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Abstract: Effective Field Theory (EFT) extensions of the Standard Model are tools
to compute observables

(
e.g. cross sections with partonic center-of-mass energy

√
ŝ
)
as

a systematically improvable expansion suppressed by a new physics scale M . If one is
interested in EFT predictions in the parameter space where M <

√
ŝ, concerns of self-

consistency emerge, which can manifest as a violation of perturbative partial-wave unitarity.
However, when we search for the effects of an EFT at a hadron collider with center-of-mass
energy

√
s using an inclusive strategy, we typically do not have access to the event-by-

event value of
√
ŝ. This motivates the need for a formalism that incorporates parton

distribution functions into the perturbative partial-wave unitarity analysis. Developing
such a framework and initiating an exploration of its implications is the goal of this work.
Our approach opens up a potentially valid region of the EFT parameter space where
M �

√
s. We provide evidence that there exist valid EFTs in this parameter space. The

perturbative unitarity bounds are sensitive to the details of a given search, an effect we
investigate by varying kinematic cuts.

Keywords: Beyond Standard Model, Effective Field Theories

ArXiv ePrint: 2111.09895

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2022)155

mailto:tcohen@uoregon.edu
mailto:jdoss@uoregon.edu
mailto:xlu@uoregon.edu
https://arxiv.org/abs/2111.09895
https://doi.org/10.1007/JHEP04(2022)155


J
H
E
P
0
4
(
2
0
2
2
)
1
5
5

Contents

1 Introduction 1

2 Strategies for assessing EFT validity 3

3 Benchmark process and toy models 5
3.1 t-channel model 6
3.2 s-channel model 7
3.3 On the 1/M versus 1/Λ EFT expansions 9

4 Partial-wave unitarity bounds 10
4.1 Partonic initial state 11
4.2 Hadronic initial state 14
4.3 Unitarity and EFT truncation 16

5 Interpreting unitarity violation 19
5.1 Partonic initial state cross sections 21
5.2 Evidence for EFT validity 22

5.2.1 t-channel results 23
5.2.2 s-channel results 26

6 Impact of kinematic cuts 27

7 Discussion and future directions 29

A Results for smaller final state mass 31

1 Introduction

Searches for new physics at the LHC largely fall into two categories: (1) hunting for the
signatures of the direct production of new particle(s) and (2) looking for the indirect imprint
of new heavy physics on the final state distributions of Standard Model (SM) particles.
In order to parameterize the space of possible new physics effects, it is typical to utilize
the theoretical frameworks of (1) Simplified Models and (2) Effective Field Theory (EFT)
extensions of the SM (perhaps including other light states, e.g. a dark matter candidate).
These theory platforms provide a principled way to design signal regions, in that they
allow us to optimize sensitivity to Beyond the SM (BSM) physics. The theory also gives
an interpretation of either a null result or, all the better, a discovery of something new.
Therefore, it is of paramount importance that we ensure that our signal model frameworks
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are robust. While this is typically straightforward for (perturbative) Simplified Models, it
can be significantly more subtle when it comes to EFTs.

The reason that EFT validity is an interesting question stems from the starting as-
sumption of the EFT approach: it is necessarily a low energy approximation of a BSM
theory that is associated with a dimensionful scale M (the mass of a heavy BSM state in
simple UV completions). It is often the case that a search for EFT effects at the LHC yields
a limit on this scale M ≥ Mlimit with Mlimit <

√
s [1–8], where

√
s is the center-of-mass

energy of the collisions. When confronted with such a result, one should worry that the
EFT approach is inconsistent (see e.g. [9–12]). In this work, we will investigate this ques-
tion by assessing the impact of the proton’s structure on one of the necessary conditions
for EFT validity, namely that its scattering amplitudes satisfy perturbative partial-wave
unitarity.1 We will provide a formalism for convolving matrix elements with Parton Distri-
bution Functions (PDFs), and will investigate the consequences of including PDFs on the
region of EFT parameter space with M <

√
s.

In order to better understand why PDFs are important, it is useful to recall that
an EFT is an expansion that is organized using a “power counting” parameter ∼ 1/M ;
see section 3.3 for a more detailed discussion. Dimensional analysis implies that (tree-
level) EFT observables yield a power series in E/M , where E is a characteristic scale of
the collision. If E =

√
s (e.g. as it would for an e+e− collider) and M .

√
s, the series

would diverge. We interpret this theoretical inconsistency as telling us that the EFT in
this region of parameter space does not provide a useful description for interpreting the
results of the experimental search.

At a hadron collider, the relevant scale is E =
√
ŝ, the partonic center-of-mass energy,

which varies from collision to collision as determined by the PDFs. When designing a
signal region, one is typically interested in keeping statistical fluctuations under control,
which requires choosing cuts that accept events with a non-trivial range of

√
ŝ values. For

the ensemble of events isolated by these cuts, the relevant scale on average is E =
√
ŝave,

which can be much smaller than
√
s due to the PDF suppression of high-energy partons.

This is why it requires a detailed investigation of a given search to determine if accounting
for PDFs could salvage the EFT parameter space where M �

√
s, such that a meaningful

bound can be extracted.
We emphasize that the necessity to convolve the parton-level amplitudes with the PDFs

is a consequence of the following statements:

• The validity of an EFT depends on the experiment being performed (for our pur-
poses here, specific to a single search region). The same EFT could be valid for one
experiment, but not another, as they may use different cuts (or be at colliders with
different collision energies).

• The only physical scattering matrix elements at a hadron collider have hadrons in
the initial state (not partons).

1We emphasize that when this condition is not satisfied, what actually breaks down is the perturbative
calculation itself, since we expect that the theory is fundamentally unitary. The bounds derived here should
be interpreted as a necessary condition for the EFT to potentially have a perturbative UV completion.
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• If the cuts used to design an experimental search region allow for a range of parton
level energy scales, then one should take an ensemble average over the parton-level
scattering matrix elements to determine the EFT validity for a proton level matrix
element.2

In order to provide a quantitative discussion that is conceptually straightforward to
interpret, we will be working with simple example UV toy models throughout this paper,
leaving a detailed analysis of more realistic situations to future work. This will allow us to
derive a concrete EFT expansion by matching to the UV model, which we can use to probe
the physics associated with the regions that are deemed invalid. For an experimental
search that includes a range of

√
ŝ, PDF effects can significantly shift the perturbative

unitarity bounds on EFT validity into the region where M �
√
s. Interestingly, this

conclusion begins to break down as one includes higher-and-higher terms in the E/M

expansion; eventually there are enough
√
ŝ factors in the numerator to beat the strong

PDF suppression at large momentum fraction. Therefore, one of our main results is that
any claim of EFT validity for a given search region requires knowing both the scale M and
the maximum dimension ∆ (the truncation dimension) of the EFT operators. We conclude
that the question of when one can consistently use EFTs to perform searches at a hadron
collider depends on both theoretical and experimental considerations.

The rest of this paper is organized as follows. Given the extensive literature on the
subject of EFT validity, we will put our work in context in section 2. In section 3, we
discuss tree-level toy model UV completions of the benchmark pair production in eq. (3.1),
which are characterized by the exchange a heavy BSM scalar of mass M in the s-channel
or t-channel. For each case, we match to the corresponding EFT descriptions. In section 4,
we study perturbative partial-wave unitarity and show how to incorporate PDFs into this
necessary test of EFT validity. We show that low-order EFTs can still be free of perturba-
tive unitarity violation, even when the mass M of the new physics state being integrated
out is significantly below the hadronic collision energy. In section 5, we compare the pair
production cross sections predicted by the EFTs against the predictions of the UV theo-
ries. This will provide us with a way to quantitatively understand the implications of the
perturbative unitarity bound that are appropriate for hadronic initial states. In section 6,
we vary the PDF integration limits, which allows us to explore the impact on our results
as the search design becomes less inclusive. In section 7, we conclude and discuss many
future directions. Finally, appendix A provides some results for the parameter space with
a smaller mass for the final state particles.

2 Strategies for assessing EFT validity

In this section, we will briefly discuss the extensive related literature, which will allow
us to put the present work in context. The subject of EFT validity is as old as the idea
itself. As the framework was being developed and its renormalization properties were being

2One might be able to isolate the “parton” level matrix element to a very good approximation by
changing the cuts appropriately, but this would correspond to a different “experiment”.
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understood, e.g. in the context of condensed matter systems [13–15] and gauge theories [16],
it was always appreciated that the EFT was only meant to be applied in a limited low
energy regime. This question took on a renewed urgency in the modern era, as EFTs were
being utilized as a way to design searches for new physics at the LHC, e.g. in the context
of directly producing dark matter [1–8, 17–38], or looking for the imprint of the Standard
Model EFT (SMEFT) itself [39–89]. Many of these analyses explored parameter space with
M <

√
s, prompting a variety of studies to assess the validity of the EFT description and to

propose modifications to make it more robust [90–102]. Conversely, many groups advocated
to abandon the EFT approach all together in favor of Simplified Model descriptions that
were clearly well defined [103–136].

The issues addressed by these authors essentially stem from two concerns. The first
is that when M <

√
s, one would expect to be able to produce the associated mediator

particle directly, since it is the mediator’s mass that sets the scale M . This opens up new
and often more powerful ways to search for the signatures of the associated model. We
have nothing novel to say about this important effect. However, we remind the reader
that in the narrow width approximation, the production of the heavy on-shell states would
not interfere with the processes captured by the EFT. Therefore, including these additional
direct mediator production processes would lead to a stronger limit, in principle, than what
one would obtain by using the EFT alone. Since the EFT limit does not require specifying a
concrete UV completion, it can be applied to a broader class of models without a dedicated
recasting effort. For these reasons, we advocate that EFT searches are still useful in their
own right, although care must be taken with regards to their interpretation.

The second concern is of direct relevance to the study we perform here. Recognizing
that

√
ŝ is the quantity of interest when testing for EFT validity, a variety of proposals were

put forward that shared a theme of “cutting away high energy events.” In other words, the
kinematics were restricted so as to avoid the region of phase space where the EFT validity
was in question.

For example, the authors of [97] proposed to cut away any event with
√
ŝ > M (at

simulation truth level) when computing the signal rates. Incorporating a maximum allowed
value of

√
ŝ within the signal simulation ensures the validity of the EFT, at the expense of

reducing the EFT prediction significantly. One could even consider the cut on maximum
allowed

√
ŝ as an additional parameter of the signal model. One could vary this additional

parameter to see how sensitive a given search is to such high energy events.3 Although
the limits derived with this approach are strictly valid, the resulting bounds on M can be
artificially conservative.

Another group [91, 93, 94], proposed to cut on the observable kinematics of the final
state as a proxy for removing high energy events. In the same spirit, experimentalists
have applied a high energy cut parameter to some of their EFT analyses, investigating
the robustness of the limits they derive when this parameter is varied [1–8, 137]. An
alternative strategy to “unitarize” the EFT has also been employed in some experimental
searches [138, 139]. Note that essentially all previous validity studies are truncated at the
leading order EFT dimension; see [95] for a notable exception.

3We thank Markus Luty for emphasizing this point of view to us.
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Our focus here is on exploring the impact of PDFs on the perturbative partial-wave
unitarity bound. We emphasize that while perturbative partial-wave unitarity provides a
good proxy for the question of EFT validity, satisfying this condition is necessary but not
sufficient. The key insight of this paper is to leverage the fact that a typical signal region
includes events with a range of associated

√
ŝ. Therefore, one must incorporate an ensemble

of events when diagnosing EFT validity — when working at a hadron collider, this can be
accounted for by properly treating PDF effects. We will show that (for sufficiently inclusive
signal regions) perturbative unitarity bounds on EFTs are typically insensitive to cutting
away high energy events (when the cut is applied to both signal and background), which
we take to be a sign that the EFT validity is being saved by the PDF suppression at high
momentum fraction. One of the goals of this work is to make this intuition precise.

3 Benchmark process and toy models

As we emphasized above, our goal in this paper is to study the impact of having an ensemble
of events with various values of

√
ŝ on the question of EFT validity. To this end, we will

focus our attention on the benchmark pair production process(
p p→ φφ†

)
=

∑
{q, q̄}∈ p

(
φq φ

†
q → φφ†

)
. (3.1)

For simplicity, we will study this question using two simple toy model UV theories. At tree
level, these models are characterized by how they generate the benchmark pair production
by either the t-channel or s-channel exchange of a heavy BSM scalar, as illustrated in
figures 1 and 2, respectively. We will then match these theories onto the subset of EFT
operators that contribute to eq. (3.1) at tree-level.

Note that to minimize the technical aspects of what follows, we have chosen to work
with scalar “quarks” φq, φ†q in the initial state (not to be confused with “squarks” in super-
symmetric theories). Specifically, we will be using the q, q̄ quark PDFs when investigating
the interpretation of the EFT parameter space. This has the benefit that the analytic
formulas will be very simple, at the obvious expense of not being fully realistic.4

We will make an additional simplifying choice in what follows. When we integrate out
a heavy state, the leading order contribution to the EFT Lagrangian appears at dimension
4, since we are working with pure scalar toy theories. Note that the operators of interest
here are those that lead to cross section growth, which have dimension > 4. Therefore, we
will tune a Lagrangian quartic parameter against the EFT contribution so that the leading
contribution to the 2-to-2 scattering of interest comes from a dimension 6 operator. This
makes our results much more intuitive, and also more relevant to the realistic case where
the quarks (and perhaps also the final state particles) are fermions.

The final state φ is a (relatively light) BSM scalar. It could be a dark matter candidate,
some other BSM state, or even an SM particle (as it would be in the case of SMEFT

4We will perform the analysis for fermionic initial and final states in a future paper. We also anticipate
that we will find similar conclusions if the production process is dominated by a gluon or mixed quark/gluon
initial state, which we also plan to study in a future paper.
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searches); all that matters in what follows is that it is a scalar, and otherwise we are
agnostic about its identity. The only EFT operators that contribute to the benchmark pair
production process in eq. (3.1) are those involving extra derivatives with a fixed number of
fields (leading to a 1/M expansion). We will briefly comment on the relation to the EFT
operators that involve more powers of fields (leading to a 1/Λ expansion) in section 3.3.

3.1 t-channel model

A model that results in t-channel pair production utilizes a heavy complex scalar mediator
Φ that couples to the scalar quarks φq and the BSM singlet scalar φ through a tri-linear
interaction:

Lt,UV ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λqφ

(
φ†qφ

)(
φ†φq

)
− Φ†

(
D2 +M2

)
Φ− µqφφ†qφΦ− µ∗qφΦ† φ†φq , (3.2)

where LSM is the SM Lagrangian (including the kinetic term for the scalar quarks), Dµ

is a gauge covariant derivative, mφ is the mass of the BSM singlet scalars, λqφ is a cross
quartic coupling, M is the mass of the heavy scalar mediator Φ, and µqφ is a tri-linear
coupling. Since φ is a SM singlet, the heavy complex scalar Φ needs to have the same SM
charge as the scalar quark φq to ensure that the tri-linear coupling is gauge invariant. For
concreteness, we will assume a universal coupling to the φq with q ∈ {dR, sR, bR}. This
choice has a minimal impact on our conclusions.

As depicted in figure 1, the EFT description for the t-channel pair production process
can be obtained by expanding the propagator:

1
t̂−M2 → −

1
M2

k∑
r=0

(
t̂

M2

)r
, (3.3)

where k corresponds to the desired EFT truncation order. Using the 2-to-2 kinematic
constraints, we have

t̂ = (p1 − p3)2 = (p2 − p4)2 , (3.4)

which implies that the relevant part of the EFT Lagrangian is given by

Lt,EFT ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λqφ

(
φ†qφ

)(
φ†φq

)
+ |µqφ|

2

M2

k+1∑
r=0

(
φ†qφ

)(
− ∂2

M2

)r(
φ†φq

)
= LSM − φ†

(
∂2 +m2

φ

)
φ− λqφ

M2

k∑
r=0

(
φ†qφ

)(
− ∂2

M2

)r
∂2(φ†φq) . (3.5)

In the second line, we have set

λqφ = |µqφ|
2

M2 , (3.6)
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ϕq

ϕ†
q

ϕ†

ϕ

Φ

ϕq

ϕ†
q

ϕ†

ϕ

Figure 1. Pair production φqφ†q → φφ† through the t-channel exchange of a heavy complex scalar
Φ. The EFT description can be obtained by expanding and truncating the t-channel propagator,
yielding a series of local operators.

in order to tune away the dimension-4 contribution, and have relabeled the summation
index r.5

The maximum dimension of the EFT operators ∆ is related to the truncation order k:

∆ = 6 + 2k . (3.7)

At the lowest truncation order k = 0, our pair production process is modeled by the
dimension-six operator

O6 = −λqφ
M2

(
φ†qφ

)
∂2
(
φ†φq

)
= − 1

Λ2

(
φ†qφ

)
∂2
(
φ†φq

)
. (3.8)

The contribution from EFT operators are often said to be characterized by the scale
Λ ≡ M/

√
λqφ, which could be much higher than the mediator mass M in the weakly

coupled limit λqφ � 1. However, note that the contribution from higher orders in the
EFT expansion for the 2-to-2 process of interest here is actually controlled by the suppres-
sion factor E2/M2 as opposed to E2/Λ2, see eq. (3.5). This distinction is important for
interpreting analyses that go beyond dimension-6, see the discussion in section 3.3 below.

3.2 s-channel model

Next, we can write down a model that will yield s-channel production of a pair of BSM
singlet scalars φ. This can be accomplished by introducing a heavy real singlet scalar
mediator S that couples to the scalar quarks φ†qiφqi and to φ†φ:

Ls,UV ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λq

(
φ†qiφqi

)(
φ†φ

)
− 1

2S
(
∂2 +M2

)
S − µqφ†qiφqiS − µφφ

†φS , (3.9)

5Note that the ∂2 in this EFT Lagrangian should technically be promoted to D2 to form gauge-invariant
effective operators. However, the extra terms that result contain additional gauge bosons and hence do not
contribute to φq φ†

q → φφ† at tree level, and so we do not include them here.

– 7 –
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ϕq

ϕ†
q

ϕ†

ϕ

S

ϕq

ϕ†
q

ϕ†

ϕ

Figure 2. Pair production φqφ†q → φφ† through the s-channel exchange of a heavy singlet scalar
S. The EFT description can be obtained by expanding and truncating the s-channel propagator,
yielding a series of local operators.

where LSM is the SM Lagrangian, mφ is the mass of the BSM singlet scalars, λq is a cross
quartic coupling, M is the mass of the heavy scalar mediator S, µq and µφ are tri-linear
couplings, and we interpret φ†qiφqi as the sum over all species and flavors of quarks in the
SM. Note that we have only included the leading interactions that are relevant for our
purposes here, see section 3.3 below for a related discussion.

As depicted in figure 2, the EFT description for the tree-level s-channel pair production
can be obtained by expanding and truncating the propagator:

1
ŝ−M2 → −

1
M2

k∑
r=0

(
ŝ

M2

)r
, (3.10)

where we are introducing the parameter k as in section 3.1 above, and we have set the
width of S to zero. Since

ŝ = (p1 + p2)2 = (p3 + p4)2 , (3.11)

for 2-to-2 kinematics, we infer that the EFT Lagrangian is given by

Ls,EFT ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λq

(
φ†qiφqi

)(
φ†φ

)
+ µqµφ

M2

k+1∑
r=0

(
φ†qiφqi

)(
− ∂2

M2

)r(
φ†φ

)
= LSM − φ†

(
∂2 +m2

φ

)
φ− λq

M2

k∑
r=0

(
φ†qiφqi

)(
− ∂2

M2

)r
∂2(φ†φ) . (3.12)

In the second line, we have again tuned the quartic coupling

λq = µqµφ
M2 , (3.13)

to cancel the dimension-4 effect. Of course the EFT generates many additional operators
beyond the ones written here. However, none of these contribute to the pair production
φqφ

†
q → φφ† at tree level, and so we do not write them explicitly. Similar to the t-channel

model, we can identify a scale Λ = M/
√
λq, which sets the overall rate. Once that is

specified, the EFT operators relevant here are controlled by a 1/M expansion.

– 8 –



J
H
E
P
0
4
(
2
0
2
2
)
1
5
5

Figure 3. A series of EFT operators with more powers of fields generated by insertions of the self
trilinear coupling in the s-channel model. Dashed lines denote the heavy scalar mediator S; solid
lines denote light particles, either scalar quarks or the BSM singlet scalars φ.

3.3 On the 1/M versus 1/Λ EFT expansions

As explained in section 1, current limits on M derived by LHC searches are typically
around a few TeV, well below the collider energy, thereby raising the question of EFT
validity for practical situations. Using the toy models discussed in sections 3.1 and 3.2,
which characterize the corrections to our benchmark pair production process in eq. (3.1),
we will be focused on the effects of the E/M power series in the EFT expansions (see
eqs. (3.5) and (3.12)). One may be concerned that our results that follow are a special
feature of this specific choice. In fact, a different but very typical expectation for a general
EFT expansion is that effects from higher dimension operators would come with powers
of E/Λ (instead of E/M), where Λ ≡ M/

√
λ characterizes the effects of dimension six

(leading order) operators with λ = λqφ or λq for the t- and s-channel models respectively.
Since it is possible that Λ � M in the weakly coupled limit λ � 1, it could also be the
case that Λ >

√
s. Therefore, this expectation might make one wonder if EFT validity is

actually a problem. In this subsection, we address this potential concern.
In fact, the EFT Lagrangians (eqs. (3.5) and (3.12)) obtained from the toy models

are somewhat special, in the sense that higher order EFT operators come with strictly
more powers of derivatives. This is not the case for a generic EFT expansion. Taking,
for example, the s-channel toy model in eq. (3.9), we can include an allowed self trilinear
coupling for the heavy scalar mediator S

Ls,UV ⊃
1
3!aS

3 . (3.14)

Insertions of this vertex could generate a series of EFT operators with more powers of
fields at each order, as illustrated in figure 3. In general, higher order EFT operators
could contain more powers of either derivatives or fields. Operators of the former type
would obviously contribute with more powers of E/M . Operators of the latter type would
contribute with either more powers of E/Λ, or a mix of E/Λ and E/M factors.

To see an example of this, we consider the series of effective operators generated by the
diagrams depicted in figure 3. We note that these operators have different external states,
and hence the associated amplitudes do not interfere with each other. One way to compare
the size of their contributions is to consider the inclusive cross section φqφ

†
q → anything.

In this case, taking into account phase space, one can show that operators with more

– 9 –
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insertions of the self trilinear coupling lead to the pattern

each cubic insertion ⇒ µφa

M2
E2

M2 . (3.15)

Analogous to eq. (3.8), one could define a “Λ” for each UV coupling:6

1
Λφ
≡ µφ
M2 , and 1

Λa
≡ a

M2 . (3.16)

Using these Λ’s, we can rewrite eq. (3.15):

µφa

M2
E2

M2 = E

Λφ
E

Λa
. (3.17)

We see that in this specific example, operators with more fields would contribute with more
powers of E/Λ, agreeing with the typical expectation. In general cases, contributions from
operators with more fields and derivatives could come with a mix of E/Λ and E/M factors.

The above discussion shows that the typical expectation that the EFT expansion is
governed by E/Λ alone is incomplete; for certain sets of operators it is true (such as
in eq. (3.17)), but other operators could be governed by an E/M expansion (such as in
eqs. (3.5) and (3.12)). Therefore, when Λ � M as it is for weakly coupled scenarios, our
choice to focus on EFTs for the benchmark pair production process in eq. (3.1) is exploring
the most dangerous contributions to the question of EFT validity. As we will show in the
rest of this paper, even when considering these most dangerous operators at the limit of
perturbativity, EFTs parameter space withM <

√
s can still be a valid framework for BSM

searches using inclusive signal regions, provided that the EFT expansion is not extended
to a ridiculously high order.

4 Partial-wave unitarity bounds

In this section, we investigate the impact of incorporating PDFs into perturbative partial-
wave unitarity bounds. This will allow us to explore the interplay of perturbative unitarity
violation, which emerges when one probes an EFT at high energies, and PDFs, which act
to suppress the production of those problematic high energy events. To this end, we will
need to develop a formalism to incorporate PDFs into the partial wave perturbative uni-
tarity test. Specifically, we will generalize the standard partial wave perturbative unitarity
argument that applies to pure initial quantum states (appropriate for parton-level scat-
tering) to the case of mixed/ensemble initial quantum states (appropriate for hadron-level
scattering).

The results presented in this section are obtained by working with the EFTs discussed
in section 3. Thus, everything in this section is specific to our simple toy UV completions.
The approach of using perturbative unitarity violation to determine EFT validity is often

6We note that M and Λ have different units when the factors of ~ are restored, see e.g. [49, 140]. This
underscores the point we are trying to make here, namely that they control two different categories of EFT
expansions.
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viewed as a bottom-up consistency test. It provides a necessary (but not sufficient) con-
dition that the EFT is a well behaved quantum theory. Although we are providing model
specific results here, the conclusions we will draw are expected to apply to general EFTs.

First, section 4.1 presents the perturbative unitarity constraints derived using parton-
level scattering for the UV theories and the EFTs detailed in section 3. Then we turn to
section 4.2, where we show how to incorporate PDFs into the s-wave perturbative unitarity
test. In section 4.3, we apply this technique to numerically explore when these constraints
are violated. We are particularly interested in scenarios where the new physics scale is
below the hadron collider energy M �

√
s, and we will show that perturbative unitarity is

violated when the EFT truncation order k is sufficiently large. However, when k is small
and the signal region is sufficiently inclusive, the theory passes the perturbative partial-
wave unitarity test due to the PDF suppression of high-energy partons. Therefore, such
low-order EFTs are free of perturbative unitarity violation. This will allow us to derive
upper bounds on the (M,∆) parameter space, which will denote regions of parameter
space where the EFT predictions can not be trusted, i.e., regions where one cannot place
experimental bounds on the EFT.

4.1 Partonic initial state

Tree-level perturbative unitarity constraints on a scattering process at the parton level can
be obtained by checking that the S-matrix is unitary. In principle, this can be done for
each component in the partial wave expansion of the amplitude. In this paper, we focus
on the s-wave component for simplicity. It is somewhat tedious to keep track of all the
S-matrix components corresponding to the various spin configurations when fermions are
involved in the scattering (see example calculations in [23, 25, 48, 113, 141] and [76, 81]
for recent reviews). Minimizing this technical complication is the reason for studying the
scalar toy models introduced in section 3. As we stated there, we will give φq(φ†q) the same
proton PDFs as the quark fields q(q̄), and will treat them as massless.

The s-wave perturbative unitarity condition on the parton-level pair production in
eq. (3.1) can be succinctly summarized as:7

Ω(ŝ) ≡ |M(ŝ)|2 ≤ 1 , (4.1a)

M(ŝ) ≡
(
ŝ− 4m2

φ

ŝ

)1/4 1
16π

∫ 1

−1
d(cos θ)A(cos θ) . (4.1b)

Here A is the usual scattering amplitude and M is its s-wave component. In what fol-
lows, we will apply this test to the t-channel and s-channel production models detailed in
section 3, to determine if perturbative partial-wave unitarity is satisfied for this process.

t-channel UV theory. For the t-channel production UV model in eq. (3.2), the scat-
tering amplitude is

At = − |µqφ|
2

t̂−M2 − λqφ = −λqφ
t̂

t̂−M2 , (4.2)

7Our notation for the normalized s-wave amplitude M here follows that in [76, 81], which differs from
the a0 notation in e.g. [142] by a factor of two: M = 2a0.
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where we have applied eq. (3.6) to tune away the dimension-4 contribution. Following
eq. (4.1) and using the kinematic relation

t̂ = m2
φ −

ŝ

2

1−

√
ŝ− 4m2

φ

ŝ
cos θ

 , (4.3)

the s-wave component is given by integrating over the scattering angle:

Mt =
(
ŝ− 4m2

φ

ŝ

)1/4 1
16π

∫ 1

−1
d(cos θ)At

= λqφ
8π

M2

ŝ

(
ŝ− 4m2

φ

ŝ

)−1/4 [
log 1 + κ+

1 + κ−
− (κ+ − κ−)

]
, (4.4)

where we have introduced the dimensionless quantities

κ± ≡
ŝ

4M2

1±

√
ŝ− 4m2

φ

ŝ

2

. (4.5)

This leads to the parton-level s-wave perturbative unitarity condition for the t-channel UV
model

Ω̂t,UV(ŝ) = |Mt|2 =
λ2
qφ

64π2
M4

ŝ2

(
ŝ− 4m2

φ

ŝ

)−1/2 [
log 1 + κ+

1 + κ−
− (κ+ − κ−)

]2
≤ 1 . (4.6)

For most of the numerical results that follow, we will set

λqφ = 8π , (4.7)

which is compatible with the condition in eq. (4.6), see figure 4.

t-channel EFT. We can obtain the corresponding EFT result Ω̂t,EFT(ŝ) by repeating
the above calculation for the EFT Lagrangian in eq. (3.5). Equivalently, we can expand
the UV result for the s-wave amplitude Mt in eq. (4.4) as a power series in 1/M2 up to
some order k (or dimension ∆ = 6 + 2k).8 This yields

M[k]
t = λqφ

8π
M2

ŝ

(
ŝ− 4m2

φ

ŝ

)−1/4 k∑
r=0

(−1)r+1

r + 2
(
κr+2

+ − κr+2
−
)
, (4.8)

8Note that when deriving the perturbative unitarity condition, the EFT expansion should be applied to
the s-wave amplitudeMt, not to its modulus square Ω̂t,UV ≡ |Mt|2. The latter should always be kept as
a complete norm square for each choice of k.
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which leads to the EFT s-wave perturbative unitarity condition

Ω̂[k]
t,EFT(ŝ) ≡

∣∣∣M[k]
t

∣∣∣2 =
λ2
qφ

64π2
M4

ŝ2

(
ŝ− 4m2

φ

ŝ

)−1/2 [ k∑
r=0

(−1)r+1

r + 2
(
κr+2

+ − κr+2
−
)]2

≤ 1 .

(4.9)
We see that Ω̂[k]

t,EFT(ŝ) goes to infinity as ŝ→∞. Therefore, we can interpret the condition
in eq. (4.9) as setting a perturbative unitarity cutoff for the parton-level center-of-mass
energy

√
ŝ. The precise value of this cutoff depends on the EFT truncation dimension ∆,

but it will be close to the new physics scale M .

s-channel UV theory. Turning to the s-channel UV model defined in eq. (3.9), the
scattering amplitude is

As = − µqµφ
ŝ−M2 + iMΓ − λq = −λq

ŝ+ iMΓ
ŝ−M2 + iMΓ , (4.10)

where we have applied eq. (3.13) to tune away the dimension-4 contribution. Again fol-
lowing eq. (4.1), the s-wave component is

Ms =
(
ŝ− 4m2

φ

ŝ

)1/4 1
8π As = −λq8π

ŝ+ iMΓ
ŝ−M2 + iMΓ

(
ŝ− 4m2

φ

ŝ

)1/4

, (4.11)

which leads to the parton-level s-wave perturbative unitarity condition

Ω̂s,UV(ŝ) = |Ms|2 =
λ2
q

64π2
ŝ2 +M2Γ2(

ŝ−M2)2 +M2Γ2

√
ŝ− 4m2

φ

ŝ
≤ 1 . (4.12)

The UV theory prediction is maximized on-resonance. Hence, if the theory is free of
perturbative unitarity violation when ŝ = M2, it will be free of perturbative unitarity
violation for all ŝ. To ensure this condition, we will set

λq = 2 , (4.13)

in the rest of this section (see figure 8).9

s-channel EFT. We can obtain the corresponding EFT prediction Ω̂s,EFT(ŝ) by repeat-
ing the above calculation for the EFT Lagrangian in eq. (3.12). Equivalently, we can just
expand the UV result for the s-wave amplitudeMs given in eq. (4.11) in powers of 1/M2

(setting Γ→ 0) up to some order k. This yields

M[k]
s = λq

8π

(
ŝ− 4m2

φ

ŝ

)1/4
ŝ

M2

k∑
r=0

(
ŝ

M2

)r
, (4.14)

9We note that although Ω̂s,UV(ŝ) hits 1 at ŝ = M2 for λq = 2, imposing tree-level perturbative unitarity
for
√
ŝ�M actually allows λq to be as large as 8π, similar to the t-channel case.
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which leads to the partonic s-channel EFT s-wave perturbative unitarity condition

Ω̂[k]
s,EFT(ŝ) ≡

∣∣∣M[k]
s

∣∣∣2 =
λ2
q

64π2

√
ŝ− 4m2

φ

ŝ

[
ŝ

M2

k∑
r=0

(
ŝ

M2

)r]2

≤ 1 . (4.15)

We see that Ω̂[k]
s,EFT(ŝ) grows monotonically with ŝ (for ŝ ≥ 4m2

φ) and goes to infinity as
ŝ → ∞. Therefore, the condition in eq. (4.15) places an upper bound on the parton-
level center-of-mass energy

√
ŝ, which is identified as the perturbative unitarity cutoff. Its

precise value depends on the EFT truncation dimension ∆, but it is always close to the
new physics scale M .

4.2 Hadronic initial state

Next, we will derive the s-wave perturbative unitarity constraints for the hadronic scatter-
ing process in eq. (3.1). This requires generalizing the standard partial wave perturbative
unitarity argument for pure initial quantum states to the case of mixed (or ensemble) initial
quantum states.

To begin, recall that for a pure initial state |i〉, and a pure final state |f〉 6= |i〉, the
usual perturbative unitarity condition reads

Ω̂i→f ≡ |Mi→f |2 = |〈f |T |i〉|2 ≤ 1 , (4.16)

where T denotes the scattering operator S = 1 + i T . In order to generalize this to the case
when the initial state is a mixed state, we rewrite the above condition using the density
matrix of the (pure) initial state ρi = |i〉〈i|:

|〈f |T |i〉|2 ≤ 1 ⇐⇒ tr
(
ρi T

† |f〉〈f |T
)
≤ 1 . (4.17)

Next, we allow the initial state to be an ensemble, whose density matrix is given by

ρp =
∑
i

pi |i〉〈i| =
∑
i

pi ρi , (4.18)

where pi ≥ 0 are the coefficients (not necessarily normalized) of each pure-state density
matrix |i〉〈i|. In this case, if the condition in eq. (4.17) holds for each pure-state, then it
must be true that

tr
(
ρp T

† |f〉〈f |T
)

=
∑
i

pi tr
(
ρi T

† |f〉〈f |T
)
≤
∑
i

pi . (4.19)

One can further sharpen this condition by making use of the fact that certain selection
rules can be imposed at the amplitude level. Suppose that for a specific final state |f〉,
the amplitude can be nonzero only when the initial state |i〉 belongs to a subset I of the
ensemble

|〈f |T |i〉|2 = tr
(
ρi T

† |f〉〈f |T
)

= 0 for i /∈ I . (4.20)
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In this case, we can incorporate this effect into eq. (4.19), which gives us

tr
(
ρp T

† |f〉〈f |T
)

=
∑
i∈I

pi tr
(
ρi T

† |f〉〈f |T
)
≤
∑
i∈I

pi . (4.21)

For the application of interest here, we take the initial state to be the ensemble state
formed by the pair of protons, and the final state to be |f〉 =

∣∣∣φφ†〉. Then the left-hand
side of eq. (4.21) is nothing but the parton-level Ω̂

φqφ
†
q→φφ†(ŝ) integrated over the parton

distribution functions:

tr
(
ρp T

† |f〉〈f |T
)

=
∑
i

pi |〈f |T |i〉|2

=
∑

{q, q̄}∈ p

∫ 1

0
dx1dx2

[
fq(x1)fq̄(x2) + fq̄(x1)fq(x2)

]
Ω̂
φqφ

†
q→φφ†(x1x2s) ,

(4.22)

where the fq (fq̄) are the PDFs for quarks (anti-quarks), x1 and x2 are the corresponding
momentum fractions, and we are suppressing the PDF dependence on the renormalization
scale.

Since the parton-level Ω̂
φqφ

†
q→φφ†(ŝ) only depends on the product

τ ≡ x1x2 = ŝ/s , (4.23)

it is convenient to work with the parton luminosity function [143]

Lqq̄ (τ) ≡
∫ 1

0
dx1dx2

[
fq(x1)fq̄(x2) + fq̄(x1)fq(x2)

]
δ(τ − x1x2)

= 2
∫ 1

τ
dx 1

x
fq(x) fq̄(τ/x) . (4.24)

This allows us to rewrite eq. (4.22) as

tr
(
ρp T

† |f〉〈f |T
)

=
∑

{q, q̄}∈ p

∫ 1

τφ

dτ Lqq̄(τ) Ω̂
φqφ

†
q→φφ† (ŝ = τs) , (4.25)

where τφ = 4m2
φ/s is the kinematic threshold for the pair production process at the parton

level. On the other hand, the right-hand side of eq. (4.21) can be written as

∑
i

pi =
∑

{q, q̄}∈ p

∫ 1

τφ

dτ Lqq̄(τ) . (4.26)

(Note that we are suppressing the explicit dependence on the selection rule in the sum,
see eq. (4.21).) Therefore, we obtain the s-wave perturbative unitarity condition for the
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hadronic scattering process pp→ φφ†:

Ωpp→φφ† (s) ≡
∑
{q, q̄}∈ p

∫ 1
τφ

dτ Lqq̄(τ) Ω̂
φqφ

†
q→φφ†(ŝ = τs)∑

{q, q̄}∈ p
∫ 1
τφ

dτ Lqq̄(τ)
≤ 1 . (4.27)

This result applies to the case of either scalar or fermionic initial state partons.

4.3 Unitarity and EFT truncation

Now that we have a hadronic formalism for the s-wave perturbative unitarity condition
Ω ≤ 1, we can investigate its implications when interpreted as an EFT validity test. We
will show results for both the t-channel and s-channel models, finding that they yield
similar results. Note that to better understand the perturbative unitarity constraints, we
will be varying the partonic (hadronic) center-of-mass energy

√
ŝ (
√
s) in what follows. In

particular,
√
s will not be fixed to 14TeV. We therefore introduce a notation Ecm that

denotes this varying center-of-mass energy to avoid confusion.
For the numerical evaluation, we use the CT10 PDFs [144] and set the renormalization

scale to 10TeV for convenience.10,11 We choose mφ = 1TeV as a benchmark value, but
we emphasize that choosing other values of mφ will yield results with the same qualitative
features. To support this claim, we have included a set of results for the case mφ = 10GeV
in appendix A.

t-channel UV theory. We begin by investigating the validity of the UV theory by
checking the s-wave perturbative unitarity condition for both the partonic and hadronic
cases. In figure 4, we plot typical curves of Ωt,UV as a function of the center-of-mass energy
Ecm. We see that with our choice of the coupling λqφ = |µqφ|2 /M2 = 8π (see eqs. (3.6)
and (4.7)), the UV theory is free of perturbative unitarity violation. Specifically, Ωt,UV < 1
across the Ecm range of interest, in both the partonic initial state and the hadronic initial
state cases.

t-channel EFT. Next, we investigate the consequences for the EFTs. In figure 5, we
provide typical curves of Ωt,EFT as a function of the center-of-mass energy Ecm. We see
that Ωt,EFT becomes larger than 1 in the Ecm range of interest, indicating a perturbative
unitarity cutoff on Ecm.12 Comparing the partonic initial state case [left] to the hadronic
initial state case [right], we see that the growth of Ωt,EFT is significantly delayed by the
PDF suppression of high-energy partons. Note that the curves are not flattened by the
PDFs. This implies that although the perturbative unitarity cutoff on Ecm will be pushed
significantly higher in the hadronic case, it will not be eliminated, as explicitly verified by
figure 6. Moreover, the cutoff on Ecm is reduced as we increase the EFT truncation dimen-
sion ∆, and eventually approaches M in the large ∆ limit. This implies that for Ecm > M ,

10The PDFs minimally change as we vary the renormalization scale from 3 to 100TeV.
11For certain values ofM and ∆, efficiently performing the numerical integral over the PDFs is nontrivial.

To overcome this challenge, we implemented the adaptive Simpson’s method along with some carefully
chosen variable changes.

12The growth with Ecm is not monotonic due to the (−1)r factor in eq. (4.9), which comes from the fact
that t̂ < 0.
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Figure 4. Ωt,UV computed using the t-channel UV model as a function of the center-of-mass energy
Ecm for parton and hadron initial states. This shows that the UV theory is free of perturbative
unitarity violation, when the couplings are taken to be λqφ = |µqφ|2 /M2 = 8π.

10 100

Ecm (TeV)

10−3

10−2

10−1

1

Ωt,EFT

Parton Initial State

∆ = 6

∆ = 8

∆ = 10

∆ = 12

∆ = 14

10 100

Ecm (TeV)

10−3

10−2

10−1

1

Ωt,EFT

Hadron Initial State

Figure 5. Ωt,EFT computed using the EFT expansion of the t-channel model as a function of
the center-of-mass energy Ecm, for low choices of the truncation dimension ∆ = 6 + 2k. For the
Partonic Initial State case [left], when ∆ > 0, Ωt,EFT grows at large Ecm and approaches infinity
as Ecm →∞. This tells us there will be a perturbative unitarity cutoff for a critical value of Ecm.
In the Hadronic Initial State case [right], the growth of Ωt,EFT is significantly delayed as compared
to the partonic case.

perturbative unitarity violation is guaranteed if one keeps including more operators beyond
a critical truncation dimension.

We conjecture that this is a generic feature of EFTs used in collider searches. This
motivates adopting the following criterion for when an EFT is invalid:

The EFT truncated to dimension ∆ = 6 + 2k is invalid if Ω[k]
EFT(s) > 1 . (4.28)

Note that this does not guarantee that the EFT is a good description of some underlying
UV physics outside of the region deemed invalid by this criterion.

In figure 7, we plot the invalid region in the (M,∆) parameter space obtained by
applying this criterion to the t-channel model. We see that going from partons to hadrons
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Figure 6. The perturbative unitarity cutoff on Ecm as a function of the EFT truncation dimen-
sion ∆ for the t-channel model, derived using eq. (4.28). In the Partonic Initial State case [left],
the perturbative unitarity cutoffs are more severe than for the Hadronic Initial State case [right],
although the PDF effects do not fully remove the bounds.
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30

∆
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Parton Hadron

Figure 7. The shaded region shows the parameter space where the EFT is invalid for the t-channel
model in the plane of the EFT truncation dimension ∆ versus the BSM scale M with λqφ = 8π.
In the Partonic (Hadronic) Initial State case, we take

√
ŝ (
√
s) = 14TeV. The inclusion of PDF

effects opens up a region of potentially viable parameter space.

opens up significant parameter space for which the EFT could be a valid description. This
tells us that perturbative unitarity arguments for the invalidity of EFT analyses performed
at hadron colliders in the parameter space where M <

√
s should incorporate PDF effects

when the search region is sufficiently inclusive.

s-channel UV theory. The s-channel model yields qualitatively similar results to those
we found for the t-channel case. As before, we begin by checking the s-wave perturbative
unitarity of the UV theory. In figure 8, we plot Ωs,UV as a function of the center-of-mass
energy Ecm. We see that for our choice of the couplings λq = µqµφ/M

2 = 2 (see eqs. (3.13)
and (4.13)), the UV theory is free of perturbative unitarity violation; Ωs,UV < 1 across
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Figure 8. Ωs,UV computed using the s-channel UV model as a function of the center-of-mass
energy Ecm. This shows that the UV theory is free of perturbative unitarity violation, when the
couplings are taken to be λq = µqµφ/M

2 = 2.

the Ecm range of interest at both the parton and hadron level. The resonance feature is
clear when varying Ecm for the partonic case, but it is smeared out by PDF effects for the
hadronic case.

s-channel EFT. Switching to the EFTs, the requirement of s-wave perturbative uni-
tarity will again tell us that the EFT becomes invalid for some large Ecm. As with the
t-channel scenario, the growth of Ωs,EFT is significantly delayed by the PDF suppression
of high-energy partons in the hadronic initial state case. In figure 9, we plot the invalid
region in the (M,∆) parameter space obtained by applying eq. (4.28) to the s-channel
model. We again see that going from partons to hadrons opens up significant parameter
space for which the EFT could be a valid description. Note we have taken Γ → 0 in the
EFT expansion when deriving these bounds.

5 Interpreting unitarity violation

So far, we have simply explored the impact of PDFs on partial wave perturbative unitarity
bounds. In particular, we showed the quantitative impact that PDF suppression has on the
high energy growth of EFT amplitudes for sufficiently inclusive search regions. This sup-
pression postpones the scale of perturbative unitarity violation, thereby potentially opening
up parameter space with M <

√
s where the EFT could be a useful description. The goal

of this section is to interpret these results by comparing them against the predictions for a
physical observable.

We will continue to focus on the simple 2-to-2 scattering process in eq. (3.1). We
compare the predictions for its cross section σ as derived from the UV theory and the
EFT as we vary the truncation dimension ∆ and the mediator mass M against the invalid
regions derived in the previous section. For our purposes here, a “valid” EFT is one that

(i) reproduces the full theory cross section to a reasonable approximation, and

(ii) converges toward the full theory result as ∆ is increased.

We will show that valid EFTs exist in the region opened up by PDF effects.
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Figure 9. The shaded region shows the parameter space in the plane of the EFT truncation
dimension ∆ versus the BSM scale M with λq = 2, where the EFT is deemed invalid using the
criterion in eq. (4.28) for the s-channel model. In the Partonic (Hadronic) Initial State case, we take√
ŝ (
√
s) = 14TeV. The inclusion of PDF effects opens up a region of potentially viable parameter

space.

To determine the hadronic pair production cross section σpp→φφ†(s) from the corre-
sponding partonic one σ̂

φqφ
†
q→φφ†(ŝ), we integrate the partonic cross section over the parton

distribution functions using the standard formula

σpp→φφ†(s) =
∑

{q, q̄}∈ p

∫ 1

τφ

dτ Lqq̄(τ) σ̂
φqφ

†
q→φφ†(ŝ = τs) , (5.1)

where we have used the parton luminosity function defined in eq. (4.24), and the lower
bound on the integral τφ = 4m2

φ/s is the kinematic threshold for the pair production
process at the parton level.

We are interested in varying the new physics scaleM while investigating to what extent

σ
[k]
EFT ≡

k∑
r=0

σ
(r)
EFT

?' σUV , (5.2)

where we are defining the notation σ[k] to distinguish the cross section that includes the sum
of EFT contributions up to order k (∆ = 6 + 2k; see eq. (3.7)), from the contribution of an
individual term σ(r). To this end, section 5.1 provides the predictions for the parton-level
cross sections σ̂

φqφ
†
q→φφ†(ŝ) for the UV theories and the EFTs detailed in section 3. The

main results of this section are given in section 5.2, where we investigate the question posed
in eq. (5.2) by comparing the numerical results for σEFT and σUV for different choices of
M and ∆, and use these results to interpret the perturbative partial-wave unitarity results
of the previous section.

In the parameter space M <
√
s, we will show that in the limit ∆ → ∞, the EFT

expansion of the cross section is not a convergent series. This implies that one cannot
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blindly increase the truncation dimension ∆ to achieve an arbitrarily good approximation
of the underlying UV physics. Nevertheless, thanks to the PDF suppression of high-energy
partons, when ∆ is small, the relative error between the UV and EFT predictions actually
decreases with ∆, as if it were a convergent series. Then for ∆ larger than a critical value
∆crit, the error will begin to grow with ∆. This tells us that an EFT analysis performed
at low orders can provide an adequate approximation of the underlying UV physics that
improves with ∆, even when M <

√
s.

5.1 Partonic initial state cross sections

The parton-level cross sections σ̂
φqφ

†
q→φφ†(ŝ) can be computed from the amplitudes derived

in the previous section.

t-channel UV theory. We begin with the t-channel UV model defined in eq. (3.2). The
2-to-2 scattering amplitude is given in eq. (4.2). This yields the color averaged squared
amplitude

|At|2 = 1
3λ

2
qφ

t̂2(
t̂−M2)2 . (5.3)

Using the kinematic relation in eq. (4.3), we can integrate over the scattering angle to
derive the parton-level total cross section

σ̂t,UV(ŝ) = 2π
∫ 1

−1
d(cos θ) 1

64π2ŝ
|At|2

√
ŝ− 4m2

φ

ŝ

=
λ2
qφ

48π
M2

ŝ2

[
κ+ − κ− + κ+ − κ−

(1 + κ+)(1 + κ−) − 2 log 1 + κ+
1 + κ−

]
, (5.4)

where κ± is defined in eq. (4.5), and we are assuming that the initial state scalar quarks
are massless.

t-channel EFT. The EFT predictions for the t-channel production cross section can be
obtained by repeating the above calculation with the Lagrangian defined in eq. (3.5). This
amounts to expanding the UV result in eq. (5.4) in powers of 1/M2 (encoded by the κ±
dependence, see eq. (4.5)) and truncating the expansion at some EFT order k:

σ̂
[k]
t,EFT(ŝ) =

k∑
r=0

σ̂
(r)
t,EFT(ŝ) , (5.5a)

σ̂
(r)
t,EFT(ŝ) =

λ2
qφ

48π
M2

ŝ2
r + 1
r + 3(−1)r

(
κr+3

+ − κr+3
−
)
. (5.5b)

s-channel UV theory. Now we turn to the s-channel UV model defined in eq. (3.9). The
2-to-2 scattering amplitude is given in eq. (4.10). The color averaged squared amplitude is
then

|As|2 = 1
3λ

2
q

ŝ2 +M2Γ2(
ŝ−M2)2 +M2Γ2

, (5.6)
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which leads to the parton-level cross section

σ̂s,UV(ŝ) = 1
16πŝ |As|

2

√
ŝ− 4m2

φ

ŝ
=

λ2
q

48π
1
ŝ

ŝ2 +M2Γ2(
ŝ−M2)2 +M2Γ2

√
ŝ− 4m2

φ

ŝ
, (5.7)

where we are treating the initial state quarks as massless. For the numerics that follow,
we will always take Γ = M/(4π) for simplicity.

s-channel EFT. To work out the EFT predictions for the s-channel production cross
section, we can repeat the above calculation with the Lagrangian given in eq. (3.12), with
the width effects incorporated. Equivalently, one can expand the UV result in eq. (5.7) in
powers of 1/M2 and truncating the expansion at some order k. This yields

σ̂
[k]
s,EFT(ŝ) =

k∑
r=−2

σ̂
(r)
s,EFT(ŝ) , (5.8a)

σ̂
(r)
s,EFT(ŝ) =

λ2
q

48πM2

√
ŝ− 4m2

φ

ŝ
cr(Γ/M)

(
ŝ

M2

)r+1
, (5.8b)

where the coefficient is defined as

cr−2(Γ/M) ≡ 1
r!

(
∂

∂x

)r[ x2 + (Γ/M)2

(1− x)2 + (Γ/M)2

]∣∣∣∣∣
x=0

. (5.9)

Note that the sum in eq. (5.8a) starts with r = −2 in order to capture the width effects
Γ/M 6= 0 (which technically only appear at loop level). In the zero width limit, the r = −2
and r = −1 terms would vanish (c−2 = c−1 = 0), because the expression in the square
bracket in eq. (5.9) would have a Taylor expansion that starts with x2. The reason we
are incorporating the width effects in the EFT matching is that they will be important
for properly examining the question posed in eq. (5.2) when one goes to sufficiently high
truncation dimension. We will explore the impact of this “width improved matching” when
we compare figures 15 and 16 below.

5.2 Evidence for EFT validity

With the cross sections σUV and σEFT in hand, we can now turn to answering the question
raised in eq. (5.2). Specifically, we investigate the behavior of the relative error as a function
of the truncation dimension ∆ = 6 + 2k:

Relative Error ≡ σ
[k]
EFT
σUV

− 1 , (5.10)

which provides a proxy for the question of EFT validity. Another useful quantity for
exploring this question is the “power counting uncertainty” on the EFT prediction, which
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we will compute using

Power Counting Uncertainty ≡
∣∣∣∣∣σ

(k+1)
EFT

σ
[k]
EFT

∣∣∣∣∣ . (5.11)

This captures the fact that the EFT is an approximation of the full theory, and this power
counting uncertainty provides an indication for the level of confidence one should have
when using the EFT prediction.

We will provide results for the t-channel and s-channel models separately; while they
are qualitatively similar to each other, we will highlight some interesting differences in the
details. For the numerical results that follow, we again use the CT10 PDFs [144] and set the
renormalization scale to 10TeV for convenience. For the BSM singlet mass, we stick to our
benchmark value mφ = 1TeV; other values would yield results with the same qualitative
feature, as supported by appendix A, where we show some results with mφ = 10GeV.

5.2.1 t-channel results

We plot the absolute value of the relative error in figure 10. In the parton case with M <√
ŝ = 14TeV, the error grows monotonically with ∆, meaning that the EFT approximation

keeps getting worse as ∆ is increased. This is exactly the expected behavior, since this
is effectively attempting to do an expansion when the relevant parameter ŝ/M2 > 1, see
eq. (5.5b). For contrast, in the hadron case (now with M <

√
s = 14TeV), we find that the

error decreases with ∆ for small values of ∆, but turns around at some point and starts
increasing at larger ∆. We summarize this intriguing behavior of the EFT results:

• The hadronic EFT expansion appears to be converging at lower orders: we see the
EFT approximation improving before hitting a critical value ∆crit.

• The hadronic EFT expansion series does not converge absolutely: it becomes arbi-
trarily poor at sufficiently large ∆.

In order to illuminate this appearing-to-be converging feature, we provide figure 11, which
shows typical curves of the relative error without taking the absolute value to highlight
how ∆crit is approached.13,14

We emphasize that this behavior of the EFT expansion only happens for the parameter
space where M <

√
s. If instead the new physics scale M is above the collider energy

√
s,

the EFT expansion will yield a convergent series as expected. The contrast between these
two regimes can be seen in figure 12, where we plot σ[k]

t,EFT/σt,UV as a function of M for a
few low lying choices of ∆.

We can explore the nature of this critical point in the EFT expansion series by inves-
tigating the size of its rth term |σ(r)

t,EFT/σt,UV| as a function of r, see figure 13. We see
that in the parton case, the terms grow monotonically with r. This is expected because

13Note that the t-channel result alternates in sign, due to the (−1)r factor in eq. (5.5b), which appears
since t̂ < 0.

14This behavior of the EFT validity is very similar, in appearance, to the validity of the perturbation
expansion series for the scattering matrix at low orders.
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Figure 10. The absolute value of the relative error (see eq. (5.10)) computed for the t-channel
model as a function of the EFT truncation dimension ∆. For the “Partonic Initial State” case [left],
we present curves for M <

√
ŝ = 14TeV, which show that the error grows monotonically as ∆ is

increased. In the “Hadronic Initial State” case [right], we present curves for M <
√
s = 14TeV,

which show that the EFT approximation improves for small values of ∆, but then the error begins
to grow for ∆ > ∆crit.
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Figure 11. The relative error (see eq. (5.10)) as computed for the t-channel model in the “Hadronic
Initial State” case for M <

√
s = 14TeV.

higher-order terms in the EFT expansion come with more powers of ŝ/M2 > 1. Moving to
the hadron case, we see that the terms tend to decrease with r at small r (as long as M is
not too small), making the series appear to be converging. This happens because the PDF
suppression of high-energy partons brings down the average parton-level center-of-mass
energy

ŝave ≡
(〈
ŝr
〉

PDF

)1/r
, (5.12)

below M2, yielding a suppression factor ŝave/M
2 < 1. However, the size of ŝave ∈ [0, s] of

course depends on r. As one increases r, the effects of (ŝ/M2)r will eventually win over
the PDF suppression factor, causing ŝave/M

2 > 1, which corresponds to where the curves
turn around in figure 13. In fact, ŝave becomes infinitely close to the collider energy s as
we take r →∞, so the relative error will always diverge when s/M2 > 1.
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t,EFT/σt,UV for the first few ∆ = 6 + 2k as a function of M . For the

“Partonic Initial State” case [left], the series converges for M >
√
ŝ and diverges for M <

√
ŝ.

For the “Hadronic Initial State” case [right], the series converges for M >
√
s and appears to be

converging when M .
√
s (although it actually diverges for ∆ > ∆crit).
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Figure 13. The size of the rth term
∣∣σ(r)
t,EFT/σt,UV

∣∣ as a function of r. In the “Partonic Initial State”
case [left], we have M <

√
ŝ = 14TeV; the term grows monotonically with r. In the “Hadronic

Initial State” case [right], we have M <
√
s = 14TeV; the term tends to decrease with r for small

r (for M & 5 TeV), and then begins to increase for large r.

Having understood the behavior of the cross section as we vary M and ∆, we can use
these results to understand the meaning of the perturbative unitarity bounds derived in
the previous section. In figure 14, we plot the perturbative unitarity constraint for two
points in parameter space, λqφ = (8π, 2) in the (left, right) panel. Additionally, we overlay
contours of constant EFT power counting uncertainty as defined in eq. (5.11).15

As a rough guide, we say that the EFT is providing a good approximation of the
underlying UV physics when this uncertainty is < O(1). We see that when the coupling

15Due to the alternating behavior in eq. (5.5b), the summation to order k is performed separately for
even- and odd-valued r terms. We then obtain separate contours for the even and odd sets and interleave
them together to restore proper dimension ordering, avoiding a distortion in the contours otherwise.
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Figure 14. A comparison of the perturbative unitarity results against the t-channel cross section
predictions for two choices of the UV parameters: λqφ = 8π [left] and λqφ = 2 [right]. The
shaded regions are the perturbative unitarity bounds. The contours show constant power counting
uncertainty. This provides evidence that valid EFTs exist in the region excluded by the naive
partonic perturbative unitarity bound.

is large,16 violating the hadronic perturbative unitarity constraint essentially rules out the
region with > O(1) uncertainty. When the coupling is smaller, there is a region with
uncertainty > O(1) that is not excluded by the hadronic perturbative unitarity bound.
This is not a contradiction, since the perturbative unitarity test is only a necessary (but
not sufficient) constraint on the validity of the EFT.

We conclude that there are valid EFTs that lie in the region that would be naively
excluded by the partonic perturbative unitarity constraint. Furthermore, the region ex-
cluded by considerations of hadronic perturbative unitarity violation do not contain any
valid EFTs.

5.2.2 s-channel results

The s-channel production results share the same qualitative features as in the t-channel
case. As before, we study the relative error defined in eq. (5.10) as a function of the
truncation order k for the case of the s-channel model. Typical curves of its absolute
value are qualitatively similar to those for the t-channel in figure 10, where the hadronic
EFT expansion also exhibits an apparently converging behavior for small k. This feature
is elucidated in figure 15, where we plot the relative error without taking the absolute
value. Note that it is important to include the width effects in the EFT description. In
figure 16, we show that taking Γ→ 0 causes the EFT to converge to the wrong prediction
for small k. Just as above, the apparently (but actually not) converging behavior of the
EFT expansion only happens when the new physics scale M is below the collider energy√
s; otherwise, the EFT expansion yields a convergent series. The underlying reason for

this apparent convergence at small k is again due to the PDF suppression of high-energy
16Recall that λqφ = 8π saturates the parton level perturbative unitarity bound.
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Figure 15. The relative error (see eq. (5.10)) as computed for the s-channel model in the “Hadronic
Initial State” case for M <

√
s = 14TeV and mφ = 1TeV.
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Figure 16. The relative error (see eq. (5.10)) as computed for the s-channel model in the “Hadronic
Initial State” case where Γ → 0 for M <

√
s = 14TeV and mφ = 1TeV. For ∆ < ∆crit, the EFT

prediction appears to be converging to the wrong value.

partons, which has a non-trivial impact on the relative size between the adjacent terms in
the EFT expansion.

We plot the perturbative unitarity constraint for two points in parameter space, λq =
(2, 2/(4π)) in the (left, right) panel in figure 17, overlaying contours of constant EFT power
counting uncertainty (taking Γ = 0), as defined in eq. (5.11). Again, this provides evidence
for our interpretation that incorporating PDFs into the perturbative unitarity bound is
consistent.

6 Impact of kinematic cuts

In the previous sections, we explored the extent to which PDFs could soften the high
energy contributions enough to maintain the validity of an EFT description. We saw
it is possible that the EFT provides a useful approximation of the full theory even when
M <

√
s, as long as one did not include operators with dimension above some critical value.

Our conclusions stem from the essential fact that particle physics scattering is inherently
probabilistic, so one needs to collect many events to populate a signal region in order to
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Figure 17. A comparison of the perturbative unitarity results against the s-channel cross section
predictions for two choices of the UV parameters: λq = 2 [left] and λq = 2/(4π) [right]. The
shaded regions are the perturbative unitarity bounds. The contours show constant power counting
uncertainty. This provides evidence that valid EFTs exist in the region excluded by the naive
partonic perturbative unitarity bound.

infer detailed properties of the underlying theory. In particular, with no further knowledge
on the parton-level center-of-mass energy assumed, we computed σ and Ω by integrating
over the full kinematic range τ ∈ (τφ, 1) (see eqs. (4.27) and (5.1)), which led us to the
quantitative results in the previous sections.

The goal of this section is to explore how sensitive our conclusions are to incorporating
additional information about the parton-level kinematics. Since we are still working in the
context of toy models and are only considering 2-to-2 scattering, we will simply focus on
just two types of kinematic cuts on the τ integration range:

• Cutting away low energy events
(
requiring

√
ŝ > Emin

)
: this is a proxy for a set of

preselection cuts, including a trigger threshold and/or a minimum cut on a kinematic
quantity such as pT , HT , missing energy, etc.

• Cutting away high energy events
(
requiring

√
ŝ < Emax

)
: this is a proxy for compar-

ing with a test of EFT validity that is sometimes employed when doing analyses in
the parameter space where M <

√
s. Specifically, we are referring to the test that

introduces a cutoff on high energy events and checks that the results are insensitive
to this cutoff.

The results of the study where we vary Emin are presented in the left panel of figure 18.
We adjust the Emin cut from 0, labeled “Hadron” in the figure, to 0.5

√
s. We see that

the perturbative unitarity bound is not particularly sensitive to the Emin = 0.2
√
s cut,

but then begins to become stronger quickly. When no cut is applied, the perturbative
unitarity bound is roughly Mbound ∼ 1.5 TeV, as compared to Mbound ∼ 5 TeV when
the cut is increased to Emin = 0.5

√
s. This is a consequence of the shape of the PDFs,

which decrease by orders of magnitude as x is increased. As we emphasized above, the
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Figure 18. Perturbative unitarity bounds in the ∆ versusM plane for various choices of a minimum
energy cut Emin [left] and of a maximum energy cut Emax [right] for the t-channel model with
λqφ = 8π. The region that is incompatible with hadronic perturbative partial-wave unitarity is to
the left of the curves.

PDFs suppress high energy events, and by increasing the cut on Emin we are essentially
removing that suppression which causes the perturbative unitarity bounds to asymptote
to the parton result Mbound ∼

√
s for Emin →

√
s as they should. When computing

the perturbative unitarity bounds on a scenario of interest, it is paramount that these
low energy cuts are implemented, since the relevant signal regions often lie in the tails of
kinematic distributions (see e.g. [12, 52]).

Next, we turn to the results where we vary Emax presented in the right panel of
figure 18. This is a proxy for an EFT test that is sometimes utilized, where robustness of
the result of an analysis is tested against varying a cutoff on high energy events (see e.g. [1–
8, 137]). In this scheme, the validity of the result depends on how much the derived limits
change as a function of Emax. Typically, even in the parameter space whereM <

√
s, results

are shown to be relatively insensitive to such a cut. We can mimic this test by checking
that the hadronic perturbative unitarity bound introduced here is robust to varying Emax.
Indeed, when taking the relatively extreme cut Emax = 0.4

√
s, the bounds on M barely

change for EFTs with relatively low truncation dimensions, which is relevant for most of
practical applications. This confirms that our bounds are compatible with this test. On
the other hand, for large ∆, Mbound gets weaker with the Emax cut, consistent with our
expectation that as we take ∆ to be large, Mbound → Emax.

7 Discussion and future directions

In this paper, we have studied the validity of the EFT framework as it applies to searching
for new physics associated with a scale that is below the center-of-mass energy at hadron
colliders M <

√
s. The key insight is that when the signal regions are designed to be

inclusive regarding the partonic center-of-mass energy, one needs to carefully account for
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PDF effects, which serve to suppress events that have a high partonic center-of-mass energy.
Using the tree-level pair production process in eq. (3.1) as a benchmark, we have probed
this question in the context of perturbative partial-wave unitarity constraints. We conclude
that there exists parameter space where the EFT defined with ∆ < ∆crit does not violate
partial wave perturbative unitarity, even thoughM �

√
s. We provided evidence that there

exist valid EFTs that lie in the parameter space opened up by PDF effects. Importantly,
this conclusion is of practical relevance to EFT analyses being performed at the LHC,
which often result in limits on the EFT scale that are below

√
s. We emphasize that the

perturbative unitarity constraint depends on the kinematics of the process being studied, so
for each given search one must perform a dedicated analysis to obtain the EFT parameter
space compatible with perturbative partial-wave unitarity.

We view this paper as demonstrating that PDF suppression of high energy events
can dramatically increase the valid region of parameter space for an EFT search. The
most obvious next step is to compute the perturbative unitarity bounds of realistic EFT
extensions of the Standard Model, e.g. of relevance to dark matter searches, for constraining
SMEFT operator coefficients, etc. Specifically, we would like to revisit the perturbative
partial-wave unitarity bound to incorporate fermionic initial states, and then to apply this
upgraded calculation to specific EFTs that are being searched for at the LHC. As we
discussed in section 6, the details of the signal region cuts will also have an impact on the
detailed bounds. This analysis will be critical to applying our results in detail at the LHC.
It would additionally be interesting to understand the interplay between PDF fits and the
inclusion of higher dimension SMEFT operators, along the lines of [145].

We also plan to investigate how our findings here generalize beyond the specific 2-to-2
process of eq. (3.1). In particular, eqs. (3.5) and (3.12) show that the EFT expansions for
this process are only accounting for higher-dimension operators that strictly involve more
powers of derivatives. In general, one would like to see that the same conclusions hold
when including operators that involve more powers of fields. While we anticipate that our
conclusions will be essentially unchanged when studying the effects of these operators due
simply to dimensional analysis presented in section 3.3, it will be interesting to see how
the interplay of making inclusive/exclusive requirements on the final states will impact the
bounds derived here. It will additionally be useful to explore EFT validity in the context
of experimental limits that are placed with shape information.

Even if we restrict our scope to the derivative expansion as was done in this paper, there
are potential applications that could follow up on some recent studies where resumming
the EFT field expansion was utilized:

• Refs. [141, 146–148] argued that one must include all orders in the field expansion in
order to correctly identify if a BSM EFT can be matched onto SMEFT (as opposed
to being forced to match onto the more general formulation with non-linearly realized
electroweak symmetry breaking). There is additionally a close relation between per-
turbative unitarity violation and inclusive amplitudes involving an arbitrary number
of fields in the final state [149, 150].

• When focusing on BSM modifications to the two-point and three-point amplitudes, it
was emphasized that the derivative expansion is trivial [151, 152]. In these cases, one
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can resum the field expansion in SMEFT, an approach that was recently advocated
in [152].

• Going beyond two-point and three-point amplitudes, a resummation over the field
expansion will leave us with a non-trivial derivative expansion [152]. Nevertheless, the
derivative expansion can still be systematically organized through the use of group
theoretical techniques [151, 153].

Once the field expansion is resummed, the EFT will only include a derivative expansion.
Therefore, our study here helps to justify the validity of analyses that resum (some of) the
field expansion, and it would be of significant interest to understand the interplay between
these ideas and PDF effects.

Finally, we will briefly comment on the implications for new search designs at the LHC.
Given the dependence of the perturbative unitarity bound on the kinematics used to define
the signal region of the search, one could be motivated to narrow the range of final state
energies to sharpen the perturbative unitarity bound. However, this typically increases the
statistical error, thereby reducing the power of the search. Furthermore, since the meaning
of the unitarity bound is limited to the assumption of perturbativity, it is unclear how
much is gained by attempting to sharpen it by modifying the search strategy. Based on
these considerations, we believe that in many cases, it might be advantageous to keep the
energy bin of the experimental search somewhat inclusive. Investigating this interplay is
worthy of dedicated studies, which we leave for future work.

Analyses that utilize EFTs are of critical importance to the LHC program. Accounting
for the impact of PDFs on their range of validity will allow us to utilize these frameworks
with confidence as we continue to pursue the experimental signatures of beyond the Stan-
dard Model physics.
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A Results for smaller final state mass

In this appendix, we provide the perturbative unitarity bounds on the EFT parameter
space (M,∆) for the case that the final state particles have a mass of 10 GeV, see figures 19
and 20. The impact of cutting away low (high) energy events is shown in the left (right)
panel of figure 21.
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Figure 19. A comparison of the perturbative unitarity results against the t-channel cross section
predictions for two choices of the UV parameters: λqφ = 8π [left] and λqφ = 2 [right] in the case that
the final state particles have a mass of 10GeV. The shaded regions are the perturbative unitarity
bounds, while the contours show power counting error.
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incompatible with hadronic perturbative partial-wave unitarity is to the left of the curves.
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