of T ⊗ T̃ , then the twirling projection P does the rest of the
job.
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A. Two copies of a channel. As usual we switch to the Jamiolkowski representation,
where the family of channels in Eq. (21) becomes

ρT =
(

1 − 1

d
+
ε

2

)
ρ− +

(
1

d
− ε

2

)
ρ+, d odd,

where ρ± are the normalized projections onto the symmetric and anti-symmetric sub-
space, respectively. The parametrization is chosen such that ρT ∈ S\U for ε ∈ (0, 2/d]
since

tr [ρT F] = −1 +
2

d
− ε,

and F + (1 − 2/d) 1 is a tight separation witness according to Thms.7,13. To exploit the
full symmetry coming from T̃ = T we follow Sect. V.B of [24] and increment the tensor
product symmetry group7 {(U ⊗ U )⊗ (V ⊗ V )} by a flip operator which interchanges
the tensor factors in the product T ⊗ T̃ . This results in a larger symmetry group G, thus
yielding a smaller commutant G ′ ⊂ Md4 which is spanned by 1 and

F := 1

2
(1 ⊗ F + F ⊗ 1) , F12 := F ⊗ F.

That is, every state ρ ∈ G ′ is now completely characterized by the expectation val-
ues/coordinates

(〈F〉 , 〈F12〉)ρ ≡ (tr [ρ F] , tr [ρ F12]) .

Especially for any unitary channel described by U ∈ Md2 , setting Us := 1
2

(
U + U T

)
and denoting partial transposes by Ti gives

〈F12〉U = tr
[

F12 (1 ⊗ U ) |�〉 〈�|
(

1 ⊗ U †
)]

= 1

d2 tr
[
U U

]
,

〈F〉U = tr
[

F (1 ⊗ U ) |�〉 〈�|
(

1 ⊗ U †
)]

= 1

2 d2 tr
[
U

(
U

T1 + U
T2
)]

= 1

d2 tr
[
U Us

T2
]
= 1

d2 tr
[
Us Us

T2
]
. (22)

The last equation uses the fact that Us
T2 is again symmetric. The ranges of the expecta-

tion values in Eq. (22) are studied in Appendix VII C. In particular for d = 3 we provide
an explicit construction for the coordinates

(〈F〉, 〈F12〉)ϑ = 1

9

(
−8

3
(cosϑ + 1)2 + 3, 16 cos2 ϑ − 7

)
, ϑ ∈ [0, π/2] (23)

corresponding to convex combinations of unitary channels. Now matching the coordi-
nates of T ⊗ T ,

(〈F〉, 〈F12〉)T =
(

tr [ρT F] , tr [ρT F]2
)
=

(
x, x2

)
, x := −1 +

2

d
− ε

7 The aim is to use the full symmetry group. That is, we use V ⊗ V , V ∈ U (d) for ρT which already
allows us to discard F̂ from the commutant. We use further that the commutant of a tensor product is the tensor
product of the commutants and that Prop. 10 remains true when adding the additional flip operator.
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Fig. 3. Twofold tensor products of covariant channels for d = 3 (outer/green triangle). The mixtures of unitary
channels correspond to the blue/shaded region, the orange parabola to tensor products of a channel with itself
and the red part of that curve to the elements of U on the single-channel level. Compare with Fig. 9 in [24]

with (23) yields

ε = 2

3

(
4 − 3

√
2 −√

3 +
√

6
)
≈ 1√

10

as shown in Fig. 3. The blue area corresponds to convex combinations of unitary chan-
nels,8 i.e., elements of U , the orange curve to coordinates of single-channel tensor prod-
ucts and the red part of this curve to the elements of U on the single-channel level. The
state at the lower corner is

ρm = 1

2
(ρ− ⊗ ρ+ + ρ+ ⊗ ρ−) .

As can be seen from direct inspection, each point on the curve (23) is an extreme point
of the blue area. The remaining extreme points (1, 1) and

( 1
9 ,− 7

9

)
are realized by the

unitaries 1 and
( −1

1

)⊗4 ⊕ 1, respectively.

B. Help from a noisy friend. Instead of adding a second copy of the channel, we will
now supplement it by a completely depolarizing T̃ . The Jamiolkowski representation of

8 A proof that (23) really solves the minimization problem (32) as acclaimed is still outstanding, but strongly
supported by numerical tests. In any case, the set of convex combinations of unitary channels is at least as big
as the blue area.
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Table 1. Numerical minimization of (25). Note that the table is asymmetric w.r.t d ↔ D, and that the lower
bound −1 can apparently be obtained for d = 5 and D = 4, that is, each channel-tensor product T ⊗ T̃ (with
T̃ the completely depolarizing channel) becomes then a convex combination of unitaries

d D = 1 2 3 4 5

1 1 1 1 1 1

3 − 1
3 − 7

9 − 23
27 − 4

5 − 37
45

5 − 3
5 − 23

25 −0.929 . . . −1 −0.976 . . .

7 − 5
7 − 47

49

the completely depolarizing channel T̃ : B (K1)→ B (K2) ,Ki = C
D is

ρT̃ ≡
(

id ⊗ T̃
)
(|�〉 〈�|) = 1/D2.

Let H be the corresponding symmetry group of all local unitaries V1 ⊗ V2 with
Vi ∈ B (Ki ), then H ′ = span{1}. Using again that

(G ⊗ H)′ = G ′ ⊗ H ′

(see Example 7 in Sect. II.D of [24]) we get that every element of the commutant is
completely characterized by the expectation value of Y = FH1⊗H2 ⊗ 1K1⊗K2 , yielding

tr
[(
ρT ⊗ ρT̃

)
Y
] = tr [ρT F] = −1 +

2

d
− ε. (24)

Since −1 ≤ Y ≤ 1 every normalized state ρ satisfies tr [ρY ] ∈ [−1, 1]. In order to
obtain the subinterval of [−1, 1] covered by convex combinations of unitary channels,
we have to calculate 〈Y 〉U for unitary U : H1 ⊗ K1 → H2 ⊗ K2,

tr
[
(1 ⊗ U ) |�〉 〈�|

(
1 ⊗ U †

)
Y
]
= 1

d D
tr
[
U U

T2
]
. (25)

As U = 1 reaches the upper bound 1, the hard part is the lower bound which is treated
in Appendix VII D. The results suggest that for D = 2, Eq. (25) gives

[
−1 +

2

d2 , 1

]
(26)

for the range in which T ⊗ T̃ ∈ U while, recall, T ∈ U only within [−1 + 2/d, 1]. The
interval (26) can be related to the conjectured existence of a certain quaternion matrix,
which we construct explicitly for d = 3 and d = 5. This means that in this case (25)
covers this range at least. In particular, for ε ≤ 2(d − 1)/d2, the expectation value (24)
lies within this interval such that ρT ⊗ ρT̃ becomes then indeed a convex combination
of maximally entangled states.

For higher values of D, we reproduce Table 2 from Appendix VII D.
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Fig. 4. The correction scheme as in [11], applied to the simultaneous usage of two noisy channels T :
B(H1) → B(H2) and T̃ : B(K1) → B(K2). The channels are represented by unitary couplings U and Ũ
to an environment which is initially in a pure product state. The classical result α of the measurement on the
global environment is used by the receiver who chooses the recovery operation Rα (again a quantum channel)
accordingly. As discussed in the text, T ⊗ T̃ can become perfectly correctable (i.e., Tcorr = id) although
neither T nor T̃ is so

C. Environment-assisted error correction. The above results become especially remark-
able from the point of view of environment-assisted error correction—a concept intro-
duced in [11]. There it was studied which channels allow complete correction, given a
suitable feedback of classical information from the environment (see Fig. 4). The class
of perfectly correctable channels was identified with the set of convex combinations of
unitary channels. In this way the above observations yield examples of channels which
are not perfectly correctable on their own but become so when either taking several
copies, or supplementing with a completely depolarizing channel.

VI. Discussion

The presented investigation of the set of unital quantum channels is to a large extent based
on and inspired by methods and ideas from entanglement theory. The tools acquired in
this context could be directly applied to the Jamiolkowski representation of the channel.
This approach as such leads to questions about further analogies between the two fields.
It would in particular be interesting whether a useful counterpart to positive maps, i.e.,
powerful non-linear criteria can be found for the separation of the set of mixtures of
unitary channels.9

Clearly, the asymptotic Birkhoff conjecture[26] remains an important open problem
for which the present work might be regarded as supporting evidence as it provides
the first class of examples for which there is a rigorous proof. In this context it might
be interesting to investigate T ⊗ T̃D with T̃D a D-dimensional maximally depolarizing
channel, as studied in Sec. V B. Is there a dense subset of unital channels such that a
finite D makes T ⊗ T̃D a mixture of unitary channels?

Acknowledgements. We thank R.F. Werner for valuable discussions and the F, and J.I. Cirac for many useful
comments and the steady support along the way. M.M.W. acknowledges financial support by QUANTOP and
the Danish Natural Science Research Council (FNU).

9 Here it might be helpful to replace positivity by some form of contractivity.
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VII. Appendix A–Matrix Optimization Problems

A. Minimizing tr[AA] subject to fixed singular values. We solve the minimization prob-
lem posed in Sect. III A which deals with a special class of separation witnesses. Con-
sidering any complex d × d matrix A, we denote its singular values by σi (A) (counting
multiplicity) such that σ1(A) ≥ · · · ≥ σd(A). Our main result is the following proposi-
tion, which is similar to Theorem 7.4.10 in [27].

Proposition 14. Let A ∈ Md and σ1 ≥ · · · ≥ σd denote the singular values of A. If
AA is Hermitian, then there exists a permutation τ of {1, . . . , d}, an even r ≤ d and a
function ρ : {1, . . . , r/2} → {0, 1} with

tr
[
AA

] = 2
r/2∑
i=1

(−1)ρ(i) στ(2i−1) στ(2i) +
d∑

i=r+1

σ 2
τ(i). (27)

Conversely, given any such τ, r, ρ and nonnegative numbers σ1 ≥ · · · ≥ σd , there exists
an A ∈ Md such that σi (A) = σi for all i and (27) holds.

Proof. We split the “⇒” part into the following steps:

1. tr
[
AA

]
and the singular values of A are invariant under A �→ U AU T for any unitary

U . Note that this map sends AA �→ U AAU †, so by the spectral theorem, w.l.o.g.
AA real diagonal.

2. It follows that AA = AA = AA, i.e. A commutes with A, and each of the eigen-
spaces of AA is invariant under A and A. Stated differently, A is block diagonal,
each block corresponding to an eigenspace of AA, so w.l.o.g. AA = λ 1 for a λ ∈ R.

3. The case λ �= 0: Applying the singular value decomposition yields unitary matrices
U, V such that A1 := U † AV = diag (σ1, . . . , σd). Using A = λA−1, we have

A2 := V † AU = λ
(

U † AV
)−1 = λA−1

1 = λ diag
(
σ−1

1 , . . . , σ−1
d

)
.

A1 and A2 sharing the same singular values translates to {σ1, . . . , σd} = |λ|{
σ−1

1 , . . . , σ−1
d

}
, so there is a permutation τ of {1, . . . , d} with

{
στ(2i−1) στ(2i) = |λ| for i = 1, . . . , d

2 , d even
στ(2i−1) στ(2i) = |λ| for i = 1, . . . , d−1

2 , σ 2
τ(d) = |λ| , d odd.

Note that d cannot be odd if λ < 0 as the negative eigenvalues of AA are of even
algebraic multiplicity (see e.g. [27], pp. 252, 253). Concluding, tr

[
AA

]
can always

be written in the form (27).
4. The case λ = 0: Let r denote the number of nonzero singular values of A. AA = 0

means that range
(

A
) ⊆ kern(A), so

r = rank(A) = dim range
(

A
) ≤ dim kern(A) = d − r,

i.e. 2r ≤ d, and there is a permutation τ such that each summand in the right-hand
side of (27) is zero.
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To prove the “⇒” part, set A := diag
(

A1, . . . , Ar/2, στ(r+1), . . . , στ(d)
)

with

Ai :=
(

0 (−1)ρ(i)στ(2i)
στ(2i−1) 0

)
.

��
Corollary 15. Given any nonnegative numbers σ1 ≥ · · · ≥ σd ,

min
{
tr
[
AA

] : A ∈ B (H) , σi (A) = σi ∀ i
}

=
{
−2

∑d/2
i=1 σ2i−1σ2i , d even

−2
∑d−1/2

i=1 σ2i−1σ2i + σ 2
d , d odd.

(28)

Proof. What remains to be shown is AA being Hermitian for optimal A; then Proposi-
tion 14 guarantees optimality. Exploiting invariance under A �→ V AV T for unitary V
we can w.l.o.g. assume that A = U D with D = diag (σ1, . . . , σd) and U unitary. Now
vary U to minimize tr

[
AA

]
; the unitary constraint translates via

U dU † + dU U † = d
(

U U †
)
= 0

to X := i dU U † being Hermitian. We have

0
!= d

dU
tr
[
DU DU

]

= 2 Re tr
[
D dU DU

]

= 2 Im tr
[
U DU DX

]
.

This has to hold true for any Hermitian matrix X . Decomposing U DU D = B1 + i B2,
B1 and B2 Hermitian, it follows that B2 = 0. ��

B. Maximizing |tr[U ]| subject to fixed tr[UU ]. In this subsection we prove Proposi-
tion 12 from Sect. IV B, i.e. we calculate the analytic solution of max |tr U | for fixed
tr
[
UU

]
over all unitaries U ∈ U (d). The motivation for this optimization problem

comes from Eq. (18), which characterizes the convex hull of unitary channels within the
set of orthogonal-covariant channels.
We need the following lemma first.

Lemma 16. Let U ∈ U (2) be a unitary 2 × 2 matrix and Us := 1
2

(
U + U T

)
be the

symmetric part of U. Then the trace-norm of Us equals

‖Us‖1 ≡
∑
j=1,2

σ j (Us) =
√

tr
[
UU

]
+ 2.

Proof. There are α, β ∈ C such that up to an unimportant phase factor

U =
(
α β

−β α

)
with |α|2 + |β|2 = 1.
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Direct calculation shows that

tr
[
UU

] = 2
(
|α|2 − Re

(
β2

))
= 4

(
|α|2 + (Im β)2

)
− 2, (29)

Us =
(

α i Im β

i Im β α

)
, UsU †

s =
(
|α|2 + (Im β)2

)
1, (30)

∑
j=1,2

σ j (Us)
(30)= 2

√
|α|2 + (Im β)2

(29)=
√

tr
[
UU

]
+ 2.

��

Proposition 17. Let d ≥ 1 be odd. Then for all x ∈ [−1 + 2
d , 1

]
, there exists a unitary

U ∈ U (d) such that d−1tr
[
UU

] = x, and

max
{

d−1 |tr U | : U ∈ U (d), d−1tr
[
UU

] = x
}

=
[

1

2

(
1 − 1

d

)(
1 − 2

d
+ x

)]1/2

+
1

d
. (31)

Proof. Set α := d
d−1

[ 1
2

(
1 − 1

d

) (
1 − 2

d + x
)]1/2 ∈ [0, 1], β := √

1 − α2 and

σ :=
(
α β
−β α

)
, then a short calculation shows that U := diag (σ, . . . , σ, 1) satisfies d−1tr[

UU
] = x with d−1 |tr U | equal to the right hand side of (31). So what remains to be

shown is an upper bound on d−1 |tr U |.
Let U ∈ U (d) be a unitary matrix with d−1tr

[
UU

] = x . By the Youla theorem [25],

given any conjugate-normal matrix A (that is, AA† = A† A), there exists a unitary V
such that V AV T is a block diagonal matrix with diagonal blocks of order 1 × 1 and
2 × 2, the 1 × 1 blocks corresponding to the real nonnegative eigenvalues of AA and
the 2 × 2 blocks corresponding either to pairs of equal negative eigenvalues of AA or
to conjugate pairs of non-real eigenvalues of AA. Applying this to U , there is a unitary
V with U = V DV T , the block diagonal matrix D as described. Let r

2 be the number
of 2 × 2 blocks (with even r ≤ d) and denote these blocks by Di . As U and V are
unitary, so must be D, i.e. Di ∈ U (2) for all i . UU unitary guarantees |λ| = 1 for
each eigenvalue λ of UU , so each real nonnegative eigenvalue of UU must be 1. Alto-

gether we have D = diag
(

D1, . . . , D r
2
, 1, . . . , 1

)
. Set ci := 1

2 tr
[
Di Di

] ∈ [−1, 1] and

Ds := 1
2

(
D + DT

)
. Using Lemma 16 and the fact that V T V is unitary and symmetric,

|tr U | =
∣∣∣tr

[
DV T V

]∣∣∣ =
∣∣∣tr

[
DsV T V

]∣∣∣ ≤
d∑

j=1

σ j (Ds)

=
r/2∑
i=1

∑
j=1,2

σ j
(
Di,s

)
+ (d − r) = 2 ·

r/2∑
i=1

√
ci + 1

2
+ d − r.
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Let c := d · x ∈ [−d + 2, d]. Some elementary analysis shows that the problem

max

⎧⎨
⎩2 ·

r/2∑
i=1

√
ci + 1

2
+ d − r

⎫⎬
⎭

subject to 2 ·
r/2∑
i=1

ci + d − r = c,

ci ∈ [−1, 1] for all i,

r even, r ≤ d

has optimal solution r = d −1, ci = c−1
d−1 ∀ i and the obtained maximum is d

[ 1
2

(
1 − 1

d

)
(
1 − 2

d + c
d

) ]1/2 + 1. This upper bound on |tr U | corresponds exactly to the right-hand
side of (31). ��

C. Minimizing tr
[
Us Us

T2
]

subject to fixed tr[UU ]. Motivated by Eq. (22) in Sect. V

A, we investigate

min

{
1

d1d2
tr
[
Us Us

T2
]

: Us = 1

2

(
U + U T

)
,

U ∈ B (H ⊗ K) unitary with
1

d1d2
tr
[
UU

] = y

}
(32)

for Hilbert spaces H and K with dimensions d1 and d2, respectively, and provided
y ∈ [−1 + 2/d1d2, 1], where d1 ≥ 3 is odd.

The partial transposes T1 and T2 are defined w.r.t. a fixed product basis by the linear
extension of

(A ⊗ B)T1 = AT ⊗ B and

(A ⊗ B)T2 = A ⊗ BT , A ⊗ B ∈ B (H ⊗ K),

respectively. Note that for any A and B,

tr
[

A B
T2
]
= tr

[
AT1 B†

]
,

and for any real or complex A with AT = A, the partial transposes are on equal
footing, i.e. AT1 = AT2 , so (32) is inherently symmetric with respect to d1 ↔ d2.
We identify B (H ⊗ K) ∼= C

d1d2×d1d2 by means of the ordered computational basis
(|11〉 , |12〉 , . . . |1d2〉 , . . . |d1d2〉).

All quantities in (32), especially the minimizers, will stay invariant if we send

U → (W1 ⊗ W2)U (W1 ⊗ W2)
T

with arbitrary unitaries W1 ∈ B(H) and W2 ∈ B(K).
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Since every unitary matrix is also conjugate-normal (that is, U U † = U † U ), the
Youla-theorem10 states that there exists a unitary matrix V ∈ B (H ⊗ K) such that

U = V D V T

with D real block-diagonal and blocks of size 1 × 1 and 2 × 2, the former non-negative
and the latter of the form

(
σ −z
z σ

)
with σ ≥ 0. Since D must also be unitary, this equals(

cosϑ − sin ϑ
sin ϑ cosϑ

)
for a ϑ ∈ R, and all 1 × 1 blocks are 1. Note that

Us = V Ds V T , Ds := 1

2

(
D + DT

)
≥ 0 diagonal,

in particular, Ds contains the singular values of Us. Moreover, tr
[
UU

] ≡ tr
[
DD

]
is

independent of V , so D fixes y in (32) and we may freely vary V . Conversely, Takagi’s
theorem [27] asserts that every complex-symmetric matrix A ∈ C

n×n can be decom-
posed into

A = V diag (σ1, . . . , σn) V T (33)

with unitary V and σi ≥ 0 for all i , so identifying A ≡ Us and diag (σ1, . . . , σn) ≡ Ds,
the minimization problem (32) can be reduced to the following problem and a subsequent
optimization over Ds:

min

{
1

d1d2
tr
[

A A
T2
]

: A ∈ B(H ⊗ K), AT = A, σi (A) = σi ∀ i

}
. (34)

This closely resembles (28), and we have effectively decoupled the target function from
the peculiar unitary constraint in (32).

Proposition 18. Every (local) minimizer A of (34) satisfies A A
T2 Hermitian.

Proof. Denote the derivative w.r.t. V in (33) by dV ; since V is unitary,

V dV † + dV V † = d
(

V V †
)
= 0

so X := 1
i dV V † must be Hermitian. Plugging

d

dV
A = dV diag (σi ) V T + V diag (σi ) dV T = i

(
X A + AX T

)

into the target function (34) yields

d

dV
tr
[

A A
T2
]
= i tr

[(
X A + AX T

)
A

T2
]

−i tr

[
A
(
X A + AX T

)T2
]

= 2 i tr
[

X A A
T2
]
− i tr

[
AT2

(
X A + AX T

)†
]

= 2 i tr
[

X
(

A A
T2 − AT2 A

)]

= 2 i tr
[

X
(

A A
T2 − h.c.

)] != 0.

10 Refer in particular to Thm. 4 in [25]. The Youla-form corresponds to the Schur-form w.r.t. unitary
congruence transformations A �→ V AV T and is a generalization of Takagi’s factorization [27].
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As this must hold for any Hermitian X , the last equation can only be fulfilled if A A
T2

is Hermitian. ��
It is instructive to rewrite the target function as follows, setting σ := (

σ1, . . . , σd1d2

)
.

Denote the columns of V by vi , i.e. V = (
v1| . . . |vd1d2

)
, then A = ∑

i σi viv
T
i and

1

d1d2
tr

[
A A

T2
]
= 〈σ | G σ 〉,

G = (
gi j

)
Hermitian with (35)

gi j = 1

d1d2
tr

[
v jv

T
j viv

T
i

T2
]
.

Writing vi =: ∑k |k〉 ⊗ xik, xik ∈ K the last expression becomes

gi j = 1

d1d2

∑
k,k′,l,l ′

tr

[(∣∣l ′〉 〈l| ⊗ x jl ′x
T
jl

)(∣∣k′〉 〈k| ⊗
(

xik′x
T
ik

)†
)]

= 1

d1d2

∑
k,l

trK
[
x jk xT

jl xik x†
il

]

= 1

d1d2

∑
k,l

〈
xik | x jl

〉 〈
xil | x jk

〉

= 1

d1d2
tr
[
s2

i j

]
, si j := (〈

xik | x jl
〉)

k,l=1,...,d1
.

V being unitary translates to tr si j = ∑
k

〈
xik | x jk

〉 = 〈
vi | v j

〉 != δi j .

In what follows, we provide an explicit upper bound11 of (32) for d1 = d2 =: d and
d = 3. Start with the Ansatz that all 2 × 2 blocks in D belong to the same phase, i.e.

D =
(

cosϑ − sin ϑ
sin ϑ cosϑ

)⊗4

⊕ 1, ϑ ∈ [0, π/2] , so

(36)
1

d2 tr
[
UU

] = 1

d2 tr
[
DD

] = 1

9

(
16 cos2 ϑ − 7

) != y,

and set

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i√
2

− i
2
√

6
− i

2
√

2
1√
3

i√
2

−
√

3
8

1
2
√

2
1√
2

i√
2

i√
2

√
3
8 − 1

2
√

2
i√
6

i√
2

1√
3

1√
2

i√
2

− 1√
2

i√
2

− 1√
2

i√
2

− i√
2
− i

2
√

6
− i

2
√

2
1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

11 Numeric tests strongly suggest that this is the actual minimum. Most interestingly, the acclaimed
minimizer V does not depend on ϑ!
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independent of ϑ! Then Ds = diag (σ1, . . . , σ9) with σ1 = · · · = σ8 = cosϑ , σ9 = 1,
and G in (35) becomes

G = 1

27

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2 0 − 11

8 0 − 9
8 0 0 0 −1

0 3
2

1
8 0 3

8 − 3
2 0 − 3

2 −1

− 11
8

1
8

3
2 − 1

4 −1 1
8 − 1

4
1
8 −1

0 0 − 1
4

3
2 − 3

4 0 − 3
2 0 −1

− 9
8

3
8 −1 − 3

4
3
2

3
8 − 3

4
3
8 −1

0 − 3
2

1
8 0 3

8
3
2 0 − 3

2 −1

0 0 − 1
4 − 3

2 − 3
4 0 3

2 0 −1

0 − 3
2

1
8 0 3

8 − 3
2 0 3

2 −1

−1 −1 −1 −1 −1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Q
9×9.

Finally evaluating the target function provides the supposed minimum

1

d2 tr
[
Us Us

T2
]
= 〈σ | G σ 〉 = 1

9

(
−8

3
(cosϑ + 1)2 + 3

)
(37)

with ϑ defined by (36).
Interestingly, the smallest eigenvalue − 1

d2 of G is of algebraic multiplicity 1 with

corresponding eigenvector σ(ϑ) evaluated at ϑ = π/3 and coordinates − 1
3 (1, 1). Fur-

thermore, (37) is minimal w.r.t. ϑ exactly for ϑ = 0, which corresponds to maximal
y = 1

d2 tr
[
UU

] = 1 and σ1 = · · · = σd2 = 1. In this case, D is the identity and

U = V V T complex symmetric. Comparing with Appendix VII D, notice that we
obtain the same minimum value − 23

27 .

D. Minimizing tr
[
U U

T2
]
. We explore the following minimization problem posed by

Eq. (25) in Sect. V B.

min

{
1

d1d2
tr
[
U U

T2
]

: U ∈ B (H ⊗ K) unitary

}
, (38)

where H ⊗ K is the tensor product of two Hilbert spaces with dimensions d1 = dim H
and d2 = dim K, respectively, d1 being odd. The partial transposition is introduced
in VII C. Note that any transformation

U →
(

V T ⊗ W †
1

)
U

(
V ⊗ W2

)

for unitary V ∈ B (H) and unitary W1,W2 ∈ B (K) leaves the target function invariant.
If we allowed tensor products only, i.e. U = U1 ⊗U2, the target function would collapse
to 1

d1
tr
[
U1U1

] ≥ −1 + 2
d1

, which is in general strictly greater than (38), see below. It is
worth mentioning that (38) is inherently asymmetric w.r.t. d1 ↔ d2, as opposed to the
previous Sect. VII C.

Proposition 19. U U
T2 is Hermitian for every minimizer U of (38).
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Proof. As in previous sections, we differentiate the target function with respect to U .
As U is unitary, X := 1

i dU U † must be Hermitian, and we get

d

dU
tr
[
U U

T2
]
= i tr

[
XUU

T2
]
− i tr

[
U T1 (XU )†

]

= i tr
[

X
(

UU
T2 − h.c.

)] != 0.

This holds for any Hermitian X , so UU
T2 must be Hermitian, too. ��

Disassembly and reformulation. Let X = B (K) be the Hilbert space equipped with
the Hilbert-Schmidt inner product and induced Frobenius norm. By partitioning U as
U = ∑d1

i, j=1 |i〉 〈 j |⊗ui j with ui j ∈ X , we can now reformulate the target function (38)
as

tr
[
U U

T2
]
=

∑
i, j

〈
ui j | u ji

〉
.

The condition U unitary translates to

UU † = 1 ⇔
∑

i

u†
i j uik = δ jk1 ∀ j, k = 1, . . . , d1

⇔
∑

i

〈
ui j | uik x

〉 = δ jk 〈1 | x〉 ≡ δ jk tr x ∀ j, k; x ∈ X

and the condition in Proposition 19 to

U U
T2 Hermitian ⇔

∑
i

uki u†
i j =

∑
i

uik u†
j i

⇔
∑

i

〈
ui j | x uki

〉 =
∑

i

〈
u ji | x uik

〉 ∀ j, k; x ∈ X .

Note that these equations can be rewritten in terms of the Hilbert-Schmidt inner product
as shown.

Quaternion structure. In this paragraph we assume d2 = 2 and set d = d1. Numeric
tests suggest that in this case, the minimum value (38) is

− 1 +
2

d2 . (39)

Interestingly, there emerges a substructure which is best described by quaternions. Recall
that quaternions

H = {x0 + x1 i + x2 j + x3 k : x0, . . . , x3 ∈ R}
are a non-abelian division ring and form a 4-dimensional normed division algebra over
the real numbers. We regard R and C as subalgebras of H and denote the quaternion-
conjugate of q = x0 + x1 i + x2 j + x3 k ∈ H by q∗. Furthermore, define Re q := x0 and
 q := q − Re q = x1 i + x2 j + x3 k.
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To bridge the gap between quaternions and operators on Hilbert spaces, employ the
identification12

i ↔ i σz =
(

i 0
0 −i

)
, j ↔ i σy =

(
0 1
−1 0

)
, k ↔ i σx =

(
0 i
i 0

)
.

Note that in this representation

q ↔ q̂ =
(

x0 + i x1 x2 + i x3
−x2 + i x3 x0 − i x1

)
∈ C

2×2, (40)

the quaternion conjugate is the Hermitian conjugate of the corresponding matrix, and
the quaternion norm is the square root of the determinant,

q∗ ↔ q̂†, ‖q‖ =
√

det(q̂).

Let H
d be the d-dimensional “vector space” over H with multiplication from the right,

then each linear transformation on H
d can be represented by a d × d matrix A ∈ H

d×d .
The identification (40) provides an algebra isomorphism between H

d×d ∼= R
d×d ⊗ H

and the complex 2d × 2d matrices consisting of 2 × 2 blocks (40); to obtain Ax , define
u, v ∈ C

d by x =: u − j v and set x̂ = (u1, v1, . . . , ud , vd)
T ∈ C

2d ; then Ax corre-
sponds exactly to Âx̂ . In the following it will be clear from context which representation
is employed.

For all A ∈ H
d×d , the component-wise quaternion conjugate A∗ and the quaternion

conjugate-transpose A† are intuitively translated to

A∗ ↔ Â
T2
, A† ↔ Â†.

Consequently, we say that A is Hermitian if A† = A.
As in [28], call λ ∈ C, Im λ ≥ 0 an eigenvalue of A with the corresponding eigen-

vector x ∈ H
d if Ax = xλ. These are exactly the eigenvalues of Â which have nonneg-

ative imaginary part. Note that most of the well-known linear algebra theorems can be
generalized straightforward to quaternions.

Proposition 20. Let A ∈ H
d×d be Hermitian with eigenvalues −1 ± d, the algebraic

multiplicity of (−1 + d) being d+1
2 and of −(1 + d) being d−1

2 , respectively. Suppose A
can be chosen such that Re A = 0, then there exists a unitary U ∈ B (H ⊗ K) with

1

2 d
tr
[
U U

T2
]
= −1 +

2

d2 .

Proof. Since Re A = 0, we have A∗ = −A, and consequently AT = −A. Set
U = 1

d (1 + A), embedding H
d×d into C

d×d ⊗C
2×2 as described above, then U will be

Hermitian and unitary since the eigenvalues satisfy λ(U ) = 1
d (1 + (−1 ± d)) = ±1.

Using U
T2 ≡ 1

d (1 + A∗) = 1
d (1 − A), we get

1

2 d
tr
[
U U

T2
]
= 1

2 d

1

d2 tr
[
1 − A2

]
= 1

d2

(
1 −

(
d2 − 1

))
= −1 +

2

d2 .

The isomorphism (40) introduces an additional factor 2 into the trace, which cancels 1
2

in the last equation. ��
12 We adhere here to a different convention than e.g. [28].
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Table 2. Numeric solutions of (38); the columns correspond to different values of d2. The case d2 = 1 is
treated analytically and is a special case of Sec. VII A. Note that d2 = 2 is in agreement with (39), and for
d1 = d2 = 3 we obtain the same value as the minimum of (37) with respect to ϑ

d1 d2 = 1 2 3 4 5

1 1 1 1 1 1

3 − 1
3 − 7

9 − 23
27 − 4

5 − 37
45

5 − 3
5 − 23

25 −0.92915 . . . −1 −0.97632 . . .

7 − 5
7 − 47

49

Note that the conditions on A can be rephrased as follows. A ∈ H
d×d is Hermitian

with Re A = 0 such that A2 + 2 A − (d2 − 1)1 = 0. The requirement Re A = 0 implies
the respective eigenvalue multiplicities via tr A = 0.

To ensoul Proposition 20, we provide explicit examples of A meeting all requirements
for d = 3 and d = 5, namely

A = 2

⎛
⎜⎜⎜⎜⎝

0 −i j

i 0 −k

− j k 0

⎞
⎟⎟⎟⎟⎠

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2i −√
12 j 2k −2 j

2i 0 0 −2 j 4k
√

12 j 0 0 −√
12i 0

−2k 2 j
√

12i 0 −2i

2 j −4k 0 2i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

respectively. Note that for these quaternion models, U is Hermitian, as well as U U
T2 ,

in agreement with Proposition 19.

Higher dimensions. Table 2 contains numerical results for different values of d1 and
d2. We have simply employed U = exp [i X ] with Hermitian X to represent unitary
matrices. The local convergence error is about 10−6, but it is still difficult to find the
global minimizers. Quite remarkably, it seems that the lower bound −1 can be obtained
for d1 = 5 and d2 = 4, even if we restrict to real orthogonal matrices.

VIII. Appendix B–A Special Extremal Channel

The following algebraic values for the coefficients µ1, . . . , µ4 of X in (7) are appropri-
ate; we have obtained them basically by guessing and suppose that at least polynomial
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degree 3 is required.

µ1 = 1

6
Root1

[
−356 + 312x − 66x2 + 3x3

]1/2

= 1

6

⎛
⎜⎝22

3
− 43 · 22/3

3
(

977 + 213 i
√

7
)1/3

(
1 + i

√
3
)

−
(

977 + 213 i
√

7
)1/3

3 · 22/3

(
1 − i

√
3
)
⎞
⎟⎠

1/2

.= 0.21821,

µ2 = Root1

[
−1 + 432x2 + 2592x3

]

= − 1

18
− 1 + i

√
3

18
(

1 + 3 i
√

7
)1/3 − 1

72

(
1 − i

√
3
) (

1 + 3 i
√

7
)1/3

.= −0.14937,

µ3 = 1

6
,

µ4 = Root2

[
1 − 6x + 18x3

]

= −
(

1 + i
√

3
) (

−3 + i
√

7
)1/3

6 · 22/3 − 1 − i
√

3

3
(

2
(
−3 + i

√
7
))1/3

.= 0.18595.

The eigenvalues of X as calculated by a computer algebra program are then

λ(X) =
{

0, 0,
1

3
,

1

3
,

1 ±√
α

6

}

.=
{

0, 0,
1

3
,

1

3
, 0.23604, 0.097285

}

with

α = Root1

[
−25957 + 163107x − 78003x2 + 6561x3

]

= 107

27
−

104 · 22/3
(

1 + i
√

3
)

27
(

67 + 23i
√

7
)1/3 −

13
(

1 − i
√

3
) (

67 + 23i
√

7
)1/3

27 · 22/3

.= 0.17329.

In particular, X is positive semidefinite with rank equal to 4. Similarly, the linear inde-
pendence of (6) can be verified explicitly.
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